skbuff.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Fixes:
  8. * Alan Cox : Fixed the worst of the load
  9. * balancer bugs.
  10. * Dave Platt : Interrupt stacking fix.
  11. * Richard Kooijman : Timestamp fixes.
  12. * Alan Cox : Changed buffer format.
  13. * Alan Cox : destructor hook for AF_UNIX etc.
  14. * Linus Torvalds : Better skb_clone.
  15. * Alan Cox : Added skb_copy.
  16. * Alan Cox : Added all the changed routines Linus
  17. * only put in the headers
  18. * Ray VanTassle : Fixed --skb->lock in free
  19. * Alan Cox : skb_copy copy arp field
  20. * Andi Kleen : slabified it.
  21. * Robert Olsson : Removed skb_head_pool
  22. *
  23. * NOTE:
  24. * The __skb_ routines should be called with interrupts
  25. * disabled, or you better be *real* sure that the operation is atomic
  26. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  27. * or via disabling bottom half handlers, etc).
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. /*
  35. * The functions in this file will not compile correctly with gcc 2.4.x
  36. */
  37. #include <linux/module.h>
  38. #include <linux/types.h>
  39. #include <linux/kernel.h>
  40. #include <linux/kmemcheck.h>
  41. #include <linux/mm.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/in.h>
  44. #include <linux/inet.h>
  45. #include <linux/slab.h>
  46. #include <linux/netdevice.h>
  47. #ifdef CONFIG_NET_CLS_ACT
  48. #include <net/pkt_sched.h>
  49. #endif
  50. #include <linux/string.h>
  51. #include <linux/skbuff.h>
  52. #include <linux/splice.h>
  53. #include <linux/cache.h>
  54. #include <linux/rtnetlink.h>
  55. #include <linux/init.h>
  56. #include <linux/scatterlist.h>
  57. #include <linux/errqueue.h>
  58. #include <linux/prefetch.h>
  59. #include <net/protocol.h>
  60. #include <net/dst.h>
  61. #include <net/sock.h>
  62. #include <net/checksum.h>
  63. #include <net/xfrm.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/system.h>
  66. #include <trace/events/skb.h>
  67. #include "kmap_skb.h"
  68. static struct kmem_cache *skbuff_head_cache __read_mostly;
  69. static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  70. static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  71. struct pipe_buffer *buf)
  72. {
  73. put_page(buf->page);
  74. }
  75. static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  76. struct pipe_buffer *buf)
  77. {
  78. get_page(buf->page);
  79. }
  80. static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  81. struct pipe_buffer *buf)
  82. {
  83. return 1;
  84. }
  85. /* Pipe buffer operations for a socket. */
  86. static const struct pipe_buf_operations sock_pipe_buf_ops = {
  87. .can_merge = 0,
  88. .map = generic_pipe_buf_map,
  89. .unmap = generic_pipe_buf_unmap,
  90. .confirm = generic_pipe_buf_confirm,
  91. .release = sock_pipe_buf_release,
  92. .steal = sock_pipe_buf_steal,
  93. .get = sock_pipe_buf_get,
  94. };
  95. /*
  96. * Keep out-of-line to prevent kernel bloat.
  97. * __builtin_return_address is not used because it is not always
  98. * reliable.
  99. */
  100. /**
  101. * skb_over_panic - private function
  102. * @skb: buffer
  103. * @sz: size
  104. * @here: address
  105. *
  106. * Out of line support code for skb_put(). Not user callable.
  107. */
  108. static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  109. {
  110. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  111. "data:%p tail:%#lx end:%#lx dev:%s\n",
  112. here, skb->len, sz, skb->head, skb->data,
  113. (unsigned long)skb->tail, (unsigned long)skb->end,
  114. skb->dev ? skb->dev->name : "<NULL>");
  115. BUG();
  116. }
  117. /**
  118. * skb_under_panic - private function
  119. * @skb: buffer
  120. * @sz: size
  121. * @here: address
  122. *
  123. * Out of line support code for skb_push(). Not user callable.
  124. */
  125. static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  126. {
  127. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  128. "data:%p tail:%#lx end:%#lx dev:%s\n",
  129. here, skb->len, sz, skb->head, skb->data,
  130. (unsigned long)skb->tail, (unsigned long)skb->end,
  131. skb->dev ? skb->dev->name : "<NULL>");
  132. BUG();
  133. }
  134. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  135. * 'private' fields and also do memory statistics to find all the
  136. * [BEEP] leaks.
  137. *
  138. */
  139. /**
  140. * __alloc_skb - allocate a network buffer
  141. * @size: size to allocate
  142. * @gfp_mask: allocation mask
  143. * @fclone: allocate from fclone cache instead of head cache
  144. * and allocate a cloned (child) skb
  145. * @node: numa node to allocate memory on
  146. *
  147. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  148. * tail room of size bytes. The object has a reference count of one.
  149. * The return is the buffer. On a failure the return is %NULL.
  150. *
  151. * Buffers may only be allocated from interrupts using a @gfp_mask of
  152. * %GFP_ATOMIC.
  153. */
  154. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  155. int fclone, int node)
  156. {
  157. struct kmem_cache *cache;
  158. struct skb_shared_info *shinfo;
  159. struct sk_buff *skb;
  160. u8 *data;
  161. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  162. /* Get the HEAD */
  163. skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
  164. if (!skb)
  165. goto out;
  166. prefetchw(skb);
  167. size = SKB_DATA_ALIGN(size);
  168. data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
  169. gfp_mask, node);
  170. if (!data)
  171. goto nodata;
  172. prefetchw(data + size);
  173. /*
  174. * Only clear those fields we need to clear, not those that we will
  175. * actually initialise below. Hence, don't put any more fields after
  176. * the tail pointer in struct sk_buff!
  177. */
  178. memset(skb, 0, offsetof(struct sk_buff, tail));
  179. skb->truesize = size + sizeof(struct sk_buff);
  180. atomic_set(&skb->users, 1);
  181. skb->head = data;
  182. skb->data = data;
  183. skb_reset_tail_pointer(skb);
  184. skb->end = skb->tail + size;
  185. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  186. skb->mac_header = ~0U;
  187. #endif
  188. /* make sure we initialize shinfo sequentially */
  189. shinfo = skb_shinfo(skb);
  190. memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  191. atomic_set(&shinfo->dataref, 1);
  192. kmemcheck_annotate_variable(shinfo->destructor_arg);
  193. if (fclone) {
  194. struct sk_buff *child = skb + 1;
  195. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  196. kmemcheck_annotate_bitfield(child, flags1);
  197. kmemcheck_annotate_bitfield(child, flags2);
  198. skb->fclone = SKB_FCLONE_ORIG;
  199. atomic_set(fclone_ref, 1);
  200. child->fclone = SKB_FCLONE_UNAVAILABLE;
  201. }
  202. out:
  203. return skb;
  204. nodata:
  205. kmem_cache_free(cache, skb);
  206. skb = NULL;
  207. goto out;
  208. }
  209. EXPORT_SYMBOL(__alloc_skb);
  210. /**
  211. * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  212. * @dev: network device to receive on
  213. * @length: length to allocate
  214. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  215. *
  216. * Allocate a new &sk_buff and assign it a usage count of one. The
  217. * buffer has unspecified headroom built in. Users should allocate
  218. * the headroom they think they need without accounting for the
  219. * built in space. The built in space is used for optimisations.
  220. *
  221. * %NULL is returned if there is no free memory.
  222. */
  223. struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  224. unsigned int length, gfp_t gfp_mask)
  225. {
  226. struct sk_buff *skb;
  227. skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
  228. if (likely(skb)) {
  229. skb_reserve(skb, NET_SKB_PAD);
  230. skb->dev = dev;
  231. }
  232. return skb;
  233. }
  234. EXPORT_SYMBOL(__netdev_alloc_skb);
  235. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  236. int size)
  237. {
  238. skb_fill_page_desc(skb, i, page, off, size);
  239. skb->len += size;
  240. skb->data_len += size;
  241. skb->truesize += size;
  242. }
  243. EXPORT_SYMBOL(skb_add_rx_frag);
  244. /**
  245. * dev_alloc_skb - allocate an skbuff for receiving
  246. * @length: length to allocate
  247. *
  248. * Allocate a new &sk_buff and assign it a usage count of one. The
  249. * buffer has unspecified headroom built in. Users should allocate
  250. * the headroom they think they need without accounting for the
  251. * built in space. The built in space is used for optimisations.
  252. *
  253. * %NULL is returned if there is no free memory. Although this function
  254. * allocates memory it can be called from an interrupt.
  255. */
  256. struct sk_buff *dev_alloc_skb(unsigned int length)
  257. {
  258. /*
  259. * There is more code here than it seems:
  260. * __dev_alloc_skb is an inline
  261. */
  262. return __dev_alloc_skb(length, GFP_ATOMIC);
  263. }
  264. EXPORT_SYMBOL(dev_alloc_skb);
  265. static void skb_drop_list(struct sk_buff **listp)
  266. {
  267. struct sk_buff *list = *listp;
  268. *listp = NULL;
  269. do {
  270. struct sk_buff *this = list;
  271. list = list->next;
  272. kfree_skb(this);
  273. } while (list);
  274. }
  275. static inline void skb_drop_fraglist(struct sk_buff *skb)
  276. {
  277. skb_drop_list(&skb_shinfo(skb)->frag_list);
  278. }
  279. static void skb_clone_fraglist(struct sk_buff *skb)
  280. {
  281. struct sk_buff *list;
  282. skb_walk_frags(skb, list)
  283. skb_get(list);
  284. }
  285. static void skb_release_data(struct sk_buff *skb)
  286. {
  287. if (!skb->cloned ||
  288. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  289. &skb_shinfo(skb)->dataref)) {
  290. if (skb_shinfo(skb)->nr_frags) {
  291. int i;
  292. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  293. put_page(skb_shinfo(skb)->frags[i].page);
  294. }
  295. if (skb_has_frag_list(skb))
  296. skb_drop_fraglist(skb);
  297. kfree(skb->head);
  298. }
  299. }
  300. /*
  301. * Free an skbuff by memory without cleaning the state.
  302. */
  303. static void kfree_skbmem(struct sk_buff *skb)
  304. {
  305. struct sk_buff *other;
  306. atomic_t *fclone_ref;
  307. switch (skb->fclone) {
  308. case SKB_FCLONE_UNAVAILABLE:
  309. kmem_cache_free(skbuff_head_cache, skb);
  310. break;
  311. case SKB_FCLONE_ORIG:
  312. fclone_ref = (atomic_t *) (skb + 2);
  313. if (atomic_dec_and_test(fclone_ref))
  314. kmem_cache_free(skbuff_fclone_cache, skb);
  315. break;
  316. case SKB_FCLONE_CLONE:
  317. fclone_ref = (atomic_t *) (skb + 1);
  318. other = skb - 1;
  319. /* The clone portion is available for
  320. * fast-cloning again.
  321. */
  322. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  323. if (atomic_dec_and_test(fclone_ref))
  324. kmem_cache_free(skbuff_fclone_cache, other);
  325. break;
  326. }
  327. }
  328. static void skb_release_head_state(struct sk_buff *skb)
  329. {
  330. skb_dst_drop(skb);
  331. #ifdef CONFIG_XFRM
  332. secpath_put(skb->sp);
  333. #endif
  334. if (skb->destructor) {
  335. WARN_ON(in_irq());
  336. skb->destructor(skb);
  337. }
  338. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  339. nf_conntrack_put(skb->nfct);
  340. #endif
  341. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  342. nf_conntrack_put_reasm(skb->nfct_reasm);
  343. #endif
  344. #ifdef CONFIG_BRIDGE_NETFILTER
  345. nf_bridge_put(skb->nf_bridge);
  346. #endif
  347. /* XXX: IS this still necessary? - JHS */
  348. #ifdef CONFIG_NET_SCHED
  349. skb->tc_index = 0;
  350. #ifdef CONFIG_NET_CLS_ACT
  351. skb->tc_verd = 0;
  352. #endif
  353. #endif
  354. }
  355. /* Free everything but the sk_buff shell. */
  356. static void skb_release_all(struct sk_buff *skb)
  357. {
  358. skb_release_head_state(skb);
  359. skb_release_data(skb);
  360. }
  361. /**
  362. * __kfree_skb - private function
  363. * @skb: buffer
  364. *
  365. * Free an sk_buff. Release anything attached to the buffer.
  366. * Clean the state. This is an internal helper function. Users should
  367. * always call kfree_skb
  368. */
  369. void __kfree_skb(struct sk_buff *skb)
  370. {
  371. skb_release_all(skb);
  372. kfree_skbmem(skb);
  373. }
  374. EXPORT_SYMBOL(__kfree_skb);
  375. /**
  376. * kfree_skb - free an sk_buff
  377. * @skb: buffer to free
  378. *
  379. * Drop a reference to the buffer and free it if the usage count has
  380. * hit zero.
  381. */
  382. void kfree_skb(struct sk_buff *skb)
  383. {
  384. if (unlikely(!skb))
  385. return;
  386. if (likely(atomic_read(&skb->users) == 1))
  387. smp_rmb();
  388. else if (likely(!atomic_dec_and_test(&skb->users)))
  389. return;
  390. trace_kfree_skb(skb, __builtin_return_address(0));
  391. __kfree_skb(skb);
  392. }
  393. EXPORT_SYMBOL(kfree_skb);
  394. /**
  395. * consume_skb - free an skbuff
  396. * @skb: buffer to free
  397. *
  398. * Drop a ref to the buffer and free it if the usage count has hit zero
  399. * Functions identically to kfree_skb, but kfree_skb assumes that the frame
  400. * is being dropped after a failure and notes that
  401. */
  402. void consume_skb(struct sk_buff *skb)
  403. {
  404. if (unlikely(!skb))
  405. return;
  406. if (likely(atomic_read(&skb->users) == 1))
  407. smp_rmb();
  408. else if (likely(!atomic_dec_and_test(&skb->users)))
  409. return;
  410. trace_consume_skb(skb);
  411. __kfree_skb(skb);
  412. }
  413. EXPORT_SYMBOL(consume_skb);
  414. /**
  415. * skb_recycle_check - check if skb can be reused for receive
  416. * @skb: buffer
  417. * @skb_size: minimum receive buffer size
  418. *
  419. * Checks that the skb passed in is not shared or cloned, and
  420. * that it is linear and its head portion at least as large as
  421. * skb_size so that it can be recycled as a receive buffer.
  422. * If these conditions are met, this function does any necessary
  423. * reference count dropping and cleans up the skbuff as if it
  424. * just came from __alloc_skb().
  425. */
  426. bool skb_recycle_check(struct sk_buff *skb, int skb_size)
  427. {
  428. struct skb_shared_info *shinfo;
  429. if (irqs_disabled())
  430. return false;
  431. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  432. return false;
  433. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  434. if (skb_end_pointer(skb) - skb->head < skb_size)
  435. return false;
  436. if (skb_shared(skb) || skb_cloned(skb))
  437. return false;
  438. skb_release_head_state(skb);
  439. shinfo = skb_shinfo(skb);
  440. memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  441. atomic_set(&shinfo->dataref, 1);
  442. memset(skb, 0, offsetof(struct sk_buff, tail));
  443. skb->data = skb->head + NET_SKB_PAD;
  444. skb_reset_tail_pointer(skb);
  445. return true;
  446. }
  447. EXPORT_SYMBOL(skb_recycle_check);
  448. static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  449. {
  450. new->tstamp = old->tstamp;
  451. new->dev = old->dev;
  452. new->transport_header = old->transport_header;
  453. new->network_header = old->network_header;
  454. new->mac_header = old->mac_header;
  455. skb_dst_copy(new, old);
  456. new->rxhash = old->rxhash;
  457. #ifdef CONFIG_XFRM
  458. new->sp = secpath_get(old->sp);
  459. #endif
  460. memcpy(new->cb, old->cb, sizeof(old->cb));
  461. new->csum = old->csum;
  462. new->local_df = old->local_df;
  463. new->pkt_type = old->pkt_type;
  464. new->ip_summed = old->ip_summed;
  465. skb_copy_queue_mapping(new, old);
  466. new->priority = old->priority;
  467. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  468. new->ipvs_property = old->ipvs_property;
  469. #endif
  470. new->protocol = old->protocol;
  471. new->mark = old->mark;
  472. new->skb_iif = old->skb_iif;
  473. __nf_copy(new, old);
  474. #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
  475. defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
  476. new->nf_trace = old->nf_trace;
  477. #endif
  478. #ifdef CONFIG_NET_SCHED
  479. new->tc_index = old->tc_index;
  480. #ifdef CONFIG_NET_CLS_ACT
  481. new->tc_verd = old->tc_verd;
  482. #endif
  483. #endif
  484. new->vlan_tci = old->vlan_tci;
  485. skb_copy_secmark(new, old);
  486. }
  487. /*
  488. * You should not add any new code to this function. Add it to
  489. * __copy_skb_header above instead.
  490. */
  491. static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
  492. {
  493. #define C(x) n->x = skb->x
  494. n->next = n->prev = NULL;
  495. n->sk = NULL;
  496. __copy_skb_header(n, skb);
  497. C(len);
  498. C(data_len);
  499. C(mac_len);
  500. n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
  501. n->cloned = 1;
  502. n->nohdr = 0;
  503. n->destructor = NULL;
  504. C(tail);
  505. C(end);
  506. C(head);
  507. C(data);
  508. C(truesize);
  509. atomic_set(&n->users, 1);
  510. atomic_inc(&(skb_shinfo(skb)->dataref));
  511. skb->cloned = 1;
  512. return n;
  513. #undef C
  514. }
  515. /**
  516. * skb_morph - morph one skb into another
  517. * @dst: the skb to receive the contents
  518. * @src: the skb to supply the contents
  519. *
  520. * This is identical to skb_clone except that the target skb is
  521. * supplied by the user.
  522. *
  523. * The target skb is returned upon exit.
  524. */
  525. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
  526. {
  527. skb_release_all(dst);
  528. return __skb_clone(dst, src);
  529. }
  530. EXPORT_SYMBOL_GPL(skb_morph);
  531. /**
  532. * skb_clone - duplicate an sk_buff
  533. * @skb: buffer to clone
  534. * @gfp_mask: allocation priority
  535. *
  536. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  537. * copies share the same packet data but not structure. The new
  538. * buffer has a reference count of 1. If the allocation fails the
  539. * function returns %NULL otherwise the new buffer is returned.
  540. *
  541. * If this function is called from an interrupt gfp_mask() must be
  542. * %GFP_ATOMIC.
  543. */
  544. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  545. {
  546. struct sk_buff *n;
  547. n = skb + 1;
  548. if (skb->fclone == SKB_FCLONE_ORIG &&
  549. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  550. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  551. n->fclone = SKB_FCLONE_CLONE;
  552. atomic_inc(fclone_ref);
  553. } else {
  554. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  555. if (!n)
  556. return NULL;
  557. kmemcheck_annotate_bitfield(n, flags1);
  558. kmemcheck_annotate_bitfield(n, flags2);
  559. n->fclone = SKB_FCLONE_UNAVAILABLE;
  560. }
  561. return __skb_clone(n, skb);
  562. }
  563. EXPORT_SYMBOL(skb_clone);
  564. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  565. {
  566. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  567. /*
  568. * Shift between the two data areas in bytes
  569. */
  570. unsigned long offset = new->data - old->data;
  571. #endif
  572. __copy_skb_header(new, old);
  573. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  574. /* {transport,network,mac}_header are relative to skb->head */
  575. new->transport_header += offset;
  576. new->network_header += offset;
  577. if (skb_mac_header_was_set(new))
  578. new->mac_header += offset;
  579. #endif
  580. skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  581. skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  582. skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  583. }
  584. /**
  585. * skb_copy - create private copy of an sk_buff
  586. * @skb: buffer to copy
  587. * @gfp_mask: allocation priority
  588. *
  589. * Make a copy of both an &sk_buff and its data. This is used when the
  590. * caller wishes to modify the data and needs a private copy of the
  591. * data to alter. Returns %NULL on failure or the pointer to the buffer
  592. * on success. The returned buffer has a reference count of 1.
  593. *
  594. * As by-product this function converts non-linear &sk_buff to linear
  595. * one, so that &sk_buff becomes completely private and caller is allowed
  596. * to modify all the data of returned buffer. This means that this
  597. * function is not recommended for use in circumstances when only
  598. * header is going to be modified. Use pskb_copy() instead.
  599. */
  600. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  601. {
  602. int headerlen = skb_headroom(skb);
  603. unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
  604. struct sk_buff *n = alloc_skb(size, gfp_mask);
  605. if (!n)
  606. return NULL;
  607. /* Set the data pointer */
  608. skb_reserve(n, headerlen);
  609. /* Set the tail pointer and length */
  610. skb_put(n, skb->len);
  611. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  612. BUG();
  613. copy_skb_header(n, skb);
  614. return n;
  615. }
  616. EXPORT_SYMBOL(skb_copy);
  617. /**
  618. * pskb_copy - create copy of an sk_buff with private head.
  619. * @skb: buffer to copy
  620. * @gfp_mask: allocation priority
  621. *
  622. * Make a copy of both an &sk_buff and part of its data, located
  623. * in header. Fragmented data remain shared. This is used when
  624. * the caller wishes to modify only header of &sk_buff and needs
  625. * private copy of the header to alter. Returns %NULL on failure
  626. * or the pointer to the buffer on success.
  627. * The returned buffer has a reference count of 1.
  628. */
  629. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  630. {
  631. unsigned int size = skb_end_pointer(skb) - skb->head;
  632. struct sk_buff *n = alloc_skb(size, gfp_mask);
  633. if (!n)
  634. goto out;
  635. /* Set the data pointer */
  636. skb_reserve(n, skb_headroom(skb));
  637. /* Set the tail pointer and length */
  638. skb_put(n, skb_headlen(skb));
  639. /* Copy the bytes */
  640. skb_copy_from_linear_data(skb, n->data, n->len);
  641. n->truesize += skb->data_len;
  642. n->data_len = skb->data_len;
  643. n->len = skb->len;
  644. if (skb_shinfo(skb)->nr_frags) {
  645. int i;
  646. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  647. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  648. get_page(skb_shinfo(n)->frags[i].page);
  649. }
  650. skb_shinfo(n)->nr_frags = i;
  651. }
  652. if (skb_has_frag_list(skb)) {
  653. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  654. skb_clone_fraglist(n);
  655. }
  656. copy_skb_header(n, skb);
  657. out:
  658. return n;
  659. }
  660. EXPORT_SYMBOL(pskb_copy);
  661. /**
  662. * pskb_expand_head - reallocate header of &sk_buff
  663. * @skb: buffer to reallocate
  664. * @nhead: room to add at head
  665. * @ntail: room to add at tail
  666. * @gfp_mask: allocation priority
  667. *
  668. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  669. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  670. * reference count of 1. Returns zero in the case of success or error,
  671. * if expansion failed. In the last case, &sk_buff is not changed.
  672. *
  673. * All the pointers pointing into skb header may change and must be
  674. * reloaded after call to this function.
  675. */
  676. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  677. gfp_t gfp_mask)
  678. {
  679. int i;
  680. u8 *data;
  681. int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
  682. long off;
  683. bool fastpath;
  684. BUG_ON(nhead < 0);
  685. if (skb_shared(skb))
  686. BUG();
  687. size = SKB_DATA_ALIGN(size);
  688. /* Check if we can avoid taking references on fragments if we own
  689. * the last reference on skb->head. (see skb_release_data())
  690. */
  691. if (!skb->cloned)
  692. fastpath = true;
  693. else {
  694. int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
  695. fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
  696. }
  697. if (fastpath &&
  698. size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
  699. memmove(skb->head + size, skb_shinfo(skb),
  700. offsetof(struct skb_shared_info,
  701. frags[skb_shinfo(skb)->nr_frags]));
  702. memmove(skb->head + nhead, skb->head,
  703. skb_tail_pointer(skb) - skb->head);
  704. off = nhead;
  705. goto adjust_others;
  706. }
  707. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  708. if (!data)
  709. goto nodata;
  710. /* Copy only real data... and, alas, header. This should be
  711. * optimized for the cases when header is void.
  712. */
  713. memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
  714. memcpy((struct skb_shared_info *)(data + size),
  715. skb_shinfo(skb),
  716. offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
  717. if (fastpath) {
  718. kfree(skb->head);
  719. } else {
  720. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  721. get_page(skb_shinfo(skb)->frags[i].page);
  722. if (skb_has_frag_list(skb))
  723. skb_clone_fraglist(skb);
  724. skb_release_data(skb);
  725. }
  726. off = (data + nhead) - skb->head;
  727. skb->head = data;
  728. adjust_others:
  729. skb->data += off;
  730. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  731. skb->end = size;
  732. off = nhead;
  733. #else
  734. skb->end = skb->head + size;
  735. #endif
  736. /* {transport,network,mac}_header and tail are relative to skb->head */
  737. skb->tail += off;
  738. skb->transport_header += off;
  739. skb->network_header += off;
  740. if (skb_mac_header_was_set(skb))
  741. skb->mac_header += off;
  742. /* Only adjust this if it actually is csum_start rather than csum */
  743. if (skb->ip_summed == CHECKSUM_PARTIAL)
  744. skb->csum_start += nhead;
  745. skb->cloned = 0;
  746. skb->hdr_len = 0;
  747. skb->nohdr = 0;
  748. atomic_set(&skb_shinfo(skb)->dataref, 1);
  749. return 0;
  750. nodata:
  751. return -ENOMEM;
  752. }
  753. EXPORT_SYMBOL(pskb_expand_head);
  754. /* Make private copy of skb with writable head and some headroom */
  755. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  756. {
  757. struct sk_buff *skb2;
  758. int delta = headroom - skb_headroom(skb);
  759. if (delta <= 0)
  760. skb2 = pskb_copy(skb, GFP_ATOMIC);
  761. else {
  762. skb2 = skb_clone(skb, GFP_ATOMIC);
  763. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  764. GFP_ATOMIC)) {
  765. kfree_skb(skb2);
  766. skb2 = NULL;
  767. }
  768. }
  769. return skb2;
  770. }
  771. EXPORT_SYMBOL(skb_realloc_headroom);
  772. /**
  773. * skb_copy_expand - copy and expand sk_buff
  774. * @skb: buffer to copy
  775. * @newheadroom: new free bytes at head
  776. * @newtailroom: new free bytes at tail
  777. * @gfp_mask: allocation priority
  778. *
  779. * Make a copy of both an &sk_buff and its data and while doing so
  780. * allocate additional space.
  781. *
  782. * This is used when the caller wishes to modify the data and needs a
  783. * private copy of the data to alter as well as more space for new fields.
  784. * Returns %NULL on failure or the pointer to the buffer
  785. * on success. The returned buffer has a reference count of 1.
  786. *
  787. * You must pass %GFP_ATOMIC as the allocation priority if this function
  788. * is called from an interrupt.
  789. */
  790. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  791. int newheadroom, int newtailroom,
  792. gfp_t gfp_mask)
  793. {
  794. /*
  795. * Allocate the copy buffer
  796. */
  797. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  798. gfp_mask);
  799. int oldheadroom = skb_headroom(skb);
  800. int head_copy_len, head_copy_off;
  801. int off;
  802. if (!n)
  803. return NULL;
  804. skb_reserve(n, newheadroom);
  805. /* Set the tail pointer and length */
  806. skb_put(n, skb->len);
  807. head_copy_len = oldheadroom;
  808. head_copy_off = 0;
  809. if (newheadroom <= head_copy_len)
  810. head_copy_len = newheadroom;
  811. else
  812. head_copy_off = newheadroom - head_copy_len;
  813. /* Copy the linear header and data. */
  814. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  815. skb->len + head_copy_len))
  816. BUG();
  817. copy_skb_header(n, skb);
  818. off = newheadroom - oldheadroom;
  819. if (n->ip_summed == CHECKSUM_PARTIAL)
  820. n->csum_start += off;
  821. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  822. n->transport_header += off;
  823. n->network_header += off;
  824. if (skb_mac_header_was_set(skb))
  825. n->mac_header += off;
  826. #endif
  827. return n;
  828. }
  829. EXPORT_SYMBOL(skb_copy_expand);
  830. /**
  831. * skb_pad - zero pad the tail of an skb
  832. * @skb: buffer to pad
  833. * @pad: space to pad
  834. *
  835. * Ensure that a buffer is followed by a padding area that is zero
  836. * filled. Used by network drivers which may DMA or transfer data
  837. * beyond the buffer end onto the wire.
  838. *
  839. * May return error in out of memory cases. The skb is freed on error.
  840. */
  841. int skb_pad(struct sk_buff *skb, int pad)
  842. {
  843. int err;
  844. int ntail;
  845. /* If the skbuff is non linear tailroom is always zero.. */
  846. if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
  847. memset(skb->data+skb->len, 0, pad);
  848. return 0;
  849. }
  850. ntail = skb->data_len + pad - (skb->end - skb->tail);
  851. if (likely(skb_cloned(skb) || ntail > 0)) {
  852. err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
  853. if (unlikely(err))
  854. goto free_skb;
  855. }
  856. /* FIXME: The use of this function with non-linear skb's really needs
  857. * to be audited.
  858. */
  859. err = skb_linearize(skb);
  860. if (unlikely(err))
  861. goto free_skb;
  862. memset(skb->data + skb->len, 0, pad);
  863. return 0;
  864. free_skb:
  865. kfree_skb(skb);
  866. return err;
  867. }
  868. EXPORT_SYMBOL(skb_pad);
  869. /**
  870. * skb_put - add data to a buffer
  871. * @skb: buffer to use
  872. * @len: amount of data to add
  873. *
  874. * This function extends the used data area of the buffer. If this would
  875. * exceed the total buffer size the kernel will panic. A pointer to the
  876. * first byte of the extra data is returned.
  877. */
  878. unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  879. {
  880. unsigned char *tmp = skb_tail_pointer(skb);
  881. SKB_LINEAR_ASSERT(skb);
  882. skb->tail += len;
  883. skb->len += len;
  884. if (unlikely(skb->tail > skb->end))
  885. skb_over_panic(skb, len, __builtin_return_address(0));
  886. return tmp;
  887. }
  888. EXPORT_SYMBOL(skb_put);
  889. /**
  890. * skb_push - add data to the start of a buffer
  891. * @skb: buffer to use
  892. * @len: amount of data to add
  893. *
  894. * This function extends the used data area of the buffer at the buffer
  895. * start. If this would exceed the total buffer headroom the kernel will
  896. * panic. A pointer to the first byte of the extra data is returned.
  897. */
  898. unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  899. {
  900. skb->data -= len;
  901. skb->len += len;
  902. if (unlikely(skb->data<skb->head))
  903. skb_under_panic(skb, len, __builtin_return_address(0));
  904. return skb->data;
  905. }
  906. EXPORT_SYMBOL(skb_push);
  907. /**
  908. * skb_pull - remove data from the start of a buffer
  909. * @skb: buffer to use
  910. * @len: amount of data to remove
  911. *
  912. * This function removes data from the start of a buffer, returning
  913. * the memory to the headroom. A pointer to the next data in the buffer
  914. * is returned. Once the data has been pulled future pushes will overwrite
  915. * the old data.
  916. */
  917. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  918. {
  919. return skb_pull_inline(skb, len);
  920. }
  921. EXPORT_SYMBOL(skb_pull);
  922. /**
  923. * skb_trim - remove end from a buffer
  924. * @skb: buffer to alter
  925. * @len: new length
  926. *
  927. * Cut the length of a buffer down by removing data from the tail. If
  928. * the buffer is already under the length specified it is not modified.
  929. * The skb must be linear.
  930. */
  931. void skb_trim(struct sk_buff *skb, unsigned int len)
  932. {
  933. if (skb->len > len)
  934. __skb_trim(skb, len);
  935. }
  936. EXPORT_SYMBOL(skb_trim);
  937. /* Trims skb to length len. It can change skb pointers.
  938. */
  939. int ___pskb_trim(struct sk_buff *skb, unsigned int len)
  940. {
  941. struct sk_buff **fragp;
  942. struct sk_buff *frag;
  943. int offset = skb_headlen(skb);
  944. int nfrags = skb_shinfo(skb)->nr_frags;
  945. int i;
  946. int err;
  947. if (skb_cloned(skb) &&
  948. unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
  949. return err;
  950. i = 0;
  951. if (offset >= len)
  952. goto drop_pages;
  953. for (; i < nfrags; i++) {
  954. int end = offset + skb_shinfo(skb)->frags[i].size;
  955. if (end < len) {
  956. offset = end;
  957. continue;
  958. }
  959. skb_shinfo(skb)->frags[i++].size = len - offset;
  960. drop_pages:
  961. skb_shinfo(skb)->nr_frags = i;
  962. for (; i < nfrags; i++)
  963. put_page(skb_shinfo(skb)->frags[i].page);
  964. if (skb_has_frag_list(skb))
  965. skb_drop_fraglist(skb);
  966. goto done;
  967. }
  968. for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
  969. fragp = &frag->next) {
  970. int end = offset + frag->len;
  971. if (skb_shared(frag)) {
  972. struct sk_buff *nfrag;
  973. nfrag = skb_clone(frag, GFP_ATOMIC);
  974. if (unlikely(!nfrag))
  975. return -ENOMEM;
  976. nfrag->next = frag->next;
  977. kfree_skb(frag);
  978. frag = nfrag;
  979. *fragp = frag;
  980. }
  981. if (end < len) {
  982. offset = end;
  983. continue;
  984. }
  985. if (end > len &&
  986. unlikely((err = pskb_trim(frag, len - offset))))
  987. return err;
  988. if (frag->next)
  989. skb_drop_list(&frag->next);
  990. break;
  991. }
  992. done:
  993. if (len > skb_headlen(skb)) {
  994. skb->data_len -= skb->len - len;
  995. skb->len = len;
  996. } else {
  997. skb->len = len;
  998. skb->data_len = 0;
  999. skb_set_tail_pointer(skb, len);
  1000. }
  1001. return 0;
  1002. }
  1003. EXPORT_SYMBOL(___pskb_trim);
  1004. /**
  1005. * __pskb_pull_tail - advance tail of skb header
  1006. * @skb: buffer to reallocate
  1007. * @delta: number of bytes to advance tail
  1008. *
  1009. * The function makes a sense only on a fragmented &sk_buff,
  1010. * it expands header moving its tail forward and copying necessary
  1011. * data from fragmented part.
  1012. *
  1013. * &sk_buff MUST have reference count of 1.
  1014. *
  1015. * Returns %NULL (and &sk_buff does not change) if pull failed
  1016. * or value of new tail of skb in the case of success.
  1017. *
  1018. * All the pointers pointing into skb header may change and must be
  1019. * reloaded after call to this function.
  1020. */
  1021. /* Moves tail of skb head forward, copying data from fragmented part,
  1022. * when it is necessary.
  1023. * 1. It may fail due to malloc failure.
  1024. * 2. It may change skb pointers.
  1025. *
  1026. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  1027. */
  1028. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  1029. {
  1030. /* If skb has not enough free space at tail, get new one
  1031. * plus 128 bytes for future expansions. If we have enough
  1032. * room at tail, reallocate without expansion only if skb is cloned.
  1033. */
  1034. int i, k, eat = (skb->tail + delta) - skb->end;
  1035. if (eat > 0 || skb_cloned(skb)) {
  1036. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  1037. GFP_ATOMIC))
  1038. return NULL;
  1039. }
  1040. if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
  1041. BUG();
  1042. /* Optimization: no fragments, no reasons to preestimate
  1043. * size of pulled pages. Superb.
  1044. */
  1045. if (!skb_has_frag_list(skb))
  1046. goto pull_pages;
  1047. /* Estimate size of pulled pages. */
  1048. eat = delta;
  1049. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1050. if (skb_shinfo(skb)->frags[i].size >= eat)
  1051. goto pull_pages;
  1052. eat -= skb_shinfo(skb)->frags[i].size;
  1053. }
  1054. /* If we need update frag list, we are in troubles.
  1055. * Certainly, it possible to add an offset to skb data,
  1056. * but taking into account that pulling is expected to
  1057. * be very rare operation, it is worth to fight against
  1058. * further bloating skb head and crucify ourselves here instead.
  1059. * Pure masohism, indeed. 8)8)
  1060. */
  1061. if (eat) {
  1062. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1063. struct sk_buff *clone = NULL;
  1064. struct sk_buff *insp = NULL;
  1065. do {
  1066. BUG_ON(!list);
  1067. if (list->len <= eat) {
  1068. /* Eaten as whole. */
  1069. eat -= list->len;
  1070. list = list->next;
  1071. insp = list;
  1072. } else {
  1073. /* Eaten partially. */
  1074. if (skb_shared(list)) {
  1075. /* Sucks! We need to fork list. :-( */
  1076. clone = skb_clone(list, GFP_ATOMIC);
  1077. if (!clone)
  1078. return NULL;
  1079. insp = list->next;
  1080. list = clone;
  1081. } else {
  1082. /* This may be pulled without
  1083. * problems. */
  1084. insp = list;
  1085. }
  1086. if (!pskb_pull(list, eat)) {
  1087. kfree_skb(clone);
  1088. return NULL;
  1089. }
  1090. break;
  1091. }
  1092. } while (eat);
  1093. /* Free pulled out fragments. */
  1094. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  1095. skb_shinfo(skb)->frag_list = list->next;
  1096. kfree_skb(list);
  1097. }
  1098. /* And insert new clone at head. */
  1099. if (clone) {
  1100. clone->next = list;
  1101. skb_shinfo(skb)->frag_list = clone;
  1102. }
  1103. }
  1104. /* Success! Now we may commit changes to skb data. */
  1105. pull_pages:
  1106. eat = delta;
  1107. k = 0;
  1108. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1109. if (skb_shinfo(skb)->frags[i].size <= eat) {
  1110. put_page(skb_shinfo(skb)->frags[i].page);
  1111. eat -= skb_shinfo(skb)->frags[i].size;
  1112. } else {
  1113. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  1114. if (eat) {
  1115. skb_shinfo(skb)->frags[k].page_offset += eat;
  1116. skb_shinfo(skb)->frags[k].size -= eat;
  1117. eat = 0;
  1118. }
  1119. k++;
  1120. }
  1121. }
  1122. skb_shinfo(skb)->nr_frags = k;
  1123. skb->tail += delta;
  1124. skb->data_len -= delta;
  1125. return skb_tail_pointer(skb);
  1126. }
  1127. EXPORT_SYMBOL(__pskb_pull_tail);
  1128. /* Copy some data bits from skb to kernel buffer. */
  1129. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  1130. {
  1131. int start = skb_headlen(skb);
  1132. struct sk_buff *frag_iter;
  1133. int i, copy;
  1134. if (offset > (int)skb->len - len)
  1135. goto fault;
  1136. /* Copy header. */
  1137. if ((copy = start - offset) > 0) {
  1138. if (copy > len)
  1139. copy = len;
  1140. skb_copy_from_linear_data_offset(skb, offset, to, copy);
  1141. if ((len -= copy) == 0)
  1142. return 0;
  1143. offset += copy;
  1144. to += copy;
  1145. }
  1146. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1147. int end;
  1148. WARN_ON(start > offset + len);
  1149. end = start + skb_shinfo(skb)->frags[i].size;
  1150. if ((copy = end - offset) > 0) {
  1151. u8 *vaddr;
  1152. if (copy > len)
  1153. copy = len;
  1154. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  1155. memcpy(to,
  1156. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  1157. offset - start, copy);
  1158. kunmap_skb_frag(vaddr);
  1159. if ((len -= copy) == 0)
  1160. return 0;
  1161. offset += copy;
  1162. to += copy;
  1163. }
  1164. start = end;
  1165. }
  1166. skb_walk_frags(skb, frag_iter) {
  1167. int end;
  1168. WARN_ON(start > offset + len);
  1169. end = start + frag_iter->len;
  1170. if ((copy = end - offset) > 0) {
  1171. if (copy > len)
  1172. copy = len;
  1173. if (skb_copy_bits(frag_iter, offset - start, to, copy))
  1174. goto fault;
  1175. if ((len -= copy) == 0)
  1176. return 0;
  1177. offset += copy;
  1178. to += copy;
  1179. }
  1180. start = end;
  1181. }
  1182. if (!len)
  1183. return 0;
  1184. fault:
  1185. return -EFAULT;
  1186. }
  1187. EXPORT_SYMBOL(skb_copy_bits);
  1188. /*
  1189. * Callback from splice_to_pipe(), if we need to release some pages
  1190. * at the end of the spd in case we error'ed out in filling the pipe.
  1191. */
  1192. static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
  1193. {
  1194. put_page(spd->pages[i]);
  1195. }
  1196. static inline struct page *linear_to_page(struct page *page, unsigned int *len,
  1197. unsigned int *offset,
  1198. struct sk_buff *skb, struct sock *sk)
  1199. {
  1200. struct page *p = sk->sk_sndmsg_page;
  1201. unsigned int off;
  1202. if (!p) {
  1203. new_page:
  1204. p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
  1205. if (!p)
  1206. return NULL;
  1207. off = sk->sk_sndmsg_off = 0;
  1208. /* hold one ref to this page until it's full */
  1209. } else {
  1210. unsigned int mlen;
  1211. off = sk->sk_sndmsg_off;
  1212. mlen = PAGE_SIZE - off;
  1213. if (mlen < 64 && mlen < *len) {
  1214. put_page(p);
  1215. goto new_page;
  1216. }
  1217. *len = min_t(unsigned int, *len, mlen);
  1218. }
  1219. memcpy(page_address(p) + off, page_address(page) + *offset, *len);
  1220. sk->sk_sndmsg_off += *len;
  1221. *offset = off;
  1222. get_page(p);
  1223. return p;
  1224. }
  1225. /*
  1226. * Fill page/offset/length into spd, if it can hold more pages.
  1227. */
  1228. static inline int spd_fill_page(struct splice_pipe_desc *spd,
  1229. struct pipe_inode_info *pipe, struct page *page,
  1230. unsigned int *len, unsigned int offset,
  1231. struct sk_buff *skb, int linear,
  1232. struct sock *sk)
  1233. {
  1234. if (unlikely(spd->nr_pages == pipe->buffers))
  1235. return 1;
  1236. if (linear) {
  1237. page = linear_to_page(page, len, &offset, skb, sk);
  1238. if (!page)
  1239. return 1;
  1240. } else
  1241. get_page(page);
  1242. spd->pages[spd->nr_pages] = page;
  1243. spd->partial[spd->nr_pages].len = *len;
  1244. spd->partial[spd->nr_pages].offset = offset;
  1245. spd->nr_pages++;
  1246. return 0;
  1247. }
  1248. static inline void __segment_seek(struct page **page, unsigned int *poff,
  1249. unsigned int *plen, unsigned int off)
  1250. {
  1251. unsigned long n;
  1252. *poff += off;
  1253. n = *poff / PAGE_SIZE;
  1254. if (n)
  1255. *page = nth_page(*page, n);
  1256. *poff = *poff % PAGE_SIZE;
  1257. *plen -= off;
  1258. }
  1259. static inline int __splice_segment(struct page *page, unsigned int poff,
  1260. unsigned int plen, unsigned int *off,
  1261. unsigned int *len, struct sk_buff *skb,
  1262. struct splice_pipe_desc *spd, int linear,
  1263. struct sock *sk,
  1264. struct pipe_inode_info *pipe)
  1265. {
  1266. if (!*len)
  1267. return 1;
  1268. /* skip this segment if already processed */
  1269. if (*off >= plen) {
  1270. *off -= plen;
  1271. return 0;
  1272. }
  1273. /* ignore any bits we already processed */
  1274. if (*off) {
  1275. __segment_seek(&page, &poff, &plen, *off);
  1276. *off = 0;
  1277. }
  1278. do {
  1279. unsigned int flen = min(*len, plen);
  1280. /* the linear region may spread across several pages */
  1281. flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
  1282. if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
  1283. return 1;
  1284. __segment_seek(&page, &poff, &plen, flen);
  1285. *len -= flen;
  1286. } while (*len && plen);
  1287. return 0;
  1288. }
  1289. /*
  1290. * Map linear and fragment data from the skb to spd. It reports failure if the
  1291. * pipe is full or if we already spliced the requested length.
  1292. */
  1293. static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
  1294. unsigned int *offset, unsigned int *len,
  1295. struct splice_pipe_desc *spd, struct sock *sk)
  1296. {
  1297. int seg;
  1298. /*
  1299. * map the linear part
  1300. */
  1301. if (__splice_segment(virt_to_page(skb->data),
  1302. (unsigned long) skb->data & (PAGE_SIZE - 1),
  1303. skb_headlen(skb),
  1304. offset, len, skb, spd, 1, sk, pipe))
  1305. return 1;
  1306. /*
  1307. * then map the fragments
  1308. */
  1309. for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
  1310. const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
  1311. if (__splice_segment(f->page, f->page_offset, f->size,
  1312. offset, len, skb, spd, 0, sk, pipe))
  1313. return 1;
  1314. }
  1315. return 0;
  1316. }
  1317. /*
  1318. * Map data from the skb to a pipe. Should handle both the linear part,
  1319. * the fragments, and the frag list. It does NOT handle frag lists within
  1320. * the frag list, if such a thing exists. We'd probably need to recurse to
  1321. * handle that cleanly.
  1322. */
  1323. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  1324. struct pipe_inode_info *pipe, unsigned int tlen,
  1325. unsigned int flags)
  1326. {
  1327. struct partial_page partial[PIPE_DEF_BUFFERS];
  1328. struct page *pages[PIPE_DEF_BUFFERS];
  1329. struct splice_pipe_desc spd = {
  1330. .pages = pages,
  1331. .partial = partial,
  1332. .flags = flags,
  1333. .ops = &sock_pipe_buf_ops,
  1334. .spd_release = sock_spd_release,
  1335. };
  1336. struct sk_buff *frag_iter;
  1337. struct sock *sk = skb->sk;
  1338. int ret = 0;
  1339. if (splice_grow_spd(pipe, &spd))
  1340. return -ENOMEM;
  1341. /*
  1342. * __skb_splice_bits() only fails if the output has no room left,
  1343. * so no point in going over the frag_list for the error case.
  1344. */
  1345. if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
  1346. goto done;
  1347. else if (!tlen)
  1348. goto done;
  1349. /*
  1350. * now see if we have a frag_list to map
  1351. */
  1352. skb_walk_frags(skb, frag_iter) {
  1353. if (!tlen)
  1354. break;
  1355. if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
  1356. break;
  1357. }
  1358. done:
  1359. if (spd.nr_pages) {
  1360. /*
  1361. * Drop the socket lock, otherwise we have reverse
  1362. * locking dependencies between sk_lock and i_mutex
  1363. * here as compared to sendfile(). We enter here
  1364. * with the socket lock held, and splice_to_pipe() will
  1365. * grab the pipe inode lock. For sendfile() emulation,
  1366. * we call into ->sendpage() with the i_mutex lock held
  1367. * and networking will grab the socket lock.
  1368. */
  1369. release_sock(sk);
  1370. ret = splice_to_pipe(pipe, &spd);
  1371. lock_sock(sk);
  1372. }
  1373. splice_shrink_spd(pipe, &spd);
  1374. return ret;
  1375. }
  1376. /**
  1377. * skb_store_bits - store bits from kernel buffer to skb
  1378. * @skb: destination buffer
  1379. * @offset: offset in destination
  1380. * @from: source buffer
  1381. * @len: number of bytes to copy
  1382. *
  1383. * Copy the specified number of bytes from the source buffer to the
  1384. * destination skb. This function handles all the messy bits of
  1385. * traversing fragment lists and such.
  1386. */
  1387. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
  1388. {
  1389. int start = skb_headlen(skb);
  1390. struct sk_buff *frag_iter;
  1391. int i, copy;
  1392. if (offset > (int)skb->len - len)
  1393. goto fault;
  1394. if ((copy = start - offset) > 0) {
  1395. if (copy > len)
  1396. copy = len;
  1397. skb_copy_to_linear_data_offset(skb, offset, from, copy);
  1398. if ((len -= copy) == 0)
  1399. return 0;
  1400. offset += copy;
  1401. from += copy;
  1402. }
  1403. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1404. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1405. int end;
  1406. WARN_ON(start > offset + len);
  1407. end = start + frag->size;
  1408. if ((copy = end - offset) > 0) {
  1409. u8 *vaddr;
  1410. if (copy > len)
  1411. copy = len;
  1412. vaddr = kmap_skb_frag(frag);
  1413. memcpy(vaddr + frag->page_offset + offset - start,
  1414. from, copy);
  1415. kunmap_skb_frag(vaddr);
  1416. if ((len -= copy) == 0)
  1417. return 0;
  1418. offset += copy;
  1419. from += copy;
  1420. }
  1421. start = end;
  1422. }
  1423. skb_walk_frags(skb, frag_iter) {
  1424. int end;
  1425. WARN_ON(start > offset + len);
  1426. end = start + frag_iter->len;
  1427. if ((copy = end - offset) > 0) {
  1428. if (copy > len)
  1429. copy = len;
  1430. if (skb_store_bits(frag_iter, offset - start,
  1431. from, copy))
  1432. goto fault;
  1433. if ((len -= copy) == 0)
  1434. return 0;
  1435. offset += copy;
  1436. from += copy;
  1437. }
  1438. start = end;
  1439. }
  1440. if (!len)
  1441. return 0;
  1442. fault:
  1443. return -EFAULT;
  1444. }
  1445. EXPORT_SYMBOL(skb_store_bits);
  1446. /* Checksum skb data. */
  1447. __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1448. int len, __wsum csum)
  1449. {
  1450. int start = skb_headlen(skb);
  1451. int i, copy = start - offset;
  1452. struct sk_buff *frag_iter;
  1453. int pos = 0;
  1454. /* Checksum header. */
  1455. if (copy > 0) {
  1456. if (copy > len)
  1457. copy = len;
  1458. csum = csum_partial(skb->data + offset, copy, csum);
  1459. if ((len -= copy) == 0)
  1460. return csum;
  1461. offset += copy;
  1462. pos = copy;
  1463. }
  1464. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1465. int end;
  1466. WARN_ON(start > offset + len);
  1467. end = start + skb_shinfo(skb)->frags[i].size;
  1468. if ((copy = end - offset) > 0) {
  1469. __wsum csum2;
  1470. u8 *vaddr;
  1471. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1472. if (copy > len)
  1473. copy = len;
  1474. vaddr = kmap_skb_frag(frag);
  1475. csum2 = csum_partial(vaddr + frag->page_offset +
  1476. offset - start, copy, 0);
  1477. kunmap_skb_frag(vaddr);
  1478. csum = csum_block_add(csum, csum2, pos);
  1479. if (!(len -= copy))
  1480. return csum;
  1481. offset += copy;
  1482. pos += copy;
  1483. }
  1484. start = end;
  1485. }
  1486. skb_walk_frags(skb, frag_iter) {
  1487. int end;
  1488. WARN_ON(start > offset + len);
  1489. end = start + frag_iter->len;
  1490. if ((copy = end - offset) > 0) {
  1491. __wsum csum2;
  1492. if (copy > len)
  1493. copy = len;
  1494. csum2 = skb_checksum(frag_iter, offset - start,
  1495. copy, 0);
  1496. csum = csum_block_add(csum, csum2, pos);
  1497. if ((len -= copy) == 0)
  1498. return csum;
  1499. offset += copy;
  1500. pos += copy;
  1501. }
  1502. start = end;
  1503. }
  1504. BUG_ON(len);
  1505. return csum;
  1506. }
  1507. EXPORT_SYMBOL(skb_checksum);
  1508. /* Both of above in one bottle. */
  1509. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1510. u8 *to, int len, __wsum csum)
  1511. {
  1512. int start = skb_headlen(skb);
  1513. int i, copy = start - offset;
  1514. struct sk_buff *frag_iter;
  1515. int pos = 0;
  1516. /* Copy header. */
  1517. if (copy > 0) {
  1518. if (copy > len)
  1519. copy = len;
  1520. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1521. copy, csum);
  1522. if ((len -= copy) == 0)
  1523. return csum;
  1524. offset += copy;
  1525. to += copy;
  1526. pos = copy;
  1527. }
  1528. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1529. int end;
  1530. WARN_ON(start > offset + len);
  1531. end = start + skb_shinfo(skb)->frags[i].size;
  1532. if ((copy = end - offset) > 0) {
  1533. __wsum csum2;
  1534. u8 *vaddr;
  1535. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1536. if (copy > len)
  1537. copy = len;
  1538. vaddr = kmap_skb_frag(frag);
  1539. csum2 = csum_partial_copy_nocheck(vaddr +
  1540. frag->page_offset +
  1541. offset - start, to,
  1542. copy, 0);
  1543. kunmap_skb_frag(vaddr);
  1544. csum = csum_block_add(csum, csum2, pos);
  1545. if (!(len -= copy))
  1546. return csum;
  1547. offset += copy;
  1548. to += copy;
  1549. pos += copy;
  1550. }
  1551. start = end;
  1552. }
  1553. skb_walk_frags(skb, frag_iter) {
  1554. __wsum csum2;
  1555. int end;
  1556. WARN_ON(start > offset + len);
  1557. end = start + frag_iter->len;
  1558. if ((copy = end - offset) > 0) {
  1559. if (copy > len)
  1560. copy = len;
  1561. csum2 = skb_copy_and_csum_bits(frag_iter,
  1562. offset - start,
  1563. to, copy, 0);
  1564. csum = csum_block_add(csum, csum2, pos);
  1565. if ((len -= copy) == 0)
  1566. return csum;
  1567. offset += copy;
  1568. to += copy;
  1569. pos += copy;
  1570. }
  1571. start = end;
  1572. }
  1573. BUG_ON(len);
  1574. return csum;
  1575. }
  1576. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1577. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1578. {
  1579. __wsum csum;
  1580. long csstart;
  1581. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1582. csstart = skb_checksum_start_offset(skb);
  1583. else
  1584. csstart = skb_headlen(skb);
  1585. BUG_ON(csstart > skb_headlen(skb));
  1586. skb_copy_from_linear_data(skb, to, csstart);
  1587. csum = 0;
  1588. if (csstart != skb->len)
  1589. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1590. skb->len - csstart, 0);
  1591. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1592. long csstuff = csstart + skb->csum_offset;
  1593. *((__sum16 *)(to + csstuff)) = csum_fold(csum);
  1594. }
  1595. }
  1596. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1597. /**
  1598. * skb_dequeue - remove from the head of the queue
  1599. * @list: list to dequeue from
  1600. *
  1601. * Remove the head of the list. The list lock is taken so the function
  1602. * may be used safely with other locking list functions. The head item is
  1603. * returned or %NULL if the list is empty.
  1604. */
  1605. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1606. {
  1607. unsigned long flags;
  1608. struct sk_buff *result;
  1609. spin_lock_irqsave(&list->lock, flags);
  1610. result = __skb_dequeue(list);
  1611. spin_unlock_irqrestore(&list->lock, flags);
  1612. return result;
  1613. }
  1614. EXPORT_SYMBOL(skb_dequeue);
  1615. /**
  1616. * skb_dequeue_tail - remove from the tail of the queue
  1617. * @list: list to dequeue from
  1618. *
  1619. * Remove the tail of the list. The list lock is taken so the function
  1620. * may be used safely with other locking list functions. The tail item is
  1621. * returned or %NULL if the list is empty.
  1622. */
  1623. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1624. {
  1625. unsigned long flags;
  1626. struct sk_buff *result;
  1627. spin_lock_irqsave(&list->lock, flags);
  1628. result = __skb_dequeue_tail(list);
  1629. spin_unlock_irqrestore(&list->lock, flags);
  1630. return result;
  1631. }
  1632. EXPORT_SYMBOL(skb_dequeue_tail);
  1633. /**
  1634. * skb_queue_purge - empty a list
  1635. * @list: list to empty
  1636. *
  1637. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1638. * the list and one reference dropped. This function takes the list
  1639. * lock and is atomic with respect to other list locking functions.
  1640. */
  1641. void skb_queue_purge(struct sk_buff_head *list)
  1642. {
  1643. struct sk_buff *skb;
  1644. while ((skb = skb_dequeue(list)) != NULL)
  1645. kfree_skb(skb);
  1646. }
  1647. EXPORT_SYMBOL(skb_queue_purge);
  1648. /**
  1649. * skb_queue_head - queue a buffer at the list head
  1650. * @list: list to use
  1651. * @newsk: buffer to queue
  1652. *
  1653. * Queue a buffer at the start of the list. This function takes the
  1654. * list lock and can be used safely with other locking &sk_buff functions
  1655. * safely.
  1656. *
  1657. * A buffer cannot be placed on two lists at the same time.
  1658. */
  1659. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1660. {
  1661. unsigned long flags;
  1662. spin_lock_irqsave(&list->lock, flags);
  1663. __skb_queue_head(list, newsk);
  1664. spin_unlock_irqrestore(&list->lock, flags);
  1665. }
  1666. EXPORT_SYMBOL(skb_queue_head);
  1667. /**
  1668. * skb_queue_tail - queue a buffer at the list tail
  1669. * @list: list to use
  1670. * @newsk: buffer to queue
  1671. *
  1672. * Queue a buffer at the tail of the list. This function takes the
  1673. * list lock and can be used safely with other locking &sk_buff functions
  1674. * safely.
  1675. *
  1676. * A buffer cannot be placed on two lists at the same time.
  1677. */
  1678. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1679. {
  1680. unsigned long flags;
  1681. spin_lock_irqsave(&list->lock, flags);
  1682. __skb_queue_tail(list, newsk);
  1683. spin_unlock_irqrestore(&list->lock, flags);
  1684. }
  1685. EXPORT_SYMBOL(skb_queue_tail);
  1686. /**
  1687. * skb_unlink - remove a buffer from a list
  1688. * @skb: buffer to remove
  1689. * @list: list to use
  1690. *
  1691. * Remove a packet from a list. The list locks are taken and this
  1692. * function is atomic with respect to other list locked calls
  1693. *
  1694. * You must know what list the SKB is on.
  1695. */
  1696. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1697. {
  1698. unsigned long flags;
  1699. spin_lock_irqsave(&list->lock, flags);
  1700. __skb_unlink(skb, list);
  1701. spin_unlock_irqrestore(&list->lock, flags);
  1702. }
  1703. EXPORT_SYMBOL(skb_unlink);
  1704. /**
  1705. * skb_append - append a buffer
  1706. * @old: buffer to insert after
  1707. * @newsk: buffer to insert
  1708. * @list: list to use
  1709. *
  1710. * Place a packet after a given packet in a list. The list locks are taken
  1711. * and this function is atomic with respect to other list locked calls.
  1712. * A buffer cannot be placed on two lists at the same time.
  1713. */
  1714. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1715. {
  1716. unsigned long flags;
  1717. spin_lock_irqsave(&list->lock, flags);
  1718. __skb_queue_after(list, old, newsk);
  1719. spin_unlock_irqrestore(&list->lock, flags);
  1720. }
  1721. EXPORT_SYMBOL(skb_append);
  1722. /**
  1723. * skb_insert - insert a buffer
  1724. * @old: buffer to insert before
  1725. * @newsk: buffer to insert
  1726. * @list: list to use
  1727. *
  1728. * Place a packet before a given packet in a list. The list locks are
  1729. * taken and this function is atomic with respect to other list locked
  1730. * calls.
  1731. *
  1732. * A buffer cannot be placed on two lists at the same time.
  1733. */
  1734. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1735. {
  1736. unsigned long flags;
  1737. spin_lock_irqsave(&list->lock, flags);
  1738. __skb_insert(newsk, old->prev, old, list);
  1739. spin_unlock_irqrestore(&list->lock, flags);
  1740. }
  1741. EXPORT_SYMBOL(skb_insert);
  1742. static inline void skb_split_inside_header(struct sk_buff *skb,
  1743. struct sk_buff* skb1,
  1744. const u32 len, const int pos)
  1745. {
  1746. int i;
  1747. skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
  1748. pos - len);
  1749. /* And move data appendix as is. */
  1750. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1751. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1752. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1753. skb_shinfo(skb)->nr_frags = 0;
  1754. skb1->data_len = skb->data_len;
  1755. skb1->len += skb1->data_len;
  1756. skb->data_len = 0;
  1757. skb->len = len;
  1758. skb_set_tail_pointer(skb, len);
  1759. }
  1760. static inline void skb_split_no_header(struct sk_buff *skb,
  1761. struct sk_buff* skb1,
  1762. const u32 len, int pos)
  1763. {
  1764. int i, k = 0;
  1765. const int nfrags = skb_shinfo(skb)->nr_frags;
  1766. skb_shinfo(skb)->nr_frags = 0;
  1767. skb1->len = skb1->data_len = skb->len - len;
  1768. skb->len = len;
  1769. skb->data_len = len - pos;
  1770. for (i = 0; i < nfrags; i++) {
  1771. int size = skb_shinfo(skb)->frags[i].size;
  1772. if (pos + size > len) {
  1773. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1774. if (pos < len) {
  1775. /* Split frag.
  1776. * We have two variants in this case:
  1777. * 1. Move all the frag to the second
  1778. * part, if it is possible. F.e.
  1779. * this approach is mandatory for TUX,
  1780. * where splitting is expensive.
  1781. * 2. Split is accurately. We make this.
  1782. */
  1783. get_page(skb_shinfo(skb)->frags[i].page);
  1784. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1785. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1786. skb_shinfo(skb)->frags[i].size = len - pos;
  1787. skb_shinfo(skb)->nr_frags++;
  1788. }
  1789. k++;
  1790. } else
  1791. skb_shinfo(skb)->nr_frags++;
  1792. pos += size;
  1793. }
  1794. skb_shinfo(skb1)->nr_frags = k;
  1795. }
  1796. /**
  1797. * skb_split - Split fragmented skb to two parts at length len.
  1798. * @skb: the buffer to split
  1799. * @skb1: the buffer to receive the second part
  1800. * @len: new length for skb
  1801. */
  1802. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1803. {
  1804. int pos = skb_headlen(skb);
  1805. if (len < pos) /* Split line is inside header. */
  1806. skb_split_inside_header(skb, skb1, len, pos);
  1807. else /* Second chunk has no header, nothing to copy. */
  1808. skb_split_no_header(skb, skb1, len, pos);
  1809. }
  1810. EXPORT_SYMBOL(skb_split);
  1811. /* Shifting from/to a cloned skb is a no-go.
  1812. *
  1813. * Caller cannot keep skb_shinfo related pointers past calling here!
  1814. */
  1815. static int skb_prepare_for_shift(struct sk_buff *skb)
  1816. {
  1817. return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1818. }
  1819. /**
  1820. * skb_shift - Shifts paged data partially from skb to another
  1821. * @tgt: buffer into which tail data gets added
  1822. * @skb: buffer from which the paged data comes from
  1823. * @shiftlen: shift up to this many bytes
  1824. *
  1825. * Attempts to shift up to shiftlen worth of bytes, which may be less than
  1826. * the length of the skb, from tgt to skb. Returns number bytes shifted.
  1827. * It's up to caller to free skb if everything was shifted.
  1828. *
  1829. * If @tgt runs out of frags, the whole operation is aborted.
  1830. *
  1831. * Skb cannot include anything else but paged data while tgt is allowed
  1832. * to have non-paged data as well.
  1833. *
  1834. * TODO: full sized shift could be optimized but that would need
  1835. * specialized skb free'er to handle frags without up-to-date nr_frags.
  1836. */
  1837. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
  1838. {
  1839. int from, to, merge, todo;
  1840. struct skb_frag_struct *fragfrom, *fragto;
  1841. BUG_ON(shiftlen > skb->len);
  1842. BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
  1843. todo = shiftlen;
  1844. from = 0;
  1845. to = skb_shinfo(tgt)->nr_frags;
  1846. fragfrom = &skb_shinfo(skb)->frags[from];
  1847. /* Actual merge is delayed until the point when we know we can
  1848. * commit all, so that we don't have to undo partial changes
  1849. */
  1850. if (!to ||
  1851. !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
  1852. merge = -1;
  1853. } else {
  1854. merge = to - 1;
  1855. todo -= fragfrom->size;
  1856. if (todo < 0) {
  1857. if (skb_prepare_for_shift(skb) ||
  1858. skb_prepare_for_shift(tgt))
  1859. return 0;
  1860. /* All previous frag pointers might be stale! */
  1861. fragfrom = &skb_shinfo(skb)->frags[from];
  1862. fragto = &skb_shinfo(tgt)->frags[merge];
  1863. fragto->size += shiftlen;
  1864. fragfrom->size -= shiftlen;
  1865. fragfrom->page_offset += shiftlen;
  1866. goto onlymerged;
  1867. }
  1868. from++;
  1869. }
  1870. /* Skip full, not-fitting skb to avoid expensive operations */
  1871. if ((shiftlen == skb->len) &&
  1872. (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
  1873. return 0;
  1874. if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
  1875. return 0;
  1876. while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
  1877. if (to == MAX_SKB_FRAGS)
  1878. return 0;
  1879. fragfrom = &skb_shinfo(skb)->frags[from];
  1880. fragto = &skb_shinfo(tgt)->frags[to];
  1881. if (todo >= fragfrom->size) {
  1882. *fragto = *fragfrom;
  1883. todo -= fragfrom->size;
  1884. from++;
  1885. to++;
  1886. } else {
  1887. get_page(fragfrom->page);
  1888. fragto->page = fragfrom->page;
  1889. fragto->page_offset = fragfrom->page_offset;
  1890. fragto->size = todo;
  1891. fragfrom->page_offset += todo;
  1892. fragfrom->size -= todo;
  1893. todo = 0;
  1894. to++;
  1895. break;
  1896. }
  1897. }
  1898. /* Ready to "commit" this state change to tgt */
  1899. skb_shinfo(tgt)->nr_frags = to;
  1900. if (merge >= 0) {
  1901. fragfrom = &skb_shinfo(skb)->frags[0];
  1902. fragto = &skb_shinfo(tgt)->frags[merge];
  1903. fragto->size += fragfrom->size;
  1904. put_page(fragfrom->page);
  1905. }
  1906. /* Reposition in the original skb */
  1907. to = 0;
  1908. while (from < skb_shinfo(skb)->nr_frags)
  1909. skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
  1910. skb_shinfo(skb)->nr_frags = to;
  1911. BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
  1912. onlymerged:
  1913. /* Most likely the tgt won't ever need its checksum anymore, skb on
  1914. * the other hand might need it if it needs to be resent
  1915. */
  1916. tgt->ip_summed = CHECKSUM_PARTIAL;
  1917. skb->ip_summed = CHECKSUM_PARTIAL;
  1918. /* Yak, is it really working this way? Some helper please? */
  1919. skb->len -= shiftlen;
  1920. skb->data_len -= shiftlen;
  1921. skb->truesize -= shiftlen;
  1922. tgt->len += shiftlen;
  1923. tgt->data_len += shiftlen;
  1924. tgt->truesize += shiftlen;
  1925. return shiftlen;
  1926. }
  1927. /**
  1928. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1929. * @skb: the buffer to read
  1930. * @from: lower offset of data to be read
  1931. * @to: upper offset of data to be read
  1932. * @st: state variable
  1933. *
  1934. * Initializes the specified state variable. Must be called before
  1935. * invoking skb_seq_read() for the first time.
  1936. */
  1937. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1938. unsigned int to, struct skb_seq_state *st)
  1939. {
  1940. st->lower_offset = from;
  1941. st->upper_offset = to;
  1942. st->root_skb = st->cur_skb = skb;
  1943. st->frag_idx = st->stepped_offset = 0;
  1944. st->frag_data = NULL;
  1945. }
  1946. EXPORT_SYMBOL(skb_prepare_seq_read);
  1947. /**
  1948. * skb_seq_read - Sequentially read skb data
  1949. * @consumed: number of bytes consumed by the caller so far
  1950. * @data: destination pointer for data to be returned
  1951. * @st: state variable
  1952. *
  1953. * Reads a block of skb data at &consumed relative to the
  1954. * lower offset specified to skb_prepare_seq_read(). Assigns
  1955. * the head of the data block to &data and returns the length
  1956. * of the block or 0 if the end of the skb data or the upper
  1957. * offset has been reached.
  1958. *
  1959. * The caller is not required to consume all of the data
  1960. * returned, i.e. &consumed is typically set to the number
  1961. * of bytes already consumed and the next call to
  1962. * skb_seq_read() will return the remaining part of the block.
  1963. *
  1964. * Note 1: The size of each block of data returned can be arbitrary,
  1965. * this limitation is the cost for zerocopy seqeuental
  1966. * reads of potentially non linear data.
  1967. *
  1968. * Note 2: Fragment lists within fragments are not implemented
  1969. * at the moment, state->root_skb could be replaced with
  1970. * a stack for this purpose.
  1971. */
  1972. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1973. struct skb_seq_state *st)
  1974. {
  1975. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1976. skb_frag_t *frag;
  1977. if (unlikely(abs_offset >= st->upper_offset))
  1978. return 0;
  1979. next_skb:
  1980. block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
  1981. if (abs_offset < block_limit && !st->frag_data) {
  1982. *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
  1983. return block_limit - abs_offset;
  1984. }
  1985. if (st->frag_idx == 0 && !st->frag_data)
  1986. st->stepped_offset += skb_headlen(st->cur_skb);
  1987. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1988. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1989. block_limit = frag->size + st->stepped_offset;
  1990. if (abs_offset < block_limit) {
  1991. if (!st->frag_data)
  1992. st->frag_data = kmap_skb_frag(frag);
  1993. *data = (u8 *) st->frag_data + frag->page_offset +
  1994. (abs_offset - st->stepped_offset);
  1995. return block_limit - abs_offset;
  1996. }
  1997. if (st->frag_data) {
  1998. kunmap_skb_frag(st->frag_data);
  1999. st->frag_data = NULL;
  2000. }
  2001. st->frag_idx++;
  2002. st->stepped_offset += frag->size;
  2003. }
  2004. if (st->frag_data) {
  2005. kunmap_skb_frag(st->frag_data);
  2006. st->frag_data = NULL;
  2007. }
  2008. if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
  2009. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  2010. st->frag_idx = 0;
  2011. goto next_skb;
  2012. } else if (st->cur_skb->next) {
  2013. st->cur_skb = st->cur_skb->next;
  2014. st->frag_idx = 0;
  2015. goto next_skb;
  2016. }
  2017. return 0;
  2018. }
  2019. EXPORT_SYMBOL(skb_seq_read);
  2020. /**
  2021. * skb_abort_seq_read - Abort a sequential read of skb data
  2022. * @st: state variable
  2023. *
  2024. * Must be called if skb_seq_read() was not called until it
  2025. * returned 0.
  2026. */
  2027. void skb_abort_seq_read(struct skb_seq_state *st)
  2028. {
  2029. if (st->frag_data)
  2030. kunmap_skb_frag(st->frag_data);
  2031. }
  2032. EXPORT_SYMBOL(skb_abort_seq_read);
  2033. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  2034. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  2035. struct ts_config *conf,
  2036. struct ts_state *state)
  2037. {
  2038. return skb_seq_read(offset, text, TS_SKB_CB(state));
  2039. }
  2040. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  2041. {
  2042. skb_abort_seq_read(TS_SKB_CB(state));
  2043. }
  2044. /**
  2045. * skb_find_text - Find a text pattern in skb data
  2046. * @skb: the buffer to look in
  2047. * @from: search offset
  2048. * @to: search limit
  2049. * @config: textsearch configuration
  2050. * @state: uninitialized textsearch state variable
  2051. *
  2052. * Finds a pattern in the skb data according to the specified
  2053. * textsearch configuration. Use textsearch_next() to retrieve
  2054. * subsequent occurrences of the pattern. Returns the offset
  2055. * to the first occurrence or UINT_MAX if no match was found.
  2056. */
  2057. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  2058. unsigned int to, struct ts_config *config,
  2059. struct ts_state *state)
  2060. {
  2061. unsigned int ret;
  2062. config->get_next_block = skb_ts_get_next_block;
  2063. config->finish = skb_ts_finish;
  2064. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  2065. ret = textsearch_find(config, state);
  2066. return (ret <= to - from ? ret : UINT_MAX);
  2067. }
  2068. EXPORT_SYMBOL(skb_find_text);
  2069. /**
  2070. * skb_append_datato_frags: - append the user data to a skb
  2071. * @sk: sock structure
  2072. * @skb: skb structure to be appened with user data.
  2073. * @getfrag: call back function to be used for getting the user data
  2074. * @from: pointer to user message iov
  2075. * @length: length of the iov message
  2076. *
  2077. * Description: This procedure append the user data in the fragment part
  2078. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  2079. */
  2080. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  2081. int (*getfrag)(void *from, char *to, int offset,
  2082. int len, int odd, struct sk_buff *skb),
  2083. void *from, int length)
  2084. {
  2085. int frg_cnt = 0;
  2086. skb_frag_t *frag = NULL;
  2087. struct page *page = NULL;
  2088. int copy, left;
  2089. int offset = 0;
  2090. int ret;
  2091. do {
  2092. /* Return error if we don't have space for new frag */
  2093. frg_cnt = skb_shinfo(skb)->nr_frags;
  2094. if (frg_cnt >= MAX_SKB_FRAGS)
  2095. return -EFAULT;
  2096. /* allocate a new page for next frag */
  2097. page = alloc_pages(sk->sk_allocation, 0);
  2098. /* If alloc_page fails just return failure and caller will
  2099. * free previous allocated pages by doing kfree_skb()
  2100. */
  2101. if (page == NULL)
  2102. return -ENOMEM;
  2103. /* initialize the next frag */
  2104. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  2105. skb->truesize += PAGE_SIZE;
  2106. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  2107. /* get the new initialized frag */
  2108. frg_cnt = skb_shinfo(skb)->nr_frags;
  2109. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  2110. /* copy the user data to page */
  2111. left = PAGE_SIZE - frag->page_offset;
  2112. copy = (length > left)? left : length;
  2113. ret = getfrag(from, (page_address(frag->page) +
  2114. frag->page_offset + frag->size),
  2115. offset, copy, 0, skb);
  2116. if (ret < 0)
  2117. return -EFAULT;
  2118. /* copy was successful so update the size parameters */
  2119. frag->size += copy;
  2120. skb->len += copy;
  2121. skb->data_len += copy;
  2122. offset += copy;
  2123. length -= copy;
  2124. } while (length > 0);
  2125. return 0;
  2126. }
  2127. EXPORT_SYMBOL(skb_append_datato_frags);
  2128. /**
  2129. * skb_pull_rcsum - pull skb and update receive checksum
  2130. * @skb: buffer to update
  2131. * @len: length of data pulled
  2132. *
  2133. * This function performs an skb_pull on the packet and updates
  2134. * the CHECKSUM_COMPLETE checksum. It should be used on
  2135. * receive path processing instead of skb_pull unless you know
  2136. * that the checksum difference is zero (e.g., a valid IP header)
  2137. * or you are setting ip_summed to CHECKSUM_NONE.
  2138. */
  2139. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
  2140. {
  2141. BUG_ON(len > skb->len);
  2142. skb->len -= len;
  2143. BUG_ON(skb->len < skb->data_len);
  2144. skb_postpull_rcsum(skb, skb->data, len);
  2145. return skb->data += len;
  2146. }
  2147. EXPORT_SYMBOL_GPL(skb_pull_rcsum);
  2148. /**
  2149. * skb_segment - Perform protocol segmentation on skb.
  2150. * @skb: buffer to segment
  2151. * @features: features for the output path (see dev->features)
  2152. *
  2153. * This function performs segmentation on the given skb. It returns
  2154. * a pointer to the first in a list of new skbs for the segments.
  2155. * In case of error it returns ERR_PTR(err).
  2156. */
  2157. struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
  2158. {
  2159. struct sk_buff *segs = NULL;
  2160. struct sk_buff *tail = NULL;
  2161. struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
  2162. unsigned int mss = skb_shinfo(skb)->gso_size;
  2163. unsigned int doffset = skb->data - skb_mac_header(skb);
  2164. unsigned int offset = doffset;
  2165. unsigned int headroom;
  2166. unsigned int len;
  2167. int sg = !!(features & NETIF_F_SG);
  2168. int nfrags = skb_shinfo(skb)->nr_frags;
  2169. int err = -ENOMEM;
  2170. int i = 0;
  2171. int pos;
  2172. __skb_push(skb, doffset);
  2173. headroom = skb_headroom(skb);
  2174. pos = skb_headlen(skb);
  2175. do {
  2176. struct sk_buff *nskb;
  2177. skb_frag_t *frag;
  2178. int hsize;
  2179. int size;
  2180. len = skb->len - offset;
  2181. if (len > mss)
  2182. len = mss;
  2183. hsize = skb_headlen(skb) - offset;
  2184. if (hsize < 0)
  2185. hsize = 0;
  2186. if (hsize > len || !sg)
  2187. hsize = len;
  2188. if (!hsize && i >= nfrags) {
  2189. BUG_ON(fskb->len != len);
  2190. pos += len;
  2191. nskb = skb_clone(fskb, GFP_ATOMIC);
  2192. fskb = fskb->next;
  2193. if (unlikely(!nskb))
  2194. goto err;
  2195. hsize = skb_end_pointer(nskb) - nskb->head;
  2196. if (skb_cow_head(nskb, doffset + headroom)) {
  2197. kfree_skb(nskb);
  2198. goto err;
  2199. }
  2200. nskb->truesize += skb_end_pointer(nskb) - nskb->head -
  2201. hsize;
  2202. skb_release_head_state(nskb);
  2203. __skb_push(nskb, doffset);
  2204. } else {
  2205. nskb = alloc_skb(hsize + doffset + headroom,
  2206. GFP_ATOMIC);
  2207. if (unlikely(!nskb))
  2208. goto err;
  2209. skb_reserve(nskb, headroom);
  2210. __skb_put(nskb, doffset);
  2211. }
  2212. if (segs)
  2213. tail->next = nskb;
  2214. else
  2215. segs = nskb;
  2216. tail = nskb;
  2217. __copy_skb_header(nskb, skb);
  2218. nskb->mac_len = skb->mac_len;
  2219. /* nskb and skb might have different headroom */
  2220. if (nskb->ip_summed == CHECKSUM_PARTIAL)
  2221. nskb->csum_start += skb_headroom(nskb) - headroom;
  2222. skb_reset_mac_header(nskb);
  2223. skb_set_network_header(nskb, skb->mac_len);
  2224. nskb->transport_header = (nskb->network_header +
  2225. skb_network_header_len(skb));
  2226. skb_copy_from_linear_data(skb, nskb->data, doffset);
  2227. if (fskb != skb_shinfo(skb)->frag_list)
  2228. continue;
  2229. if (!sg) {
  2230. nskb->ip_summed = CHECKSUM_NONE;
  2231. nskb->csum = skb_copy_and_csum_bits(skb, offset,
  2232. skb_put(nskb, len),
  2233. len, 0);
  2234. continue;
  2235. }
  2236. frag = skb_shinfo(nskb)->frags;
  2237. skb_copy_from_linear_data_offset(skb, offset,
  2238. skb_put(nskb, hsize), hsize);
  2239. while (pos < offset + len && i < nfrags) {
  2240. *frag = skb_shinfo(skb)->frags[i];
  2241. get_page(frag->page);
  2242. size = frag->size;
  2243. if (pos < offset) {
  2244. frag->page_offset += offset - pos;
  2245. frag->size -= offset - pos;
  2246. }
  2247. skb_shinfo(nskb)->nr_frags++;
  2248. if (pos + size <= offset + len) {
  2249. i++;
  2250. pos += size;
  2251. } else {
  2252. frag->size -= pos + size - (offset + len);
  2253. goto skip_fraglist;
  2254. }
  2255. frag++;
  2256. }
  2257. if (pos < offset + len) {
  2258. struct sk_buff *fskb2 = fskb;
  2259. BUG_ON(pos + fskb->len != offset + len);
  2260. pos += fskb->len;
  2261. fskb = fskb->next;
  2262. if (fskb2->next) {
  2263. fskb2 = skb_clone(fskb2, GFP_ATOMIC);
  2264. if (!fskb2)
  2265. goto err;
  2266. } else
  2267. skb_get(fskb2);
  2268. SKB_FRAG_ASSERT(nskb);
  2269. skb_shinfo(nskb)->frag_list = fskb2;
  2270. }
  2271. skip_fraglist:
  2272. nskb->data_len = len - hsize;
  2273. nskb->len += nskb->data_len;
  2274. nskb->truesize += nskb->data_len;
  2275. } while ((offset += len) < skb->len);
  2276. return segs;
  2277. err:
  2278. while ((skb = segs)) {
  2279. segs = skb->next;
  2280. kfree_skb(skb);
  2281. }
  2282. return ERR_PTR(err);
  2283. }
  2284. EXPORT_SYMBOL_GPL(skb_segment);
  2285. int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2286. {
  2287. struct sk_buff *p = *head;
  2288. struct sk_buff *nskb;
  2289. struct skb_shared_info *skbinfo = skb_shinfo(skb);
  2290. struct skb_shared_info *pinfo = skb_shinfo(p);
  2291. unsigned int headroom;
  2292. unsigned int len = skb_gro_len(skb);
  2293. unsigned int offset = skb_gro_offset(skb);
  2294. unsigned int headlen = skb_headlen(skb);
  2295. if (p->len + len >= 65536)
  2296. return -E2BIG;
  2297. if (pinfo->frag_list)
  2298. goto merge;
  2299. else if (headlen <= offset) {
  2300. skb_frag_t *frag;
  2301. skb_frag_t *frag2;
  2302. int i = skbinfo->nr_frags;
  2303. int nr_frags = pinfo->nr_frags + i;
  2304. offset -= headlen;
  2305. if (nr_frags > MAX_SKB_FRAGS)
  2306. return -E2BIG;
  2307. pinfo->nr_frags = nr_frags;
  2308. skbinfo->nr_frags = 0;
  2309. frag = pinfo->frags + nr_frags;
  2310. frag2 = skbinfo->frags + i;
  2311. do {
  2312. *--frag = *--frag2;
  2313. } while (--i);
  2314. frag->page_offset += offset;
  2315. frag->size -= offset;
  2316. skb->truesize -= skb->data_len;
  2317. skb->len -= skb->data_len;
  2318. skb->data_len = 0;
  2319. NAPI_GRO_CB(skb)->free = 1;
  2320. goto done;
  2321. } else if (skb_gro_len(p) != pinfo->gso_size)
  2322. return -E2BIG;
  2323. headroom = skb_headroom(p);
  2324. nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
  2325. if (unlikely(!nskb))
  2326. return -ENOMEM;
  2327. __copy_skb_header(nskb, p);
  2328. nskb->mac_len = p->mac_len;
  2329. skb_reserve(nskb, headroom);
  2330. __skb_put(nskb, skb_gro_offset(p));
  2331. skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
  2332. skb_set_network_header(nskb, skb_network_offset(p));
  2333. skb_set_transport_header(nskb, skb_transport_offset(p));
  2334. __skb_pull(p, skb_gro_offset(p));
  2335. memcpy(skb_mac_header(nskb), skb_mac_header(p),
  2336. p->data - skb_mac_header(p));
  2337. *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
  2338. skb_shinfo(nskb)->frag_list = p;
  2339. skb_shinfo(nskb)->gso_size = pinfo->gso_size;
  2340. pinfo->gso_size = 0;
  2341. skb_header_release(p);
  2342. nskb->prev = p;
  2343. nskb->data_len += p->len;
  2344. nskb->truesize += p->len;
  2345. nskb->len += p->len;
  2346. *head = nskb;
  2347. nskb->next = p->next;
  2348. p->next = NULL;
  2349. p = nskb;
  2350. merge:
  2351. if (offset > headlen) {
  2352. unsigned int eat = offset - headlen;
  2353. skbinfo->frags[0].page_offset += eat;
  2354. skbinfo->frags[0].size -= eat;
  2355. skb->data_len -= eat;
  2356. skb->len -= eat;
  2357. offset = headlen;
  2358. }
  2359. __skb_pull(skb, offset);
  2360. p->prev->next = skb;
  2361. p->prev = skb;
  2362. skb_header_release(skb);
  2363. done:
  2364. NAPI_GRO_CB(p)->count++;
  2365. p->data_len += len;
  2366. p->truesize += len;
  2367. p->len += len;
  2368. NAPI_GRO_CB(skb)->same_flow = 1;
  2369. return 0;
  2370. }
  2371. EXPORT_SYMBOL_GPL(skb_gro_receive);
  2372. void __init skb_init(void)
  2373. {
  2374. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  2375. sizeof(struct sk_buff),
  2376. 0,
  2377. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2378. NULL);
  2379. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  2380. (2*sizeof(struct sk_buff)) +
  2381. sizeof(atomic_t),
  2382. 0,
  2383. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2384. NULL);
  2385. }
  2386. /**
  2387. * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
  2388. * @skb: Socket buffer containing the buffers to be mapped
  2389. * @sg: The scatter-gather list to map into
  2390. * @offset: The offset into the buffer's contents to start mapping
  2391. * @len: Length of buffer space to be mapped
  2392. *
  2393. * Fill the specified scatter-gather list with mappings/pointers into a
  2394. * region of the buffer space attached to a socket buffer.
  2395. */
  2396. static int
  2397. __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2398. {
  2399. int start = skb_headlen(skb);
  2400. int i, copy = start - offset;
  2401. struct sk_buff *frag_iter;
  2402. int elt = 0;
  2403. if (copy > 0) {
  2404. if (copy > len)
  2405. copy = len;
  2406. sg_set_buf(sg, skb->data + offset, copy);
  2407. elt++;
  2408. if ((len -= copy) == 0)
  2409. return elt;
  2410. offset += copy;
  2411. }
  2412. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2413. int end;
  2414. WARN_ON(start > offset + len);
  2415. end = start + skb_shinfo(skb)->frags[i].size;
  2416. if ((copy = end - offset) > 0) {
  2417. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2418. if (copy > len)
  2419. copy = len;
  2420. sg_set_page(&sg[elt], frag->page, copy,
  2421. frag->page_offset+offset-start);
  2422. elt++;
  2423. if (!(len -= copy))
  2424. return elt;
  2425. offset += copy;
  2426. }
  2427. start = end;
  2428. }
  2429. skb_walk_frags(skb, frag_iter) {
  2430. int end;
  2431. WARN_ON(start > offset + len);
  2432. end = start + frag_iter->len;
  2433. if ((copy = end - offset) > 0) {
  2434. if (copy > len)
  2435. copy = len;
  2436. elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
  2437. copy);
  2438. if ((len -= copy) == 0)
  2439. return elt;
  2440. offset += copy;
  2441. }
  2442. start = end;
  2443. }
  2444. BUG_ON(len);
  2445. return elt;
  2446. }
  2447. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2448. {
  2449. int nsg = __skb_to_sgvec(skb, sg, offset, len);
  2450. sg_mark_end(&sg[nsg - 1]);
  2451. return nsg;
  2452. }
  2453. EXPORT_SYMBOL_GPL(skb_to_sgvec);
  2454. /**
  2455. * skb_cow_data - Check that a socket buffer's data buffers are writable
  2456. * @skb: The socket buffer to check.
  2457. * @tailbits: Amount of trailing space to be added
  2458. * @trailer: Returned pointer to the skb where the @tailbits space begins
  2459. *
  2460. * Make sure that the data buffers attached to a socket buffer are
  2461. * writable. If they are not, private copies are made of the data buffers
  2462. * and the socket buffer is set to use these instead.
  2463. *
  2464. * If @tailbits is given, make sure that there is space to write @tailbits
  2465. * bytes of data beyond current end of socket buffer. @trailer will be
  2466. * set to point to the skb in which this space begins.
  2467. *
  2468. * The number of scatterlist elements required to completely map the
  2469. * COW'd and extended socket buffer will be returned.
  2470. */
  2471. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
  2472. {
  2473. int copyflag;
  2474. int elt;
  2475. struct sk_buff *skb1, **skb_p;
  2476. /* If skb is cloned or its head is paged, reallocate
  2477. * head pulling out all the pages (pages are considered not writable
  2478. * at the moment even if they are anonymous).
  2479. */
  2480. if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
  2481. __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
  2482. return -ENOMEM;
  2483. /* Easy case. Most of packets will go this way. */
  2484. if (!skb_has_frag_list(skb)) {
  2485. /* A little of trouble, not enough of space for trailer.
  2486. * This should not happen, when stack is tuned to generate
  2487. * good frames. OK, on miss we reallocate and reserve even more
  2488. * space, 128 bytes is fair. */
  2489. if (skb_tailroom(skb) < tailbits &&
  2490. pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
  2491. return -ENOMEM;
  2492. /* Voila! */
  2493. *trailer = skb;
  2494. return 1;
  2495. }
  2496. /* Misery. We are in troubles, going to mincer fragments... */
  2497. elt = 1;
  2498. skb_p = &skb_shinfo(skb)->frag_list;
  2499. copyflag = 0;
  2500. while ((skb1 = *skb_p) != NULL) {
  2501. int ntail = 0;
  2502. /* The fragment is partially pulled by someone,
  2503. * this can happen on input. Copy it and everything
  2504. * after it. */
  2505. if (skb_shared(skb1))
  2506. copyflag = 1;
  2507. /* If the skb is the last, worry about trailer. */
  2508. if (skb1->next == NULL && tailbits) {
  2509. if (skb_shinfo(skb1)->nr_frags ||
  2510. skb_has_frag_list(skb1) ||
  2511. skb_tailroom(skb1) < tailbits)
  2512. ntail = tailbits + 128;
  2513. }
  2514. if (copyflag ||
  2515. skb_cloned(skb1) ||
  2516. ntail ||
  2517. skb_shinfo(skb1)->nr_frags ||
  2518. skb_has_frag_list(skb1)) {
  2519. struct sk_buff *skb2;
  2520. /* Fuck, we are miserable poor guys... */
  2521. if (ntail == 0)
  2522. skb2 = skb_copy(skb1, GFP_ATOMIC);
  2523. else
  2524. skb2 = skb_copy_expand(skb1,
  2525. skb_headroom(skb1),
  2526. ntail,
  2527. GFP_ATOMIC);
  2528. if (unlikely(skb2 == NULL))
  2529. return -ENOMEM;
  2530. if (skb1->sk)
  2531. skb_set_owner_w(skb2, skb1->sk);
  2532. /* Looking around. Are we still alive?
  2533. * OK, link new skb, drop old one */
  2534. skb2->next = skb1->next;
  2535. *skb_p = skb2;
  2536. kfree_skb(skb1);
  2537. skb1 = skb2;
  2538. }
  2539. elt++;
  2540. *trailer = skb1;
  2541. skb_p = &skb1->next;
  2542. }
  2543. return elt;
  2544. }
  2545. EXPORT_SYMBOL_GPL(skb_cow_data);
  2546. static void sock_rmem_free(struct sk_buff *skb)
  2547. {
  2548. struct sock *sk = skb->sk;
  2549. atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
  2550. }
  2551. /*
  2552. * Note: We dont mem charge error packets (no sk_forward_alloc changes)
  2553. */
  2554. int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
  2555. {
  2556. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  2557. (unsigned)sk->sk_rcvbuf)
  2558. return -ENOMEM;
  2559. skb_orphan(skb);
  2560. skb->sk = sk;
  2561. skb->destructor = sock_rmem_free;
  2562. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  2563. /* before exiting rcu section, make sure dst is refcounted */
  2564. skb_dst_force(skb);
  2565. skb_queue_tail(&sk->sk_error_queue, skb);
  2566. if (!sock_flag(sk, SOCK_DEAD))
  2567. sk->sk_data_ready(sk, skb->len);
  2568. return 0;
  2569. }
  2570. EXPORT_SYMBOL(sock_queue_err_skb);
  2571. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2572. struct skb_shared_hwtstamps *hwtstamps)
  2573. {
  2574. struct sock *sk = orig_skb->sk;
  2575. struct sock_exterr_skb *serr;
  2576. struct sk_buff *skb;
  2577. int err;
  2578. if (!sk)
  2579. return;
  2580. skb = skb_clone(orig_skb, GFP_ATOMIC);
  2581. if (!skb)
  2582. return;
  2583. if (hwtstamps) {
  2584. *skb_hwtstamps(skb) =
  2585. *hwtstamps;
  2586. } else {
  2587. /*
  2588. * no hardware time stamps available,
  2589. * so keep the shared tx_flags and only
  2590. * store software time stamp
  2591. */
  2592. skb->tstamp = ktime_get_real();
  2593. }
  2594. serr = SKB_EXT_ERR(skb);
  2595. memset(serr, 0, sizeof(*serr));
  2596. serr->ee.ee_errno = ENOMSG;
  2597. serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
  2598. err = sock_queue_err_skb(sk, skb);
  2599. if (err)
  2600. kfree_skb(skb);
  2601. }
  2602. EXPORT_SYMBOL_GPL(skb_tstamp_tx);
  2603. /**
  2604. * skb_partial_csum_set - set up and verify partial csum values for packet
  2605. * @skb: the skb to set
  2606. * @start: the number of bytes after skb->data to start checksumming.
  2607. * @off: the offset from start to place the checksum.
  2608. *
  2609. * For untrusted partially-checksummed packets, we need to make sure the values
  2610. * for skb->csum_start and skb->csum_offset are valid so we don't oops.
  2611. *
  2612. * This function checks and sets those values and skb->ip_summed: if this
  2613. * returns false you should drop the packet.
  2614. */
  2615. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
  2616. {
  2617. if (unlikely(start > skb_headlen(skb)) ||
  2618. unlikely((int)start + off > skb_headlen(skb) - 2)) {
  2619. if (net_ratelimit())
  2620. printk(KERN_WARNING
  2621. "bad partial csum: csum=%u/%u len=%u\n",
  2622. start, off, skb_headlen(skb));
  2623. return false;
  2624. }
  2625. skb->ip_summed = CHECKSUM_PARTIAL;
  2626. skb->csum_start = skb_headroom(skb) + start;
  2627. skb->csum_offset = off;
  2628. return true;
  2629. }
  2630. EXPORT_SYMBOL_GPL(skb_partial_csum_set);
  2631. void __skb_warn_lro_forwarding(const struct sk_buff *skb)
  2632. {
  2633. if (net_ratelimit())
  2634. pr_warning("%s: received packets cannot be forwarded"
  2635. " while LRO is enabled\n", skb->dev->name);
  2636. }
  2637. EXPORT_SYMBOL(__skb_warn_lro_forwarding);