huge_memory.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. } khugepaged_scan = {
  86. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  87. };
  88. static int set_recommended_min_free_kbytes(void)
  89. {
  90. struct zone *zone;
  91. int nr_zones = 0;
  92. unsigned long recommended_min;
  93. extern int min_free_kbytes;
  94. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  95. &transparent_hugepage_flags) &&
  96. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  97. &transparent_hugepage_flags))
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. int wakeup;
  126. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  127. err = -ENOMEM;
  128. goto out;
  129. }
  130. mutex_lock(&khugepaged_mutex);
  131. if (!khugepaged_thread)
  132. khugepaged_thread = kthread_run(khugepaged, NULL,
  133. "khugepaged");
  134. if (unlikely(IS_ERR(khugepaged_thread))) {
  135. printk(KERN_ERR
  136. "khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. wakeup = !list_empty(&khugepaged_scan.mm_head);
  141. mutex_unlock(&khugepaged_mutex);
  142. if (wakeup)
  143. wake_up_interruptible(&khugepaged_wait);
  144. set_recommended_min_free_kbytes();
  145. } else
  146. /* wakeup to exit */
  147. wake_up_interruptible(&khugepaged_wait);
  148. out:
  149. return err;
  150. }
  151. #ifdef CONFIG_SYSFS
  152. static ssize_t double_flag_show(struct kobject *kobj,
  153. struct kobj_attribute *attr, char *buf,
  154. enum transparent_hugepage_flag enabled,
  155. enum transparent_hugepage_flag req_madv)
  156. {
  157. if (test_bit(enabled, &transparent_hugepage_flags)) {
  158. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  159. return sprintf(buf, "[always] madvise never\n");
  160. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  161. return sprintf(buf, "always [madvise] never\n");
  162. else
  163. return sprintf(buf, "always madvise [never]\n");
  164. }
  165. static ssize_t double_flag_store(struct kobject *kobj,
  166. struct kobj_attribute *attr,
  167. const char *buf, size_t count,
  168. enum transparent_hugepage_flag enabled,
  169. enum transparent_hugepage_flag req_madv)
  170. {
  171. if (!memcmp("always", buf,
  172. min(sizeof("always")-1, count))) {
  173. set_bit(enabled, &transparent_hugepage_flags);
  174. clear_bit(req_madv, &transparent_hugepage_flags);
  175. } else if (!memcmp("madvise", buf,
  176. min(sizeof("madvise")-1, count))) {
  177. clear_bit(enabled, &transparent_hugepage_flags);
  178. set_bit(req_madv, &transparent_hugepage_flags);
  179. } else if (!memcmp("never", buf,
  180. min(sizeof("never")-1, count))) {
  181. clear_bit(enabled, &transparent_hugepage_flags);
  182. clear_bit(req_madv, &transparent_hugepage_flags);
  183. } else
  184. return -EINVAL;
  185. return count;
  186. }
  187. static ssize_t enabled_show(struct kobject *kobj,
  188. struct kobj_attribute *attr, char *buf)
  189. {
  190. return double_flag_show(kobj, attr, buf,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. }
  194. static ssize_t enabled_store(struct kobject *kobj,
  195. struct kobj_attribute *attr,
  196. const char *buf, size_t count)
  197. {
  198. ssize_t ret;
  199. ret = double_flag_store(kobj, attr, buf, count,
  200. TRANSPARENT_HUGEPAGE_FLAG,
  201. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  202. if (ret > 0) {
  203. int err = start_khugepaged();
  204. if (err)
  205. ret = err;
  206. }
  207. if (ret > 0 &&
  208. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  209. &transparent_hugepage_flags) ||
  210. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  211. &transparent_hugepage_flags)))
  212. set_recommended_min_free_kbytes();
  213. return ret;
  214. }
  215. static struct kobj_attribute enabled_attr =
  216. __ATTR(enabled, 0644, enabled_show, enabled_store);
  217. static ssize_t single_flag_show(struct kobject *kobj,
  218. struct kobj_attribute *attr, char *buf,
  219. enum transparent_hugepage_flag flag)
  220. {
  221. return sprintf(buf, "%d\n",
  222. !!test_bit(flag, &transparent_hugepage_flags));
  223. }
  224. static ssize_t single_flag_store(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. const char *buf, size_t count,
  227. enum transparent_hugepage_flag flag)
  228. {
  229. unsigned long value;
  230. int ret;
  231. ret = kstrtoul(buf, 10, &value);
  232. if (ret < 0)
  233. return ret;
  234. if (value > 1)
  235. return -EINVAL;
  236. if (value)
  237. set_bit(flag, &transparent_hugepage_flags);
  238. else
  239. clear_bit(flag, &transparent_hugepage_flags);
  240. return count;
  241. }
  242. /*
  243. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  244. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  245. * memory just to allocate one more hugepage.
  246. */
  247. static ssize_t defrag_show(struct kobject *kobj,
  248. struct kobj_attribute *attr, char *buf)
  249. {
  250. return double_flag_show(kobj, attr, buf,
  251. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  253. }
  254. static ssize_t defrag_store(struct kobject *kobj,
  255. struct kobj_attribute *attr,
  256. const char *buf, size_t count)
  257. {
  258. return double_flag_store(kobj, attr, buf, count,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  261. }
  262. static struct kobj_attribute defrag_attr =
  263. __ATTR(defrag, 0644, defrag_show, defrag_store);
  264. #ifdef CONFIG_DEBUG_VM
  265. static ssize_t debug_cow_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf)
  267. {
  268. return single_flag_show(kobj, attr, buf,
  269. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  270. }
  271. static ssize_t debug_cow_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. return single_flag_store(kobj, attr, buf, count,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static struct kobj_attribute debug_cow_attr =
  279. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  280. #endif /* CONFIG_DEBUG_VM */
  281. static struct attribute *hugepage_attr[] = {
  282. &enabled_attr.attr,
  283. &defrag_attr.attr,
  284. #ifdef CONFIG_DEBUG_VM
  285. &debug_cow_attr.attr,
  286. #endif
  287. NULL,
  288. };
  289. static struct attribute_group hugepage_attr_group = {
  290. .attrs = hugepage_attr,
  291. };
  292. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  293. struct kobj_attribute *attr,
  294. char *buf)
  295. {
  296. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  297. }
  298. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  299. struct kobj_attribute *attr,
  300. const char *buf, size_t count)
  301. {
  302. unsigned long msecs;
  303. int err;
  304. err = strict_strtoul(buf, 10, &msecs);
  305. if (err || msecs > UINT_MAX)
  306. return -EINVAL;
  307. khugepaged_scan_sleep_millisecs = msecs;
  308. wake_up_interruptible(&khugepaged_wait);
  309. return count;
  310. }
  311. static struct kobj_attribute scan_sleep_millisecs_attr =
  312. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  313. scan_sleep_millisecs_store);
  314. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  315. struct kobj_attribute *attr,
  316. char *buf)
  317. {
  318. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  319. }
  320. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  321. struct kobj_attribute *attr,
  322. const char *buf, size_t count)
  323. {
  324. unsigned long msecs;
  325. int err;
  326. err = strict_strtoul(buf, 10, &msecs);
  327. if (err || msecs > UINT_MAX)
  328. return -EINVAL;
  329. khugepaged_alloc_sleep_millisecs = msecs;
  330. wake_up_interruptible(&khugepaged_wait);
  331. return count;
  332. }
  333. static struct kobj_attribute alloc_sleep_millisecs_attr =
  334. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  335. alloc_sleep_millisecs_store);
  336. static ssize_t pages_to_scan_show(struct kobject *kobj,
  337. struct kobj_attribute *attr,
  338. char *buf)
  339. {
  340. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  341. }
  342. static ssize_t pages_to_scan_store(struct kobject *kobj,
  343. struct kobj_attribute *attr,
  344. const char *buf, size_t count)
  345. {
  346. int err;
  347. unsigned long pages;
  348. err = strict_strtoul(buf, 10, &pages);
  349. if (err || !pages || pages > UINT_MAX)
  350. return -EINVAL;
  351. khugepaged_pages_to_scan = pages;
  352. return count;
  353. }
  354. static struct kobj_attribute pages_to_scan_attr =
  355. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  356. pages_to_scan_store);
  357. static ssize_t pages_collapsed_show(struct kobject *kobj,
  358. struct kobj_attribute *attr,
  359. char *buf)
  360. {
  361. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  362. }
  363. static struct kobj_attribute pages_collapsed_attr =
  364. __ATTR_RO(pages_collapsed);
  365. static ssize_t full_scans_show(struct kobject *kobj,
  366. struct kobj_attribute *attr,
  367. char *buf)
  368. {
  369. return sprintf(buf, "%u\n", khugepaged_full_scans);
  370. }
  371. static struct kobj_attribute full_scans_attr =
  372. __ATTR_RO(full_scans);
  373. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  374. struct kobj_attribute *attr, char *buf)
  375. {
  376. return single_flag_show(kobj, attr, buf,
  377. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  378. }
  379. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  380. struct kobj_attribute *attr,
  381. const char *buf, size_t count)
  382. {
  383. return single_flag_store(kobj, attr, buf, count,
  384. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  385. }
  386. static struct kobj_attribute khugepaged_defrag_attr =
  387. __ATTR(defrag, 0644, khugepaged_defrag_show,
  388. khugepaged_defrag_store);
  389. /*
  390. * max_ptes_none controls if khugepaged should collapse hugepages over
  391. * any unmapped ptes in turn potentially increasing the memory
  392. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  393. * reduce the available free memory in the system as it
  394. * runs. Increasing max_ptes_none will instead potentially reduce the
  395. * free memory in the system during the khugepaged scan.
  396. */
  397. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  398. struct kobj_attribute *attr,
  399. char *buf)
  400. {
  401. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  402. }
  403. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  404. struct kobj_attribute *attr,
  405. const char *buf, size_t count)
  406. {
  407. int err;
  408. unsigned long max_ptes_none;
  409. err = strict_strtoul(buf, 10, &max_ptes_none);
  410. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  411. return -EINVAL;
  412. khugepaged_max_ptes_none = max_ptes_none;
  413. return count;
  414. }
  415. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  416. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  417. khugepaged_max_ptes_none_store);
  418. static struct attribute *khugepaged_attr[] = {
  419. &khugepaged_defrag_attr.attr,
  420. &khugepaged_max_ptes_none_attr.attr,
  421. &pages_to_scan_attr.attr,
  422. &pages_collapsed_attr.attr,
  423. &full_scans_attr.attr,
  424. &scan_sleep_millisecs_attr.attr,
  425. &alloc_sleep_millisecs_attr.attr,
  426. NULL,
  427. };
  428. static struct attribute_group khugepaged_attr_group = {
  429. .attrs = khugepaged_attr,
  430. .name = "khugepaged",
  431. };
  432. #endif /* CONFIG_SYSFS */
  433. static int __init hugepage_init(void)
  434. {
  435. int err;
  436. #ifdef CONFIG_SYSFS
  437. static struct kobject *hugepage_kobj;
  438. #endif
  439. err = -EINVAL;
  440. if (!has_transparent_hugepage()) {
  441. transparent_hugepage_flags = 0;
  442. goto out;
  443. }
  444. #ifdef CONFIG_SYSFS
  445. err = -ENOMEM;
  446. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  447. if (unlikely(!hugepage_kobj)) {
  448. printk(KERN_ERR "hugepage: failed kobject create\n");
  449. goto out;
  450. }
  451. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  452. if (err) {
  453. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  454. goto out;
  455. }
  456. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  457. if (err) {
  458. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  459. goto out;
  460. }
  461. #endif
  462. err = khugepaged_slab_init();
  463. if (err)
  464. goto out;
  465. err = mm_slots_hash_init();
  466. if (err) {
  467. khugepaged_slab_free();
  468. goto out;
  469. }
  470. /*
  471. * By default disable transparent hugepages on smaller systems,
  472. * where the extra memory used could hurt more than TLB overhead
  473. * is likely to save. The admin can still enable it through /sys.
  474. */
  475. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  476. transparent_hugepage_flags = 0;
  477. start_khugepaged();
  478. set_recommended_min_free_kbytes();
  479. out:
  480. return err;
  481. }
  482. module_init(hugepage_init)
  483. static int __init setup_transparent_hugepage(char *str)
  484. {
  485. int ret = 0;
  486. if (!str)
  487. goto out;
  488. if (!strcmp(str, "always")) {
  489. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  490. &transparent_hugepage_flags);
  491. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  492. &transparent_hugepage_flags);
  493. ret = 1;
  494. } else if (!strcmp(str, "madvise")) {
  495. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  496. &transparent_hugepage_flags);
  497. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  498. &transparent_hugepage_flags);
  499. ret = 1;
  500. } else if (!strcmp(str, "never")) {
  501. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  502. &transparent_hugepage_flags);
  503. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  504. &transparent_hugepage_flags);
  505. ret = 1;
  506. }
  507. out:
  508. if (!ret)
  509. printk(KERN_WARNING
  510. "transparent_hugepage= cannot parse, ignored\n");
  511. return ret;
  512. }
  513. __setup("transparent_hugepage=", setup_transparent_hugepage);
  514. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  515. struct mm_struct *mm)
  516. {
  517. assert_spin_locked(&mm->page_table_lock);
  518. /* FIFO */
  519. if (!mm->pmd_huge_pte)
  520. INIT_LIST_HEAD(&pgtable->lru);
  521. else
  522. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  523. mm->pmd_huge_pte = pgtable;
  524. }
  525. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  526. {
  527. if (likely(vma->vm_flags & VM_WRITE))
  528. pmd = pmd_mkwrite(pmd);
  529. return pmd;
  530. }
  531. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  532. struct vm_area_struct *vma,
  533. unsigned long haddr, pmd_t *pmd,
  534. struct page *page)
  535. {
  536. int ret = 0;
  537. pgtable_t pgtable;
  538. VM_BUG_ON(!PageCompound(page));
  539. pgtable = pte_alloc_one(mm, haddr);
  540. if (unlikely(!pgtable)) {
  541. mem_cgroup_uncharge_page(page);
  542. put_page(page);
  543. return VM_FAULT_OOM;
  544. }
  545. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  546. __SetPageUptodate(page);
  547. spin_lock(&mm->page_table_lock);
  548. if (unlikely(!pmd_none(*pmd))) {
  549. spin_unlock(&mm->page_table_lock);
  550. mem_cgroup_uncharge_page(page);
  551. put_page(page);
  552. pte_free(mm, pgtable);
  553. } else {
  554. pmd_t entry;
  555. entry = mk_pmd(page, vma->vm_page_prot);
  556. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  557. entry = pmd_mkhuge(entry);
  558. /*
  559. * The spinlocking to take the lru_lock inside
  560. * page_add_new_anon_rmap() acts as a full memory
  561. * barrier to be sure clear_huge_page writes become
  562. * visible after the set_pmd_at() write.
  563. */
  564. page_add_new_anon_rmap(page, vma, haddr);
  565. set_pmd_at(mm, haddr, pmd, entry);
  566. prepare_pmd_huge_pte(pgtable, mm);
  567. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  568. spin_unlock(&mm->page_table_lock);
  569. }
  570. return ret;
  571. }
  572. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  573. {
  574. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  575. }
  576. static inline struct page *alloc_hugepage_vma(int defrag,
  577. struct vm_area_struct *vma,
  578. unsigned long haddr, int nd,
  579. gfp_t extra_gfp)
  580. {
  581. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  582. HPAGE_PMD_ORDER, vma, haddr, nd);
  583. }
  584. #ifndef CONFIG_NUMA
  585. static inline struct page *alloc_hugepage(int defrag)
  586. {
  587. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  588. HPAGE_PMD_ORDER);
  589. }
  590. #endif
  591. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  592. unsigned long address, pmd_t *pmd,
  593. unsigned int flags)
  594. {
  595. struct page *page;
  596. unsigned long haddr = address & HPAGE_PMD_MASK;
  597. pte_t *pte;
  598. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  599. if (unlikely(anon_vma_prepare(vma)))
  600. return VM_FAULT_OOM;
  601. if (unlikely(khugepaged_enter(vma)))
  602. return VM_FAULT_OOM;
  603. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  604. vma, haddr, numa_node_id(), 0);
  605. if (unlikely(!page)) {
  606. count_vm_event(THP_FAULT_FALLBACK);
  607. goto out;
  608. }
  609. count_vm_event(THP_FAULT_ALLOC);
  610. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  611. put_page(page);
  612. goto out;
  613. }
  614. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  615. }
  616. out:
  617. /*
  618. * Use __pte_alloc instead of pte_alloc_map, because we can't
  619. * run pte_offset_map on the pmd, if an huge pmd could
  620. * materialize from under us from a different thread.
  621. */
  622. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  623. return VM_FAULT_OOM;
  624. /* if an huge pmd materialized from under us just retry later */
  625. if (unlikely(pmd_trans_huge(*pmd)))
  626. return 0;
  627. /*
  628. * A regular pmd is established and it can't morph into a huge pmd
  629. * from under us anymore at this point because we hold the mmap_sem
  630. * read mode and khugepaged takes it in write mode. So now it's
  631. * safe to run pte_offset_map().
  632. */
  633. pte = pte_offset_map(pmd, address);
  634. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  635. }
  636. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  637. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  638. struct vm_area_struct *vma)
  639. {
  640. struct page *src_page;
  641. pmd_t pmd;
  642. pgtable_t pgtable;
  643. int ret;
  644. ret = -ENOMEM;
  645. pgtable = pte_alloc_one(dst_mm, addr);
  646. if (unlikely(!pgtable))
  647. goto out;
  648. spin_lock(&dst_mm->page_table_lock);
  649. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  650. ret = -EAGAIN;
  651. pmd = *src_pmd;
  652. if (unlikely(!pmd_trans_huge(pmd))) {
  653. pte_free(dst_mm, pgtable);
  654. goto out_unlock;
  655. }
  656. if (unlikely(pmd_trans_splitting(pmd))) {
  657. /* split huge page running from under us */
  658. spin_unlock(&src_mm->page_table_lock);
  659. spin_unlock(&dst_mm->page_table_lock);
  660. pte_free(dst_mm, pgtable);
  661. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  662. goto out;
  663. }
  664. src_page = pmd_page(pmd);
  665. VM_BUG_ON(!PageHead(src_page));
  666. get_page(src_page);
  667. page_dup_rmap(src_page);
  668. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  669. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  670. pmd = pmd_mkold(pmd_wrprotect(pmd));
  671. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  672. prepare_pmd_huge_pte(pgtable, dst_mm);
  673. ret = 0;
  674. out_unlock:
  675. spin_unlock(&src_mm->page_table_lock);
  676. spin_unlock(&dst_mm->page_table_lock);
  677. out:
  678. return ret;
  679. }
  680. /* no "address" argument so destroys page coloring of some arch */
  681. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  682. {
  683. pgtable_t pgtable;
  684. assert_spin_locked(&mm->page_table_lock);
  685. /* FIFO */
  686. pgtable = mm->pmd_huge_pte;
  687. if (list_empty(&pgtable->lru))
  688. mm->pmd_huge_pte = NULL;
  689. else {
  690. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  691. struct page, lru);
  692. list_del(&pgtable->lru);
  693. }
  694. return pgtable;
  695. }
  696. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  697. struct vm_area_struct *vma,
  698. unsigned long address,
  699. pmd_t *pmd, pmd_t orig_pmd,
  700. struct page *page,
  701. unsigned long haddr)
  702. {
  703. pgtable_t pgtable;
  704. pmd_t _pmd;
  705. int ret = 0, i;
  706. struct page **pages;
  707. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  708. GFP_KERNEL);
  709. if (unlikely(!pages)) {
  710. ret |= VM_FAULT_OOM;
  711. goto out;
  712. }
  713. for (i = 0; i < HPAGE_PMD_NR; i++) {
  714. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  715. __GFP_OTHER_NODE,
  716. vma, address, page_to_nid(page));
  717. if (unlikely(!pages[i] ||
  718. mem_cgroup_newpage_charge(pages[i], mm,
  719. GFP_KERNEL))) {
  720. if (pages[i])
  721. put_page(pages[i]);
  722. mem_cgroup_uncharge_start();
  723. while (--i >= 0) {
  724. mem_cgroup_uncharge_page(pages[i]);
  725. put_page(pages[i]);
  726. }
  727. mem_cgroup_uncharge_end();
  728. kfree(pages);
  729. ret |= VM_FAULT_OOM;
  730. goto out;
  731. }
  732. }
  733. for (i = 0; i < HPAGE_PMD_NR; i++) {
  734. copy_user_highpage(pages[i], page + i,
  735. haddr + PAGE_SHIFT*i, vma);
  736. __SetPageUptodate(pages[i]);
  737. cond_resched();
  738. }
  739. spin_lock(&mm->page_table_lock);
  740. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  741. goto out_free_pages;
  742. VM_BUG_ON(!PageHead(page));
  743. pmdp_clear_flush_notify(vma, haddr, pmd);
  744. /* leave pmd empty until pte is filled */
  745. pgtable = get_pmd_huge_pte(mm);
  746. pmd_populate(mm, &_pmd, pgtable);
  747. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  748. pte_t *pte, entry;
  749. entry = mk_pte(pages[i], vma->vm_page_prot);
  750. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  751. page_add_new_anon_rmap(pages[i], vma, haddr);
  752. pte = pte_offset_map(&_pmd, haddr);
  753. VM_BUG_ON(!pte_none(*pte));
  754. set_pte_at(mm, haddr, pte, entry);
  755. pte_unmap(pte);
  756. }
  757. kfree(pages);
  758. mm->nr_ptes++;
  759. smp_wmb(); /* make pte visible before pmd */
  760. pmd_populate(mm, pmd, pgtable);
  761. page_remove_rmap(page);
  762. spin_unlock(&mm->page_table_lock);
  763. ret |= VM_FAULT_WRITE;
  764. put_page(page);
  765. out:
  766. return ret;
  767. out_free_pages:
  768. spin_unlock(&mm->page_table_lock);
  769. mem_cgroup_uncharge_start();
  770. for (i = 0; i < HPAGE_PMD_NR; i++) {
  771. mem_cgroup_uncharge_page(pages[i]);
  772. put_page(pages[i]);
  773. }
  774. mem_cgroup_uncharge_end();
  775. kfree(pages);
  776. goto out;
  777. }
  778. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  779. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  780. {
  781. int ret = 0;
  782. struct page *page, *new_page;
  783. unsigned long haddr;
  784. VM_BUG_ON(!vma->anon_vma);
  785. spin_lock(&mm->page_table_lock);
  786. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  787. goto out_unlock;
  788. page = pmd_page(orig_pmd);
  789. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  790. haddr = address & HPAGE_PMD_MASK;
  791. if (page_mapcount(page) == 1) {
  792. pmd_t entry;
  793. entry = pmd_mkyoung(orig_pmd);
  794. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  795. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  796. update_mmu_cache(vma, address, entry);
  797. ret |= VM_FAULT_WRITE;
  798. goto out_unlock;
  799. }
  800. get_page(page);
  801. spin_unlock(&mm->page_table_lock);
  802. if (transparent_hugepage_enabled(vma) &&
  803. !transparent_hugepage_debug_cow())
  804. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  805. vma, haddr, numa_node_id(), 0);
  806. else
  807. new_page = NULL;
  808. if (unlikely(!new_page)) {
  809. count_vm_event(THP_FAULT_FALLBACK);
  810. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  811. pmd, orig_pmd, page, haddr);
  812. put_page(page);
  813. goto out;
  814. }
  815. count_vm_event(THP_FAULT_ALLOC);
  816. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  817. put_page(new_page);
  818. put_page(page);
  819. ret |= VM_FAULT_OOM;
  820. goto out;
  821. }
  822. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  823. __SetPageUptodate(new_page);
  824. spin_lock(&mm->page_table_lock);
  825. put_page(page);
  826. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  827. mem_cgroup_uncharge_page(new_page);
  828. put_page(new_page);
  829. } else {
  830. pmd_t entry;
  831. VM_BUG_ON(!PageHead(page));
  832. entry = mk_pmd(new_page, vma->vm_page_prot);
  833. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  834. entry = pmd_mkhuge(entry);
  835. pmdp_clear_flush_notify(vma, haddr, pmd);
  836. page_add_new_anon_rmap(new_page, vma, haddr);
  837. set_pmd_at(mm, haddr, pmd, entry);
  838. update_mmu_cache(vma, address, entry);
  839. page_remove_rmap(page);
  840. put_page(page);
  841. ret |= VM_FAULT_WRITE;
  842. }
  843. out_unlock:
  844. spin_unlock(&mm->page_table_lock);
  845. out:
  846. return ret;
  847. }
  848. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  849. unsigned long addr,
  850. pmd_t *pmd,
  851. unsigned int flags)
  852. {
  853. struct page *page = NULL;
  854. assert_spin_locked(&mm->page_table_lock);
  855. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  856. goto out;
  857. page = pmd_page(*pmd);
  858. VM_BUG_ON(!PageHead(page));
  859. if (flags & FOLL_TOUCH) {
  860. pmd_t _pmd;
  861. /*
  862. * We should set the dirty bit only for FOLL_WRITE but
  863. * for now the dirty bit in the pmd is meaningless.
  864. * And if the dirty bit will become meaningful and
  865. * we'll only set it with FOLL_WRITE, an atomic
  866. * set_bit will be required on the pmd to set the
  867. * young bit, instead of the current set_pmd_at.
  868. */
  869. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  870. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  871. }
  872. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  873. VM_BUG_ON(!PageCompound(page));
  874. if (flags & FOLL_GET)
  875. get_page(page);
  876. out:
  877. return page;
  878. }
  879. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  880. pmd_t *pmd)
  881. {
  882. int ret = 0;
  883. spin_lock(&tlb->mm->page_table_lock);
  884. if (likely(pmd_trans_huge(*pmd))) {
  885. if (unlikely(pmd_trans_splitting(*pmd))) {
  886. spin_unlock(&tlb->mm->page_table_lock);
  887. wait_split_huge_page(vma->anon_vma,
  888. pmd);
  889. } else {
  890. struct page *page;
  891. pgtable_t pgtable;
  892. pgtable = get_pmd_huge_pte(tlb->mm);
  893. page = pmd_page(*pmd);
  894. pmd_clear(pmd);
  895. page_remove_rmap(page);
  896. VM_BUG_ON(page_mapcount(page) < 0);
  897. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  898. VM_BUG_ON(!PageHead(page));
  899. spin_unlock(&tlb->mm->page_table_lock);
  900. tlb_remove_page(tlb, page);
  901. pte_free(tlb->mm, pgtable);
  902. ret = 1;
  903. }
  904. } else
  905. spin_unlock(&tlb->mm->page_table_lock);
  906. return ret;
  907. }
  908. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  909. unsigned long addr, unsigned long end,
  910. unsigned char *vec)
  911. {
  912. int ret = 0;
  913. spin_lock(&vma->vm_mm->page_table_lock);
  914. if (likely(pmd_trans_huge(*pmd))) {
  915. ret = !pmd_trans_splitting(*pmd);
  916. spin_unlock(&vma->vm_mm->page_table_lock);
  917. if (unlikely(!ret))
  918. wait_split_huge_page(vma->anon_vma, pmd);
  919. else {
  920. /*
  921. * All logical pages in the range are present
  922. * if backed by a huge page.
  923. */
  924. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  925. }
  926. } else
  927. spin_unlock(&vma->vm_mm->page_table_lock);
  928. return ret;
  929. }
  930. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  931. unsigned long addr, pgprot_t newprot)
  932. {
  933. struct mm_struct *mm = vma->vm_mm;
  934. int ret = 0;
  935. spin_lock(&mm->page_table_lock);
  936. if (likely(pmd_trans_huge(*pmd))) {
  937. if (unlikely(pmd_trans_splitting(*pmd))) {
  938. spin_unlock(&mm->page_table_lock);
  939. wait_split_huge_page(vma->anon_vma, pmd);
  940. } else {
  941. pmd_t entry;
  942. entry = pmdp_get_and_clear(mm, addr, pmd);
  943. entry = pmd_modify(entry, newprot);
  944. set_pmd_at(mm, addr, pmd, entry);
  945. spin_unlock(&vma->vm_mm->page_table_lock);
  946. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  947. ret = 1;
  948. }
  949. } else
  950. spin_unlock(&vma->vm_mm->page_table_lock);
  951. return ret;
  952. }
  953. pmd_t *page_check_address_pmd(struct page *page,
  954. struct mm_struct *mm,
  955. unsigned long address,
  956. enum page_check_address_pmd_flag flag)
  957. {
  958. pgd_t *pgd;
  959. pud_t *pud;
  960. pmd_t *pmd, *ret = NULL;
  961. if (address & ~HPAGE_PMD_MASK)
  962. goto out;
  963. pgd = pgd_offset(mm, address);
  964. if (!pgd_present(*pgd))
  965. goto out;
  966. pud = pud_offset(pgd, address);
  967. if (!pud_present(*pud))
  968. goto out;
  969. pmd = pmd_offset(pud, address);
  970. if (pmd_none(*pmd))
  971. goto out;
  972. if (pmd_page(*pmd) != page)
  973. goto out;
  974. /*
  975. * split_vma() may create temporary aliased mappings. There is
  976. * no risk as long as all huge pmd are found and have their
  977. * splitting bit set before __split_huge_page_refcount
  978. * runs. Finding the same huge pmd more than once during the
  979. * same rmap walk is not a problem.
  980. */
  981. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  982. pmd_trans_splitting(*pmd))
  983. goto out;
  984. if (pmd_trans_huge(*pmd)) {
  985. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  986. !pmd_trans_splitting(*pmd));
  987. ret = pmd;
  988. }
  989. out:
  990. return ret;
  991. }
  992. static int __split_huge_page_splitting(struct page *page,
  993. struct vm_area_struct *vma,
  994. unsigned long address)
  995. {
  996. struct mm_struct *mm = vma->vm_mm;
  997. pmd_t *pmd;
  998. int ret = 0;
  999. spin_lock(&mm->page_table_lock);
  1000. pmd = page_check_address_pmd(page, mm, address,
  1001. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1002. if (pmd) {
  1003. /*
  1004. * We can't temporarily set the pmd to null in order
  1005. * to split it, the pmd must remain marked huge at all
  1006. * times or the VM won't take the pmd_trans_huge paths
  1007. * and it won't wait on the anon_vma->root->lock to
  1008. * serialize against split_huge_page*.
  1009. */
  1010. pmdp_splitting_flush_notify(vma, address, pmd);
  1011. ret = 1;
  1012. }
  1013. spin_unlock(&mm->page_table_lock);
  1014. return ret;
  1015. }
  1016. static void __split_huge_page_refcount(struct page *page)
  1017. {
  1018. int i;
  1019. unsigned long head_index = page->index;
  1020. struct zone *zone = page_zone(page);
  1021. int zonestat;
  1022. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1023. spin_lock_irq(&zone->lru_lock);
  1024. compound_lock(page);
  1025. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1026. struct page *page_tail = page + i;
  1027. /* tail_page->_count cannot change */
  1028. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1029. BUG_ON(page_count(page) <= 0);
  1030. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1031. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1032. /* after clearing PageTail the gup refcount can be released */
  1033. smp_mb();
  1034. /*
  1035. * retain hwpoison flag of the poisoned tail page:
  1036. * fix for the unsuitable process killed on Guest Machine(KVM)
  1037. * by the memory-failure.
  1038. */
  1039. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1040. page_tail->flags |= (page->flags &
  1041. ((1L << PG_referenced) |
  1042. (1L << PG_swapbacked) |
  1043. (1L << PG_mlocked) |
  1044. (1L << PG_uptodate)));
  1045. page_tail->flags |= (1L << PG_dirty);
  1046. /*
  1047. * 1) clear PageTail before overwriting first_page
  1048. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1049. */
  1050. smp_wmb();
  1051. /*
  1052. * __split_huge_page_splitting() already set the
  1053. * splitting bit in all pmd that could map this
  1054. * hugepage, that will ensure no CPU can alter the
  1055. * mapcount on the head page. The mapcount is only
  1056. * accounted in the head page and it has to be
  1057. * transferred to all tail pages in the below code. So
  1058. * for this code to be safe, the split the mapcount
  1059. * can't change. But that doesn't mean userland can't
  1060. * keep changing and reading the page contents while
  1061. * we transfer the mapcount, so the pmd splitting
  1062. * status is achieved setting a reserved bit in the
  1063. * pmd, not by clearing the present bit.
  1064. */
  1065. BUG_ON(page_mapcount(page_tail));
  1066. page_tail->_mapcount = page->_mapcount;
  1067. BUG_ON(page_tail->mapping);
  1068. page_tail->mapping = page->mapping;
  1069. page_tail->index = ++head_index;
  1070. BUG_ON(!PageAnon(page_tail));
  1071. BUG_ON(!PageUptodate(page_tail));
  1072. BUG_ON(!PageDirty(page_tail));
  1073. BUG_ON(!PageSwapBacked(page_tail));
  1074. mem_cgroup_split_huge_fixup(page, page_tail);
  1075. lru_add_page_tail(zone, page, page_tail);
  1076. }
  1077. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1078. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1079. /*
  1080. * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
  1081. * so adjust those appropriately if this page is on the LRU.
  1082. */
  1083. if (PageLRU(page)) {
  1084. zonestat = NR_LRU_BASE + page_lru(page);
  1085. __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
  1086. }
  1087. ClearPageCompound(page);
  1088. compound_unlock(page);
  1089. spin_unlock_irq(&zone->lru_lock);
  1090. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1091. struct page *page_tail = page + i;
  1092. BUG_ON(page_count(page_tail) <= 0);
  1093. /*
  1094. * Tail pages may be freed if there wasn't any mapping
  1095. * like if add_to_swap() is running on a lru page that
  1096. * had its mapping zapped. And freeing these pages
  1097. * requires taking the lru_lock so we do the put_page
  1098. * of the tail pages after the split is complete.
  1099. */
  1100. put_page(page_tail);
  1101. }
  1102. /*
  1103. * Only the head page (now become a regular page) is required
  1104. * to be pinned by the caller.
  1105. */
  1106. BUG_ON(page_count(page) <= 0);
  1107. }
  1108. static int __split_huge_page_map(struct page *page,
  1109. struct vm_area_struct *vma,
  1110. unsigned long address)
  1111. {
  1112. struct mm_struct *mm = vma->vm_mm;
  1113. pmd_t *pmd, _pmd;
  1114. int ret = 0, i;
  1115. pgtable_t pgtable;
  1116. unsigned long haddr;
  1117. spin_lock(&mm->page_table_lock);
  1118. pmd = page_check_address_pmd(page, mm, address,
  1119. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1120. if (pmd) {
  1121. pgtable = get_pmd_huge_pte(mm);
  1122. pmd_populate(mm, &_pmd, pgtable);
  1123. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1124. i++, haddr += PAGE_SIZE) {
  1125. pte_t *pte, entry;
  1126. BUG_ON(PageCompound(page+i));
  1127. entry = mk_pte(page + i, vma->vm_page_prot);
  1128. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1129. if (!pmd_write(*pmd))
  1130. entry = pte_wrprotect(entry);
  1131. else
  1132. BUG_ON(page_mapcount(page) != 1);
  1133. if (!pmd_young(*pmd))
  1134. entry = pte_mkold(entry);
  1135. pte = pte_offset_map(&_pmd, haddr);
  1136. BUG_ON(!pte_none(*pte));
  1137. set_pte_at(mm, haddr, pte, entry);
  1138. pte_unmap(pte);
  1139. }
  1140. mm->nr_ptes++;
  1141. smp_wmb(); /* make pte visible before pmd */
  1142. /*
  1143. * Up to this point the pmd is present and huge and
  1144. * userland has the whole access to the hugepage
  1145. * during the split (which happens in place). If we
  1146. * overwrite the pmd with the not-huge version
  1147. * pointing to the pte here (which of course we could
  1148. * if all CPUs were bug free), userland could trigger
  1149. * a small page size TLB miss on the small sized TLB
  1150. * while the hugepage TLB entry is still established
  1151. * in the huge TLB. Some CPU doesn't like that. See
  1152. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1153. * Erratum 383 on page 93. Intel should be safe but is
  1154. * also warns that it's only safe if the permission
  1155. * and cache attributes of the two entries loaded in
  1156. * the two TLB is identical (which should be the case
  1157. * here). But it is generally safer to never allow
  1158. * small and huge TLB entries for the same virtual
  1159. * address to be loaded simultaneously. So instead of
  1160. * doing "pmd_populate(); flush_tlb_range();" we first
  1161. * mark the current pmd notpresent (atomically because
  1162. * here the pmd_trans_huge and pmd_trans_splitting
  1163. * must remain set at all times on the pmd until the
  1164. * split is complete for this pmd), then we flush the
  1165. * SMP TLB and finally we write the non-huge version
  1166. * of the pmd entry with pmd_populate.
  1167. */
  1168. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1169. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1170. pmd_populate(mm, pmd, pgtable);
  1171. ret = 1;
  1172. }
  1173. spin_unlock(&mm->page_table_lock);
  1174. return ret;
  1175. }
  1176. /* must be called with anon_vma->root->lock hold */
  1177. static void __split_huge_page(struct page *page,
  1178. struct anon_vma *anon_vma)
  1179. {
  1180. int mapcount, mapcount2;
  1181. struct anon_vma_chain *avc;
  1182. BUG_ON(!PageHead(page));
  1183. BUG_ON(PageTail(page));
  1184. mapcount = 0;
  1185. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1186. struct vm_area_struct *vma = avc->vma;
  1187. unsigned long addr = vma_address(page, vma);
  1188. BUG_ON(is_vma_temporary_stack(vma));
  1189. if (addr == -EFAULT)
  1190. continue;
  1191. mapcount += __split_huge_page_splitting(page, vma, addr);
  1192. }
  1193. /*
  1194. * It is critical that new vmas are added to the tail of the
  1195. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1196. * and establishes a child pmd before
  1197. * __split_huge_page_splitting() freezes the parent pmd (so if
  1198. * we fail to prevent copy_huge_pmd() from running until the
  1199. * whole __split_huge_page() is complete), we will still see
  1200. * the newly established pmd of the child later during the
  1201. * walk, to be able to set it as pmd_trans_splitting too.
  1202. */
  1203. if (mapcount != page_mapcount(page))
  1204. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1205. mapcount, page_mapcount(page));
  1206. BUG_ON(mapcount != page_mapcount(page));
  1207. __split_huge_page_refcount(page);
  1208. mapcount2 = 0;
  1209. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1210. struct vm_area_struct *vma = avc->vma;
  1211. unsigned long addr = vma_address(page, vma);
  1212. BUG_ON(is_vma_temporary_stack(vma));
  1213. if (addr == -EFAULT)
  1214. continue;
  1215. mapcount2 += __split_huge_page_map(page, vma, addr);
  1216. }
  1217. if (mapcount != mapcount2)
  1218. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1219. mapcount, mapcount2, page_mapcount(page));
  1220. BUG_ON(mapcount != mapcount2);
  1221. }
  1222. int split_huge_page(struct page *page)
  1223. {
  1224. struct anon_vma *anon_vma;
  1225. int ret = 1;
  1226. BUG_ON(!PageAnon(page));
  1227. anon_vma = page_lock_anon_vma(page);
  1228. if (!anon_vma)
  1229. goto out;
  1230. ret = 0;
  1231. if (!PageCompound(page))
  1232. goto out_unlock;
  1233. BUG_ON(!PageSwapBacked(page));
  1234. __split_huge_page(page, anon_vma);
  1235. count_vm_event(THP_SPLIT);
  1236. BUG_ON(PageCompound(page));
  1237. out_unlock:
  1238. page_unlock_anon_vma(anon_vma);
  1239. out:
  1240. return ret;
  1241. }
  1242. #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
  1243. VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1244. int hugepage_madvise(struct vm_area_struct *vma,
  1245. unsigned long *vm_flags, int advice)
  1246. {
  1247. switch (advice) {
  1248. case MADV_HUGEPAGE:
  1249. /*
  1250. * Be somewhat over-protective like KSM for now!
  1251. */
  1252. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1253. return -EINVAL;
  1254. *vm_flags &= ~VM_NOHUGEPAGE;
  1255. *vm_flags |= VM_HUGEPAGE;
  1256. /*
  1257. * If the vma become good for khugepaged to scan,
  1258. * register it here without waiting a page fault that
  1259. * may not happen any time soon.
  1260. */
  1261. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1262. return -ENOMEM;
  1263. break;
  1264. case MADV_NOHUGEPAGE:
  1265. /*
  1266. * Be somewhat over-protective like KSM for now!
  1267. */
  1268. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1269. return -EINVAL;
  1270. *vm_flags &= ~VM_HUGEPAGE;
  1271. *vm_flags |= VM_NOHUGEPAGE;
  1272. /*
  1273. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1274. * this vma even if we leave the mm registered in khugepaged if
  1275. * it got registered before VM_NOHUGEPAGE was set.
  1276. */
  1277. break;
  1278. }
  1279. return 0;
  1280. }
  1281. static int __init khugepaged_slab_init(void)
  1282. {
  1283. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1284. sizeof(struct mm_slot),
  1285. __alignof__(struct mm_slot), 0, NULL);
  1286. if (!mm_slot_cache)
  1287. return -ENOMEM;
  1288. return 0;
  1289. }
  1290. static void __init khugepaged_slab_free(void)
  1291. {
  1292. kmem_cache_destroy(mm_slot_cache);
  1293. mm_slot_cache = NULL;
  1294. }
  1295. static inline struct mm_slot *alloc_mm_slot(void)
  1296. {
  1297. if (!mm_slot_cache) /* initialization failed */
  1298. return NULL;
  1299. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1300. }
  1301. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1302. {
  1303. kmem_cache_free(mm_slot_cache, mm_slot);
  1304. }
  1305. static int __init mm_slots_hash_init(void)
  1306. {
  1307. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1308. GFP_KERNEL);
  1309. if (!mm_slots_hash)
  1310. return -ENOMEM;
  1311. return 0;
  1312. }
  1313. #if 0
  1314. static void __init mm_slots_hash_free(void)
  1315. {
  1316. kfree(mm_slots_hash);
  1317. mm_slots_hash = NULL;
  1318. }
  1319. #endif
  1320. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1321. {
  1322. struct mm_slot *mm_slot;
  1323. struct hlist_head *bucket;
  1324. struct hlist_node *node;
  1325. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1326. % MM_SLOTS_HASH_HEADS];
  1327. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1328. if (mm == mm_slot->mm)
  1329. return mm_slot;
  1330. }
  1331. return NULL;
  1332. }
  1333. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1334. struct mm_slot *mm_slot)
  1335. {
  1336. struct hlist_head *bucket;
  1337. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1338. % MM_SLOTS_HASH_HEADS];
  1339. mm_slot->mm = mm;
  1340. hlist_add_head(&mm_slot->hash, bucket);
  1341. }
  1342. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1343. {
  1344. return atomic_read(&mm->mm_users) == 0;
  1345. }
  1346. int __khugepaged_enter(struct mm_struct *mm)
  1347. {
  1348. struct mm_slot *mm_slot;
  1349. int wakeup;
  1350. mm_slot = alloc_mm_slot();
  1351. if (!mm_slot)
  1352. return -ENOMEM;
  1353. /* __khugepaged_exit() must not run from under us */
  1354. VM_BUG_ON(khugepaged_test_exit(mm));
  1355. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1356. free_mm_slot(mm_slot);
  1357. return 0;
  1358. }
  1359. spin_lock(&khugepaged_mm_lock);
  1360. insert_to_mm_slots_hash(mm, mm_slot);
  1361. /*
  1362. * Insert just behind the scanning cursor, to let the area settle
  1363. * down a little.
  1364. */
  1365. wakeup = list_empty(&khugepaged_scan.mm_head);
  1366. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1367. spin_unlock(&khugepaged_mm_lock);
  1368. atomic_inc(&mm->mm_count);
  1369. if (wakeup)
  1370. wake_up_interruptible(&khugepaged_wait);
  1371. return 0;
  1372. }
  1373. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1374. {
  1375. unsigned long hstart, hend;
  1376. if (!vma->anon_vma)
  1377. /*
  1378. * Not yet faulted in so we will register later in the
  1379. * page fault if needed.
  1380. */
  1381. return 0;
  1382. if (vma->vm_ops)
  1383. /* khugepaged not yet working on file or special mappings */
  1384. return 0;
  1385. /*
  1386. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1387. * true too, verify it here.
  1388. */
  1389. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1390. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1391. hend = vma->vm_end & HPAGE_PMD_MASK;
  1392. if (hstart < hend)
  1393. return khugepaged_enter(vma);
  1394. return 0;
  1395. }
  1396. void __khugepaged_exit(struct mm_struct *mm)
  1397. {
  1398. struct mm_slot *mm_slot;
  1399. int free = 0;
  1400. spin_lock(&khugepaged_mm_lock);
  1401. mm_slot = get_mm_slot(mm);
  1402. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1403. hlist_del(&mm_slot->hash);
  1404. list_del(&mm_slot->mm_node);
  1405. free = 1;
  1406. }
  1407. if (free) {
  1408. spin_unlock(&khugepaged_mm_lock);
  1409. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1410. free_mm_slot(mm_slot);
  1411. mmdrop(mm);
  1412. } else if (mm_slot) {
  1413. spin_unlock(&khugepaged_mm_lock);
  1414. /*
  1415. * This is required to serialize against
  1416. * khugepaged_test_exit() (which is guaranteed to run
  1417. * under mmap sem read mode). Stop here (after we
  1418. * return all pagetables will be destroyed) until
  1419. * khugepaged has finished working on the pagetables
  1420. * under the mmap_sem.
  1421. */
  1422. down_write(&mm->mmap_sem);
  1423. up_write(&mm->mmap_sem);
  1424. } else
  1425. spin_unlock(&khugepaged_mm_lock);
  1426. }
  1427. static void release_pte_page(struct page *page)
  1428. {
  1429. /* 0 stands for page_is_file_cache(page) == false */
  1430. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1431. unlock_page(page);
  1432. putback_lru_page(page);
  1433. }
  1434. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1435. {
  1436. while (--_pte >= pte) {
  1437. pte_t pteval = *_pte;
  1438. if (!pte_none(pteval))
  1439. release_pte_page(pte_page(pteval));
  1440. }
  1441. }
  1442. static void release_all_pte_pages(pte_t *pte)
  1443. {
  1444. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1445. }
  1446. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1447. unsigned long address,
  1448. pte_t *pte)
  1449. {
  1450. struct page *page;
  1451. pte_t *_pte;
  1452. int referenced = 0, isolated = 0, none = 0;
  1453. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1454. _pte++, address += PAGE_SIZE) {
  1455. pte_t pteval = *_pte;
  1456. if (pte_none(pteval)) {
  1457. if (++none <= khugepaged_max_ptes_none)
  1458. continue;
  1459. else {
  1460. release_pte_pages(pte, _pte);
  1461. goto out;
  1462. }
  1463. }
  1464. if (!pte_present(pteval) || !pte_write(pteval)) {
  1465. release_pte_pages(pte, _pte);
  1466. goto out;
  1467. }
  1468. page = vm_normal_page(vma, address, pteval);
  1469. if (unlikely(!page)) {
  1470. release_pte_pages(pte, _pte);
  1471. goto out;
  1472. }
  1473. VM_BUG_ON(PageCompound(page));
  1474. BUG_ON(!PageAnon(page));
  1475. VM_BUG_ON(!PageSwapBacked(page));
  1476. /* cannot use mapcount: can't collapse if there's a gup pin */
  1477. if (page_count(page) != 1) {
  1478. release_pte_pages(pte, _pte);
  1479. goto out;
  1480. }
  1481. /*
  1482. * We can do it before isolate_lru_page because the
  1483. * page can't be freed from under us. NOTE: PG_lock
  1484. * is needed to serialize against split_huge_page
  1485. * when invoked from the VM.
  1486. */
  1487. if (!trylock_page(page)) {
  1488. release_pte_pages(pte, _pte);
  1489. goto out;
  1490. }
  1491. /*
  1492. * Isolate the page to avoid collapsing an hugepage
  1493. * currently in use by the VM.
  1494. */
  1495. if (isolate_lru_page(page)) {
  1496. unlock_page(page);
  1497. release_pte_pages(pte, _pte);
  1498. goto out;
  1499. }
  1500. /* 0 stands for page_is_file_cache(page) == false */
  1501. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1502. VM_BUG_ON(!PageLocked(page));
  1503. VM_BUG_ON(PageLRU(page));
  1504. /* If there is no mapped pte young don't collapse the page */
  1505. if (pte_young(pteval) || PageReferenced(page) ||
  1506. mmu_notifier_test_young(vma->vm_mm, address))
  1507. referenced = 1;
  1508. }
  1509. if (unlikely(!referenced))
  1510. release_all_pte_pages(pte);
  1511. else
  1512. isolated = 1;
  1513. out:
  1514. return isolated;
  1515. }
  1516. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1517. struct vm_area_struct *vma,
  1518. unsigned long address,
  1519. spinlock_t *ptl)
  1520. {
  1521. pte_t *_pte;
  1522. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1523. pte_t pteval = *_pte;
  1524. struct page *src_page;
  1525. if (pte_none(pteval)) {
  1526. clear_user_highpage(page, address);
  1527. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1528. } else {
  1529. src_page = pte_page(pteval);
  1530. copy_user_highpage(page, src_page, address, vma);
  1531. VM_BUG_ON(page_mapcount(src_page) != 1);
  1532. VM_BUG_ON(page_count(src_page) != 2);
  1533. release_pte_page(src_page);
  1534. /*
  1535. * ptl mostly unnecessary, but preempt has to
  1536. * be disabled to update the per-cpu stats
  1537. * inside page_remove_rmap().
  1538. */
  1539. spin_lock(ptl);
  1540. /*
  1541. * paravirt calls inside pte_clear here are
  1542. * superfluous.
  1543. */
  1544. pte_clear(vma->vm_mm, address, _pte);
  1545. page_remove_rmap(src_page);
  1546. spin_unlock(ptl);
  1547. free_page_and_swap_cache(src_page);
  1548. }
  1549. address += PAGE_SIZE;
  1550. page++;
  1551. }
  1552. }
  1553. static void collapse_huge_page(struct mm_struct *mm,
  1554. unsigned long address,
  1555. struct page **hpage,
  1556. struct vm_area_struct *vma,
  1557. int node)
  1558. {
  1559. pgd_t *pgd;
  1560. pud_t *pud;
  1561. pmd_t *pmd, _pmd;
  1562. pte_t *pte;
  1563. pgtable_t pgtable;
  1564. struct page *new_page;
  1565. spinlock_t *ptl;
  1566. int isolated;
  1567. unsigned long hstart, hend;
  1568. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1569. #ifndef CONFIG_NUMA
  1570. VM_BUG_ON(!*hpage);
  1571. new_page = *hpage;
  1572. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1573. up_read(&mm->mmap_sem);
  1574. return;
  1575. }
  1576. #else
  1577. VM_BUG_ON(*hpage);
  1578. /*
  1579. * Allocate the page while the vma is still valid and under
  1580. * the mmap_sem read mode so there is no memory allocation
  1581. * later when we take the mmap_sem in write mode. This is more
  1582. * friendly behavior (OTOH it may actually hide bugs) to
  1583. * filesystems in userland with daemons allocating memory in
  1584. * the userland I/O paths. Allocating memory with the
  1585. * mmap_sem in read mode is good idea also to allow greater
  1586. * scalability.
  1587. */
  1588. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1589. node, __GFP_OTHER_NODE);
  1590. if (unlikely(!new_page)) {
  1591. up_read(&mm->mmap_sem);
  1592. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1593. *hpage = ERR_PTR(-ENOMEM);
  1594. return;
  1595. }
  1596. count_vm_event(THP_COLLAPSE_ALLOC);
  1597. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1598. up_read(&mm->mmap_sem);
  1599. put_page(new_page);
  1600. return;
  1601. }
  1602. #endif
  1603. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1604. up_read(&mm->mmap_sem);
  1605. /*
  1606. * Prevent all access to pagetables with the exception of
  1607. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1608. * handled by the anon_vma lock + PG_lock.
  1609. */
  1610. down_write(&mm->mmap_sem);
  1611. if (unlikely(khugepaged_test_exit(mm)))
  1612. goto out;
  1613. vma = find_vma(mm, address);
  1614. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1615. hend = vma->vm_end & HPAGE_PMD_MASK;
  1616. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1617. goto out;
  1618. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1619. (vma->vm_flags & VM_NOHUGEPAGE))
  1620. goto out;
  1621. if (!vma->anon_vma || vma->vm_ops)
  1622. goto out;
  1623. if (is_vma_temporary_stack(vma))
  1624. goto out;
  1625. /*
  1626. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1627. * true too, verify it here.
  1628. */
  1629. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1630. pgd = pgd_offset(mm, address);
  1631. if (!pgd_present(*pgd))
  1632. goto out;
  1633. pud = pud_offset(pgd, address);
  1634. if (!pud_present(*pud))
  1635. goto out;
  1636. pmd = pmd_offset(pud, address);
  1637. /* pmd can't go away or become huge under us */
  1638. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1639. goto out;
  1640. anon_vma_lock(vma->anon_vma);
  1641. pte = pte_offset_map(pmd, address);
  1642. ptl = pte_lockptr(mm, pmd);
  1643. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1644. /*
  1645. * After this gup_fast can't run anymore. This also removes
  1646. * any huge TLB entry from the CPU so we won't allow
  1647. * huge and small TLB entries for the same virtual address
  1648. * to avoid the risk of CPU bugs in that area.
  1649. */
  1650. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1651. spin_unlock(&mm->page_table_lock);
  1652. spin_lock(ptl);
  1653. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1654. spin_unlock(ptl);
  1655. if (unlikely(!isolated)) {
  1656. pte_unmap(pte);
  1657. spin_lock(&mm->page_table_lock);
  1658. BUG_ON(!pmd_none(*pmd));
  1659. set_pmd_at(mm, address, pmd, _pmd);
  1660. spin_unlock(&mm->page_table_lock);
  1661. anon_vma_unlock(vma->anon_vma);
  1662. goto out;
  1663. }
  1664. /*
  1665. * All pages are isolated and locked so anon_vma rmap
  1666. * can't run anymore.
  1667. */
  1668. anon_vma_unlock(vma->anon_vma);
  1669. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1670. pte_unmap(pte);
  1671. __SetPageUptodate(new_page);
  1672. pgtable = pmd_pgtable(_pmd);
  1673. VM_BUG_ON(page_count(pgtable) != 1);
  1674. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1675. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1676. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1677. _pmd = pmd_mkhuge(_pmd);
  1678. /*
  1679. * spin_lock() below is not the equivalent of smp_wmb(), so
  1680. * this is needed to avoid the copy_huge_page writes to become
  1681. * visible after the set_pmd_at() write.
  1682. */
  1683. smp_wmb();
  1684. spin_lock(&mm->page_table_lock);
  1685. BUG_ON(!pmd_none(*pmd));
  1686. page_add_new_anon_rmap(new_page, vma, address);
  1687. set_pmd_at(mm, address, pmd, _pmd);
  1688. update_mmu_cache(vma, address, entry);
  1689. prepare_pmd_huge_pte(pgtable, mm);
  1690. mm->nr_ptes--;
  1691. spin_unlock(&mm->page_table_lock);
  1692. #ifndef CONFIG_NUMA
  1693. *hpage = NULL;
  1694. #endif
  1695. khugepaged_pages_collapsed++;
  1696. out_up_write:
  1697. up_write(&mm->mmap_sem);
  1698. return;
  1699. out:
  1700. mem_cgroup_uncharge_page(new_page);
  1701. #ifdef CONFIG_NUMA
  1702. put_page(new_page);
  1703. #endif
  1704. goto out_up_write;
  1705. }
  1706. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1707. struct vm_area_struct *vma,
  1708. unsigned long address,
  1709. struct page **hpage)
  1710. {
  1711. pgd_t *pgd;
  1712. pud_t *pud;
  1713. pmd_t *pmd;
  1714. pte_t *pte, *_pte;
  1715. int ret = 0, referenced = 0, none = 0;
  1716. struct page *page;
  1717. unsigned long _address;
  1718. spinlock_t *ptl;
  1719. int node = -1;
  1720. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1721. pgd = pgd_offset(mm, address);
  1722. if (!pgd_present(*pgd))
  1723. goto out;
  1724. pud = pud_offset(pgd, address);
  1725. if (!pud_present(*pud))
  1726. goto out;
  1727. pmd = pmd_offset(pud, address);
  1728. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1729. goto out;
  1730. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1731. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1732. _pte++, _address += PAGE_SIZE) {
  1733. pte_t pteval = *_pte;
  1734. if (pte_none(pteval)) {
  1735. if (++none <= khugepaged_max_ptes_none)
  1736. continue;
  1737. else
  1738. goto out_unmap;
  1739. }
  1740. if (!pte_present(pteval) || !pte_write(pteval))
  1741. goto out_unmap;
  1742. page = vm_normal_page(vma, _address, pteval);
  1743. if (unlikely(!page))
  1744. goto out_unmap;
  1745. /*
  1746. * Chose the node of the first page. This could
  1747. * be more sophisticated and look at more pages,
  1748. * but isn't for now.
  1749. */
  1750. if (node == -1)
  1751. node = page_to_nid(page);
  1752. VM_BUG_ON(PageCompound(page));
  1753. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1754. goto out_unmap;
  1755. /* cannot use mapcount: can't collapse if there's a gup pin */
  1756. if (page_count(page) != 1)
  1757. goto out_unmap;
  1758. if (pte_young(pteval) || PageReferenced(page) ||
  1759. mmu_notifier_test_young(vma->vm_mm, address))
  1760. referenced = 1;
  1761. }
  1762. if (referenced)
  1763. ret = 1;
  1764. out_unmap:
  1765. pte_unmap_unlock(pte, ptl);
  1766. if (ret)
  1767. /* collapse_huge_page will return with the mmap_sem released */
  1768. collapse_huge_page(mm, address, hpage, vma, node);
  1769. out:
  1770. return ret;
  1771. }
  1772. static void collect_mm_slot(struct mm_slot *mm_slot)
  1773. {
  1774. struct mm_struct *mm = mm_slot->mm;
  1775. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1776. if (khugepaged_test_exit(mm)) {
  1777. /* free mm_slot */
  1778. hlist_del(&mm_slot->hash);
  1779. list_del(&mm_slot->mm_node);
  1780. /*
  1781. * Not strictly needed because the mm exited already.
  1782. *
  1783. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1784. */
  1785. /* khugepaged_mm_lock actually not necessary for the below */
  1786. free_mm_slot(mm_slot);
  1787. mmdrop(mm);
  1788. }
  1789. }
  1790. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1791. struct page **hpage)
  1792. {
  1793. struct mm_slot *mm_slot;
  1794. struct mm_struct *mm;
  1795. struct vm_area_struct *vma;
  1796. int progress = 0;
  1797. VM_BUG_ON(!pages);
  1798. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1799. if (khugepaged_scan.mm_slot)
  1800. mm_slot = khugepaged_scan.mm_slot;
  1801. else {
  1802. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1803. struct mm_slot, mm_node);
  1804. khugepaged_scan.address = 0;
  1805. khugepaged_scan.mm_slot = mm_slot;
  1806. }
  1807. spin_unlock(&khugepaged_mm_lock);
  1808. mm = mm_slot->mm;
  1809. down_read(&mm->mmap_sem);
  1810. if (unlikely(khugepaged_test_exit(mm)))
  1811. vma = NULL;
  1812. else
  1813. vma = find_vma(mm, khugepaged_scan.address);
  1814. progress++;
  1815. for (; vma; vma = vma->vm_next) {
  1816. unsigned long hstart, hend;
  1817. cond_resched();
  1818. if (unlikely(khugepaged_test_exit(mm))) {
  1819. progress++;
  1820. break;
  1821. }
  1822. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1823. !khugepaged_always()) ||
  1824. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1825. skip:
  1826. progress++;
  1827. continue;
  1828. }
  1829. if (!vma->anon_vma || vma->vm_ops)
  1830. goto skip;
  1831. if (is_vma_temporary_stack(vma))
  1832. goto skip;
  1833. /*
  1834. * If is_pfn_mapping() is true is_learn_pfn_mapping()
  1835. * must be true too, verify it here.
  1836. */
  1837. VM_BUG_ON(is_linear_pfn_mapping(vma) ||
  1838. vma->vm_flags & VM_NO_THP);
  1839. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1840. hend = vma->vm_end & HPAGE_PMD_MASK;
  1841. if (hstart >= hend)
  1842. goto skip;
  1843. if (khugepaged_scan.address > hend)
  1844. goto skip;
  1845. if (khugepaged_scan.address < hstart)
  1846. khugepaged_scan.address = hstart;
  1847. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1848. while (khugepaged_scan.address < hend) {
  1849. int ret;
  1850. cond_resched();
  1851. if (unlikely(khugepaged_test_exit(mm)))
  1852. goto breakouterloop;
  1853. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1854. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1855. hend);
  1856. ret = khugepaged_scan_pmd(mm, vma,
  1857. khugepaged_scan.address,
  1858. hpage);
  1859. /* move to next address */
  1860. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1861. progress += HPAGE_PMD_NR;
  1862. if (ret)
  1863. /* we released mmap_sem so break loop */
  1864. goto breakouterloop_mmap_sem;
  1865. if (progress >= pages)
  1866. goto breakouterloop;
  1867. }
  1868. }
  1869. breakouterloop:
  1870. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1871. breakouterloop_mmap_sem:
  1872. spin_lock(&khugepaged_mm_lock);
  1873. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1874. /*
  1875. * Release the current mm_slot if this mm is about to die, or
  1876. * if we scanned all vmas of this mm.
  1877. */
  1878. if (khugepaged_test_exit(mm) || !vma) {
  1879. /*
  1880. * Make sure that if mm_users is reaching zero while
  1881. * khugepaged runs here, khugepaged_exit will find
  1882. * mm_slot not pointing to the exiting mm.
  1883. */
  1884. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1885. khugepaged_scan.mm_slot = list_entry(
  1886. mm_slot->mm_node.next,
  1887. struct mm_slot, mm_node);
  1888. khugepaged_scan.address = 0;
  1889. } else {
  1890. khugepaged_scan.mm_slot = NULL;
  1891. khugepaged_full_scans++;
  1892. }
  1893. collect_mm_slot(mm_slot);
  1894. }
  1895. return progress;
  1896. }
  1897. static int khugepaged_has_work(void)
  1898. {
  1899. return !list_empty(&khugepaged_scan.mm_head) &&
  1900. khugepaged_enabled();
  1901. }
  1902. static int khugepaged_wait_event(void)
  1903. {
  1904. return !list_empty(&khugepaged_scan.mm_head) ||
  1905. !khugepaged_enabled();
  1906. }
  1907. static void khugepaged_do_scan(struct page **hpage)
  1908. {
  1909. unsigned int progress = 0, pass_through_head = 0;
  1910. unsigned int pages = khugepaged_pages_to_scan;
  1911. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1912. while (progress < pages) {
  1913. cond_resched();
  1914. #ifndef CONFIG_NUMA
  1915. if (!*hpage) {
  1916. *hpage = alloc_hugepage(khugepaged_defrag());
  1917. if (unlikely(!*hpage)) {
  1918. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1919. break;
  1920. }
  1921. count_vm_event(THP_COLLAPSE_ALLOC);
  1922. }
  1923. #else
  1924. if (IS_ERR(*hpage))
  1925. break;
  1926. #endif
  1927. if (unlikely(kthread_should_stop() || freezing(current)))
  1928. break;
  1929. spin_lock(&khugepaged_mm_lock);
  1930. if (!khugepaged_scan.mm_slot)
  1931. pass_through_head++;
  1932. if (khugepaged_has_work() &&
  1933. pass_through_head < 2)
  1934. progress += khugepaged_scan_mm_slot(pages - progress,
  1935. hpage);
  1936. else
  1937. progress = pages;
  1938. spin_unlock(&khugepaged_mm_lock);
  1939. }
  1940. }
  1941. static void khugepaged_alloc_sleep(void)
  1942. {
  1943. DEFINE_WAIT(wait);
  1944. add_wait_queue(&khugepaged_wait, &wait);
  1945. schedule_timeout_interruptible(
  1946. msecs_to_jiffies(
  1947. khugepaged_alloc_sleep_millisecs));
  1948. remove_wait_queue(&khugepaged_wait, &wait);
  1949. }
  1950. #ifndef CONFIG_NUMA
  1951. static struct page *khugepaged_alloc_hugepage(void)
  1952. {
  1953. struct page *hpage;
  1954. do {
  1955. hpage = alloc_hugepage(khugepaged_defrag());
  1956. if (!hpage) {
  1957. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1958. khugepaged_alloc_sleep();
  1959. } else
  1960. count_vm_event(THP_COLLAPSE_ALLOC);
  1961. } while (unlikely(!hpage) &&
  1962. likely(khugepaged_enabled()));
  1963. return hpage;
  1964. }
  1965. #endif
  1966. static void khugepaged_loop(void)
  1967. {
  1968. struct page *hpage;
  1969. #ifdef CONFIG_NUMA
  1970. hpage = NULL;
  1971. #endif
  1972. while (likely(khugepaged_enabled())) {
  1973. #ifndef CONFIG_NUMA
  1974. hpage = khugepaged_alloc_hugepage();
  1975. if (unlikely(!hpage)) {
  1976. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1977. break;
  1978. }
  1979. count_vm_event(THP_COLLAPSE_ALLOC);
  1980. #else
  1981. if (IS_ERR(hpage)) {
  1982. khugepaged_alloc_sleep();
  1983. hpage = NULL;
  1984. }
  1985. #endif
  1986. khugepaged_do_scan(&hpage);
  1987. #ifndef CONFIG_NUMA
  1988. if (hpage)
  1989. put_page(hpage);
  1990. #endif
  1991. try_to_freeze();
  1992. if (unlikely(kthread_should_stop()))
  1993. break;
  1994. if (khugepaged_has_work()) {
  1995. DEFINE_WAIT(wait);
  1996. if (!khugepaged_scan_sleep_millisecs)
  1997. continue;
  1998. add_wait_queue(&khugepaged_wait, &wait);
  1999. schedule_timeout_interruptible(
  2000. msecs_to_jiffies(
  2001. khugepaged_scan_sleep_millisecs));
  2002. remove_wait_queue(&khugepaged_wait, &wait);
  2003. } else if (khugepaged_enabled())
  2004. wait_event_freezable(khugepaged_wait,
  2005. khugepaged_wait_event());
  2006. }
  2007. }
  2008. static int khugepaged(void *none)
  2009. {
  2010. struct mm_slot *mm_slot;
  2011. set_freezable();
  2012. set_user_nice(current, 19);
  2013. /* serialize with start_khugepaged() */
  2014. mutex_lock(&khugepaged_mutex);
  2015. for (;;) {
  2016. mutex_unlock(&khugepaged_mutex);
  2017. VM_BUG_ON(khugepaged_thread != current);
  2018. khugepaged_loop();
  2019. VM_BUG_ON(khugepaged_thread != current);
  2020. mutex_lock(&khugepaged_mutex);
  2021. if (!khugepaged_enabled())
  2022. break;
  2023. if (unlikely(kthread_should_stop()))
  2024. break;
  2025. }
  2026. spin_lock(&khugepaged_mm_lock);
  2027. mm_slot = khugepaged_scan.mm_slot;
  2028. khugepaged_scan.mm_slot = NULL;
  2029. if (mm_slot)
  2030. collect_mm_slot(mm_slot);
  2031. spin_unlock(&khugepaged_mm_lock);
  2032. khugepaged_thread = NULL;
  2033. mutex_unlock(&khugepaged_mutex);
  2034. return 0;
  2035. }
  2036. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2037. {
  2038. struct page *page;
  2039. spin_lock(&mm->page_table_lock);
  2040. if (unlikely(!pmd_trans_huge(*pmd))) {
  2041. spin_unlock(&mm->page_table_lock);
  2042. return;
  2043. }
  2044. page = pmd_page(*pmd);
  2045. VM_BUG_ON(!page_count(page));
  2046. get_page(page);
  2047. spin_unlock(&mm->page_table_lock);
  2048. split_huge_page(page);
  2049. put_page(page);
  2050. BUG_ON(pmd_trans_huge(*pmd));
  2051. }
  2052. static void split_huge_page_address(struct mm_struct *mm,
  2053. unsigned long address)
  2054. {
  2055. pgd_t *pgd;
  2056. pud_t *pud;
  2057. pmd_t *pmd;
  2058. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2059. pgd = pgd_offset(mm, address);
  2060. if (!pgd_present(*pgd))
  2061. return;
  2062. pud = pud_offset(pgd, address);
  2063. if (!pud_present(*pud))
  2064. return;
  2065. pmd = pmd_offset(pud, address);
  2066. if (!pmd_present(*pmd))
  2067. return;
  2068. /*
  2069. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2070. * materialize from under us.
  2071. */
  2072. split_huge_page_pmd(mm, pmd);
  2073. }
  2074. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2075. unsigned long start,
  2076. unsigned long end,
  2077. long adjust_next)
  2078. {
  2079. /*
  2080. * If the new start address isn't hpage aligned and it could
  2081. * previously contain an hugepage: check if we need to split
  2082. * an huge pmd.
  2083. */
  2084. if (start & ~HPAGE_PMD_MASK &&
  2085. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2086. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2087. split_huge_page_address(vma->vm_mm, start);
  2088. /*
  2089. * If the new end address isn't hpage aligned and it could
  2090. * previously contain an hugepage: check if we need to split
  2091. * an huge pmd.
  2092. */
  2093. if (end & ~HPAGE_PMD_MASK &&
  2094. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2095. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2096. split_huge_page_address(vma->vm_mm, end);
  2097. /*
  2098. * If we're also updating the vma->vm_next->vm_start, if the new
  2099. * vm_next->vm_start isn't page aligned and it could previously
  2100. * contain an hugepage: check if we need to split an huge pmd.
  2101. */
  2102. if (adjust_next > 0) {
  2103. struct vm_area_struct *next = vma->vm_next;
  2104. unsigned long nstart = next->vm_start;
  2105. nstart += adjust_next << PAGE_SHIFT;
  2106. if (nstart & ~HPAGE_PMD_MASK &&
  2107. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2108. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2109. split_huge_page_address(next->vm_mm, nstart);
  2110. }
  2111. }