vmalloc.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static LIST_HEAD(vmap_area_list);
  231. static struct rb_root vmap_area_root = RB_ROOT;
  232. /* The vmap cache globals are protected by vmap_area_lock */
  233. static struct rb_node *free_vmap_cache;
  234. static unsigned long cached_hole_size;
  235. static unsigned long cached_vstart;
  236. static unsigned long cached_align;
  237. static unsigned long vmap_area_pcpu_hole;
  238. static struct vmap_area *__find_vmap_area(unsigned long addr)
  239. {
  240. struct rb_node *n = vmap_area_root.rb_node;
  241. while (n) {
  242. struct vmap_area *va;
  243. va = rb_entry(n, struct vmap_area, rb_node);
  244. if (addr < va->va_start)
  245. n = n->rb_left;
  246. else if (addr > va->va_start)
  247. n = n->rb_right;
  248. else
  249. return va;
  250. }
  251. return NULL;
  252. }
  253. static void __insert_vmap_area(struct vmap_area *va)
  254. {
  255. struct rb_node **p = &vmap_area_root.rb_node;
  256. struct rb_node *parent = NULL;
  257. struct rb_node *tmp;
  258. while (*p) {
  259. struct vmap_area *tmp_va;
  260. parent = *p;
  261. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  262. if (va->va_start < tmp_va->va_end)
  263. p = &(*p)->rb_left;
  264. else if (va->va_end > tmp_va->va_start)
  265. p = &(*p)->rb_right;
  266. else
  267. BUG();
  268. }
  269. rb_link_node(&va->rb_node, parent, p);
  270. rb_insert_color(&va->rb_node, &vmap_area_root);
  271. /* address-sort this list so it is usable like the vmlist */
  272. tmp = rb_prev(&va->rb_node);
  273. if (tmp) {
  274. struct vmap_area *prev;
  275. prev = rb_entry(tmp, struct vmap_area, rb_node);
  276. list_add_rcu(&va->list, &prev->list);
  277. } else
  278. list_add_rcu(&va->list, &vmap_area_list);
  279. }
  280. static void purge_vmap_area_lazy(void);
  281. /*
  282. * Allocate a region of KVA of the specified size and alignment, within the
  283. * vstart and vend.
  284. */
  285. static struct vmap_area *alloc_vmap_area(unsigned long size,
  286. unsigned long align,
  287. unsigned long vstart, unsigned long vend,
  288. int node, gfp_t gfp_mask)
  289. {
  290. struct vmap_area *va;
  291. struct rb_node *n;
  292. unsigned long addr;
  293. int purged = 0;
  294. struct vmap_area *first;
  295. BUG_ON(!size);
  296. BUG_ON(size & ~PAGE_MASK);
  297. BUG_ON(!is_power_of_2(align));
  298. va = kmalloc_node(sizeof(struct vmap_area),
  299. gfp_mask & GFP_RECLAIM_MASK, node);
  300. if (unlikely(!va))
  301. return ERR_PTR(-ENOMEM);
  302. retry:
  303. spin_lock(&vmap_area_lock);
  304. /*
  305. * Invalidate cache if we have more permissive parameters.
  306. * cached_hole_size notes the largest hole noticed _below_
  307. * the vmap_area cached in free_vmap_cache: if size fits
  308. * into that hole, we want to scan from vstart to reuse
  309. * the hole instead of allocating above free_vmap_cache.
  310. * Note that __free_vmap_area may update free_vmap_cache
  311. * without updating cached_hole_size or cached_align.
  312. */
  313. if (!free_vmap_cache ||
  314. size < cached_hole_size ||
  315. vstart < cached_vstart ||
  316. align < cached_align) {
  317. nocache:
  318. cached_hole_size = 0;
  319. free_vmap_cache = NULL;
  320. }
  321. /* record if we encounter less permissive parameters */
  322. cached_vstart = vstart;
  323. cached_align = align;
  324. /* find starting point for our search */
  325. if (free_vmap_cache) {
  326. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  327. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  328. if (addr < vstart)
  329. goto nocache;
  330. if (addr + size - 1 < addr)
  331. goto overflow;
  332. } else {
  333. addr = ALIGN(vstart, align);
  334. if (addr + size - 1 < addr)
  335. goto overflow;
  336. n = vmap_area_root.rb_node;
  337. first = NULL;
  338. while (n) {
  339. struct vmap_area *tmp;
  340. tmp = rb_entry(n, struct vmap_area, rb_node);
  341. if (tmp->va_end >= addr) {
  342. first = tmp;
  343. if (tmp->va_start <= addr)
  344. break;
  345. n = n->rb_left;
  346. } else
  347. n = n->rb_right;
  348. }
  349. if (!first)
  350. goto found;
  351. }
  352. /* from the starting point, walk areas until a suitable hole is found */
  353. while (addr + size >= first->va_start && addr + size <= vend) {
  354. if (addr + cached_hole_size < first->va_start)
  355. cached_hole_size = first->va_start - addr;
  356. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  357. if (addr + size - 1 < addr)
  358. goto overflow;
  359. n = rb_next(&first->rb_node);
  360. if (n)
  361. first = rb_entry(n, struct vmap_area, rb_node);
  362. else
  363. goto found;
  364. }
  365. found:
  366. if (addr + size > vend)
  367. goto overflow;
  368. va->va_start = addr;
  369. va->va_end = addr + size;
  370. va->flags = 0;
  371. __insert_vmap_area(va);
  372. free_vmap_cache = &va->rb_node;
  373. spin_unlock(&vmap_area_lock);
  374. BUG_ON(va->va_start & (align-1));
  375. BUG_ON(va->va_start < vstart);
  376. BUG_ON(va->va_end > vend);
  377. return va;
  378. overflow:
  379. spin_unlock(&vmap_area_lock);
  380. if (!purged) {
  381. purge_vmap_area_lazy();
  382. purged = 1;
  383. goto retry;
  384. }
  385. if (printk_ratelimit())
  386. printk(KERN_WARNING
  387. "vmap allocation for size %lu failed: "
  388. "use vmalloc=<size> to increase size.\n", size);
  389. kfree(va);
  390. return ERR_PTR(-EBUSY);
  391. }
  392. static void rcu_free_va(struct rcu_head *head)
  393. {
  394. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  395. kfree(va);
  396. }
  397. static void __free_vmap_area(struct vmap_area *va)
  398. {
  399. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  400. if (free_vmap_cache) {
  401. if (va->va_end < cached_vstart) {
  402. free_vmap_cache = NULL;
  403. } else {
  404. struct vmap_area *cache;
  405. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  406. if (va->va_start <= cache->va_start) {
  407. free_vmap_cache = rb_prev(&va->rb_node);
  408. /*
  409. * We don't try to update cached_hole_size or
  410. * cached_align, but it won't go very wrong.
  411. */
  412. }
  413. }
  414. }
  415. rb_erase(&va->rb_node, &vmap_area_root);
  416. RB_CLEAR_NODE(&va->rb_node);
  417. list_del_rcu(&va->list);
  418. /*
  419. * Track the highest possible candidate for pcpu area
  420. * allocation. Areas outside of vmalloc area can be returned
  421. * here too, consider only end addresses which fall inside
  422. * vmalloc area proper.
  423. */
  424. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  425. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  426. call_rcu(&va->rcu_head, rcu_free_va);
  427. }
  428. /*
  429. * Free a region of KVA allocated by alloc_vmap_area
  430. */
  431. static void free_vmap_area(struct vmap_area *va)
  432. {
  433. spin_lock(&vmap_area_lock);
  434. __free_vmap_area(va);
  435. spin_unlock(&vmap_area_lock);
  436. }
  437. /*
  438. * Clear the pagetable entries of a given vmap_area
  439. */
  440. static void unmap_vmap_area(struct vmap_area *va)
  441. {
  442. vunmap_page_range(va->va_start, va->va_end);
  443. }
  444. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  445. {
  446. /*
  447. * Unmap page tables and force a TLB flush immediately if
  448. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  449. * bugs similarly to those in linear kernel virtual address
  450. * space after a page has been freed.
  451. *
  452. * All the lazy freeing logic is still retained, in order to
  453. * minimise intrusiveness of this debugging feature.
  454. *
  455. * This is going to be *slow* (linear kernel virtual address
  456. * debugging doesn't do a broadcast TLB flush so it is a lot
  457. * faster).
  458. */
  459. #ifdef CONFIG_DEBUG_PAGEALLOC
  460. vunmap_page_range(start, end);
  461. flush_tlb_kernel_range(start, end);
  462. #endif
  463. }
  464. /*
  465. * lazy_max_pages is the maximum amount of virtual address space we gather up
  466. * before attempting to purge with a TLB flush.
  467. *
  468. * There is a tradeoff here: a larger number will cover more kernel page tables
  469. * and take slightly longer to purge, but it will linearly reduce the number of
  470. * global TLB flushes that must be performed. It would seem natural to scale
  471. * this number up linearly with the number of CPUs (because vmapping activity
  472. * could also scale linearly with the number of CPUs), however it is likely
  473. * that in practice, workloads might be constrained in other ways that mean
  474. * vmap activity will not scale linearly with CPUs. Also, I want to be
  475. * conservative and not introduce a big latency on huge systems, so go with
  476. * a less aggressive log scale. It will still be an improvement over the old
  477. * code, and it will be simple to change the scale factor if we find that it
  478. * becomes a problem on bigger systems.
  479. */
  480. static unsigned long lazy_max_pages(void)
  481. {
  482. unsigned int log;
  483. log = fls(num_online_cpus());
  484. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  485. }
  486. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  487. /* for per-CPU blocks */
  488. static void purge_fragmented_blocks_allcpus(void);
  489. /*
  490. * called before a call to iounmap() if the caller wants vm_area_struct's
  491. * immediately freed.
  492. */
  493. void set_iounmap_nonlazy(void)
  494. {
  495. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  496. }
  497. /*
  498. * Purges all lazily-freed vmap areas.
  499. *
  500. * If sync is 0 then don't purge if there is already a purge in progress.
  501. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  502. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  503. * their own TLB flushing).
  504. * Returns with *start = min(*start, lowest purged address)
  505. * *end = max(*end, highest purged address)
  506. */
  507. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  508. int sync, int force_flush)
  509. {
  510. static DEFINE_SPINLOCK(purge_lock);
  511. LIST_HEAD(valist);
  512. struct vmap_area *va;
  513. struct vmap_area *n_va;
  514. int nr = 0;
  515. /*
  516. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  517. * should not expect such behaviour. This just simplifies locking for
  518. * the case that isn't actually used at the moment anyway.
  519. */
  520. if (!sync && !force_flush) {
  521. if (!spin_trylock(&purge_lock))
  522. return;
  523. } else
  524. spin_lock(&purge_lock);
  525. if (sync)
  526. purge_fragmented_blocks_allcpus();
  527. rcu_read_lock();
  528. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  529. if (va->flags & VM_LAZY_FREE) {
  530. if (va->va_start < *start)
  531. *start = va->va_start;
  532. if (va->va_end > *end)
  533. *end = va->va_end;
  534. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  535. list_add_tail(&va->purge_list, &valist);
  536. va->flags |= VM_LAZY_FREEING;
  537. va->flags &= ~VM_LAZY_FREE;
  538. }
  539. }
  540. rcu_read_unlock();
  541. if (nr)
  542. atomic_sub(nr, &vmap_lazy_nr);
  543. if (nr || force_flush)
  544. flush_tlb_kernel_range(*start, *end);
  545. if (nr) {
  546. spin_lock(&vmap_area_lock);
  547. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  548. __free_vmap_area(va);
  549. spin_unlock(&vmap_area_lock);
  550. }
  551. spin_unlock(&purge_lock);
  552. }
  553. /*
  554. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  555. * is already purging.
  556. */
  557. static void try_purge_vmap_area_lazy(void)
  558. {
  559. unsigned long start = ULONG_MAX, end = 0;
  560. __purge_vmap_area_lazy(&start, &end, 0, 0);
  561. }
  562. /*
  563. * Kick off a purge of the outstanding lazy areas.
  564. */
  565. static void purge_vmap_area_lazy(void)
  566. {
  567. unsigned long start = ULONG_MAX, end = 0;
  568. __purge_vmap_area_lazy(&start, &end, 1, 0);
  569. }
  570. /*
  571. * Free a vmap area, caller ensuring that the area has been unmapped
  572. * and flush_cache_vunmap had been called for the correct range
  573. * previously.
  574. */
  575. static void free_vmap_area_noflush(struct vmap_area *va)
  576. {
  577. va->flags |= VM_LAZY_FREE;
  578. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  579. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  580. try_purge_vmap_area_lazy();
  581. }
  582. /*
  583. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  584. * called for the correct range previously.
  585. */
  586. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  587. {
  588. unmap_vmap_area(va);
  589. free_vmap_area_noflush(va);
  590. }
  591. /*
  592. * Free and unmap a vmap area
  593. */
  594. static void free_unmap_vmap_area(struct vmap_area *va)
  595. {
  596. flush_cache_vunmap(va->va_start, va->va_end);
  597. free_unmap_vmap_area_noflush(va);
  598. }
  599. static struct vmap_area *find_vmap_area(unsigned long addr)
  600. {
  601. struct vmap_area *va;
  602. spin_lock(&vmap_area_lock);
  603. va = __find_vmap_area(addr);
  604. spin_unlock(&vmap_area_lock);
  605. return va;
  606. }
  607. static void free_unmap_vmap_area_addr(unsigned long addr)
  608. {
  609. struct vmap_area *va;
  610. va = find_vmap_area(addr);
  611. BUG_ON(!va);
  612. free_unmap_vmap_area(va);
  613. }
  614. /*** Per cpu kva allocator ***/
  615. /*
  616. * vmap space is limited especially on 32 bit architectures. Ensure there is
  617. * room for at least 16 percpu vmap blocks per CPU.
  618. */
  619. /*
  620. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  621. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  622. * instead (we just need a rough idea)
  623. */
  624. #if BITS_PER_LONG == 32
  625. #define VMALLOC_SPACE (128UL*1024*1024)
  626. #else
  627. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  628. #endif
  629. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  630. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  631. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  632. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  633. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  634. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  635. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  636. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  637. VMALLOC_PAGES / NR_CPUS / 16))
  638. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  639. static bool vmap_initialized __read_mostly = false;
  640. struct vmap_block_queue {
  641. spinlock_t lock;
  642. struct list_head free;
  643. };
  644. struct vmap_block {
  645. spinlock_t lock;
  646. struct vmap_area *va;
  647. struct vmap_block_queue *vbq;
  648. unsigned long free, dirty;
  649. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  650. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  651. struct list_head free_list;
  652. struct rcu_head rcu_head;
  653. struct list_head purge;
  654. };
  655. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  656. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  657. /*
  658. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  659. * in the free path. Could get rid of this if we change the API to return a
  660. * "cookie" from alloc, to be passed to free. But no big deal yet.
  661. */
  662. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  663. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  664. /*
  665. * We should probably have a fallback mechanism to allocate virtual memory
  666. * out of partially filled vmap blocks. However vmap block sizing should be
  667. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  668. * big problem.
  669. */
  670. static unsigned long addr_to_vb_idx(unsigned long addr)
  671. {
  672. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  673. addr /= VMAP_BLOCK_SIZE;
  674. return addr;
  675. }
  676. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  677. {
  678. struct vmap_block_queue *vbq;
  679. struct vmap_block *vb;
  680. struct vmap_area *va;
  681. unsigned long vb_idx;
  682. int node, err;
  683. node = numa_node_id();
  684. vb = kmalloc_node(sizeof(struct vmap_block),
  685. gfp_mask & GFP_RECLAIM_MASK, node);
  686. if (unlikely(!vb))
  687. return ERR_PTR(-ENOMEM);
  688. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  689. VMALLOC_START, VMALLOC_END,
  690. node, gfp_mask);
  691. if (IS_ERR(va)) {
  692. kfree(vb);
  693. return ERR_CAST(va);
  694. }
  695. err = radix_tree_preload(gfp_mask);
  696. if (unlikely(err)) {
  697. kfree(vb);
  698. free_vmap_area(va);
  699. return ERR_PTR(err);
  700. }
  701. spin_lock_init(&vb->lock);
  702. vb->va = va;
  703. vb->free = VMAP_BBMAP_BITS;
  704. vb->dirty = 0;
  705. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  706. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  707. INIT_LIST_HEAD(&vb->free_list);
  708. vb_idx = addr_to_vb_idx(va->va_start);
  709. spin_lock(&vmap_block_tree_lock);
  710. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  711. spin_unlock(&vmap_block_tree_lock);
  712. BUG_ON(err);
  713. radix_tree_preload_end();
  714. vbq = &get_cpu_var(vmap_block_queue);
  715. vb->vbq = vbq;
  716. spin_lock(&vbq->lock);
  717. list_add_rcu(&vb->free_list, &vbq->free);
  718. spin_unlock(&vbq->lock);
  719. put_cpu_var(vmap_block_queue);
  720. return vb;
  721. }
  722. static void rcu_free_vb(struct rcu_head *head)
  723. {
  724. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  725. kfree(vb);
  726. }
  727. static void free_vmap_block(struct vmap_block *vb)
  728. {
  729. struct vmap_block *tmp;
  730. unsigned long vb_idx;
  731. vb_idx = addr_to_vb_idx(vb->va->va_start);
  732. spin_lock(&vmap_block_tree_lock);
  733. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  734. spin_unlock(&vmap_block_tree_lock);
  735. BUG_ON(tmp != vb);
  736. free_vmap_area_noflush(vb->va);
  737. call_rcu(&vb->rcu_head, rcu_free_vb);
  738. }
  739. static void purge_fragmented_blocks(int cpu)
  740. {
  741. LIST_HEAD(purge);
  742. struct vmap_block *vb;
  743. struct vmap_block *n_vb;
  744. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  745. rcu_read_lock();
  746. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  747. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  748. continue;
  749. spin_lock(&vb->lock);
  750. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  751. vb->free = 0; /* prevent further allocs after releasing lock */
  752. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  753. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  754. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  755. spin_lock(&vbq->lock);
  756. list_del_rcu(&vb->free_list);
  757. spin_unlock(&vbq->lock);
  758. spin_unlock(&vb->lock);
  759. list_add_tail(&vb->purge, &purge);
  760. } else
  761. spin_unlock(&vb->lock);
  762. }
  763. rcu_read_unlock();
  764. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  765. list_del(&vb->purge);
  766. free_vmap_block(vb);
  767. }
  768. }
  769. static void purge_fragmented_blocks_thiscpu(void)
  770. {
  771. purge_fragmented_blocks(smp_processor_id());
  772. }
  773. static void purge_fragmented_blocks_allcpus(void)
  774. {
  775. int cpu;
  776. for_each_possible_cpu(cpu)
  777. purge_fragmented_blocks(cpu);
  778. }
  779. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  780. {
  781. struct vmap_block_queue *vbq;
  782. struct vmap_block *vb;
  783. unsigned long addr = 0;
  784. unsigned int order;
  785. int purge = 0;
  786. BUG_ON(size & ~PAGE_MASK);
  787. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  788. order = get_order(size);
  789. again:
  790. rcu_read_lock();
  791. vbq = &get_cpu_var(vmap_block_queue);
  792. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  793. int i;
  794. spin_lock(&vb->lock);
  795. if (vb->free < 1UL << order)
  796. goto next;
  797. i = bitmap_find_free_region(vb->alloc_map,
  798. VMAP_BBMAP_BITS, order);
  799. if (i < 0) {
  800. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  801. /* fragmented and no outstanding allocations */
  802. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  803. purge = 1;
  804. }
  805. goto next;
  806. }
  807. addr = vb->va->va_start + (i << PAGE_SHIFT);
  808. BUG_ON(addr_to_vb_idx(addr) !=
  809. addr_to_vb_idx(vb->va->va_start));
  810. vb->free -= 1UL << order;
  811. if (vb->free == 0) {
  812. spin_lock(&vbq->lock);
  813. list_del_rcu(&vb->free_list);
  814. spin_unlock(&vbq->lock);
  815. }
  816. spin_unlock(&vb->lock);
  817. break;
  818. next:
  819. spin_unlock(&vb->lock);
  820. }
  821. if (purge)
  822. purge_fragmented_blocks_thiscpu();
  823. put_cpu_var(vmap_block_queue);
  824. rcu_read_unlock();
  825. if (!addr) {
  826. vb = new_vmap_block(gfp_mask);
  827. if (IS_ERR(vb))
  828. return vb;
  829. goto again;
  830. }
  831. return (void *)addr;
  832. }
  833. static void vb_free(const void *addr, unsigned long size)
  834. {
  835. unsigned long offset;
  836. unsigned long vb_idx;
  837. unsigned int order;
  838. struct vmap_block *vb;
  839. BUG_ON(size & ~PAGE_MASK);
  840. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  841. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  842. order = get_order(size);
  843. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  844. vb_idx = addr_to_vb_idx((unsigned long)addr);
  845. rcu_read_lock();
  846. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  847. rcu_read_unlock();
  848. BUG_ON(!vb);
  849. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  850. spin_lock(&vb->lock);
  851. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  852. vb->dirty += 1UL << order;
  853. if (vb->dirty == VMAP_BBMAP_BITS) {
  854. BUG_ON(vb->free);
  855. spin_unlock(&vb->lock);
  856. free_vmap_block(vb);
  857. } else
  858. spin_unlock(&vb->lock);
  859. }
  860. /**
  861. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  862. *
  863. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  864. * to amortize TLB flushing overheads. What this means is that any page you
  865. * have now, may, in a former life, have been mapped into kernel virtual
  866. * address by the vmap layer and so there might be some CPUs with TLB entries
  867. * still referencing that page (additional to the regular 1:1 kernel mapping).
  868. *
  869. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  870. * be sure that none of the pages we have control over will have any aliases
  871. * from the vmap layer.
  872. */
  873. void vm_unmap_aliases(void)
  874. {
  875. unsigned long start = ULONG_MAX, end = 0;
  876. int cpu;
  877. int flush = 0;
  878. if (unlikely(!vmap_initialized))
  879. return;
  880. for_each_possible_cpu(cpu) {
  881. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  882. struct vmap_block *vb;
  883. rcu_read_lock();
  884. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  885. int i;
  886. spin_lock(&vb->lock);
  887. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  888. while (i < VMAP_BBMAP_BITS) {
  889. unsigned long s, e;
  890. int j;
  891. j = find_next_zero_bit(vb->dirty_map,
  892. VMAP_BBMAP_BITS, i);
  893. s = vb->va->va_start + (i << PAGE_SHIFT);
  894. e = vb->va->va_start + (j << PAGE_SHIFT);
  895. flush = 1;
  896. if (s < start)
  897. start = s;
  898. if (e > end)
  899. end = e;
  900. i = j;
  901. i = find_next_bit(vb->dirty_map,
  902. VMAP_BBMAP_BITS, i);
  903. }
  904. spin_unlock(&vb->lock);
  905. }
  906. rcu_read_unlock();
  907. }
  908. __purge_vmap_area_lazy(&start, &end, 1, flush);
  909. }
  910. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  911. /**
  912. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  913. * @mem: the pointer returned by vm_map_ram
  914. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  915. */
  916. void vm_unmap_ram(const void *mem, unsigned int count)
  917. {
  918. unsigned long size = count << PAGE_SHIFT;
  919. unsigned long addr = (unsigned long)mem;
  920. BUG_ON(!addr);
  921. BUG_ON(addr < VMALLOC_START);
  922. BUG_ON(addr > VMALLOC_END);
  923. BUG_ON(addr & (PAGE_SIZE-1));
  924. debug_check_no_locks_freed(mem, size);
  925. vmap_debug_free_range(addr, addr+size);
  926. if (likely(count <= VMAP_MAX_ALLOC))
  927. vb_free(mem, size);
  928. else
  929. free_unmap_vmap_area_addr(addr);
  930. }
  931. EXPORT_SYMBOL(vm_unmap_ram);
  932. /**
  933. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  934. * @pages: an array of pointers to the pages to be mapped
  935. * @count: number of pages
  936. * @node: prefer to allocate data structures on this node
  937. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  938. *
  939. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  940. */
  941. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  942. {
  943. unsigned long size = count << PAGE_SHIFT;
  944. unsigned long addr;
  945. void *mem;
  946. if (likely(count <= VMAP_MAX_ALLOC)) {
  947. mem = vb_alloc(size, GFP_KERNEL);
  948. if (IS_ERR(mem))
  949. return NULL;
  950. addr = (unsigned long)mem;
  951. } else {
  952. struct vmap_area *va;
  953. va = alloc_vmap_area(size, PAGE_SIZE,
  954. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  955. if (IS_ERR(va))
  956. return NULL;
  957. addr = va->va_start;
  958. mem = (void *)addr;
  959. }
  960. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  961. vm_unmap_ram(mem, count);
  962. return NULL;
  963. }
  964. return mem;
  965. }
  966. EXPORT_SYMBOL(vm_map_ram);
  967. /**
  968. * vm_area_register_early - register vmap area early during boot
  969. * @vm: vm_struct to register
  970. * @align: requested alignment
  971. *
  972. * This function is used to register kernel vm area before
  973. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  974. * proper values on entry and other fields should be zero. On return,
  975. * vm->addr contains the allocated address.
  976. *
  977. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  978. */
  979. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  980. {
  981. static size_t vm_init_off __initdata;
  982. unsigned long addr;
  983. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  984. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  985. vm->addr = (void *)addr;
  986. vm->next = vmlist;
  987. vmlist = vm;
  988. }
  989. void __init vmalloc_init(void)
  990. {
  991. struct vmap_area *va;
  992. struct vm_struct *tmp;
  993. int i;
  994. for_each_possible_cpu(i) {
  995. struct vmap_block_queue *vbq;
  996. vbq = &per_cpu(vmap_block_queue, i);
  997. spin_lock_init(&vbq->lock);
  998. INIT_LIST_HEAD(&vbq->free);
  999. }
  1000. /* Import existing vmlist entries. */
  1001. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1002. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1003. va->flags = tmp->flags | VM_VM_AREA;
  1004. va->va_start = (unsigned long)tmp->addr;
  1005. va->va_end = va->va_start + tmp->size;
  1006. __insert_vmap_area(va);
  1007. }
  1008. vmap_area_pcpu_hole = VMALLOC_END;
  1009. vmap_initialized = true;
  1010. }
  1011. /**
  1012. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1013. * @addr: start of the VM area to map
  1014. * @size: size of the VM area to map
  1015. * @prot: page protection flags to use
  1016. * @pages: pages to map
  1017. *
  1018. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1019. * specify should have been allocated using get_vm_area() and its
  1020. * friends.
  1021. *
  1022. * NOTE:
  1023. * This function does NOT do any cache flushing. The caller is
  1024. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1025. * before calling this function.
  1026. *
  1027. * RETURNS:
  1028. * The number of pages mapped on success, -errno on failure.
  1029. */
  1030. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1031. pgprot_t prot, struct page **pages)
  1032. {
  1033. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1034. }
  1035. /**
  1036. * unmap_kernel_range_noflush - unmap kernel VM area
  1037. * @addr: start of the VM area to unmap
  1038. * @size: size of the VM area to unmap
  1039. *
  1040. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1041. * specify should have been allocated using get_vm_area() and its
  1042. * friends.
  1043. *
  1044. * NOTE:
  1045. * This function does NOT do any cache flushing. The caller is
  1046. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1047. * before calling this function and flush_tlb_kernel_range() after.
  1048. */
  1049. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1050. {
  1051. vunmap_page_range(addr, addr + size);
  1052. }
  1053. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1054. /**
  1055. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1056. * @addr: start of the VM area to unmap
  1057. * @size: size of the VM area to unmap
  1058. *
  1059. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1060. * the unmapping and tlb after.
  1061. */
  1062. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1063. {
  1064. unsigned long end = addr + size;
  1065. flush_cache_vunmap(addr, end);
  1066. vunmap_page_range(addr, end);
  1067. flush_tlb_kernel_range(addr, end);
  1068. }
  1069. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1070. {
  1071. unsigned long addr = (unsigned long)area->addr;
  1072. unsigned long end = addr + area->size - PAGE_SIZE;
  1073. int err;
  1074. err = vmap_page_range(addr, end, prot, *pages);
  1075. if (err > 0) {
  1076. *pages += err;
  1077. err = 0;
  1078. }
  1079. return err;
  1080. }
  1081. EXPORT_SYMBOL_GPL(map_vm_area);
  1082. /*** Old vmalloc interfaces ***/
  1083. DEFINE_RWLOCK(vmlist_lock);
  1084. struct vm_struct *vmlist;
  1085. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1086. unsigned long flags, void *caller)
  1087. {
  1088. struct vm_struct *tmp, **p;
  1089. vm->flags = flags;
  1090. vm->addr = (void *)va->va_start;
  1091. vm->size = va->va_end - va->va_start;
  1092. vm->caller = caller;
  1093. va->private = vm;
  1094. va->flags |= VM_VM_AREA;
  1095. write_lock(&vmlist_lock);
  1096. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1097. if (tmp->addr >= vm->addr)
  1098. break;
  1099. }
  1100. vm->next = *p;
  1101. *p = vm;
  1102. write_unlock(&vmlist_lock);
  1103. }
  1104. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1105. unsigned long align, unsigned long flags, unsigned long start,
  1106. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1107. {
  1108. static struct vmap_area *va;
  1109. struct vm_struct *area;
  1110. BUG_ON(in_interrupt());
  1111. if (flags & VM_IOREMAP) {
  1112. int bit = fls(size);
  1113. if (bit > IOREMAP_MAX_ORDER)
  1114. bit = IOREMAP_MAX_ORDER;
  1115. else if (bit < PAGE_SHIFT)
  1116. bit = PAGE_SHIFT;
  1117. align = 1ul << bit;
  1118. }
  1119. size = PAGE_ALIGN(size);
  1120. if (unlikely(!size))
  1121. return NULL;
  1122. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1123. if (unlikely(!area))
  1124. return NULL;
  1125. /*
  1126. * We always allocate a guard page.
  1127. */
  1128. size += PAGE_SIZE;
  1129. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1130. if (IS_ERR(va)) {
  1131. kfree(area);
  1132. return NULL;
  1133. }
  1134. insert_vmalloc_vm(area, va, flags, caller);
  1135. return area;
  1136. }
  1137. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1138. unsigned long start, unsigned long end)
  1139. {
  1140. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1141. __builtin_return_address(0));
  1142. }
  1143. EXPORT_SYMBOL_GPL(__get_vm_area);
  1144. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1145. unsigned long start, unsigned long end,
  1146. void *caller)
  1147. {
  1148. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1149. caller);
  1150. }
  1151. /**
  1152. * get_vm_area - reserve a contiguous kernel virtual area
  1153. * @size: size of the area
  1154. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1155. *
  1156. * Search an area of @size in the kernel virtual mapping area,
  1157. * and reserved it for out purposes. Returns the area descriptor
  1158. * on success or %NULL on failure.
  1159. */
  1160. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1161. {
  1162. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1163. -1, GFP_KERNEL, __builtin_return_address(0));
  1164. }
  1165. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1166. void *caller)
  1167. {
  1168. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1169. -1, GFP_KERNEL, caller);
  1170. }
  1171. static struct vm_struct *find_vm_area(const void *addr)
  1172. {
  1173. struct vmap_area *va;
  1174. va = find_vmap_area((unsigned long)addr);
  1175. if (va && va->flags & VM_VM_AREA)
  1176. return va->private;
  1177. return NULL;
  1178. }
  1179. /**
  1180. * remove_vm_area - find and remove a continuous kernel virtual area
  1181. * @addr: base address
  1182. *
  1183. * Search for the kernel VM area starting at @addr, and remove it.
  1184. * This function returns the found VM area, but using it is NOT safe
  1185. * on SMP machines, except for its size or flags.
  1186. */
  1187. struct vm_struct *remove_vm_area(const void *addr)
  1188. {
  1189. struct vmap_area *va;
  1190. va = find_vmap_area((unsigned long)addr);
  1191. if (va && va->flags & VM_VM_AREA) {
  1192. struct vm_struct *vm = va->private;
  1193. struct vm_struct *tmp, **p;
  1194. /*
  1195. * remove from list and disallow access to this vm_struct
  1196. * before unmap. (address range confliction is maintained by
  1197. * vmap.)
  1198. */
  1199. write_lock(&vmlist_lock);
  1200. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1201. ;
  1202. *p = tmp->next;
  1203. write_unlock(&vmlist_lock);
  1204. vmap_debug_free_range(va->va_start, va->va_end);
  1205. free_unmap_vmap_area(va);
  1206. vm->size -= PAGE_SIZE;
  1207. return vm;
  1208. }
  1209. return NULL;
  1210. }
  1211. static void __vunmap(const void *addr, int deallocate_pages)
  1212. {
  1213. struct vm_struct *area;
  1214. if (!addr)
  1215. return;
  1216. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1217. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1218. return;
  1219. }
  1220. area = remove_vm_area(addr);
  1221. if (unlikely(!area)) {
  1222. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1223. addr);
  1224. return;
  1225. }
  1226. debug_check_no_locks_freed(addr, area->size);
  1227. debug_check_no_obj_freed(addr, area->size);
  1228. if (deallocate_pages) {
  1229. int i;
  1230. for (i = 0; i < area->nr_pages; i++) {
  1231. struct page *page = area->pages[i];
  1232. BUG_ON(!page);
  1233. __free_page(page);
  1234. }
  1235. if (area->flags & VM_VPAGES)
  1236. vfree(area->pages);
  1237. else
  1238. kfree(area->pages);
  1239. }
  1240. kfree(area);
  1241. return;
  1242. }
  1243. /**
  1244. * vfree - release memory allocated by vmalloc()
  1245. * @addr: memory base address
  1246. *
  1247. * Free the virtually continuous memory area starting at @addr, as
  1248. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1249. * NULL, no operation is performed.
  1250. *
  1251. * Must not be called in interrupt context.
  1252. */
  1253. void vfree(const void *addr)
  1254. {
  1255. BUG_ON(in_interrupt());
  1256. kmemleak_free(addr);
  1257. __vunmap(addr, 1);
  1258. }
  1259. EXPORT_SYMBOL(vfree);
  1260. /**
  1261. * vunmap - release virtual mapping obtained by vmap()
  1262. * @addr: memory base address
  1263. *
  1264. * Free the virtually contiguous memory area starting at @addr,
  1265. * which was created from the page array passed to vmap().
  1266. *
  1267. * Must not be called in interrupt context.
  1268. */
  1269. void vunmap(const void *addr)
  1270. {
  1271. BUG_ON(in_interrupt());
  1272. might_sleep();
  1273. __vunmap(addr, 0);
  1274. }
  1275. EXPORT_SYMBOL(vunmap);
  1276. /**
  1277. * vmap - map an array of pages into virtually contiguous space
  1278. * @pages: array of page pointers
  1279. * @count: number of pages to map
  1280. * @flags: vm_area->flags
  1281. * @prot: page protection for the mapping
  1282. *
  1283. * Maps @count pages from @pages into contiguous kernel virtual
  1284. * space.
  1285. */
  1286. void *vmap(struct page **pages, unsigned int count,
  1287. unsigned long flags, pgprot_t prot)
  1288. {
  1289. struct vm_struct *area;
  1290. might_sleep();
  1291. if (count > totalram_pages)
  1292. return NULL;
  1293. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1294. __builtin_return_address(0));
  1295. if (!area)
  1296. return NULL;
  1297. if (map_vm_area(area, prot, &pages)) {
  1298. vunmap(area->addr);
  1299. return NULL;
  1300. }
  1301. return area->addr;
  1302. }
  1303. EXPORT_SYMBOL(vmap);
  1304. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1305. gfp_t gfp_mask, pgprot_t prot,
  1306. int node, void *caller);
  1307. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1308. pgprot_t prot, int node, void *caller)
  1309. {
  1310. struct page **pages;
  1311. unsigned int nr_pages, array_size, i;
  1312. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1313. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1314. array_size = (nr_pages * sizeof(struct page *));
  1315. area->nr_pages = nr_pages;
  1316. /* Please note that the recursion is strictly bounded. */
  1317. if (array_size > PAGE_SIZE) {
  1318. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1319. PAGE_KERNEL, node, caller);
  1320. area->flags |= VM_VPAGES;
  1321. } else {
  1322. pages = kmalloc_node(array_size, nested_gfp, node);
  1323. }
  1324. area->pages = pages;
  1325. area->caller = caller;
  1326. if (!area->pages) {
  1327. remove_vm_area(area->addr);
  1328. kfree(area);
  1329. return NULL;
  1330. }
  1331. for (i = 0; i < area->nr_pages; i++) {
  1332. struct page *page;
  1333. if (node < 0)
  1334. page = alloc_page(gfp_mask);
  1335. else
  1336. page = alloc_pages_node(node, gfp_mask, 0);
  1337. if (unlikely(!page)) {
  1338. /* Successfully allocated i pages, free them in __vunmap() */
  1339. area->nr_pages = i;
  1340. goto fail;
  1341. }
  1342. area->pages[i] = page;
  1343. }
  1344. if (map_vm_area(area, prot, &pages))
  1345. goto fail;
  1346. return area->addr;
  1347. fail:
  1348. vfree(area->addr);
  1349. return NULL;
  1350. }
  1351. /**
  1352. * __vmalloc_node_range - allocate virtually contiguous memory
  1353. * @size: allocation size
  1354. * @align: desired alignment
  1355. * @start: vm area range start
  1356. * @end: vm area range end
  1357. * @gfp_mask: flags for the page level allocator
  1358. * @prot: protection mask for the allocated pages
  1359. * @node: node to use for allocation or -1
  1360. * @caller: caller's return address
  1361. *
  1362. * Allocate enough pages to cover @size from the page level
  1363. * allocator with @gfp_mask flags. Map them into contiguous
  1364. * kernel virtual space, using a pagetable protection of @prot.
  1365. */
  1366. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1367. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1368. pgprot_t prot, int node, void *caller)
  1369. {
  1370. struct vm_struct *area;
  1371. void *addr;
  1372. unsigned long real_size = size;
  1373. size = PAGE_ALIGN(size);
  1374. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1375. return NULL;
  1376. area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
  1377. gfp_mask, caller);
  1378. if (!area)
  1379. return NULL;
  1380. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1381. /*
  1382. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1383. * structures allocated in the __get_vm_area_node() function contain
  1384. * references to the virtual address of the vmalloc'ed block.
  1385. */
  1386. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1387. return addr;
  1388. }
  1389. /**
  1390. * __vmalloc_node - allocate virtually contiguous memory
  1391. * @size: allocation size
  1392. * @align: desired alignment
  1393. * @gfp_mask: flags for the page level allocator
  1394. * @prot: protection mask for the allocated pages
  1395. * @node: node to use for allocation or -1
  1396. * @caller: caller's return address
  1397. *
  1398. * Allocate enough pages to cover @size from the page level
  1399. * allocator with @gfp_mask flags. Map them into contiguous
  1400. * kernel virtual space, using a pagetable protection of @prot.
  1401. */
  1402. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1403. gfp_t gfp_mask, pgprot_t prot,
  1404. int node, void *caller)
  1405. {
  1406. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1407. gfp_mask, prot, node, caller);
  1408. }
  1409. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1410. {
  1411. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1412. __builtin_return_address(0));
  1413. }
  1414. EXPORT_SYMBOL(__vmalloc);
  1415. static inline void *__vmalloc_node_flags(unsigned long size,
  1416. int node, gfp_t flags)
  1417. {
  1418. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1419. node, __builtin_return_address(0));
  1420. }
  1421. /**
  1422. * vmalloc - allocate virtually contiguous memory
  1423. * @size: allocation size
  1424. * Allocate enough pages to cover @size from the page level
  1425. * allocator and map them into contiguous kernel virtual space.
  1426. *
  1427. * For tight control over page level allocator and protection flags
  1428. * use __vmalloc() instead.
  1429. */
  1430. void *vmalloc(unsigned long size)
  1431. {
  1432. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1433. }
  1434. EXPORT_SYMBOL(vmalloc);
  1435. /**
  1436. * vzalloc - allocate virtually contiguous memory with zero fill
  1437. * @size: allocation size
  1438. * Allocate enough pages to cover @size from the page level
  1439. * allocator and map them into contiguous kernel virtual space.
  1440. * The memory allocated is set to zero.
  1441. *
  1442. * For tight control over page level allocator and protection flags
  1443. * use __vmalloc() instead.
  1444. */
  1445. void *vzalloc(unsigned long size)
  1446. {
  1447. return __vmalloc_node_flags(size, -1,
  1448. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1449. }
  1450. EXPORT_SYMBOL(vzalloc);
  1451. /**
  1452. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1453. * @size: allocation size
  1454. *
  1455. * The resulting memory area is zeroed so it can be mapped to userspace
  1456. * without leaking data.
  1457. */
  1458. void *vmalloc_user(unsigned long size)
  1459. {
  1460. struct vm_struct *area;
  1461. void *ret;
  1462. ret = __vmalloc_node(size, SHMLBA,
  1463. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1464. PAGE_KERNEL, -1, __builtin_return_address(0));
  1465. if (ret) {
  1466. area = find_vm_area(ret);
  1467. area->flags |= VM_USERMAP;
  1468. }
  1469. return ret;
  1470. }
  1471. EXPORT_SYMBOL(vmalloc_user);
  1472. /**
  1473. * vmalloc_node - allocate memory on a specific node
  1474. * @size: allocation size
  1475. * @node: numa node
  1476. *
  1477. * Allocate enough pages to cover @size from the page level
  1478. * allocator and map them into contiguous kernel virtual space.
  1479. *
  1480. * For tight control over page level allocator and protection flags
  1481. * use __vmalloc() instead.
  1482. */
  1483. void *vmalloc_node(unsigned long size, int node)
  1484. {
  1485. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1486. node, __builtin_return_address(0));
  1487. }
  1488. EXPORT_SYMBOL(vmalloc_node);
  1489. /**
  1490. * vzalloc_node - allocate memory on a specific node with zero fill
  1491. * @size: allocation size
  1492. * @node: numa node
  1493. *
  1494. * Allocate enough pages to cover @size from the page level
  1495. * allocator and map them into contiguous kernel virtual space.
  1496. * The memory allocated is set to zero.
  1497. *
  1498. * For tight control over page level allocator and protection flags
  1499. * use __vmalloc_node() instead.
  1500. */
  1501. void *vzalloc_node(unsigned long size, int node)
  1502. {
  1503. return __vmalloc_node_flags(size, node,
  1504. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1505. }
  1506. EXPORT_SYMBOL(vzalloc_node);
  1507. #ifndef PAGE_KERNEL_EXEC
  1508. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1509. #endif
  1510. /**
  1511. * vmalloc_exec - allocate virtually contiguous, executable memory
  1512. * @size: allocation size
  1513. *
  1514. * Kernel-internal function to allocate enough pages to cover @size
  1515. * the page level allocator and map them into contiguous and
  1516. * executable kernel virtual space.
  1517. *
  1518. * For tight control over page level allocator and protection flags
  1519. * use __vmalloc() instead.
  1520. */
  1521. void *vmalloc_exec(unsigned long size)
  1522. {
  1523. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1524. -1, __builtin_return_address(0));
  1525. }
  1526. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1527. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1528. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1529. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1530. #else
  1531. #define GFP_VMALLOC32 GFP_KERNEL
  1532. #endif
  1533. /**
  1534. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1535. * @size: allocation size
  1536. *
  1537. * Allocate enough 32bit PA addressable pages to cover @size from the
  1538. * page level allocator and map them into contiguous kernel virtual space.
  1539. */
  1540. void *vmalloc_32(unsigned long size)
  1541. {
  1542. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1543. -1, __builtin_return_address(0));
  1544. }
  1545. EXPORT_SYMBOL(vmalloc_32);
  1546. /**
  1547. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1548. * @size: allocation size
  1549. *
  1550. * The resulting memory area is 32bit addressable and zeroed so it can be
  1551. * mapped to userspace without leaking data.
  1552. */
  1553. void *vmalloc_32_user(unsigned long size)
  1554. {
  1555. struct vm_struct *area;
  1556. void *ret;
  1557. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1558. -1, __builtin_return_address(0));
  1559. if (ret) {
  1560. area = find_vm_area(ret);
  1561. area->flags |= VM_USERMAP;
  1562. }
  1563. return ret;
  1564. }
  1565. EXPORT_SYMBOL(vmalloc_32_user);
  1566. /*
  1567. * small helper routine , copy contents to buf from addr.
  1568. * If the page is not present, fill zero.
  1569. */
  1570. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1571. {
  1572. struct page *p;
  1573. int copied = 0;
  1574. while (count) {
  1575. unsigned long offset, length;
  1576. offset = (unsigned long)addr & ~PAGE_MASK;
  1577. length = PAGE_SIZE - offset;
  1578. if (length > count)
  1579. length = count;
  1580. p = vmalloc_to_page(addr);
  1581. /*
  1582. * To do safe access to this _mapped_ area, we need
  1583. * lock. But adding lock here means that we need to add
  1584. * overhead of vmalloc()/vfree() calles for this _debug_
  1585. * interface, rarely used. Instead of that, we'll use
  1586. * kmap() and get small overhead in this access function.
  1587. */
  1588. if (p) {
  1589. /*
  1590. * we can expect USER0 is not used (see vread/vwrite's
  1591. * function description)
  1592. */
  1593. void *map = kmap_atomic(p, KM_USER0);
  1594. memcpy(buf, map + offset, length);
  1595. kunmap_atomic(map, KM_USER0);
  1596. } else
  1597. memset(buf, 0, length);
  1598. addr += length;
  1599. buf += length;
  1600. copied += length;
  1601. count -= length;
  1602. }
  1603. return copied;
  1604. }
  1605. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1606. {
  1607. struct page *p;
  1608. int copied = 0;
  1609. while (count) {
  1610. unsigned long offset, length;
  1611. offset = (unsigned long)addr & ~PAGE_MASK;
  1612. length = PAGE_SIZE - offset;
  1613. if (length > count)
  1614. length = count;
  1615. p = vmalloc_to_page(addr);
  1616. /*
  1617. * To do safe access to this _mapped_ area, we need
  1618. * lock. But adding lock here means that we need to add
  1619. * overhead of vmalloc()/vfree() calles for this _debug_
  1620. * interface, rarely used. Instead of that, we'll use
  1621. * kmap() and get small overhead in this access function.
  1622. */
  1623. if (p) {
  1624. /*
  1625. * we can expect USER0 is not used (see vread/vwrite's
  1626. * function description)
  1627. */
  1628. void *map = kmap_atomic(p, KM_USER0);
  1629. memcpy(map + offset, buf, length);
  1630. kunmap_atomic(map, KM_USER0);
  1631. }
  1632. addr += length;
  1633. buf += length;
  1634. copied += length;
  1635. count -= length;
  1636. }
  1637. return copied;
  1638. }
  1639. /**
  1640. * vread() - read vmalloc area in a safe way.
  1641. * @buf: buffer for reading data
  1642. * @addr: vm address.
  1643. * @count: number of bytes to be read.
  1644. *
  1645. * Returns # of bytes which addr and buf should be increased.
  1646. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1647. * includes any intersect with alive vmalloc area.
  1648. *
  1649. * This function checks that addr is a valid vmalloc'ed area, and
  1650. * copy data from that area to a given buffer. If the given memory range
  1651. * of [addr...addr+count) includes some valid address, data is copied to
  1652. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1653. * IOREMAP area is treated as memory hole and no copy is done.
  1654. *
  1655. * If [addr...addr+count) doesn't includes any intersects with alive
  1656. * vm_struct area, returns 0.
  1657. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1658. * the caller should guarantee KM_USER0 is not used.
  1659. *
  1660. * Note: In usual ops, vread() is never necessary because the caller
  1661. * should know vmalloc() area is valid and can use memcpy().
  1662. * This is for routines which have to access vmalloc area without
  1663. * any informaion, as /dev/kmem.
  1664. *
  1665. */
  1666. long vread(char *buf, char *addr, unsigned long count)
  1667. {
  1668. struct vm_struct *tmp;
  1669. char *vaddr, *buf_start = buf;
  1670. unsigned long buflen = count;
  1671. unsigned long n;
  1672. /* Don't allow overflow */
  1673. if ((unsigned long) addr + count < count)
  1674. count = -(unsigned long) addr;
  1675. read_lock(&vmlist_lock);
  1676. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1677. vaddr = (char *) tmp->addr;
  1678. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1679. continue;
  1680. while (addr < vaddr) {
  1681. if (count == 0)
  1682. goto finished;
  1683. *buf = '\0';
  1684. buf++;
  1685. addr++;
  1686. count--;
  1687. }
  1688. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1689. if (n > count)
  1690. n = count;
  1691. if (!(tmp->flags & VM_IOREMAP))
  1692. aligned_vread(buf, addr, n);
  1693. else /* IOREMAP area is treated as memory hole */
  1694. memset(buf, 0, n);
  1695. buf += n;
  1696. addr += n;
  1697. count -= n;
  1698. }
  1699. finished:
  1700. read_unlock(&vmlist_lock);
  1701. if (buf == buf_start)
  1702. return 0;
  1703. /* zero-fill memory holes */
  1704. if (buf != buf_start + buflen)
  1705. memset(buf, 0, buflen - (buf - buf_start));
  1706. return buflen;
  1707. }
  1708. /**
  1709. * vwrite() - write vmalloc area in a safe way.
  1710. * @buf: buffer for source data
  1711. * @addr: vm address.
  1712. * @count: number of bytes to be read.
  1713. *
  1714. * Returns # of bytes which addr and buf should be incresed.
  1715. * (same number to @count).
  1716. * If [addr...addr+count) doesn't includes any intersect with valid
  1717. * vmalloc area, returns 0.
  1718. *
  1719. * This function checks that addr is a valid vmalloc'ed area, and
  1720. * copy data from a buffer to the given addr. If specified range of
  1721. * [addr...addr+count) includes some valid address, data is copied from
  1722. * proper area of @buf. If there are memory holes, no copy to hole.
  1723. * IOREMAP area is treated as memory hole and no copy is done.
  1724. *
  1725. * If [addr...addr+count) doesn't includes any intersects with alive
  1726. * vm_struct area, returns 0.
  1727. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1728. * the caller should guarantee KM_USER0 is not used.
  1729. *
  1730. * Note: In usual ops, vwrite() is never necessary because the caller
  1731. * should know vmalloc() area is valid and can use memcpy().
  1732. * This is for routines which have to access vmalloc area without
  1733. * any informaion, as /dev/kmem.
  1734. */
  1735. long vwrite(char *buf, char *addr, unsigned long count)
  1736. {
  1737. struct vm_struct *tmp;
  1738. char *vaddr;
  1739. unsigned long n, buflen;
  1740. int copied = 0;
  1741. /* Don't allow overflow */
  1742. if ((unsigned long) addr + count < count)
  1743. count = -(unsigned long) addr;
  1744. buflen = count;
  1745. read_lock(&vmlist_lock);
  1746. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1747. vaddr = (char *) tmp->addr;
  1748. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1749. continue;
  1750. while (addr < vaddr) {
  1751. if (count == 0)
  1752. goto finished;
  1753. buf++;
  1754. addr++;
  1755. count--;
  1756. }
  1757. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1758. if (n > count)
  1759. n = count;
  1760. if (!(tmp->flags & VM_IOREMAP)) {
  1761. aligned_vwrite(buf, addr, n);
  1762. copied++;
  1763. }
  1764. buf += n;
  1765. addr += n;
  1766. count -= n;
  1767. }
  1768. finished:
  1769. read_unlock(&vmlist_lock);
  1770. if (!copied)
  1771. return 0;
  1772. return buflen;
  1773. }
  1774. /**
  1775. * remap_vmalloc_range - map vmalloc pages to userspace
  1776. * @vma: vma to cover (map full range of vma)
  1777. * @addr: vmalloc memory
  1778. * @pgoff: number of pages into addr before first page to map
  1779. *
  1780. * Returns: 0 for success, -Exxx on failure
  1781. *
  1782. * This function checks that addr is a valid vmalloc'ed area, and
  1783. * that it is big enough to cover the vma. Will return failure if
  1784. * that criteria isn't met.
  1785. *
  1786. * Similar to remap_pfn_range() (see mm/memory.c)
  1787. */
  1788. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1789. unsigned long pgoff)
  1790. {
  1791. struct vm_struct *area;
  1792. unsigned long uaddr = vma->vm_start;
  1793. unsigned long usize = vma->vm_end - vma->vm_start;
  1794. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1795. return -EINVAL;
  1796. area = find_vm_area(addr);
  1797. if (!area)
  1798. return -EINVAL;
  1799. if (!(area->flags & VM_USERMAP))
  1800. return -EINVAL;
  1801. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1802. return -EINVAL;
  1803. addr += pgoff << PAGE_SHIFT;
  1804. do {
  1805. struct page *page = vmalloc_to_page(addr);
  1806. int ret;
  1807. ret = vm_insert_page(vma, uaddr, page);
  1808. if (ret)
  1809. return ret;
  1810. uaddr += PAGE_SIZE;
  1811. addr += PAGE_SIZE;
  1812. usize -= PAGE_SIZE;
  1813. } while (usize > 0);
  1814. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1815. vma->vm_flags |= VM_RESERVED;
  1816. return 0;
  1817. }
  1818. EXPORT_SYMBOL(remap_vmalloc_range);
  1819. /*
  1820. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1821. * have one.
  1822. */
  1823. void __attribute__((weak)) vmalloc_sync_all(void)
  1824. {
  1825. }
  1826. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1827. {
  1828. /* apply_to_page_range() does all the hard work. */
  1829. return 0;
  1830. }
  1831. /**
  1832. * alloc_vm_area - allocate a range of kernel address space
  1833. * @size: size of the area
  1834. *
  1835. * Returns: NULL on failure, vm_struct on success
  1836. *
  1837. * This function reserves a range of kernel address space, and
  1838. * allocates pagetables to map that range. No actual mappings
  1839. * are created. If the kernel address space is not shared
  1840. * between processes, it syncs the pagetable across all
  1841. * processes.
  1842. */
  1843. struct vm_struct *alloc_vm_area(size_t size)
  1844. {
  1845. struct vm_struct *area;
  1846. area = get_vm_area_caller(size, VM_IOREMAP,
  1847. __builtin_return_address(0));
  1848. if (area == NULL)
  1849. return NULL;
  1850. /*
  1851. * This ensures that page tables are constructed for this region
  1852. * of kernel virtual address space and mapped into init_mm.
  1853. */
  1854. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1855. area->size, f, NULL)) {
  1856. free_vm_area(area);
  1857. return NULL;
  1858. }
  1859. /* Make sure the pagetables are constructed in process kernel
  1860. mappings */
  1861. vmalloc_sync_all();
  1862. return area;
  1863. }
  1864. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1865. void free_vm_area(struct vm_struct *area)
  1866. {
  1867. struct vm_struct *ret;
  1868. ret = remove_vm_area(area->addr);
  1869. BUG_ON(ret != area);
  1870. kfree(area);
  1871. }
  1872. EXPORT_SYMBOL_GPL(free_vm_area);
  1873. #ifdef CONFIG_SMP
  1874. static struct vmap_area *node_to_va(struct rb_node *n)
  1875. {
  1876. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1877. }
  1878. /**
  1879. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1880. * @end: target address
  1881. * @pnext: out arg for the next vmap_area
  1882. * @pprev: out arg for the previous vmap_area
  1883. *
  1884. * Returns: %true if either or both of next and prev are found,
  1885. * %false if no vmap_area exists
  1886. *
  1887. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1888. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1889. */
  1890. static bool pvm_find_next_prev(unsigned long end,
  1891. struct vmap_area **pnext,
  1892. struct vmap_area **pprev)
  1893. {
  1894. struct rb_node *n = vmap_area_root.rb_node;
  1895. struct vmap_area *va = NULL;
  1896. while (n) {
  1897. va = rb_entry(n, struct vmap_area, rb_node);
  1898. if (end < va->va_end)
  1899. n = n->rb_left;
  1900. else if (end > va->va_end)
  1901. n = n->rb_right;
  1902. else
  1903. break;
  1904. }
  1905. if (!va)
  1906. return false;
  1907. if (va->va_end > end) {
  1908. *pnext = va;
  1909. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1910. } else {
  1911. *pprev = va;
  1912. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1913. }
  1914. return true;
  1915. }
  1916. /**
  1917. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1918. * @pnext: in/out arg for the next vmap_area
  1919. * @pprev: in/out arg for the previous vmap_area
  1920. * @align: alignment
  1921. *
  1922. * Returns: determined end address
  1923. *
  1924. * Find the highest aligned address between *@pnext and *@pprev below
  1925. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1926. * down address is between the end addresses of the two vmap_areas.
  1927. *
  1928. * Please note that the address returned by this function may fall
  1929. * inside *@pnext vmap_area. The caller is responsible for checking
  1930. * that.
  1931. */
  1932. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1933. struct vmap_area **pprev,
  1934. unsigned long align)
  1935. {
  1936. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1937. unsigned long addr;
  1938. if (*pnext)
  1939. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1940. else
  1941. addr = vmalloc_end;
  1942. while (*pprev && (*pprev)->va_end > addr) {
  1943. *pnext = *pprev;
  1944. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1945. }
  1946. return addr;
  1947. }
  1948. /**
  1949. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1950. * @offsets: array containing offset of each area
  1951. * @sizes: array containing size of each area
  1952. * @nr_vms: the number of areas to allocate
  1953. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1954. *
  1955. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1956. * vm_structs on success, %NULL on failure
  1957. *
  1958. * Percpu allocator wants to use congruent vm areas so that it can
  1959. * maintain the offsets among percpu areas. This function allocates
  1960. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  1961. * be scattered pretty far, distance between two areas easily going up
  1962. * to gigabytes. To avoid interacting with regular vmallocs, these
  1963. * areas are allocated from top.
  1964. *
  1965. * Despite its complicated look, this allocator is rather simple. It
  1966. * does everything top-down and scans areas from the end looking for
  1967. * matching slot. While scanning, if any of the areas overlaps with
  1968. * existing vmap_area, the base address is pulled down to fit the
  1969. * area. Scanning is repeated till all the areas fit and then all
  1970. * necessary data structres are inserted and the result is returned.
  1971. */
  1972. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1973. const size_t *sizes, int nr_vms,
  1974. size_t align)
  1975. {
  1976. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1977. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1978. struct vmap_area **vas, *prev, *next;
  1979. struct vm_struct **vms;
  1980. int area, area2, last_area, term_area;
  1981. unsigned long base, start, end, last_end;
  1982. bool purged = false;
  1983. /* verify parameters and allocate data structures */
  1984. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1985. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1986. start = offsets[area];
  1987. end = start + sizes[area];
  1988. /* is everything aligned properly? */
  1989. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1990. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1991. /* detect the area with the highest address */
  1992. if (start > offsets[last_area])
  1993. last_area = area;
  1994. for (area2 = 0; area2 < nr_vms; area2++) {
  1995. unsigned long start2 = offsets[area2];
  1996. unsigned long end2 = start2 + sizes[area2];
  1997. if (area2 == area)
  1998. continue;
  1999. BUG_ON(start2 >= start && start2 < end);
  2000. BUG_ON(end2 <= end && end2 > start);
  2001. }
  2002. }
  2003. last_end = offsets[last_area] + sizes[last_area];
  2004. if (vmalloc_end - vmalloc_start < last_end) {
  2005. WARN_ON(true);
  2006. return NULL;
  2007. }
  2008. vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
  2009. vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
  2010. if (!vas || !vms)
  2011. goto err_free;
  2012. for (area = 0; area < nr_vms; area++) {
  2013. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2014. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2015. if (!vas[area] || !vms[area])
  2016. goto err_free;
  2017. }
  2018. retry:
  2019. spin_lock(&vmap_area_lock);
  2020. /* start scanning - we scan from the top, begin with the last area */
  2021. area = term_area = last_area;
  2022. start = offsets[area];
  2023. end = start + sizes[area];
  2024. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2025. base = vmalloc_end - last_end;
  2026. goto found;
  2027. }
  2028. base = pvm_determine_end(&next, &prev, align) - end;
  2029. while (true) {
  2030. BUG_ON(next && next->va_end <= base + end);
  2031. BUG_ON(prev && prev->va_end > base + end);
  2032. /*
  2033. * base might have underflowed, add last_end before
  2034. * comparing.
  2035. */
  2036. if (base + last_end < vmalloc_start + last_end) {
  2037. spin_unlock(&vmap_area_lock);
  2038. if (!purged) {
  2039. purge_vmap_area_lazy();
  2040. purged = true;
  2041. goto retry;
  2042. }
  2043. goto err_free;
  2044. }
  2045. /*
  2046. * If next overlaps, move base downwards so that it's
  2047. * right below next and then recheck.
  2048. */
  2049. if (next && next->va_start < base + end) {
  2050. base = pvm_determine_end(&next, &prev, align) - end;
  2051. term_area = area;
  2052. continue;
  2053. }
  2054. /*
  2055. * If prev overlaps, shift down next and prev and move
  2056. * base so that it's right below new next and then
  2057. * recheck.
  2058. */
  2059. if (prev && prev->va_end > base + start) {
  2060. next = prev;
  2061. prev = node_to_va(rb_prev(&next->rb_node));
  2062. base = pvm_determine_end(&next, &prev, align) - end;
  2063. term_area = area;
  2064. continue;
  2065. }
  2066. /*
  2067. * This area fits, move on to the previous one. If
  2068. * the previous one is the terminal one, we're done.
  2069. */
  2070. area = (area + nr_vms - 1) % nr_vms;
  2071. if (area == term_area)
  2072. break;
  2073. start = offsets[area];
  2074. end = start + sizes[area];
  2075. pvm_find_next_prev(base + end, &next, &prev);
  2076. }
  2077. found:
  2078. /* we've found a fitting base, insert all va's */
  2079. for (area = 0; area < nr_vms; area++) {
  2080. struct vmap_area *va = vas[area];
  2081. va->va_start = base + offsets[area];
  2082. va->va_end = va->va_start + sizes[area];
  2083. __insert_vmap_area(va);
  2084. }
  2085. vmap_area_pcpu_hole = base + offsets[last_area];
  2086. spin_unlock(&vmap_area_lock);
  2087. /* insert all vm's */
  2088. for (area = 0; area < nr_vms; area++)
  2089. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2090. pcpu_get_vm_areas);
  2091. kfree(vas);
  2092. return vms;
  2093. err_free:
  2094. for (area = 0; area < nr_vms; area++) {
  2095. if (vas)
  2096. kfree(vas[area]);
  2097. if (vms)
  2098. kfree(vms[area]);
  2099. }
  2100. kfree(vas);
  2101. kfree(vms);
  2102. return NULL;
  2103. }
  2104. /**
  2105. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2106. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2107. * @nr_vms: the number of allocated areas
  2108. *
  2109. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2110. */
  2111. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2112. {
  2113. int i;
  2114. for (i = 0; i < nr_vms; i++)
  2115. free_vm_area(vms[i]);
  2116. kfree(vms);
  2117. }
  2118. #endif /* CONFIG_SMP */
  2119. #ifdef CONFIG_PROC_FS
  2120. static void *s_start(struct seq_file *m, loff_t *pos)
  2121. __acquires(&vmlist_lock)
  2122. {
  2123. loff_t n = *pos;
  2124. struct vm_struct *v;
  2125. read_lock(&vmlist_lock);
  2126. v = vmlist;
  2127. while (n > 0 && v) {
  2128. n--;
  2129. v = v->next;
  2130. }
  2131. if (!n)
  2132. return v;
  2133. return NULL;
  2134. }
  2135. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2136. {
  2137. struct vm_struct *v = p;
  2138. ++*pos;
  2139. return v->next;
  2140. }
  2141. static void s_stop(struct seq_file *m, void *p)
  2142. __releases(&vmlist_lock)
  2143. {
  2144. read_unlock(&vmlist_lock);
  2145. }
  2146. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2147. {
  2148. if (NUMA_BUILD) {
  2149. unsigned int nr, *counters = m->private;
  2150. if (!counters)
  2151. return;
  2152. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2153. for (nr = 0; nr < v->nr_pages; nr++)
  2154. counters[page_to_nid(v->pages[nr])]++;
  2155. for_each_node_state(nr, N_HIGH_MEMORY)
  2156. if (counters[nr])
  2157. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2158. }
  2159. }
  2160. static int s_show(struct seq_file *m, void *p)
  2161. {
  2162. struct vm_struct *v = p;
  2163. seq_printf(m, "0x%p-0x%p %7ld",
  2164. v->addr, v->addr + v->size, v->size);
  2165. if (v->caller)
  2166. seq_printf(m, " %pS", v->caller);
  2167. if (v->nr_pages)
  2168. seq_printf(m, " pages=%d", v->nr_pages);
  2169. if (v->phys_addr)
  2170. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2171. if (v->flags & VM_IOREMAP)
  2172. seq_printf(m, " ioremap");
  2173. if (v->flags & VM_ALLOC)
  2174. seq_printf(m, " vmalloc");
  2175. if (v->flags & VM_MAP)
  2176. seq_printf(m, " vmap");
  2177. if (v->flags & VM_USERMAP)
  2178. seq_printf(m, " user");
  2179. if (v->flags & VM_VPAGES)
  2180. seq_printf(m, " vpages");
  2181. show_numa_info(m, v);
  2182. seq_putc(m, '\n');
  2183. return 0;
  2184. }
  2185. static const struct seq_operations vmalloc_op = {
  2186. .start = s_start,
  2187. .next = s_next,
  2188. .stop = s_stop,
  2189. .show = s_show,
  2190. };
  2191. static int vmalloc_open(struct inode *inode, struct file *file)
  2192. {
  2193. unsigned int *ptr = NULL;
  2194. int ret;
  2195. if (NUMA_BUILD) {
  2196. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2197. if (ptr == NULL)
  2198. return -ENOMEM;
  2199. }
  2200. ret = seq_open(file, &vmalloc_op);
  2201. if (!ret) {
  2202. struct seq_file *m = file->private_data;
  2203. m->private = ptr;
  2204. } else
  2205. kfree(ptr);
  2206. return ret;
  2207. }
  2208. static const struct file_operations proc_vmalloc_operations = {
  2209. .open = vmalloc_open,
  2210. .read = seq_read,
  2211. .llseek = seq_lseek,
  2212. .release = seq_release_private,
  2213. };
  2214. static int __init proc_vmalloc_init(void)
  2215. {
  2216. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2217. return 0;
  2218. }
  2219. module_init(proc_vmalloc_init);
  2220. #endif