sched.c 218 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. #ifdef CONFIG_SCHED_DEBUG
  273. unsigned int nr_spread_over;
  274. #endif
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  277. /*
  278. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  279. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  280. * (like users, containers etc.)
  281. *
  282. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  283. * list is used during load balance.
  284. */
  285. int on_list;
  286. struct list_head leaf_cfs_rq_list;
  287. struct task_group *tg; /* group that "owns" this runqueue */
  288. #ifdef CONFIG_SMP
  289. /*
  290. * the part of load.weight contributed by tasks
  291. */
  292. unsigned long task_weight;
  293. /*
  294. * h_load = weight * f(tg)
  295. *
  296. * Where f(tg) is the recursive weight fraction assigned to
  297. * this group.
  298. */
  299. unsigned long h_load;
  300. /*
  301. * Maintaining per-cpu shares distribution for group scheduling
  302. *
  303. * load_stamp is the last time we updated the load average
  304. * load_last is the last time we updated the load average and saw load
  305. * load_unacc_exec_time is currently unaccounted execution time
  306. */
  307. u64 load_avg;
  308. u64 load_period;
  309. u64 load_stamp, load_last, load_unacc_exec_time;
  310. unsigned long load_contribution;
  311. #endif
  312. #endif
  313. };
  314. /* Real-Time classes' related field in a runqueue: */
  315. struct rt_rq {
  316. struct rt_prio_array active;
  317. unsigned long rt_nr_running;
  318. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  319. struct {
  320. int curr; /* highest queued rt task prio */
  321. #ifdef CONFIG_SMP
  322. int next; /* next highest */
  323. #endif
  324. } highest_prio;
  325. #endif
  326. #ifdef CONFIG_SMP
  327. unsigned long rt_nr_migratory;
  328. unsigned long rt_nr_total;
  329. int overloaded;
  330. struct plist_head pushable_tasks;
  331. #endif
  332. int rt_throttled;
  333. u64 rt_time;
  334. u64 rt_runtime;
  335. /* Nests inside the rq lock: */
  336. raw_spinlock_t rt_runtime_lock;
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. unsigned long rt_nr_boosted;
  339. struct rq *rq;
  340. struct list_head leaf_rt_rq_list;
  341. struct task_group *tg;
  342. #endif
  343. };
  344. #ifdef CONFIG_SMP
  345. /*
  346. * We add the notion of a root-domain which will be used to define per-domain
  347. * variables. Each exclusive cpuset essentially defines an island domain by
  348. * fully partitioning the member cpus from any other cpuset. Whenever a new
  349. * exclusive cpuset is created, we also create and attach a new root-domain
  350. * object.
  351. *
  352. */
  353. struct root_domain {
  354. atomic_t refcount;
  355. struct rcu_head rcu;
  356. cpumask_var_t span;
  357. cpumask_var_t online;
  358. /*
  359. * The "RT overload" flag: it gets set if a CPU has more than
  360. * one runnable RT task.
  361. */
  362. cpumask_var_t rto_mask;
  363. atomic_t rto_count;
  364. struct cpupri cpupri;
  365. };
  366. /*
  367. * By default the system creates a single root-domain with all cpus as
  368. * members (mimicking the global state we have today).
  369. */
  370. static struct root_domain def_root_domain;
  371. #endif /* CONFIG_SMP */
  372. /*
  373. * This is the main, per-CPU runqueue data structure.
  374. *
  375. * Locking rule: those places that want to lock multiple runqueues
  376. * (such as the load balancing or the thread migration code), lock
  377. * acquire operations must be ordered by ascending &runqueue.
  378. */
  379. struct rq {
  380. /* runqueue lock: */
  381. raw_spinlock_t lock;
  382. /*
  383. * nr_running and cpu_load should be in the same cacheline because
  384. * remote CPUs use both these fields when doing load calculation.
  385. */
  386. unsigned long nr_running;
  387. #define CPU_LOAD_IDX_MAX 5
  388. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  389. unsigned long last_load_update_tick;
  390. #ifdef CONFIG_NO_HZ
  391. u64 nohz_stamp;
  392. unsigned char nohz_balance_kick;
  393. #endif
  394. int skip_clock_update;
  395. /* capture load from *all* tasks on this cpu: */
  396. struct load_weight load;
  397. unsigned long nr_load_updates;
  398. u64 nr_switches;
  399. struct cfs_rq cfs;
  400. struct rt_rq rt;
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* list of leaf cfs_rq on this cpu: */
  403. struct list_head leaf_cfs_rq_list;
  404. #endif
  405. #ifdef CONFIG_RT_GROUP_SCHED
  406. struct list_head leaf_rt_rq_list;
  407. #endif
  408. /*
  409. * This is part of a global counter where only the total sum
  410. * over all CPUs matters. A task can increase this counter on
  411. * one CPU and if it got migrated afterwards it may decrease
  412. * it on another CPU. Always updated under the runqueue lock:
  413. */
  414. unsigned long nr_uninterruptible;
  415. struct task_struct *curr, *idle, *stop;
  416. unsigned long next_balance;
  417. struct mm_struct *prev_mm;
  418. u64 clock;
  419. u64 clock_task;
  420. atomic_t nr_iowait;
  421. #ifdef CONFIG_SMP
  422. struct root_domain *rd;
  423. struct sched_domain *sd;
  424. unsigned long cpu_power;
  425. unsigned char idle_at_tick;
  426. /* For active balancing */
  427. int post_schedule;
  428. int active_balance;
  429. int push_cpu;
  430. struct cpu_stop_work active_balance_work;
  431. /* cpu of this runqueue: */
  432. int cpu;
  433. int online;
  434. unsigned long avg_load_per_task;
  435. u64 rt_avg;
  436. u64 age_stamp;
  437. u64 idle_stamp;
  438. u64 avg_idle;
  439. #endif
  440. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  441. u64 prev_irq_time;
  442. #endif
  443. /* calc_load related fields */
  444. unsigned long calc_load_update;
  445. long calc_load_active;
  446. #ifdef CONFIG_SCHED_HRTICK
  447. #ifdef CONFIG_SMP
  448. int hrtick_csd_pending;
  449. struct call_single_data hrtick_csd;
  450. #endif
  451. struct hrtimer hrtick_timer;
  452. #endif
  453. #ifdef CONFIG_SCHEDSTATS
  454. /* latency stats */
  455. struct sched_info rq_sched_info;
  456. unsigned long long rq_cpu_time;
  457. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  458. /* sys_sched_yield() stats */
  459. unsigned int yld_count;
  460. /* schedule() stats */
  461. unsigned int sched_switch;
  462. unsigned int sched_count;
  463. unsigned int sched_goidle;
  464. /* try_to_wake_up() stats */
  465. unsigned int ttwu_count;
  466. unsigned int ttwu_local;
  467. #endif
  468. #ifdef CONFIG_SMP
  469. struct task_struct *wake_list;
  470. #endif
  471. };
  472. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  473. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  474. static inline int cpu_of(struct rq *rq)
  475. {
  476. #ifdef CONFIG_SMP
  477. return rq->cpu;
  478. #else
  479. return 0;
  480. #endif
  481. }
  482. #define rcu_dereference_check_sched_domain(p) \
  483. rcu_dereference_check((p), \
  484. rcu_read_lock_held() || \
  485. lockdep_is_held(&sched_domains_mutex))
  486. /*
  487. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  488. * See detach_destroy_domains: synchronize_sched for details.
  489. *
  490. * The domain tree of any CPU may only be accessed from within
  491. * preempt-disabled sections.
  492. */
  493. #define for_each_domain(cpu, __sd) \
  494. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  495. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  496. #define this_rq() (&__get_cpu_var(runqueues))
  497. #define task_rq(p) cpu_rq(task_cpu(p))
  498. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  499. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  500. #ifdef CONFIG_CGROUP_SCHED
  501. /*
  502. * Return the group to which this tasks belongs.
  503. *
  504. * We use task_subsys_state_check() and extend the RCU verification
  505. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  506. * holds that lock for each task it moves into the cgroup. Therefore
  507. * by holding that lock, we pin the task to the current cgroup.
  508. */
  509. static inline struct task_group *task_group(struct task_struct *p)
  510. {
  511. struct task_group *tg;
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&p->pi_lock));
  515. tg = container_of(css, struct task_group, css);
  516. return autogroup_task_group(p, tg);
  517. }
  518. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  519. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  520. {
  521. #ifdef CONFIG_FAIR_GROUP_SCHED
  522. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  523. p->se.parent = task_group(p)->se[cpu];
  524. #endif
  525. #ifdef CONFIG_RT_GROUP_SCHED
  526. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  527. p->rt.parent = task_group(p)->rt_se[cpu];
  528. #endif
  529. }
  530. #else /* CONFIG_CGROUP_SCHED */
  531. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  532. static inline struct task_group *task_group(struct task_struct *p)
  533. {
  534. return NULL;
  535. }
  536. #endif /* CONFIG_CGROUP_SCHED */
  537. static void update_rq_clock_task(struct rq *rq, s64 delta);
  538. static void update_rq_clock(struct rq *rq)
  539. {
  540. s64 delta;
  541. if (rq->skip_clock_update > 0)
  542. return;
  543. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  544. rq->clock += delta;
  545. update_rq_clock_task(rq, delta);
  546. }
  547. /*
  548. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  549. */
  550. #ifdef CONFIG_SCHED_DEBUG
  551. # define const_debug __read_mostly
  552. #else
  553. # define const_debug static const
  554. #endif
  555. /**
  556. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  557. * @cpu: the processor in question.
  558. *
  559. * This interface allows printk to be called with the runqueue lock
  560. * held and know whether or not it is OK to wake up the klogd.
  561. */
  562. int runqueue_is_locked(int cpu)
  563. {
  564. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_show(struct seq_file *m, void *v)
  590. {
  591. int i;
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. if (!(sysctl_sched_features & (1UL << i)))
  594. seq_puts(m, "NO_");
  595. seq_printf(m, "%s ", sched_feat_names[i]);
  596. }
  597. seq_puts(m, "\n");
  598. return 0;
  599. }
  600. static ssize_t
  601. sched_feat_write(struct file *filp, const char __user *ubuf,
  602. size_t cnt, loff_t *ppos)
  603. {
  604. char buf[64];
  605. char *cmp;
  606. int neg = 0;
  607. int i;
  608. if (cnt > 63)
  609. cnt = 63;
  610. if (copy_from_user(&buf, ubuf, cnt))
  611. return -EFAULT;
  612. buf[cnt] = 0;
  613. cmp = strstrip(buf);
  614. if (strncmp(cmp, "NO_", 3) == 0) {
  615. neg = 1;
  616. cmp += 3;
  617. }
  618. for (i = 0; sched_feat_names[i]; i++) {
  619. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  620. if (neg)
  621. sysctl_sched_features &= ~(1UL << i);
  622. else
  623. sysctl_sched_features |= (1UL << i);
  624. break;
  625. }
  626. }
  627. if (!sched_feat_names[i])
  628. return -EINVAL;
  629. *ppos += cnt;
  630. return cnt;
  631. }
  632. static int sched_feat_open(struct inode *inode, struct file *filp)
  633. {
  634. return single_open(filp, sched_feat_show, NULL);
  635. }
  636. static const struct file_operations sched_feat_fops = {
  637. .open = sched_feat_open,
  638. .write = sched_feat_write,
  639. .read = seq_read,
  640. .llseek = seq_lseek,
  641. .release = single_release,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * period over which we average the RT time consumption, measured
  659. * in ms.
  660. *
  661. * default: 1s
  662. */
  663. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  664. /*
  665. * period over which we measure -rt task cpu usage in us.
  666. * default: 1s
  667. */
  668. unsigned int sysctl_sched_rt_period = 1000000;
  669. static __read_mostly int scheduler_running;
  670. /*
  671. * part of the period that we allow rt tasks to run in us.
  672. * default: 0.95s
  673. */
  674. int sysctl_sched_rt_runtime = 950000;
  675. static inline u64 global_rt_period(void)
  676. {
  677. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  678. }
  679. static inline u64 global_rt_runtime(void)
  680. {
  681. if (sysctl_sched_rt_runtime < 0)
  682. return RUNTIME_INF;
  683. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  684. }
  685. #ifndef prepare_arch_switch
  686. # define prepare_arch_switch(next) do { } while (0)
  687. #endif
  688. #ifndef finish_arch_switch
  689. # define finish_arch_switch(prev) do { } while (0)
  690. #endif
  691. static inline int task_current(struct rq *rq, struct task_struct *p)
  692. {
  693. return rq->curr == p;
  694. }
  695. static inline int task_running(struct rq *rq, struct task_struct *p)
  696. {
  697. #ifdef CONFIG_SMP
  698. return p->on_cpu;
  699. #else
  700. return task_current(rq, p);
  701. #endif
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. #ifdef CONFIG_SMP
  707. /*
  708. * We can optimise this out completely for !SMP, because the
  709. * SMP rebalancing from interrupt is the only thing that cares
  710. * here.
  711. */
  712. next->on_cpu = 1;
  713. #endif
  714. }
  715. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  716. {
  717. #ifdef CONFIG_SMP
  718. /*
  719. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  720. * We must ensure this doesn't happen until the switch is completely
  721. * finished.
  722. */
  723. smp_wmb();
  724. prev->on_cpu = 0;
  725. #endif
  726. #ifdef CONFIG_DEBUG_SPINLOCK
  727. /* this is a valid case when another task releases the spinlock */
  728. rq->lock.owner = current;
  729. #endif
  730. /*
  731. * If we are tracking spinlock dependencies then we have to
  732. * fix up the runqueue lock - which gets 'carried over' from
  733. * prev into current:
  734. */
  735. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  736. raw_spin_unlock_irq(&rq->lock);
  737. }
  738. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  739. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  740. {
  741. #ifdef CONFIG_SMP
  742. /*
  743. * We can optimise this out completely for !SMP, because the
  744. * SMP rebalancing from interrupt is the only thing that cares
  745. * here.
  746. */
  747. next->on_cpu = 1;
  748. #endif
  749. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  750. raw_spin_unlock_irq(&rq->lock);
  751. #else
  752. raw_spin_unlock(&rq->lock);
  753. #endif
  754. }
  755. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  760. * We must ensure this doesn't happen until the switch is completely
  761. * finished.
  762. */
  763. smp_wmb();
  764. prev->on_cpu = 0;
  765. #endif
  766. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  767. local_irq_enable();
  768. #endif
  769. }
  770. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  771. /*
  772. * __task_rq_lock - lock the rq @p resides on.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. struct rq *rq;
  778. lockdep_assert_held(&p->pi_lock);
  779. for (;;) {
  780. rq = task_rq(p);
  781. raw_spin_lock(&rq->lock);
  782. if (likely(rq == task_rq(p)))
  783. return rq;
  784. raw_spin_unlock(&rq->lock);
  785. }
  786. }
  787. /*
  788. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  789. */
  790. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  791. __acquires(p->pi_lock)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  797. rq = task_rq(p);
  798. raw_spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. raw_spin_unlock(&rq->lock);
  802. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  803. }
  804. }
  805. static void __task_rq_unlock(struct rq *rq)
  806. __releases(rq->lock)
  807. {
  808. raw_spin_unlock(&rq->lock);
  809. }
  810. static inline void
  811. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  812. __releases(rq->lock)
  813. __releases(p->pi_lock)
  814. {
  815. raw_spin_unlock(&rq->lock);
  816. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  817. }
  818. /*
  819. * this_rq_lock - lock this runqueue and disable interrupts.
  820. */
  821. static struct rq *this_rq_lock(void)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_disable();
  826. rq = this_rq();
  827. raw_spin_lock(&rq->lock);
  828. return rq;
  829. }
  830. #ifdef CONFIG_SCHED_HRTICK
  831. /*
  832. * Use HR-timers to deliver accurate preemption points.
  833. *
  834. * Its all a bit involved since we cannot program an hrt while holding the
  835. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  836. * reschedule event.
  837. *
  838. * When we get rescheduled we reprogram the hrtick_timer outside of the
  839. * rq->lock.
  840. */
  841. /*
  842. * Use hrtick when:
  843. * - enabled by features
  844. * - hrtimer is actually high res
  845. */
  846. static inline int hrtick_enabled(struct rq *rq)
  847. {
  848. if (!sched_feat(HRTICK))
  849. return 0;
  850. if (!cpu_active(cpu_of(rq)))
  851. return 0;
  852. return hrtimer_is_hres_active(&rq->hrtick_timer);
  853. }
  854. static void hrtick_clear(struct rq *rq)
  855. {
  856. if (hrtimer_active(&rq->hrtick_timer))
  857. hrtimer_cancel(&rq->hrtick_timer);
  858. }
  859. /*
  860. * High-resolution timer tick.
  861. * Runs from hardirq context with interrupts disabled.
  862. */
  863. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  864. {
  865. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  866. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  867. raw_spin_lock(&rq->lock);
  868. update_rq_clock(rq);
  869. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  870. raw_spin_unlock(&rq->lock);
  871. return HRTIMER_NORESTART;
  872. }
  873. #ifdef CONFIG_SMP
  874. /*
  875. * called from hardirq (IPI) context
  876. */
  877. static void __hrtick_start(void *arg)
  878. {
  879. struct rq *rq = arg;
  880. raw_spin_lock(&rq->lock);
  881. hrtimer_restart(&rq->hrtick_timer);
  882. rq->hrtick_csd_pending = 0;
  883. raw_spin_unlock(&rq->lock);
  884. }
  885. /*
  886. * Called to set the hrtick timer state.
  887. *
  888. * called with rq->lock held and irqs disabled
  889. */
  890. static void hrtick_start(struct rq *rq, u64 delay)
  891. {
  892. struct hrtimer *timer = &rq->hrtick_timer;
  893. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  894. hrtimer_set_expires(timer, time);
  895. if (rq == this_rq()) {
  896. hrtimer_restart(timer);
  897. } else if (!rq->hrtick_csd_pending) {
  898. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  899. rq->hrtick_csd_pending = 1;
  900. }
  901. }
  902. static int
  903. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  904. {
  905. int cpu = (int)(long)hcpu;
  906. switch (action) {
  907. case CPU_UP_CANCELED:
  908. case CPU_UP_CANCELED_FROZEN:
  909. case CPU_DOWN_PREPARE:
  910. case CPU_DOWN_PREPARE_FROZEN:
  911. case CPU_DEAD:
  912. case CPU_DEAD_FROZEN:
  913. hrtick_clear(cpu_rq(cpu));
  914. return NOTIFY_OK;
  915. }
  916. return NOTIFY_DONE;
  917. }
  918. static __init void init_hrtick(void)
  919. {
  920. hotcpu_notifier(hotplug_hrtick, 0);
  921. }
  922. #else
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  931. HRTIMER_MODE_REL_PINNED, 0);
  932. }
  933. static inline void init_hrtick(void)
  934. {
  935. }
  936. #endif /* CONFIG_SMP */
  937. static void init_rq_hrtick(struct rq *rq)
  938. {
  939. #ifdef CONFIG_SMP
  940. rq->hrtick_csd_pending = 0;
  941. rq->hrtick_csd.flags = 0;
  942. rq->hrtick_csd.func = __hrtick_start;
  943. rq->hrtick_csd.info = rq;
  944. #endif
  945. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  946. rq->hrtick_timer.function = hrtick;
  947. }
  948. #else /* CONFIG_SCHED_HRTICK */
  949. static inline void hrtick_clear(struct rq *rq)
  950. {
  951. }
  952. static inline void init_rq_hrtick(struct rq *rq)
  953. {
  954. }
  955. static inline void init_hrtick(void)
  956. {
  957. }
  958. #endif /* CONFIG_SCHED_HRTICK */
  959. /*
  960. * resched_task - mark a task 'to be rescheduled now'.
  961. *
  962. * On UP this means the setting of the need_resched flag, on SMP it
  963. * might also involve a cross-CPU call to trigger the scheduler on
  964. * the target CPU.
  965. */
  966. #ifdef CONFIG_SMP
  967. #ifndef tsk_is_polling
  968. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  969. #endif
  970. static void resched_task(struct task_struct *p)
  971. {
  972. int cpu;
  973. assert_raw_spin_locked(&task_rq(p)->lock);
  974. if (test_tsk_need_resched(p))
  975. return;
  976. set_tsk_need_resched(p);
  977. cpu = task_cpu(p);
  978. if (cpu == smp_processor_id())
  979. return;
  980. /* NEED_RESCHED must be visible before we test polling */
  981. smp_mb();
  982. if (!tsk_is_polling(p))
  983. smp_send_reschedule(cpu);
  984. }
  985. static void resched_cpu(int cpu)
  986. {
  987. struct rq *rq = cpu_rq(cpu);
  988. unsigned long flags;
  989. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  990. return;
  991. resched_task(cpu_curr(cpu));
  992. raw_spin_unlock_irqrestore(&rq->lock, flags);
  993. }
  994. #ifdef CONFIG_NO_HZ
  995. /*
  996. * In the semi idle case, use the nearest busy cpu for migrating timers
  997. * from an idle cpu. This is good for power-savings.
  998. *
  999. * We don't do similar optimization for completely idle system, as
  1000. * selecting an idle cpu will add more delays to the timers than intended
  1001. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1002. */
  1003. int get_nohz_timer_target(void)
  1004. {
  1005. int cpu = smp_processor_id();
  1006. int i;
  1007. struct sched_domain *sd;
  1008. rcu_read_lock();
  1009. for_each_domain(cpu, sd) {
  1010. for_each_cpu(i, sched_domain_span(sd)) {
  1011. if (!idle_cpu(i)) {
  1012. cpu = i;
  1013. goto unlock;
  1014. }
  1015. }
  1016. }
  1017. unlock:
  1018. rcu_read_unlock();
  1019. return cpu;
  1020. }
  1021. /*
  1022. * When add_timer_on() enqueues a timer into the timer wheel of an
  1023. * idle CPU then this timer might expire before the next timer event
  1024. * which is scheduled to wake up that CPU. In case of a completely
  1025. * idle system the next event might even be infinite time into the
  1026. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1027. * leaves the inner idle loop so the newly added timer is taken into
  1028. * account when the CPU goes back to idle and evaluates the timer
  1029. * wheel for the next timer event.
  1030. */
  1031. void wake_up_idle_cpu(int cpu)
  1032. {
  1033. struct rq *rq = cpu_rq(cpu);
  1034. if (cpu == smp_processor_id())
  1035. return;
  1036. /*
  1037. * This is safe, as this function is called with the timer
  1038. * wheel base lock of (cpu) held. When the CPU is on the way
  1039. * to idle and has not yet set rq->curr to idle then it will
  1040. * be serialized on the timer wheel base lock and take the new
  1041. * timer into account automatically.
  1042. */
  1043. if (rq->curr != rq->idle)
  1044. return;
  1045. /*
  1046. * We can set TIF_RESCHED on the idle task of the other CPU
  1047. * lockless. The worst case is that the other CPU runs the
  1048. * idle task through an additional NOOP schedule()
  1049. */
  1050. set_tsk_need_resched(rq->idle);
  1051. /* NEED_RESCHED must be visible before we test polling */
  1052. smp_mb();
  1053. if (!tsk_is_polling(rq->idle))
  1054. smp_send_reschedule(cpu);
  1055. }
  1056. #endif /* CONFIG_NO_HZ */
  1057. static u64 sched_avg_period(void)
  1058. {
  1059. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1060. }
  1061. static void sched_avg_update(struct rq *rq)
  1062. {
  1063. s64 period = sched_avg_period();
  1064. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1065. /*
  1066. * Inline assembly required to prevent the compiler
  1067. * optimising this loop into a divmod call.
  1068. * See __iter_div_u64_rem() for another example of this.
  1069. */
  1070. asm("" : "+rm" (rq->age_stamp));
  1071. rq->age_stamp += period;
  1072. rq->rt_avg /= 2;
  1073. }
  1074. }
  1075. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1076. {
  1077. rq->rt_avg += rt_delta;
  1078. sched_avg_update(rq);
  1079. }
  1080. #else /* !CONFIG_SMP */
  1081. static void resched_task(struct task_struct *p)
  1082. {
  1083. assert_raw_spin_locked(&task_rq(p)->lock);
  1084. set_tsk_need_resched(p);
  1085. }
  1086. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1087. {
  1088. }
  1089. static void sched_avg_update(struct rq *rq)
  1090. {
  1091. }
  1092. #endif /* CONFIG_SMP */
  1093. #if BITS_PER_LONG == 32
  1094. # define WMULT_CONST (~0UL)
  1095. #else
  1096. # define WMULT_CONST (1UL << 32)
  1097. #endif
  1098. #define WMULT_SHIFT 32
  1099. /*
  1100. * Shift right and round:
  1101. */
  1102. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1103. /*
  1104. * delta *= weight / lw
  1105. */
  1106. static unsigned long
  1107. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1108. struct load_weight *lw)
  1109. {
  1110. u64 tmp;
  1111. tmp = (u64)delta_exec * weight;
  1112. if (!lw->inv_weight) {
  1113. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1114. lw->inv_weight = 1;
  1115. else
  1116. lw->inv_weight = WMULT_CONST / lw->weight;
  1117. }
  1118. /*
  1119. * Check whether we'd overflow the 64-bit multiplication:
  1120. */
  1121. if (unlikely(tmp > WMULT_CONST))
  1122. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1123. WMULT_SHIFT/2);
  1124. else
  1125. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1126. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1127. }
  1128. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1129. {
  1130. lw->weight += inc;
  1131. lw->inv_weight = 0;
  1132. }
  1133. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1134. {
  1135. lw->weight -= dec;
  1136. lw->inv_weight = 0;
  1137. }
  1138. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1139. {
  1140. lw->weight = w;
  1141. lw->inv_weight = 0;
  1142. }
  1143. /*
  1144. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1145. * of tasks with abnormal "nice" values across CPUs the contribution that
  1146. * each task makes to its run queue's load is weighted according to its
  1147. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1148. * scaled version of the new time slice allocation that they receive on time
  1149. * slice expiry etc.
  1150. */
  1151. #define WEIGHT_IDLEPRIO 3
  1152. #define WMULT_IDLEPRIO 1431655765
  1153. /*
  1154. * Nice levels are multiplicative, with a gentle 10% change for every
  1155. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1156. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1157. * that remained on nice 0.
  1158. *
  1159. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1160. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1161. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1162. * If a task goes up by ~10% and another task goes down by ~10% then
  1163. * the relative distance between them is ~25%.)
  1164. */
  1165. static const int prio_to_weight[40] = {
  1166. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1167. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1168. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1169. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1170. /* 0 */ 1024, 820, 655, 526, 423,
  1171. /* 5 */ 335, 272, 215, 172, 137,
  1172. /* 10 */ 110, 87, 70, 56, 45,
  1173. /* 15 */ 36, 29, 23, 18, 15,
  1174. };
  1175. /*
  1176. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1177. *
  1178. * In cases where the weight does not change often, we can use the
  1179. * precalculated inverse to speed up arithmetics by turning divisions
  1180. * into multiplications:
  1181. */
  1182. static const u32 prio_to_wmult[40] = {
  1183. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1184. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1185. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1186. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1187. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1188. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1189. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1190. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1191. };
  1192. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1193. enum cpuacct_stat_index {
  1194. CPUACCT_STAT_USER, /* ... user mode */
  1195. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1196. CPUACCT_STAT_NSTATS,
  1197. };
  1198. #ifdef CONFIG_CGROUP_CPUACCT
  1199. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1200. static void cpuacct_update_stats(struct task_struct *tsk,
  1201. enum cpuacct_stat_index idx, cputime_t val);
  1202. #else
  1203. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1204. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val) {}
  1206. #endif
  1207. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1208. {
  1209. update_load_add(&rq->load, load);
  1210. }
  1211. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_sub(&rq->load, load);
  1214. }
  1215. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1216. typedef int (*tg_visitor)(struct task_group *, void *);
  1217. /*
  1218. * Iterate the full tree, calling @down when first entering a node and @up when
  1219. * leaving it for the final time.
  1220. */
  1221. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1222. {
  1223. struct task_group *parent, *child;
  1224. int ret;
  1225. rcu_read_lock();
  1226. parent = &root_task_group;
  1227. down:
  1228. ret = (*down)(parent, data);
  1229. if (ret)
  1230. goto out_unlock;
  1231. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1232. parent = child;
  1233. goto down;
  1234. up:
  1235. continue;
  1236. }
  1237. ret = (*up)(parent, data);
  1238. if (ret)
  1239. goto out_unlock;
  1240. child = parent;
  1241. parent = parent->parent;
  1242. if (parent)
  1243. goto up;
  1244. out_unlock:
  1245. rcu_read_unlock();
  1246. return ret;
  1247. }
  1248. static int tg_nop(struct task_group *tg, void *data)
  1249. {
  1250. return 0;
  1251. }
  1252. #endif
  1253. #ifdef CONFIG_SMP
  1254. /* Used instead of source_load when we know the type == 0 */
  1255. static unsigned long weighted_cpuload(const int cpu)
  1256. {
  1257. return cpu_rq(cpu)->load.weight;
  1258. }
  1259. /*
  1260. * Return a low guess at the load of a migration-source cpu weighted
  1261. * according to the scheduling class and "nice" value.
  1262. *
  1263. * We want to under-estimate the load of migration sources, to
  1264. * balance conservatively.
  1265. */
  1266. static unsigned long source_load(int cpu, int type)
  1267. {
  1268. struct rq *rq = cpu_rq(cpu);
  1269. unsigned long total = weighted_cpuload(cpu);
  1270. if (type == 0 || !sched_feat(LB_BIAS))
  1271. return total;
  1272. return min(rq->cpu_load[type-1], total);
  1273. }
  1274. /*
  1275. * Return a high guess at the load of a migration-target cpu weighted
  1276. * according to the scheduling class and "nice" value.
  1277. */
  1278. static unsigned long target_load(int cpu, int type)
  1279. {
  1280. struct rq *rq = cpu_rq(cpu);
  1281. unsigned long total = weighted_cpuload(cpu);
  1282. if (type == 0 || !sched_feat(LB_BIAS))
  1283. return total;
  1284. return max(rq->cpu_load[type-1], total);
  1285. }
  1286. static unsigned long power_of(int cpu)
  1287. {
  1288. return cpu_rq(cpu)->cpu_power;
  1289. }
  1290. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1291. static unsigned long cpu_avg_load_per_task(int cpu)
  1292. {
  1293. struct rq *rq = cpu_rq(cpu);
  1294. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1295. if (nr_running)
  1296. rq->avg_load_per_task = rq->load.weight / nr_running;
  1297. else
  1298. rq->avg_load_per_task = 0;
  1299. return rq->avg_load_per_task;
  1300. }
  1301. #ifdef CONFIG_FAIR_GROUP_SCHED
  1302. /*
  1303. * Compute the cpu's hierarchical load factor for each task group.
  1304. * This needs to be done in a top-down fashion because the load of a child
  1305. * group is a fraction of its parents load.
  1306. */
  1307. static int tg_load_down(struct task_group *tg, void *data)
  1308. {
  1309. unsigned long load;
  1310. long cpu = (long)data;
  1311. if (!tg->parent) {
  1312. load = cpu_rq(cpu)->load.weight;
  1313. } else {
  1314. load = tg->parent->cfs_rq[cpu]->h_load;
  1315. load *= tg->se[cpu]->load.weight;
  1316. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1317. }
  1318. tg->cfs_rq[cpu]->h_load = load;
  1319. return 0;
  1320. }
  1321. static void update_h_load(long cpu)
  1322. {
  1323. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1324. }
  1325. #endif
  1326. #ifdef CONFIG_PREEMPT
  1327. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1328. /*
  1329. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1330. * way at the expense of forcing extra atomic operations in all
  1331. * invocations. This assures that the double_lock is acquired using the
  1332. * same underlying policy as the spinlock_t on this architecture, which
  1333. * reduces latency compared to the unfair variant below. However, it
  1334. * also adds more overhead and therefore may reduce throughput.
  1335. */
  1336. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1337. __releases(this_rq->lock)
  1338. __acquires(busiest->lock)
  1339. __acquires(this_rq->lock)
  1340. {
  1341. raw_spin_unlock(&this_rq->lock);
  1342. double_rq_lock(this_rq, busiest);
  1343. return 1;
  1344. }
  1345. #else
  1346. /*
  1347. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1348. * latency by eliminating extra atomic operations when the locks are
  1349. * already in proper order on entry. This favors lower cpu-ids and will
  1350. * grant the double lock to lower cpus over higher ids under contention,
  1351. * regardless of entry order into the function.
  1352. */
  1353. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1354. __releases(this_rq->lock)
  1355. __acquires(busiest->lock)
  1356. __acquires(this_rq->lock)
  1357. {
  1358. int ret = 0;
  1359. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1360. if (busiest < this_rq) {
  1361. raw_spin_unlock(&this_rq->lock);
  1362. raw_spin_lock(&busiest->lock);
  1363. raw_spin_lock_nested(&this_rq->lock,
  1364. SINGLE_DEPTH_NESTING);
  1365. ret = 1;
  1366. } else
  1367. raw_spin_lock_nested(&busiest->lock,
  1368. SINGLE_DEPTH_NESTING);
  1369. }
  1370. return ret;
  1371. }
  1372. #endif /* CONFIG_PREEMPT */
  1373. /*
  1374. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1375. */
  1376. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1377. {
  1378. if (unlikely(!irqs_disabled())) {
  1379. /* printk() doesn't work good under rq->lock */
  1380. raw_spin_unlock(&this_rq->lock);
  1381. BUG_ON(1);
  1382. }
  1383. return _double_lock_balance(this_rq, busiest);
  1384. }
  1385. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1386. __releases(busiest->lock)
  1387. {
  1388. raw_spin_unlock(&busiest->lock);
  1389. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1390. }
  1391. /*
  1392. * double_rq_lock - safely lock two runqueues
  1393. *
  1394. * Note this does not disable interrupts like task_rq_lock,
  1395. * you need to do so manually before calling.
  1396. */
  1397. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1398. __acquires(rq1->lock)
  1399. __acquires(rq2->lock)
  1400. {
  1401. BUG_ON(!irqs_disabled());
  1402. if (rq1 == rq2) {
  1403. raw_spin_lock(&rq1->lock);
  1404. __acquire(rq2->lock); /* Fake it out ;) */
  1405. } else {
  1406. if (rq1 < rq2) {
  1407. raw_spin_lock(&rq1->lock);
  1408. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1409. } else {
  1410. raw_spin_lock(&rq2->lock);
  1411. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1412. }
  1413. }
  1414. }
  1415. /*
  1416. * double_rq_unlock - safely unlock two runqueues
  1417. *
  1418. * Note this does not restore interrupts like task_rq_unlock,
  1419. * you need to do so manually after calling.
  1420. */
  1421. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1422. __releases(rq1->lock)
  1423. __releases(rq2->lock)
  1424. {
  1425. raw_spin_unlock(&rq1->lock);
  1426. if (rq1 != rq2)
  1427. raw_spin_unlock(&rq2->lock);
  1428. else
  1429. __release(rq2->lock);
  1430. }
  1431. #else /* CONFIG_SMP */
  1432. /*
  1433. * double_rq_lock - safely lock two runqueues
  1434. *
  1435. * Note this does not disable interrupts like task_rq_lock,
  1436. * you need to do so manually before calling.
  1437. */
  1438. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1439. __acquires(rq1->lock)
  1440. __acquires(rq2->lock)
  1441. {
  1442. BUG_ON(!irqs_disabled());
  1443. BUG_ON(rq1 != rq2);
  1444. raw_spin_lock(&rq1->lock);
  1445. __acquire(rq2->lock); /* Fake it out ;) */
  1446. }
  1447. /*
  1448. * double_rq_unlock - safely unlock two runqueues
  1449. *
  1450. * Note this does not restore interrupts like task_rq_unlock,
  1451. * you need to do so manually after calling.
  1452. */
  1453. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1454. __releases(rq1->lock)
  1455. __releases(rq2->lock)
  1456. {
  1457. BUG_ON(rq1 != rq2);
  1458. raw_spin_unlock(&rq1->lock);
  1459. __release(rq2->lock);
  1460. }
  1461. #endif
  1462. static void calc_load_account_idle(struct rq *this_rq);
  1463. static void update_sysctl(void);
  1464. static int get_update_sysctl_factor(void);
  1465. static void update_cpu_load(struct rq *this_rq);
  1466. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1467. {
  1468. set_task_rq(p, cpu);
  1469. #ifdef CONFIG_SMP
  1470. /*
  1471. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1472. * successfuly executed on another CPU. We must ensure that updates of
  1473. * per-task data have been completed by this moment.
  1474. */
  1475. smp_wmb();
  1476. task_thread_info(p)->cpu = cpu;
  1477. #endif
  1478. }
  1479. static const struct sched_class rt_sched_class;
  1480. #define sched_class_highest (&stop_sched_class)
  1481. #define for_each_class(class) \
  1482. for (class = sched_class_highest; class; class = class->next)
  1483. #include "sched_stats.h"
  1484. static void inc_nr_running(struct rq *rq)
  1485. {
  1486. rq->nr_running++;
  1487. }
  1488. static void dec_nr_running(struct rq *rq)
  1489. {
  1490. rq->nr_running--;
  1491. }
  1492. static void set_load_weight(struct task_struct *p)
  1493. {
  1494. /*
  1495. * SCHED_IDLE tasks get minimal weight:
  1496. */
  1497. if (p->policy == SCHED_IDLE) {
  1498. p->se.load.weight = WEIGHT_IDLEPRIO;
  1499. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1500. return;
  1501. }
  1502. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1503. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1504. }
  1505. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1506. {
  1507. update_rq_clock(rq);
  1508. sched_info_queued(p);
  1509. p->sched_class->enqueue_task(rq, p, flags);
  1510. }
  1511. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1512. {
  1513. update_rq_clock(rq);
  1514. sched_info_dequeued(p);
  1515. p->sched_class->dequeue_task(rq, p, flags);
  1516. }
  1517. /*
  1518. * activate_task - move a task to the runqueue.
  1519. */
  1520. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1521. {
  1522. if (task_contributes_to_load(p))
  1523. rq->nr_uninterruptible--;
  1524. enqueue_task(rq, p, flags);
  1525. inc_nr_running(rq);
  1526. }
  1527. /*
  1528. * deactivate_task - remove a task from the runqueue.
  1529. */
  1530. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1531. {
  1532. if (task_contributes_to_load(p))
  1533. rq->nr_uninterruptible++;
  1534. dequeue_task(rq, p, flags);
  1535. dec_nr_running(rq);
  1536. }
  1537. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1538. /*
  1539. * There are no locks covering percpu hardirq/softirq time.
  1540. * They are only modified in account_system_vtime, on corresponding CPU
  1541. * with interrupts disabled. So, writes are safe.
  1542. * They are read and saved off onto struct rq in update_rq_clock().
  1543. * This may result in other CPU reading this CPU's irq time and can
  1544. * race with irq/account_system_vtime on this CPU. We would either get old
  1545. * or new value with a side effect of accounting a slice of irq time to wrong
  1546. * task when irq is in progress while we read rq->clock. That is a worthy
  1547. * compromise in place of having locks on each irq in account_system_time.
  1548. */
  1549. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1550. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1551. static DEFINE_PER_CPU(u64, irq_start_time);
  1552. static int sched_clock_irqtime;
  1553. void enable_sched_clock_irqtime(void)
  1554. {
  1555. sched_clock_irqtime = 1;
  1556. }
  1557. void disable_sched_clock_irqtime(void)
  1558. {
  1559. sched_clock_irqtime = 0;
  1560. }
  1561. #ifndef CONFIG_64BIT
  1562. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1563. static inline void irq_time_write_begin(void)
  1564. {
  1565. __this_cpu_inc(irq_time_seq.sequence);
  1566. smp_wmb();
  1567. }
  1568. static inline void irq_time_write_end(void)
  1569. {
  1570. smp_wmb();
  1571. __this_cpu_inc(irq_time_seq.sequence);
  1572. }
  1573. static inline u64 irq_time_read(int cpu)
  1574. {
  1575. u64 irq_time;
  1576. unsigned seq;
  1577. do {
  1578. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1579. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1580. per_cpu(cpu_hardirq_time, cpu);
  1581. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1582. return irq_time;
  1583. }
  1584. #else /* CONFIG_64BIT */
  1585. static inline void irq_time_write_begin(void)
  1586. {
  1587. }
  1588. static inline void irq_time_write_end(void)
  1589. {
  1590. }
  1591. static inline u64 irq_time_read(int cpu)
  1592. {
  1593. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1594. }
  1595. #endif /* CONFIG_64BIT */
  1596. /*
  1597. * Called before incrementing preempt_count on {soft,}irq_enter
  1598. * and before decrementing preempt_count on {soft,}irq_exit.
  1599. */
  1600. void account_system_vtime(struct task_struct *curr)
  1601. {
  1602. unsigned long flags;
  1603. s64 delta;
  1604. int cpu;
  1605. if (!sched_clock_irqtime)
  1606. return;
  1607. local_irq_save(flags);
  1608. cpu = smp_processor_id();
  1609. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1610. __this_cpu_add(irq_start_time, delta);
  1611. irq_time_write_begin();
  1612. /*
  1613. * We do not account for softirq time from ksoftirqd here.
  1614. * We want to continue accounting softirq time to ksoftirqd thread
  1615. * in that case, so as not to confuse scheduler with a special task
  1616. * that do not consume any time, but still wants to run.
  1617. */
  1618. if (hardirq_count())
  1619. __this_cpu_add(cpu_hardirq_time, delta);
  1620. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1621. __this_cpu_add(cpu_softirq_time, delta);
  1622. irq_time_write_end();
  1623. local_irq_restore(flags);
  1624. }
  1625. EXPORT_SYMBOL_GPL(account_system_vtime);
  1626. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1627. {
  1628. s64 irq_delta;
  1629. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1630. /*
  1631. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1632. * this case when a previous update_rq_clock() happened inside a
  1633. * {soft,}irq region.
  1634. *
  1635. * When this happens, we stop ->clock_task and only update the
  1636. * prev_irq_time stamp to account for the part that fit, so that a next
  1637. * update will consume the rest. This ensures ->clock_task is
  1638. * monotonic.
  1639. *
  1640. * It does however cause some slight miss-attribution of {soft,}irq
  1641. * time, a more accurate solution would be to update the irq_time using
  1642. * the current rq->clock timestamp, except that would require using
  1643. * atomic ops.
  1644. */
  1645. if (irq_delta > delta)
  1646. irq_delta = delta;
  1647. rq->prev_irq_time += irq_delta;
  1648. delta -= irq_delta;
  1649. rq->clock_task += delta;
  1650. if (irq_delta && sched_feat(NONIRQ_POWER))
  1651. sched_rt_avg_update(rq, irq_delta);
  1652. }
  1653. static int irqtime_account_hi_update(void)
  1654. {
  1655. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1656. unsigned long flags;
  1657. u64 latest_ns;
  1658. int ret = 0;
  1659. local_irq_save(flags);
  1660. latest_ns = this_cpu_read(cpu_hardirq_time);
  1661. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1662. ret = 1;
  1663. local_irq_restore(flags);
  1664. return ret;
  1665. }
  1666. static int irqtime_account_si_update(void)
  1667. {
  1668. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1669. unsigned long flags;
  1670. u64 latest_ns;
  1671. int ret = 0;
  1672. local_irq_save(flags);
  1673. latest_ns = this_cpu_read(cpu_softirq_time);
  1674. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1675. ret = 1;
  1676. local_irq_restore(flags);
  1677. return ret;
  1678. }
  1679. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1680. #define sched_clock_irqtime (0)
  1681. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1682. {
  1683. rq->clock_task += delta;
  1684. }
  1685. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1686. #include "sched_idletask.c"
  1687. #include "sched_fair.c"
  1688. #include "sched_rt.c"
  1689. #include "sched_autogroup.c"
  1690. #include "sched_stoptask.c"
  1691. #ifdef CONFIG_SCHED_DEBUG
  1692. # include "sched_debug.c"
  1693. #endif
  1694. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1695. {
  1696. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1697. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1698. if (stop) {
  1699. /*
  1700. * Make it appear like a SCHED_FIFO task, its something
  1701. * userspace knows about and won't get confused about.
  1702. *
  1703. * Also, it will make PI more or less work without too
  1704. * much confusion -- but then, stop work should not
  1705. * rely on PI working anyway.
  1706. */
  1707. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1708. stop->sched_class = &stop_sched_class;
  1709. }
  1710. cpu_rq(cpu)->stop = stop;
  1711. if (old_stop) {
  1712. /*
  1713. * Reset it back to a normal scheduling class so that
  1714. * it can die in pieces.
  1715. */
  1716. old_stop->sched_class = &rt_sched_class;
  1717. }
  1718. }
  1719. /*
  1720. * __normal_prio - return the priority that is based on the static prio
  1721. */
  1722. static inline int __normal_prio(struct task_struct *p)
  1723. {
  1724. return p->static_prio;
  1725. }
  1726. /*
  1727. * Calculate the expected normal priority: i.e. priority
  1728. * without taking RT-inheritance into account. Might be
  1729. * boosted by interactivity modifiers. Changes upon fork,
  1730. * setprio syscalls, and whenever the interactivity
  1731. * estimator recalculates.
  1732. */
  1733. static inline int normal_prio(struct task_struct *p)
  1734. {
  1735. int prio;
  1736. if (task_has_rt_policy(p))
  1737. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1738. else
  1739. prio = __normal_prio(p);
  1740. return prio;
  1741. }
  1742. /*
  1743. * Calculate the current priority, i.e. the priority
  1744. * taken into account by the scheduler. This value might
  1745. * be boosted by RT tasks, or might be boosted by
  1746. * interactivity modifiers. Will be RT if the task got
  1747. * RT-boosted. If not then it returns p->normal_prio.
  1748. */
  1749. static int effective_prio(struct task_struct *p)
  1750. {
  1751. p->normal_prio = normal_prio(p);
  1752. /*
  1753. * If we are RT tasks or we were boosted to RT priority,
  1754. * keep the priority unchanged. Otherwise, update priority
  1755. * to the normal priority:
  1756. */
  1757. if (!rt_prio(p->prio))
  1758. return p->normal_prio;
  1759. return p->prio;
  1760. }
  1761. /**
  1762. * task_curr - is this task currently executing on a CPU?
  1763. * @p: the task in question.
  1764. */
  1765. inline int task_curr(const struct task_struct *p)
  1766. {
  1767. return cpu_curr(task_cpu(p)) == p;
  1768. }
  1769. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1770. const struct sched_class *prev_class,
  1771. int oldprio)
  1772. {
  1773. if (prev_class != p->sched_class) {
  1774. if (prev_class->switched_from)
  1775. prev_class->switched_from(rq, p);
  1776. p->sched_class->switched_to(rq, p);
  1777. } else if (oldprio != p->prio)
  1778. p->sched_class->prio_changed(rq, p, oldprio);
  1779. }
  1780. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1781. {
  1782. const struct sched_class *class;
  1783. if (p->sched_class == rq->curr->sched_class) {
  1784. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1785. } else {
  1786. for_each_class(class) {
  1787. if (class == rq->curr->sched_class)
  1788. break;
  1789. if (class == p->sched_class) {
  1790. resched_task(rq->curr);
  1791. break;
  1792. }
  1793. }
  1794. }
  1795. /*
  1796. * A queue event has occurred, and we're going to schedule. In
  1797. * this case, we can save a useless back to back clock update.
  1798. */
  1799. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1800. rq->skip_clock_update = 1;
  1801. }
  1802. #ifdef CONFIG_SMP
  1803. /*
  1804. * Is this task likely cache-hot:
  1805. */
  1806. static int
  1807. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1808. {
  1809. s64 delta;
  1810. if (p->sched_class != &fair_sched_class)
  1811. return 0;
  1812. if (unlikely(p->policy == SCHED_IDLE))
  1813. return 0;
  1814. /*
  1815. * Buddy candidates are cache hot:
  1816. */
  1817. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1818. (&p->se == cfs_rq_of(&p->se)->next ||
  1819. &p->se == cfs_rq_of(&p->se)->last))
  1820. return 1;
  1821. if (sysctl_sched_migration_cost == -1)
  1822. return 1;
  1823. if (sysctl_sched_migration_cost == 0)
  1824. return 0;
  1825. delta = now - p->se.exec_start;
  1826. return delta < (s64)sysctl_sched_migration_cost;
  1827. }
  1828. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1829. {
  1830. #ifdef CONFIG_SCHED_DEBUG
  1831. /*
  1832. * We should never call set_task_cpu() on a blocked task,
  1833. * ttwu() will sort out the placement.
  1834. */
  1835. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1836. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1837. #ifdef CONFIG_LOCKDEP
  1838. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1839. lockdep_is_held(&task_rq(p)->lock)));
  1840. #endif
  1841. #endif
  1842. trace_sched_migrate_task(p, new_cpu);
  1843. if (task_cpu(p) != new_cpu) {
  1844. p->se.nr_migrations++;
  1845. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1846. }
  1847. __set_task_cpu(p, new_cpu);
  1848. }
  1849. struct migration_arg {
  1850. struct task_struct *task;
  1851. int dest_cpu;
  1852. };
  1853. static int migration_cpu_stop(void *data);
  1854. /*
  1855. * wait_task_inactive - wait for a thread to unschedule.
  1856. *
  1857. * If @match_state is nonzero, it's the @p->state value just checked and
  1858. * not expected to change. If it changes, i.e. @p might have woken up,
  1859. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1860. * we return a positive number (its total switch count). If a second call
  1861. * a short while later returns the same number, the caller can be sure that
  1862. * @p has remained unscheduled the whole time.
  1863. *
  1864. * The caller must ensure that the task *will* unschedule sometime soon,
  1865. * else this function might spin for a *long* time. This function can't
  1866. * be called with interrupts off, or it may introduce deadlock with
  1867. * smp_call_function() if an IPI is sent by the same process we are
  1868. * waiting to become inactive.
  1869. */
  1870. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1871. {
  1872. unsigned long flags;
  1873. int running, on_rq;
  1874. unsigned long ncsw;
  1875. struct rq *rq;
  1876. for (;;) {
  1877. /*
  1878. * We do the initial early heuristics without holding
  1879. * any task-queue locks at all. We'll only try to get
  1880. * the runqueue lock when things look like they will
  1881. * work out!
  1882. */
  1883. rq = task_rq(p);
  1884. /*
  1885. * If the task is actively running on another CPU
  1886. * still, just relax and busy-wait without holding
  1887. * any locks.
  1888. *
  1889. * NOTE! Since we don't hold any locks, it's not
  1890. * even sure that "rq" stays as the right runqueue!
  1891. * But we don't care, since "task_running()" will
  1892. * return false if the runqueue has changed and p
  1893. * is actually now running somewhere else!
  1894. */
  1895. while (task_running(rq, p)) {
  1896. if (match_state && unlikely(p->state != match_state))
  1897. return 0;
  1898. cpu_relax();
  1899. }
  1900. /*
  1901. * Ok, time to look more closely! We need the rq
  1902. * lock now, to be *sure*. If we're wrong, we'll
  1903. * just go back and repeat.
  1904. */
  1905. rq = task_rq_lock(p, &flags);
  1906. trace_sched_wait_task(p);
  1907. running = task_running(rq, p);
  1908. on_rq = p->on_rq;
  1909. ncsw = 0;
  1910. if (!match_state || p->state == match_state)
  1911. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1912. task_rq_unlock(rq, p, &flags);
  1913. /*
  1914. * If it changed from the expected state, bail out now.
  1915. */
  1916. if (unlikely(!ncsw))
  1917. break;
  1918. /*
  1919. * Was it really running after all now that we
  1920. * checked with the proper locks actually held?
  1921. *
  1922. * Oops. Go back and try again..
  1923. */
  1924. if (unlikely(running)) {
  1925. cpu_relax();
  1926. continue;
  1927. }
  1928. /*
  1929. * It's not enough that it's not actively running,
  1930. * it must be off the runqueue _entirely_, and not
  1931. * preempted!
  1932. *
  1933. * So if it was still runnable (but just not actively
  1934. * running right now), it's preempted, and we should
  1935. * yield - it could be a while.
  1936. */
  1937. if (unlikely(on_rq)) {
  1938. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1939. set_current_state(TASK_UNINTERRUPTIBLE);
  1940. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1941. continue;
  1942. }
  1943. /*
  1944. * Ahh, all good. It wasn't running, and it wasn't
  1945. * runnable, which means that it will never become
  1946. * running in the future either. We're all done!
  1947. */
  1948. break;
  1949. }
  1950. return ncsw;
  1951. }
  1952. /***
  1953. * kick_process - kick a running thread to enter/exit the kernel
  1954. * @p: the to-be-kicked thread
  1955. *
  1956. * Cause a process which is running on another CPU to enter
  1957. * kernel-mode, without any delay. (to get signals handled.)
  1958. *
  1959. * NOTE: this function doesn't have to take the runqueue lock,
  1960. * because all it wants to ensure is that the remote task enters
  1961. * the kernel. If the IPI races and the task has been migrated
  1962. * to another CPU then no harm is done and the purpose has been
  1963. * achieved as well.
  1964. */
  1965. void kick_process(struct task_struct *p)
  1966. {
  1967. int cpu;
  1968. preempt_disable();
  1969. cpu = task_cpu(p);
  1970. if ((cpu != smp_processor_id()) && task_curr(p))
  1971. smp_send_reschedule(cpu);
  1972. preempt_enable();
  1973. }
  1974. EXPORT_SYMBOL_GPL(kick_process);
  1975. #endif /* CONFIG_SMP */
  1976. #ifdef CONFIG_SMP
  1977. /*
  1978. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1979. */
  1980. static int select_fallback_rq(int cpu, struct task_struct *p)
  1981. {
  1982. int dest_cpu;
  1983. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1984. /* Look for allowed, online CPU in same node. */
  1985. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1986. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1987. return dest_cpu;
  1988. /* Any allowed, online CPU? */
  1989. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1990. if (dest_cpu < nr_cpu_ids)
  1991. return dest_cpu;
  1992. /* No more Mr. Nice Guy. */
  1993. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1994. /*
  1995. * Don't tell them about moving exiting tasks or
  1996. * kernel threads (both mm NULL), since they never
  1997. * leave kernel.
  1998. */
  1999. if (p->mm && printk_ratelimit()) {
  2000. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2001. task_pid_nr(p), p->comm, cpu);
  2002. }
  2003. return dest_cpu;
  2004. }
  2005. /*
  2006. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2007. */
  2008. static inline
  2009. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2010. {
  2011. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2012. /*
  2013. * In order not to call set_task_cpu() on a blocking task we need
  2014. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2015. * cpu.
  2016. *
  2017. * Since this is common to all placement strategies, this lives here.
  2018. *
  2019. * [ this allows ->select_task() to simply return task_cpu(p) and
  2020. * not worry about this generic constraint ]
  2021. */
  2022. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2023. !cpu_online(cpu)))
  2024. cpu = select_fallback_rq(task_cpu(p), p);
  2025. return cpu;
  2026. }
  2027. static void update_avg(u64 *avg, u64 sample)
  2028. {
  2029. s64 diff = sample - *avg;
  2030. *avg += diff >> 3;
  2031. }
  2032. #endif
  2033. static void
  2034. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2035. {
  2036. #ifdef CONFIG_SCHEDSTATS
  2037. struct rq *rq = this_rq();
  2038. #ifdef CONFIG_SMP
  2039. int this_cpu = smp_processor_id();
  2040. if (cpu == this_cpu) {
  2041. schedstat_inc(rq, ttwu_local);
  2042. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2043. } else {
  2044. struct sched_domain *sd;
  2045. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2046. rcu_read_lock();
  2047. for_each_domain(this_cpu, sd) {
  2048. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2049. schedstat_inc(sd, ttwu_wake_remote);
  2050. break;
  2051. }
  2052. }
  2053. rcu_read_unlock();
  2054. }
  2055. #endif /* CONFIG_SMP */
  2056. schedstat_inc(rq, ttwu_count);
  2057. schedstat_inc(p, se.statistics.nr_wakeups);
  2058. if (wake_flags & WF_SYNC)
  2059. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2060. if (cpu != task_cpu(p))
  2061. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2062. #endif /* CONFIG_SCHEDSTATS */
  2063. }
  2064. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2065. {
  2066. activate_task(rq, p, en_flags);
  2067. p->on_rq = 1;
  2068. /* if a worker is waking up, notify workqueue */
  2069. if (p->flags & PF_WQ_WORKER)
  2070. wq_worker_waking_up(p, cpu_of(rq));
  2071. }
  2072. /*
  2073. * Mark the task runnable and perform wakeup-preemption.
  2074. */
  2075. static void
  2076. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2077. {
  2078. trace_sched_wakeup(p, true);
  2079. check_preempt_curr(rq, p, wake_flags);
  2080. p->state = TASK_RUNNING;
  2081. #ifdef CONFIG_SMP
  2082. if (p->sched_class->task_woken)
  2083. p->sched_class->task_woken(rq, p);
  2084. if (unlikely(rq->idle_stamp)) {
  2085. u64 delta = rq->clock - rq->idle_stamp;
  2086. u64 max = 2*sysctl_sched_migration_cost;
  2087. if (delta > max)
  2088. rq->avg_idle = max;
  2089. else
  2090. update_avg(&rq->avg_idle, delta);
  2091. rq->idle_stamp = 0;
  2092. }
  2093. #endif
  2094. }
  2095. static void
  2096. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2097. {
  2098. #ifdef CONFIG_SMP
  2099. if (p->sched_contributes_to_load)
  2100. rq->nr_uninterruptible--;
  2101. #endif
  2102. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2103. ttwu_do_wakeup(rq, p, wake_flags);
  2104. }
  2105. /*
  2106. * Called in case the task @p isn't fully descheduled from its runqueue,
  2107. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2108. * since all we need to do is flip p->state to TASK_RUNNING, since
  2109. * the task is still ->on_rq.
  2110. */
  2111. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2112. {
  2113. struct rq *rq;
  2114. int ret = 0;
  2115. rq = __task_rq_lock(p);
  2116. if (p->on_rq) {
  2117. ttwu_do_wakeup(rq, p, wake_flags);
  2118. ret = 1;
  2119. }
  2120. __task_rq_unlock(rq);
  2121. return ret;
  2122. }
  2123. #ifdef CONFIG_SMP
  2124. static void sched_ttwu_pending(void)
  2125. {
  2126. struct rq *rq = this_rq();
  2127. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2128. if (!list)
  2129. return;
  2130. raw_spin_lock(&rq->lock);
  2131. while (list) {
  2132. struct task_struct *p = list;
  2133. list = list->wake_entry;
  2134. ttwu_do_activate(rq, p, 0);
  2135. }
  2136. raw_spin_unlock(&rq->lock);
  2137. }
  2138. void scheduler_ipi(void)
  2139. {
  2140. sched_ttwu_pending();
  2141. }
  2142. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2143. {
  2144. struct rq *rq = cpu_rq(cpu);
  2145. struct task_struct *next = rq->wake_list;
  2146. for (;;) {
  2147. struct task_struct *old = next;
  2148. p->wake_entry = next;
  2149. next = cmpxchg(&rq->wake_list, old, p);
  2150. if (next == old)
  2151. break;
  2152. }
  2153. if (!next)
  2154. smp_send_reschedule(cpu);
  2155. }
  2156. #endif
  2157. static void ttwu_queue(struct task_struct *p, int cpu)
  2158. {
  2159. struct rq *rq = cpu_rq(cpu);
  2160. #if defined(CONFIG_SMP)
  2161. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2162. ttwu_queue_remote(p, cpu);
  2163. return;
  2164. }
  2165. #endif
  2166. raw_spin_lock(&rq->lock);
  2167. ttwu_do_activate(rq, p, 0);
  2168. raw_spin_unlock(&rq->lock);
  2169. }
  2170. /**
  2171. * try_to_wake_up - wake up a thread
  2172. * @p: the thread to be awakened
  2173. * @state: the mask of task states that can be woken
  2174. * @wake_flags: wake modifier flags (WF_*)
  2175. *
  2176. * Put it on the run-queue if it's not already there. The "current"
  2177. * thread is always on the run-queue (except when the actual
  2178. * re-schedule is in progress), and as such you're allowed to do
  2179. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2180. * runnable without the overhead of this.
  2181. *
  2182. * Returns %true if @p was woken up, %false if it was already running
  2183. * or @state didn't match @p's state.
  2184. */
  2185. static int
  2186. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2187. {
  2188. unsigned long flags;
  2189. int cpu, success = 0;
  2190. smp_wmb();
  2191. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2192. if (!(p->state & state))
  2193. goto out;
  2194. success = 1; /* we're going to change ->state */
  2195. cpu = task_cpu(p);
  2196. if (p->on_rq && ttwu_remote(p, wake_flags))
  2197. goto stat;
  2198. #ifdef CONFIG_SMP
  2199. /*
  2200. * If the owning (remote) cpu is still in the middle of schedule() with
  2201. * this task as prev, wait until its done referencing the task.
  2202. */
  2203. while (p->on_cpu) {
  2204. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2205. /*
  2206. * If called from interrupt context we could have landed in the
  2207. * middle of schedule(), in this case we should take care not
  2208. * to spin on ->on_cpu if p is current, since that would
  2209. * deadlock.
  2210. */
  2211. if (p == current) {
  2212. ttwu_queue(p, cpu);
  2213. goto stat;
  2214. }
  2215. #endif
  2216. cpu_relax();
  2217. }
  2218. /*
  2219. * Pairs with the smp_wmb() in finish_lock_switch().
  2220. */
  2221. smp_rmb();
  2222. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2223. p->state = TASK_WAKING;
  2224. if (p->sched_class->task_waking)
  2225. p->sched_class->task_waking(p);
  2226. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2227. if (task_cpu(p) != cpu)
  2228. set_task_cpu(p, cpu);
  2229. #endif /* CONFIG_SMP */
  2230. ttwu_queue(p, cpu);
  2231. stat:
  2232. ttwu_stat(p, cpu, wake_flags);
  2233. out:
  2234. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2235. return success;
  2236. }
  2237. /**
  2238. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2239. * @p: the thread to be awakened
  2240. *
  2241. * Put @p on the run-queue if it's not already there. The caller must
  2242. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2243. * the current task.
  2244. */
  2245. static void try_to_wake_up_local(struct task_struct *p)
  2246. {
  2247. struct rq *rq = task_rq(p);
  2248. BUG_ON(rq != this_rq());
  2249. BUG_ON(p == current);
  2250. lockdep_assert_held(&rq->lock);
  2251. if (!raw_spin_trylock(&p->pi_lock)) {
  2252. raw_spin_unlock(&rq->lock);
  2253. raw_spin_lock(&p->pi_lock);
  2254. raw_spin_lock(&rq->lock);
  2255. }
  2256. if (!(p->state & TASK_NORMAL))
  2257. goto out;
  2258. if (!p->on_rq)
  2259. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2260. ttwu_do_wakeup(rq, p, 0);
  2261. ttwu_stat(p, smp_processor_id(), 0);
  2262. out:
  2263. raw_spin_unlock(&p->pi_lock);
  2264. }
  2265. /**
  2266. * wake_up_process - Wake up a specific process
  2267. * @p: The process to be woken up.
  2268. *
  2269. * Attempt to wake up the nominated process and move it to the set of runnable
  2270. * processes. Returns 1 if the process was woken up, 0 if it was already
  2271. * running.
  2272. *
  2273. * It may be assumed that this function implies a write memory barrier before
  2274. * changing the task state if and only if any tasks are woken up.
  2275. */
  2276. int wake_up_process(struct task_struct *p)
  2277. {
  2278. return try_to_wake_up(p, TASK_ALL, 0);
  2279. }
  2280. EXPORT_SYMBOL(wake_up_process);
  2281. int wake_up_state(struct task_struct *p, unsigned int state)
  2282. {
  2283. return try_to_wake_up(p, state, 0);
  2284. }
  2285. /*
  2286. * Perform scheduler related setup for a newly forked process p.
  2287. * p is forked by current.
  2288. *
  2289. * __sched_fork() is basic setup used by init_idle() too:
  2290. */
  2291. static void __sched_fork(struct task_struct *p)
  2292. {
  2293. p->on_rq = 0;
  2294. p->se.on_rq = 0;
  2295. p->se.exec_start = 0;
  2296. p->se.sum_exec_runtime = 0;
  2297. p->se.prev_sum_exec_runtime = 0;
  2298. p->se.nr_migrations = 0;
  2299. p->se.vruntime = 0;
  2300. INIT_LIST_HEAD(&p->se.group_node);
  2301. #ifdef CONFIG_SCHEDSTATS
  2302. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2303. #endif
  2304. INIT_LIST_HEAD(&p->rt.run_list);
  2305. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2306. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2307. #endif
  2308. }
  2309. /*
  2310. * fork()/clone()-time setup:
  2311. */
  2312. void sched_fork(struct task_struct *p)
  2313. {
  2314. unsigned long flags;
  2315. int cpu = get_cpu();
  2316. __sched_fork(p);
  2317. /*
  2318. * We mark the process as running here. This guarantees that
  2319. * nobody will actually run it, and a signal or other external
  2320. * event cannot wake it up and insert it on the runqueue either.
  2321. */
  2322. p->state = TASK_RUNNING;
  2323. /*
  2324. * Revert to default priority/policy on fork if requested.
  2325. */
  2326. if (unlikely(p->sched_reset_on_fork)) {
  2327. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2328. p->policy = SCHED_NORMAL;
  2329. p->normal_prio = p->static_prio;
  2330. }
  2331. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2332. p->static_prio = NICE_TO_PRIO(0);
  2333. p->normal_prio = p->static_prio;
  2334. set_load_weight(p);
  2335. }
  2336. /*
  2337. * We don't need the reset flag anymore after the fork. It has
  2338. * fulfilled its duty:
  2339. */
  2340. p->sched_reset_on_fork = 0;
  2341. }
  2342. /*
  2343. * Make sure we do not leak PI boosting priority to the child.
  2344. */
  2345. p->prio = current->normal_prio;
  2346. if (!rt_prio(p->prio))
  2347. p->sched_class = &fair_sched_class;
  2348. if (p->sched_class->task_fork)
  2349. p->sched_class->task_fork(p);
  2350. /*
  2351. * The child is not yet in the pid-hash so no cgroup attach races,
  2352. * and the cgroup is pinned to this child due to cgroup_fork()
  2353. * is ran before sched_fork().
  2354. *
  2355. * Silence PROVE_RCU.
  2356. */
  2357. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2358. set_task_cpu(p, cpu);
  2359. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2360. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2361. if (likely(sched_info_on()))
  2362. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2363. #endif
  2364. #if defined(CONFIG_SMP)
  2365. p->on_cpu = 0;
  2366. #endif
  2367. #ifdef CONFIG_PREEMPT
  2368. /* Want to start with kernel preemption disabled. */
  2369. task_thread_info(p)->preempt_count = 1;
  2370. #endif
  2371. #ifdef CONFIG_SMP
  2372. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2373. #endif
  2374. put_cpu();
  2375. }
  2376. /*
  2377. * wake_up_new_task - wake up a newly created task for the first time.
  2378. *
  2379. * This function will do some initial scheduler statistics housekeeping
  2380. * that must be done for every newly created context, then puts the task
  2381. * on the runqueue and wakes it.
  2382. */
  2383. void wake_up_new_task(struct task_struct *p)
  2384. {
  2385. unsigned long flags;
  2386. struct rq *rq;
  2387. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2388. #ifdef CONFIG_SMP
  2389. /*
  2390. * Fork balancing, do it here and not earlier because:
  2391. * - cpus_allowed can change in the fork path
  2392. * - any previously selected cpu might disappear through hotplug
  2393. */
  2394. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2395. #endif
  2396. rq = __task_rq_lock(p);
  2397. activate_task(rq, p, 0);
  2398. p->on_rq = 1;
  2399. trace_sched_wakeup_new(p, true);
  2400. check_preempt_curr(rq, p, WF_FORK);
  2401. #ifdef CONFIG_SMP
  2402. if (p->sched_class->task_woken)
  2403. p->sched_class->task_woken(rq, p);
  2404. #endif
  2405. task_rq_unlock(rq, p, &flags);
  2406. }
  2407. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2408. /**
  2409. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2410. * @notifier: notifier struct to register
  2411. */
  2412. void preempt_notifier_register(struct preempt_notifier *notifier)
  2413. {
  2414. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2415. }
  2416. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2417. /**
  2418. * preempt_notifier_unregister - no longer interested in preemption notifications
  2419. * @notifier: notifier struct to unregister
  2420. *
  2421. * This is safe to call from within a preemption notifier.
  2422. */
  2423. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2424. {
  2425. hlist_del(&notifier->link);
  2426. }
  2427. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2428. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2429. {
  2430. struct preempt_notifier *notifier;
  2431. struct hlist_node *node;
  2432. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2433. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2434. }
  2435. static void
  2436. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2437. struct task_struct *next)
  2438. {
  2439. struct preempt_notifier *notifier;
  2440. struct hlist_node *node;
  2441. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2442. notifier->ops->sched_out(notifier, next);
  2443. }
  2444. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2445. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2446. {
  2447. }
  2448. static void
  2449. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2450. struct task_struct *next)
  2451. {
  2452. }
  2453. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2454. /**
  2455. * prepare_task_switch - prepare to switch tasks
  2456. * @rq: the runqueue preparing to switch
  2457. * @prev: the current task that is being switched out
  2458. * @next: the task we are going to switch to.
  2459. *
  2460. * This is called with the rq lock held and interrupts off. It must
  2461. * be paired with a subsequent finish_task_switch after the context
  2462. * switch.
  2463. *
  2464. * prepare_task_switch sets up locking and calls architecture specific
  2465. * hooks.
  2466. */
  2467. static inline void
  2468. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2469. struct task_struct *next)
  2470. {
  2471. sched_info_switch(prev, next);
  2472. perf_event_task_sched_out(prev, next);
  2473. fire_sched_out_preempt_notifiers(prev, next);
  2474. prepare_lock_switch(rq, next);
  2475. prepare_arch_switch(next);
  2476. trace_sched_switch(prev, next);
  2477. }
  2478. /**
  2479. * finish_task_switch - clean up after a task-switch
  2480. * @rq: runqueue associated with task-switch
  2481. * @prev: the thread we just switched away from.
  2482. *
  2483. * finish_task_switch must be called after the context switch, paired
  2484. * with a prepare_task_switch call before the context switch.
  2485. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2486. * and do any other architecture-specific cleanup actions.
  2487. *
  2488. * Note that we may have delayed dropping an mm in context_switch(). If
  2489. * so, we finish that here outside of the runqueue lock. (Doing it
  2490. * with the lock held can cause deadlocks; see schedule() for
  2491. * details.)
  2492. */
  2493. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2494. __releases(rq->lock)
  2495. {
  2496. struct mm_struct *mm = rq->prev_mm;
  2497. long prev_state;
  2498. rq->prev_mm = NULL;
  2499. /*
  2500. * A task struct has one reference for the use as "current".
  2501. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2502. * schedule one last time. The schedule call will never return, and
  2503. * the scheduled task must drop that reference.
  2504. * The test for TASK_DEAD must occur while the runqueue locks are
  2505. * still held, otherwise prev could be scheduled on another cpu, die
  2506. * there before we look at prev->state, and then the reference would
  2507. * be dropped twice.
  2508. * Manfred Spraul <manfred@colorfullife.com>
  2509. */
  2510. prev_state = prev->state;
  2511. finish_arch_switch(prev);
  2512. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2513. local_irq_disable();
  2514. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2515. perf_event_task_sched_in(current);
  2516. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2517. local_irq_enable();
  2518. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2519. finish_lock_switch(rq, prev);
  2520. fire_sched_in_preempt_notifiers(current);
  2521. if (mm)
  2522. mmdrop(mm);
  2523. if (unlikely(prev_state == TASK_DEAD)) {
  2524. /*
  2525. * Remove function-return probe instances associated with this
  2526. * task and put them back on the free list.
  2527. */
  2528. kprobe_flush_task(prev);
  2529. put_task_struct(prev);
  2530. }
  2531. }
  2532. #ifdef CONFIG_SMP
  2533. /* assumes rq->lock is held */
  2534. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2535. {
  2536. if (prev->sched_class->pre_schedule)
  2537. prev->sched_class->pre_schedule(rq, prev);
  2538. }
  2539. /* rq->lock is NOT held, but preemption is disabled */
  2540. static inline void post_schedule(struct rq *rq)
  2541. {
  2542. if (rq->post_schedule) {
  2543. unsigned long flags;
  2544. raw_spin_lock_irqsave(&rq->lock, flags);
  2545. if (rq->curr->sched_class->post_schedule)
  2546. rq->curr->sched_class->post_schedule(rq);
  2547. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2548. rq->post_schedule = 0;
  2549. }
  2550. }
  2551. #else
  2552. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2553. {
  2554. }
  2555. static inline void post_schedule(struct rq *rq)
  2556. {
  2557. }
  2558. #endif
  2559. /**
  2560. * schedule_tail - first thing a freshly forked thread must call.
  2561. * @prev: the thread we just switched away from.
  2562. */
  2563. asmlinkage void schedule_tail(struct task_struct *prev)
  2564. __releases(rq->lock)
  2565. {
  2566. struct rq *rq = this_rq();
  2567. finish_task_switch(rq, prev);
  2568. /*
  2569. * FIXME: do we need to worry about rq being invalidated by the
  2570. * task_switch?
  2571. */
  2572. post_schedule(rq);
  2573. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2574. /* In this case, finish_task_switch does not reenable preemption */
  2575. preempt_enable();
  2576. #endif
  2577. if (current->set_child_tid)
  2578. put_user(task_pid_vnr(current), current->set_child_tid);
  2579. }
  2580. /*
  2581. * context_switch - switch to the new MM and the new
  2582. * thread's register state.
  2583. */
  2584. static inline void
  2585. context_switch(struct rq *rq, struct task_struct *prev,
  2586. struct task_struct *next)
  2587. {
  2588. struct mm_struct *mm, *oldmm;
  2589. prepare_task_switch(rq, prev, next);
  2590. mm = next->mm;
  2591. oldmm = prev->active_mm;
  2592. /*
  2593. * For paravirt, this is coupled with an exit in switch_to to
  2594. * combine the page table reload and the switch backend into
  2595. * one hypercall.
  2596. */
  2597. arch_start_context_switch(prev);
  2598. if (!mm) {
  2599. next->active_mm = oldmm;
  2600. atomic_inc(&oldmm->mm_count);
  2601. enter_lazy_tlb(oldmm, next);
  2602. } else
  2603. switch_mm(oldmm, mm, next);
  2604. if (!prev->mm) {
  2605. prev->active_mm = NULL;
  2606. rq->prev_mm = oldmm;
  2607. }
  2608. /*
  2609. * Since the runqueue lock will be released by the next
  2610. * task (which is an invalid locking op but in the case
  2611. * of the scheduler it's an obvious special-case), so we
  2612. * do an early lockdep release here:
  2613. */
  2614. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2615. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2616. #endif
  2617. /* Here we just switch the register state and the stack. */
  2618. switch_to(prev, next, prev);
  2619. barrier();
  2620. /*
  2621. * this_rq must be evaluated again because prev may have moved
  2622. * CPUs since it called schedule(), thus the 'rq' on its stack
  2623. * frame will be invalid.
  2624. */
  2625. finish_task_switch(this_rq(), prev);
  2626. }
  2627. /*
  2628. * nr_running, nr_uninterruptible and nr_context_switches:
  2629. *
  2630. * externally visible scheduler statistics: current number of runnable
  2631. * threads, current number of uninterruptible-sleeping threads, total
  2632. * number of context switches performed since bootup.
  2633. */
  2634. unsigned long nr_running(void)
  2635. {
  2636. unsigned long i, sum = 0;
  2637. for_each_online_cpu(i)
  2638. sum += cpu_rq(i)->nr_running;
  2639. return sum;
  2640. }
  2641. unsigned long nr_uninterruptible(void)
  2642. {
  2643. unsigned long i, sum = 0;
  2644. for_each_possible_cpu(i)
  2645. sum += cpu_rq(i)->nr_uninterruptible;
  2646. /*
  2647. * Since we read the counters lockless, it might be slightly
  2648. * inaccurate. Do not allow it to go below zero though:
  2649. */
  2650. if (unlikely((long)sum < 0))
  2651. sum = 0;
  2652. return sum;
  2653. }
  2654. unsigned long long nr_context_switches(void)
  2655. {
  2656. int i;
  2657. unsigned long long sum = 0;
  2658. for_each_possible_cpu(i)
  2659. sum += cpu_rq(i)->nr_switches;
  2660. return sum;
  2661. }
  2662. unsigned long nr_iowait(void)
  2663. {
  2664. unsigned long i, sum = 0;
  2665. for_each_possible_cpu(i)
  2666. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2667. return sum;
  2668. }
  2669. unsigned long nr_iowait_cpu(int cpu)
  2670. {
  2671. struct rq *this = cpu_rq(cpu);
  2672. return atomic_read(&this->nr_iowait);
  2673. }
  2674. unsigned long this_cpu_load(void)
  2675. {
  2676. struct rq *this = this_rq();
  2677. return this->cpu_load[0];
  2678. }
  2679. /* Variables and functions for calc_load */
  2680. static atomic_long_t calc_load_tasks;
  2681. static unsigned long calc_load_update;
  2682. unsigned long avenrun[3];
  2683. EXPORT_SYMBOL(avenrun);
  2684. static long calc_load_fold_active(struct rq *this_rq)
  2685. {
  2686. long nr_active, delta = 0;
  2687. nr_active = this_rq->nr_running;
  2688. nr_active += (long) this_rq->nr_uninterruptible;
  2689. if (nr_active != this_rq->calc_load_active) {
  2690. delta = nr_active - this_rq->calc_load_active;
  2691. this_rq->calc_load_active = nr_active;
  2692. }
  2693. return delta;
  2694. }
  2695. static unsigned long
  2696. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2697. {
  2698. load *= exp;
  2699. load += active * (FIXED_1 - exp);
  2700. load += 1UL << (FSHIFT - 1);
  2701. return load >> FSHIFT;
  2702. }
  2703. #ifdef CONFIG_NO_HZ
  2704. /*
  2705. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2706. *
  2707. * When making the ILB scale, we should try to pull this in as well.
  2708. */
  2709. static atomic_long_t calc_load_tasks_idle;
  2710. static void calc_load_account_idle(struct rq *this_rq)
  2711. {
  2712. long delta;
  2713. delta = calc_load_fold_active(this_rq);
  2714. if (delta)
  2715. atomic_long_add(delta, &calc_load_tasks_idle);
  2716. }
  2717. static long calc_load_fold_idle(void)
  2718. {
  2719. long delta = 0;
  2720. /*
  2721. * Its got a race, we don't care...
  2722. */
  2723. if (atomic_long_read(&calc_load_tasks_idle))
  2724. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2725. return delta;
  2726. }
  2727. /**
  2728. * fixed_power_int - compute: x^n, in O(log n) time
  2729. *
  2730. * @x: base of the power
  2731. * @frac_bits: fractional bits of @x
  2732. * @n: power to raise @x to.
  2733. *
  2734. * By exploiting the relation between the definition of the natural power
  2735. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2736. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2737. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2738. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2739. * of course trivially computable in O(log_2 n), the length of our binary
  2740. * vector.
  2741. */
  2742. static unsigned long
  2743. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2744. {
  2745. unsigned long result = 1UL << frac_bits;
  2746. if (n) for (;;) {
  2747. if (n & 1) {
  2748. result *= x;
  2749. result += 1UL << (frac_bits - 1);
  2750. result >>= frac_bits;
  2751. }
  2752. n >>= 1;
  2753. if (!n)
  2754. break;
  2755. x *= x;
  2756. x += 1UL << (frac_bits - 1);
  2757. x >>= frac_bits;
  2758. }
  2759. return result;
  2760. }
  2761. /*
  2762. * a1 = a0 * e + a * (1 - e)
  2763. *
  2764. * a2 = a1 * e + a * (1 - e)
  2765. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2766. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2767. *
  2768. * a3 = a2 * e + a * (1 - e)
  2769. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2770. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2771. *
  2772. * ...
  2773. *
  2774. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2775. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2776. * = a0 * e^n + a * (1 - e^n)
  2777. *
  2778. * [1] application of the geometric series:
  2779. *
  2780. * n 1 - x^(n+1)
  2781. * S_n := \Sum x^i = -------------
  2782. * i=0 1 - x
  2783. */
  2784. static unsigned long
  2785. calc_load_n(unsigned long load, unsigned long exp,
  2786. unsigned long active, unsigned int n)
  2787. {
  2788. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2789. }
  2790. /*
  2791. * NO_HZ can leave us missing all per-cpu ticks calling
  2792. * calc_load_account_active(), but since an idle CPU folds its delta into
  2793. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2794. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2795. *
  2796. * Once we've updated the global active value, we need to apply the exponential
  2797. * weights adjusted to the number of cycles missed.
  2798. */
  2799. static void calc_global_nohz(unsigned long ticks)
  2800. {
  2801. long delta, active, n;
  2802. if (time_before(jiffies, calc_load_update))
  2803. return;
  2804. /*
  2805. * If we crossed a calc_load_update boundary, make sure to fold
  2806. * any pending idle changes, the respective CPUs might have
  2807. * missed the tick driven calc_load_account_active() update
  2808. * due to NO_HZ.
  2809. */
  2810. delta = calc_load_fold_idle();
  2811. if (delta)
  2812. atomic_long_add(delta, &calc_load_tasks);
  2813. /*
  2814. * If we were idle for multiple load cycles, apply them.
  2815. */
  2816. if (ticks >= LOAD_FREQ) {
  2817. n = ticks / LOAD_FREQ;
  2818. active = atomic_long_read(&calc_load_tasks);
  2819. active = active > 0 ? active * FIXED_1 : 0;
  2820. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2821. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2822. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2823. calc_load_update += n * LOAD_FREQ;
  2824. }
  2825. /*
  2826. * Its possible the remainder of the above division also crosses
  2827. * a LOAD_FREQ period, the regular check in calc_global_load()
  2828. * which comes after this will take care of that.
  2829. *
  2830. * Consider us being 11 ticks before a cycle completion, and us
  2831. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2832. * age us 4 cycles, and the test in calc_global_load() will
  2833. * pick up the final one.
  2834. */
  2835. }
  2836. #else
  2837. static void calc_load_account_idle(struct rq *this_rq)
  2838. {
  2839. }
  2840. static inline long calc_load_fold_idle(void)
  2841. {
  2842. return 0;
  2843. }
  2844. static void calc_global_nohz(unsigned long ticks)
  2845. {
  2846. }
  2847. #endif
  2848. /**
  2849. * get_avenrun - get the load average array
  2850. * @loads: pointer to dest load array
  2851. * @offset: offset to add
  2852. * @shift: shift count to shift the result left
  2853. *
  2854. * These values are estimates at best, so no need for locking.
  2855. */
  2856. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2857. {
  2858. loads[0] = (avenrun[0] + offset) << shift;
  2859. loads[1] = (avenrun[1] + offset) << shift;
  2860. loads[2] = (avenrun[2] + offset) << shift;
  2861. }
  2862. /*
  2863. * calc_load - update the avenrun load estimates 10 ticks after the
  2864. * CPUs have updated calc_load_tasks.
  2865. */
  2866. void calc_global_load(unsigned long ticks)
  2867. {
  2868. long active;
  2869. calc_global_nohz(ticks);
  2870. if (time_before(jiffies, calc_load_update + 10))
  2871. return;
  2872. active = atomic_long_read(&calc_load_tasks);
  2873. active = active > 0 ? active * FIXED_1 : 0;
  2874. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2875. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2876. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2877. calc_load_update += LOAD_FREQ;
  2878. }
  2879. /*
  2880. * Called from update_cpu_load() to periodically update this CPU's
  2881. * active count.
  2882. */
  2883. static void calc_load_account_active(struct rq *this_rq)
  2884. {
  2885. long delta;
  2886. if (time_before(jiffies, this_rq->calc_load_update))
  2887. return;
  2888. delta = calc_load_fold_active(this_rq);
  2889. delta += calc_load_fold_idle();
  2890. if (delta)
  2891. atomic_long_add(delta, &calc_load_tasks);
  2892. this_rq->calc_load_update += LOAD_FREQ;
  2893. }
  2894. /*
  2895. * The exact cpuload at various idx values, calculated at every tick would be
  2896. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2897. *
  2898. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2899. * on nth tick when cpu may be busy, then we have:
  2900. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2901. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2902. *
  2903. * decay_load_missed() below does efficient calculation of
  2904. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2905. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2906. *
  2907. * The calculation is approximated on a 128 point scale.
  2908. * degrade_zero_ticks is the number of ticks after which load at any
  2909. * particular idx is approximated to be zero.
  2910. * degrade_factor is a precomputed table, a row for each load idx.
  2911. * Each column corresponds to degradation factor for a power of two ticks,
  2912. * based on 128 point scale.
  2913. * Example:
  2914. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2915. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2916. *
  2917. * With this power of 2 load factors, we can degrade the load n times
  2918. * by looking at 1 bits in n and doing as many mult/shift instead of
  2919. * n mult/shifts needed by the exact degradation.
  2920. */
  2921. #define DEGRADE_SHIFT 7
  2922. static const unsigned char
  2923. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2924. static const unsigned char
  2925. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2926. {0, 0, 0, 0, 0, 0, 0, 0},
  2927. {64, 32, 8, 0, 0, 0, 0, 0},
  2928. {96, 72, 40, 12, 1, 0, 0},
  2929. {112, 98, 75, 43, 15, 1, 0},
  2930. {120, 112, 98, 76, 45, 16, 2} };
  2931. /*
  2932. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2933. * would be when CPU is idle and so we just decay the old load without
  2934. * adding any new load.
  2935. */
  2936. static unsigned long
  2937. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2938. {
  2939. int j = 0;
  2940. if (!missed_updates)
  2941. return load;
  2942. if (missed_updates >= degrade_zero_ticks[idx])
  2943. return 0;
  2944. if (idx == 1)
  2945. return load >> missed_updates;
  2946. while (missed_updates) {
  2947. if (missed_updates % 2)
  2948. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2949. missed_updates >>= 1;
  2950. j++;
  2951. }
  2952. return load;
  2953. }
  2954. /*
  2955. * Update rq->cpu_load[] statistics. This function is usually called every
  2956. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2957. * every tick. We fix it up based on jiffies.
  2958. */
  2959. static void update_cpu_load(struct rq *this_rq)
  2960. {
  2961. unsigned long this_load = this_rq->load.weight;
  2962. unsigned long curr_jiffies = jiffies;
  2963. unsigned long pending_updates;
  2964. int i, scale;
  2965. this_rq->nr_load_updates++;
  2966. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2967. if (curr_jiffies == this_rq->last_load_update_tick)
  2968. return;
  2969. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2970. this_rq->last_load_update_tick = curr_jiffies;
  2971. /* Update our load: */
  2972. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2973. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2974. unsigned long old_load, new_load;
  2975. /* scale is effectively 1 << i now, and >> i divides by scale */
  2976. old_load = this_rq->cpu_load[i];
  2977. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2978. new_load = this_load;
  2979. /*
  2980. * Round up the averaging division if load is increasing. This
  2981. * prevents us from getting stuck on 9 if the load is 10, for
  2982. * example.
  2983. */
  2984. if (new_load > old_load)
  2985. new_load += scale - 1;
  2986. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2987. }
  2988. sched_avg_update(this_rq);
  2989. }
  2990. static void update_cpu_load_active(struct rq *this_rq)
  2991. {
  2992. update_cpu_load(this_rq);
  2993. calc_load_account_active(this_rq);
  2994. }
  2995. #ifdef CONFIG_SMP
  2996. /*
  2997. * sched_exec - execve() is a valuable balancing opportunity, because at
  2998. * this point the task has the smallest effective memory and cache footprint.
  2999. */
  3000. void sched_exec(void)
  3001. {
  3002. struct task_struct *p = current;
  3003. unsigned long flags;
  3004. int dest_cpu;
  3005. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3006. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3007. if (dest_cpu == smp_processor_id())
  3008. goto unlock;
  3009. if (likely(cpu_active(dest_cpu))) {
  3010. struct migration_arg arg = { p, dest_cpu };
  3011. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3012. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3013. return;
  3014. }
  3015. unlock:
  3016. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3017. }
  3018. #endif
  3019. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3020. EXPORT_PER_CPU_SYMBOL(kstat);
  3021. /*
  3022. * Return any ns on the sched_clock that have not yet been accounted in
  3023. * @p in case that task is currently running.
  3024. *
  3025. * Called with task_rq_lock() held on @rq.
  3026. */
  3027. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3028. {
  3029. u64 ns = 0;
  3030. if (task_current(rq, p)) {
  3031. update_rq_clock(rq);
  3032. ns = rq->clock_task - p->se.exec_start;
  3033. if ((s64)ns < 0)
  3034. ns = 0;
  3035. }
  3036. return ns;
  3037. }
  3038. unsigned long long task_delta_exec(struct task_struct *p)
  3039. {
  3040. unsigned long flags;
  3041. struct rq *rq;
  3042. u64 ns = 0;
  3043. rq = task_rq_lock(p, &flags);
  3044. ns = do_task_delta_exec(p, rq);
  3045. task_rq_unlock(rq, p, &flags);
  3046. return ns;
  3047. }
  3048. /*
  3049. * Return accounted runtime for the task.
  3050. * In case the task is currently running, return the runtime plus current's
  3051. * pending runtime that have not been accounted yet.
  3052. */
  3053. unsigned long long task_sched_runtime(struct task_struct *p)
  3054. {
  3055. unsigned long flags;
  3056. struct rq *rq;
  3057. u64 ns = 0;
  3058. rq = task_rq_lock(p, &flags);
  3059. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3060. task_rq_unlock(rq, p, &flags);
  3061. return ns;
  3062. }
  3063. /*
  3064. * Return sum_exec_runtime for the thread group.
  3065. * In case the task is currently running, return the sum plus current's
  3066. * pending runtime that have not been accounted yet.
  3067. *
  3068. * Note that the thread group might have other running tasks as well,
  3069. * so the return value not includes other pending runtime that other
  3070. * running tasks might have.
  3071. */
  3072. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3073. {
  3074. struct task_cputime totals;
  3075. unsigned long flags;
  3076. struct rq *rq;
  3077. u64 ns;
  3078. rq = task_rq_lock(p, &flags);
  3079. thread_group_cputime(p, &totals);
  3080. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3081. task_rq_unlock(rq, p, &flags);
  3082. return ns;
  3083. }
  3084. /*
  3085. * Account user cpu time to a process.
  3086. * @p: the process that the cpu time gets accounted to
  3087. * @cputime: the cpu time spent in user space since the last update
  3088. * @cputime_scaled: cputime scaled by cpu frequency
  3089. */
  3090. void account_user_time(struct task_struct *p, cputime_t cputime,
  3091. cputime_t cputime_scaled)
  3092. {
  3093. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3094. cputime64_t tmp;
  3095. /* Add user time to process. */
  3096. p->utime = cputime_add(p->utime, cputime);
  3097. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3098. account_group_user_time(p, cputime);
  3099. /* Add user time to cpustat. */
  3100. tmp = cputime_to_cputime64(cputime);
  3101. if (TASK_NICE(p) > 0)
  3102. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3103. else
  3104. cpustat->user = cputime64_add(cpustat->user, tmp);
  3105. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3106. /* Account for user time used */
  3107. acct_update_integrals(p);
  3108. }
  3109. /*
  3110. * Account guest cpu time to a process.
  3111. * @p: the process that the cpu time gets accounted to
  3112. * @cputime: the cpu time spent in virtual machine since the last update
  3113. * @cputime_scaled: cputime scaled by cpu frequency
  3114. */
  3115. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3116. cputime_t cputime_scaled)
  3117. {
  3118. cputime64_t tmp;
  3119. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3120. tmp = cputime_to_cputime64(cputime);
  3121. /* Add guest time to process. */
  3122. p->utime = cputime_add(p->utime, cputime);
  3123. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3124. account_group_user_time(p, cputime);
  3125. p->gtime = cputime_add(p->gtime, cputime);
  3126. /* Add guest time to cpustat. */
  3127. if (TASK_NICE(p) > 0) {
  3128. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3129. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3130. } else {
  3131. cpustat->user = cputime64_add(cpustat->user, tmp);
  3132. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3133. }
  3134. }
  3135. /*
  3136. * Account system cpu time to a process and desired cpustat field
  3137. * @p: the process that the cpu time gets accounted to
  3138. * @cputime: the cpu time spent in kernel space since the last update
  3139. * @cputime_scaled: cputime scaled by cpu frequency
  3140. * @target_cputime64: pointer to cpustat field that has to be updated
  3141. */
  3142. static inline
  3143. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3144. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3145. {
  3146. cputime64_t tmp = cputime_to_cputime64(cputime);
  3147. /* Add system time to process. */
  3148. p->stime = cputime_add(p->stime, cputime);
  3149. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3150. account_group_system_time(p, cputime);
  3151. /* Add system time to cpustat. */
  3152. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3153. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3154. /* Account for system time used */
  3155. acct_update_integrals(p);
  3156. }
  3157. /*
  3158. * Account system cpu time to a process.
  3159. * @p: the process that the cpu time gets accounted to
  3160. * @hardirq_offset: the offset to subtract from hardirq_count()
  3161. * @cputime: the cpu time spent in kernel space since the last update
  3162. * @cputime_scaled: cputime scaled by cpu frequency
  3163. */
  3164. void account_system_time(struct task_struct *p, int hardirq_offset,
  3165. cputime_t cputime, cputime_t cputime_scaled)
  3166. {
  3167. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3168. cputime64_t *target_cputime64;
  3169. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3170. account_guest_time(p, cputime, cputime_scaled);
  3171. return;
  3172. }
  3173. if (hardirq_count() - hardirq_offset)
  3174. target_cputime64 = &cpustat->irq;
  3175. else if (in_serving_softirq())
  3176. target_cputime64 = &cpustat->softirq;
  3177. else
  3178. target_cputime64 = &cpustat->system;
  3179. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3180. }
  3181. /*
  3182. * Account for involuntary wait time.
  3183. * @cputime: the cpu time spent in involuntary wait
  3184. */
  3185. void account_steal_time(cputime_t cputime)
  3186. {
  3187. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3188. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3189. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3190. }
  3191. /*
  3192. * Account for idle time.
  3193. * @cputime: the cpu time spent in idle wait
  3194. */
  3195. void account_idle_time(cputime_t cputime)
  3196. {
  3197. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3198. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3199. struct rq *rq = this_rq();
  3200. if (atomic_read(&rq->nr_iowait) > 0)
  3201. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3202. else
  3203. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3204. }
  3205. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3206. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3207. /*
  3208. * Account a tick to a process and cpustat
  3209. * @p: the process that the cpu time gets accounted to
  3210. * @user_tick: is the tick from userspace
  3211. * @rq: the pointer to rq
  3212. *
  3213. * Tick demultiplexing follows the order
  3214. * - pending hardirq update
  3215. * - pending softirq update
  3216. * - user_time
  3217. * - idle_time
  3218. * - system time
  3219. * - check for guest_time
  3220. * - else account as system_time
  3221. *
  3222. * Check for hardirq is done both for system and user time as there is
  3223. * no timer going off while we are on hardirq and hence we may never get an
  3224. * opportunity to update it solely in system time.
  3225. * p->stime and friends are only updated on system time and not on irq
  3226. * softirq as those do not count in task exec_runtime any more.
  3227. */
  3228. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3229. struct rq *rq)
  3230. {
  3231. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3232. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3233. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3234. if (irqtime_account_hi_update()) {
  3235. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3236. } else if (irqtime_account_si_update()) {
  3237. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3238. } else if (this_cpu_ksoftirqd() == p) {
  3239. /*
  3240. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3241. * So, we have to handle it separately here.
  3242. * Also, p->stime needs to be updated for ksoftirqd.
  3243. */
  3244. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3245. &cpustat->softirq);
  3246. } else if (user_tick) {
  3247. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3248. } else if (p == rq->idle) {
  3249. account_idle_time(cputime_one_jiffy);
  3250. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3251. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3252. } else {
  3253. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3254. &cpustat->system);
  3255. }
  3256. }
  3257. static void irqtime_account_idle_ticks(int ticks)
  3258. {
  3259. int i;
  3260. struct rq *rq = this_rq();
  3261. for (i = 0; i < ticks; i++)
  3262. irqtime_account_process_tick(current, 0, rq);
  3263. }
  3264. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3265. static void irqtime_account_idle_ticks(int ticks) {}
  3266. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3267. struct rq *rq) {}
  3268. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3269. /*
  3270. * Account a single tick of cpu time.
  3271. * @p: the process that the cpu time gets accounted to
  3272. * @user_tick: indicates if the tick is a user or a system tick
  3273. */
  3274. void account_process_tick(struct task_struct *p, int user_tick)
  3275. {
  3276. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3277. struct rq *rq = this_rq();
  3278. if (sched_clock_irqtime) {
  3279. irqtime_account_process_tick(p, user_tick, rq);
  3280. return;
  3281. }
  3282. if (user_tick)
  3283. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3284. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3285. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3286. one_jiffy_scaled);
  3287. else
  3288. account_idle_time(cputime_one_jiffy);
  3289. }
  3290. /*
  3291. * Account multiple ticks of steal time.
  3292. * @p: the process from which the cpu time has been stolen
  3293. * @ticks: number of stolen ticks
  3294. */
  3295. void account_steal_ticks(unsigned long ticks)
  3296. {
  3297. account_steal_time(jiffies_to_cputime(ticks));
  3298. }
  3299. /*
  3300. * Account multiple ticks of idle time.
  3301. * @ticks: number of stolen ticks
  3302. */
  3303. void account_idle_ticks(unsigned long ticks)
  3304. {
  3305. if (sched_clock_irqtime) {
  3306. irqtime_account_idle_ticks(ticks);
  3307. return;
  3308. }
  3309. account_idle_time(jiffies_to_cputime(ticks));
  3310. }
  3311. #endif
  3312. /*
  3313. * Use precise platform statistics if available:
  3314. */
  3315. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3316. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3317. {
  3318. *ut = p->utime;
  3319. *st = p->stime;
  3320. }
  3321. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3322. {
  3323. struct task_cputime cputime;
  3324. thread_group_cputime(p, &cputime);
  3325. *ut = cputime.utime;
  3326. *st = cputime.stime;
  3327. }
  3328. #else
  3329. #ifndef nsecs_to_cputime
  3330. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3331. #endif
  3332. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3333. {
  3334. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3335. /*
  3336. * Use CFS's precise accounting:
  3337. */
  3338. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3339. if (total) {
  3340. u64 temp = rtime;
  3341. temp *= utime;
  3342. do_div(temp, total);
  3343. utime = (cputime_t)temp;
  3344. } else
  3345. utime = rtime;
  3346. /*
  3347. * Compare with previous values, to keep monotonicity:
  3348. */
  3349. p->prev_utime = max(p->prev_utime, utime);
  3350. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3351. *ut = p->prev_utime;
  3352. *st = p->prev_stime;
  3353. }
  3354. /*
  3355. * Must be called with siglock held.
  3356. */
  3357. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3358. {
  3359. struct signal_struct *sig = p->signal;
  3360. struct task_cputime cputime;
  3361. cputime_t rtime, utime, total;
  3362. thread_group_cputime(p, &cputime);
  3363. total = cputime_add(cputime.utime, cputime.stime);
  3364. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3365. if (total) {
  3366. u64 temp = rtime;
  3367. temp *= cputime.utime;
  3368. do_div(temp, total);
  3369. utime = (cputime_t)temp;
  3370. } else
  3371. utime = rtime;
  3372. sig->prev_utime = max(sig->prev_utime, utime);
  3373. sig->prev_stime = max(sig->prev_stime,
  3374. cputime_sub(rtime, sig->prev_utime));
  3375. *ut = sig->prev_utime;
  3376. *st = sig->prev_stime;
  3377. }
  3378. #endif
  3379. /*
  3380. * This function gets called by the timer code, with HZ frequency.
  3381. * We call it with interrupts disabled.
  3382. */
  3383. void scheduler_tick(void)
  3384. {
  3385. int cpu = smp_processor_id();
  3386. struct rq *rq = cpu_rq(cpu);
  3387. struct task_struct *curr = rq->curr;
  3388. sched_clock_tick();
  3389. raw_spin_lock(&rq->lock);
  3390. update_rq_clock(rq);
  3391. update_cpu_load_active(rq);
  3392. curr->sched_class->task_tick(rq, curr, 0);
  3393. raw_spin_unlock(&rq->lock);
  3394. perf_event_task_tick();
  3395. #ifdef CONFIG_SMP
  3396. rq->idle_at_tick = idle_cpu(cpu);
  3397. trigger_load_balance(rq, cpu);
  3398. #endif
  3399. }
  3400. notrace unsigned long get_parent_ip(unsigned long addr)
  3401. {
  3402. if (in_lock_functions(addr)) {
  3403. addr = CALLER_ADDR2;
  3404. if (in_lock_functions(addr))
  3405. addr = CALLER_ADDR3;
  3406. }
  3407. return addr;
  3408. }
  3409. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3410. defined(CONFIG_PREEMPT_TRACER))
  3411. void __kprobes add_preempt_count(int val)
  3412. {
  3413. #ifdef CONFIG_DEBUG_PREEMPT
  3414. /*
  3415. * Underflow?
  3416. */
  3417. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3418. return;
  3419. #endif
  3420. preempt_count() += val;
  3421. #ifdef CONFIG_DEBUG_PREEMPT
  3422. /*
  3423. * Spinlock count overflowing soon?
  3424. */
  3425. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3426. PREEMPT_MASK - 10);
  3427. #endif
  3428. if (preempt_count() == val)
  3429. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3430. }
  3431. EXPORT_SYMBOL(add_preempt_count);
  3432. void __kprobes sub_preempt_count(int val)
  3433. {
  3434. #ifdef CONFIG_DEBUG_PREEMPT
  3435. /*
  3436. * Underflow?
  3437. */
  3438. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3439. return;
  3440. /*
  3441. * Is the spinlock portion underflowing?
  3442. */
  3443. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3444. !(preempt_count() & PREEMPT_MASK)))
  3445. return;
  3446. #endif
  3447. if (preempt_count() == val)
  3448. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3449. preempt_count() -= val;
  3450. }
  3451. EXPORT_SYMBOL(sub_preempt_count);
  3452. #endif
  3453. /*
  3454. * Print scheduling while atomic bug:
  3455. */
  3456. static noinline void __schedule_bug(struct task_struct *prev)
  3457. {
  3458. struct pt_regs *regs = get_irq_regs();
  3459. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3460. prev->comm, prev->pid, preempt_count());
  3461. debug_show_held_locks(prev);
  3462. print_modules();
  3463. if (irqs_disabled())
  3464. print_irqtrace_events(prev);
  3465. if (regs)
  3466. show_regs(regs);
  3467. else
  3468. dump_stack();
  3469. }
  3470. /*
  3471. * Various schedule()-time debugging checks and statistics:
  3472. */
  3473. static inline void schedule_debug(struct task_struct *prev)
  3474. {
  3475. /*
  3476. * Test if we are atomic. Since do_exit() needs to call into
  3477. * schedule() atomically, we ignore that path for now.
  3478. * Otherwise, whine if we are scheduling when we should not be.
  3479. */
  3480. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3481. __schedule_bug(prev);
  3482. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3483. schedstat_inc(this_rq(), sched_count);
  3484. }
  3485. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3486. {
  3487. if (prev->on_rq || rq->skip_clock_update < 0)
  3488. update_rq_clock(rq);
  3489. prev->sched_class->put_prev_task(rq, prev);
  3490. }
  3491. /*
  3492. * Pick up the highest-prio task:
  3493. */
  3494. static inline struct task_struct *
  3495. pick_next_task(struct rq *rq)
  3496. {
  3497. const struct sched_class *class;
  3498. struct task_struct *p;
  3499. /*
  3500. * Optimization: we know that if all tasks are in
  3501. * the fair class we can call that function directly:
  3502. */
  3503. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3504. p = fair_sched_class.pick_next_task(rq);
  3505. if (likely(p))
  3506. return p;
  3507. }
  3508. for_each_class(class) {
  3509. p = class->pick_next_task(rq);
  3510. if (p)
  3511. return p;
  3512. }
  3513. BUG(); /* the idle class will always have a runnable task */
  3514. }
  3515. /*
  3516. * schedule() is the main scheduler function.
  3517. */
  3518. asmlinkage void __sched schedule(void)
  3519. {
  3520. struct task_struct *prev, *next;
  3521. unsigned long *switch_count;
  3522. struct rq *rq;
  3523. int cpu;
  3524. need_resched:
  3525. preempt_disable();
  3526. cpu = smp_processor_id();
  3527. rq = cpu_rq(cpu);
  3528. rcu_note_context_switch(cpu);
  3529. prev = rq->curr;
  3530. schedule_debug(prev);
  3531. if (sched_feat(HRTICK))
  3532. hrtick_clear(rq);
  3533. raw_spin_lock_irq(&rq->lock);
  3534. switch_count = &prev->nivcsw;
  3535. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3536. if (unlikely(signal_pending_state(prev->state, prev))) {
  3537. prev->state = TASK_RUNNING;
  3538. } else {
  3539. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3540. prev->on_rq = 0;
  3541. /*
  3542. * If a worker went to sleep, notify and ask workqueue
  3543. * whether it wants to wake up a task to maintain
  3544. * concurrency.
  3545. */
  3546. if (prev->flags & PF_WQ_WORKER) {
  3547. struct task_struct *to_wakeup;
  3548. to_wakeup = wq_worker_sleeping(prev, cpu);
  3549. if (to_wakeup)
  3550. try_to_wake_up_local(to_wakeup);
  3551. }
  3552. /*
  3553. * If we are going to sleep and we have plugged IO
  3554. * queued, make sure to submit it to avoid deadlocks.
  3555. */
  3556. if (blk_needs_flush_plug(prev)) {
  3557. raw_spin_unlock(&rq->lock);
  3558. blk_schedule_flush_plug(prev);
  3559. raw_spin_lock(&rq->lock);
  3560. }
  3561. }
  3562. switch_count = &prev->nvcsw;
  3563. }
  3564. pre_schedule(rq, prev);
  3565. if (unlikely(!rq->nr_running))
  3566. idle_balance(cpu, rq);
  3567. put_prev_task(rq, prev);
  3568. next = pick_next_task(rq);
  3569. clear_tsk_need_resched(prev);
  3570. rq->skip_clock_update = 0;
  3571. if (likely(prev != next)) {
  3572. rq->nr_switches++;
  3573. rq->curr = next;
  3574. ++*switch_count;
  3575. context_switch(rq, prev, next); /* unlocks the rq */
  3576. /*
  3577. * The context switch have flipped the stack from under us
  3578. * and restored the local variables which were saved when
  3579. * this task called schedule() in the past. prev == current
  3580. * is still correct, but it can be moved to another cpu/rq.
  3581. */
  3582. cpu = smp_processor_id();
  3583. rq = cpu_rq(cpu);
  3584. } else
  3585. raw_spin_unlock_irq(&rq->lock);
  3586. post_schedule(rq);
  3587. preempt_enable_no_resched();
  3588. if (need_resched())
  3589. goto need_resched;
  3590. }
  3591. EXPORT_SYMBOL(schedule);
  3592. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3593. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3594. {
  3595. bool ret = false;
  3596. rcu_read_lock();
  3597. if (lock->owner != owner)
  3598. goto fail;
  3599. /*
  3600. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3601. * lock->owner still matches owner, if that fails, owner might
  3602. * point to free()d memory, if it still matches, the rcu_read_lock()
  3603. * ensures the memory stays valid.
  3604. */
  3605. barrier();
  3606. ret = owner->on_cpu;
  3607. fail:
  3608. rcu_read_unlock();
  3609. return ret;
  3610. }
  3611. /*
  3612. * Look out! "owner" is an entirely speculative pointer
  3613. * access and not reliable.
  3614. */
  3615. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3616. {
  3617. if (!sched_feat(OWNER_SPIN))
  3618. return 0;
  3619. while (owner_running(lock, owner)) {
  3620. if (need_resched())
  3621. return 0;
  3622. arch_mutex_cpu_relax();
  3623. }
  3624. /*
  3625. * If the owner changed to another task there is likely
  3626. * heavy contention, stop spinning.
  3627. */
  3628. if (lock->owner)
  3629. return 0;
  3630. return 1;
  3631. }
  3632. #endif
  3633. #ifdef CONFIG_PREEMPT
  3634. /*
  3635. * this is the entry point to schedule() from in-kernel preemption
  3636. * off of preempt_enable. Kernel preemptions off return from interrupt
  3637. * occur there and call schedule directly.
  3638. */
  3639. asmlinkage void __sched notrace preempt_schedule(void)
  3640. {
  3641. struct thread_info *ti = current_thread_info();
  3642. /*
  3643. * If there is a non-zero preempt_count or interrupts are disabled,
  3644. * we do not want to preempt the current task. Just return..
  3645. */
  3646. if (likely(ti->preempt_count || irqs_disabled()))
  3647. return;
  3648. do {
  3649. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3650. schedule();
  3651. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3652. /*
  3653. * Check again in case we missed a preemption opportunity
  3654. * between schedule and now.
  3655. */
  3656. barrier();
  3657. } while (need_resched());
  3658. }
  3659. EXPORT_SYMBOL(preempt_schedule);
  3660. /*
  3661. * this is the entry point to schedule() from kernel preemption
  3662. * off of irq context.
  3663. * Note, that this is called and return with irqs disabled. This will
  3664. * protect us against recursive calling from irq.
  3665. */
  3666. asmlinkage void __sched preempt_schedule_irq(void)
  3667. {
  3668. struct thread_info *ti = current_thread_info();
  3669. /* Catch callers which need to be fixed */
  3670. BUG_ON(ti->preempt_count || !irqs_disabled());
  3671. do {
  3672. add_preempt_count(PREEMPT_ACTIVE);
  3673. local_irq_enable();
  3674. schedule();
  3675. local_irq_disable();
  3676. sub_preempt_count(PREEMPT_ACTIVE);
  3677. /*
  3678. * Check again in case we missed a preemption opportunity
  3679. * between schedule and now.
  3680. */
  3681. barrier();
  3682. } while (need_resched());
  3683. }
  3684. #endif /* CONFIG_PREEMPT */
  3685. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3686. void *key)
  3687. {
  3688. return try_to_wake_up(curr->private, mode, wake_flags);
  3689. }
  3690. EXPORT_SYMBOL(default_wake_function);
  3691. /*
  3692. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3693. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3694. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3695. *
  3696. * There are circumstances in which we can try to wake a task which has already
  3697. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3698. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3699. */
  3700. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3701. int nr_exclusive, int wake_flags, void *key)
  3702. {
  3703. wait_queue_t *curr, *next;
  3704. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3705. unsigned flags = curr->flags;
  3706. if (curr->func(curr, mode, wake_flags, key) &&
  3707. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3708. break;
  3709. }
  3710. }
  3711. /**
  3712. * __wake_up - wake up threads blocked on a waitqueue.
  3713. * @q: the waitqueue
  3714. * @mode: which threads
  3715. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3716. * @key: is directly passed to the wakeup function
  3717. *
  3718. * It may be assumed that this function implies a write memory barrier before
  3719. * changing the task state if and only if any tasks are woken up.
  3720. */
  3721. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3722. int nr_exclusive, void *key)
  3723. {
  3724. unsigned long flags;
  3725. spin_lock_irqsave(&q->lock, flags);
  3726. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3727. spin_unlock_irqrestore(&q->lock, flags);
  3728. }
  3729. EXPORT_SYMBOL(__wake_up);
  3730. /*
  3731. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3732. */
  3733. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3734. {
  3735. __wake_up_common(q, mode, 1, 0, NULL);
  3736. }
  3737. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3738. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3739. {
  3740. __wake_up_common(q, mode, 1, 0, key);
  3741. }
  3742. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3743. /**
  3744. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3745. * @q: the waitqueue
  3746. * @mode: which threads
  3747. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3748. * @key: opaque value to be passed to wakeup targets
  3749. *
  3750. * The sync wakeup differs that the waker knows that it will schedule
  3751. * away soon, so while the target thread will be woken up, it will not
  3752. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3753. * with each other. This can prevent needless bouncing between CPUs.
  3754. *
  3755. * On UP it can prevent extra preemption.
  3756. *
  3757. * It may be assumed that this function implies a write memory barrier before
  3758. * changing the task state if and only if any tasks are woken up.
  3759. */
  3760. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3761. int nr_exclusive, void *key)
  3762. {
  3763. unsigned long flags;
  3764. int wake_flags = WF_SYNC;
  3765. if (unlikely(!q))
  3766. return;
  3767. if (unlikely(!nr_exclusive))
  3768. wake_flags = 0;
  3769. spin_lock_irqsave(&q->lock, flags);
  3770. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3771. spin_unlock_irqrestore(&q->lock, flags);
  3772. }
  3773. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3774. /*
  3775. * __wake_up_sync - see __wake_up_sync_key()
  3776. */
  3777. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3778. {
  3779. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3780. }
  3781. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3782. /**
  3783. * complete: - signals a single thread waiting on this completion
  3784. * @x: holds the state of this particular completion
  3785. *
  3786. * This will wake up a single thread waiting on this completion. Threads will be
  3787. * awakened in the same order in which they were queued.
  3788. *
  3789. * See also complete_all(), wait_for_completion() and related routines.
  3790. *
  3791. * It may be assumed that this function implies a write memory barrier before
  3792. * changing the task state if and only if any tasks are woken up.
  3793. */
  3794. void complete(struct completion *x)
  3795. {
  3796. unsigned long flags;
  3797. spin_lock_irqsave(&x->wait.lock, flags);
  3798. x->done++;
  3799. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3800. spin_unlock_irqrestore(&x->wait.lock, flags);
  3801. }
  3802. EXPORT_SYMBOL(complete);
  3803. /**
  3804. * complete_all: - signals all threads waiting on this completion
  3805. * @x: holds the state of this particular completion
  3806. *
  3807. * This will wake up all threads waiting on this particular completion event.
  3808. *
  3809. * It may be assumed that this function implies a write memory barrier before
  3810. * changing the task state if and only if any tasks are woken up.
  3811. */
  3812. void complete_all(struct completion *x)
  3813. {
  3814. unsigned long flags;
  3815. spin_lock_irqsave(&x->wait.lock, flags);
  3816. x->done += UINT_MAX/2;
  3817. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3818. spin_unlock_irqrestore(&x->wait.lock, flags);
  3819. }
  3820. EXPORT_SYMBOL(complete_all);
  3821. static inline long __sched
  3822. do_wait_for_common(struct completion *x, long timeout, int state)
  3823. {
  3824. if (!x->done) {
  3825. DECLARE_WAITQUEUE(wait, current);
  3826. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3827. do {
  3828. if (signal_pending_state(state, current)) {
  3829. timeout = -ERESTARTSYS;
  3830. break;
  3831. }
  3832. __set_current_state(state);
  3833. spin_unlock_irq(&x->wait.lock);
  3834. timeout = schedule_timeout(timeout);
  3835. spin_lock_irq(&x->wait.lock);
  3836. } while (!x->done && timeout);
  3837. __remove_wait_queue(&x->wait, &wait);
  3838. if (!x->done)
  3839. return timeout;
  3840. }
  3841. x->done--;
  3842. return timeout ?: 1;
  3843. }
  3844. static long __sched
  3845. wait_for_common(struct completion *x, long timeout, int state)
  3846. {
  3847. might_sleep();
  3848. spin_lock_irq(&x->wait.lock);
  3849. timeout = do_wait_for_common(x, timeout, state);
  3850. spin_unlock_irq(&x->wait.lock);
  3851. return timeout;
  3852. }
  3853. /**
  3854. * wait_for_completion: - waits for completion of a task
  3855. * @x: holds the state of this particular completion
  3856. *
  3857. * This waits to be signaled for completion of a specific task. It is NOT
  3858. * interruptible and there is no timeout.
  3859. *
  3860. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3861. * and interrupt capability. Also see complete().
  3862. */
  3863. void __sched wait_for_completion(struct completion *x)
  3864. {
  3865. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3866. }
  3867. EXPORT_SYMBOL(wait_for_completion);
  3868. /**
  3869. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3870. * @x: holds the state of this particular completion
  3871. * @timeout: timeout value in jiffies
  3872. *
  3873. * This waits for either a completion of a specific task to be signaled or for a
  3874. * specified timeout to expire. The timeout is in jiffies. It is not
  3875. * interruptible.
  3876. */
  3877. unsigned long __sched
  3878. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3879. {
  3880. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3881. }
  3882. EXPORT_SYMBOL(wait_for_completion_timeout);
  3883. /**
  3884. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3885. * @x: holds the state of this particular completion
  3886. *
  3887. * This waits for completion of a specific task to be signaled. It is
  3888. * interruptible.
  3889. */
  3890. int __sched wait_for_completion_interruptible(struct completion *x)
  3891. {
  3892. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3893. if (t == -ERESTARTSYS)
  3894. return t;
  3895. return 0;
  3896. }
  3897. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3898. /**
  3899. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3900. * @x: holds the state of this particular completion
  3901. * @timeout: timeout value in jiffies
  3902. *
  3903. * This waits for either a completion of a specific task to be signaled or for a
  3904. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3905. */
  3906. long __sched
  3907. wait_for_completion_interruptible_timeout(struct completion *x,
  3908. unsigned long timeout)
  3909. {
  3910. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3911. }
  3912. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3913. /**
  3914. * wait_for_completion_killable: - waits for completion of a task (killable)
  3915. * @x: holds the state of this particular completion
  3916. *
  3917. * This waits to be signaled for completion of a specific task. It can be
  3918. * interrupted by a kill signal.
  3919. */
  3920. int __sched wait_for_completion_killable(struct completion *x)
  3921. {
  3922. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3923. if (t == -ERESTARTSYS)
  3924. return t;
  3925. return 0;
  3926. }
  3927. EXPORT_SYMBOL(wait_for_completion_killable);
  3928. /**
  3929. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3930. * @x: holds the state of this particular completion
  3931. * @timeout: timeout value in jiffies
  3932. *
  3933. * This waits for either a completion of a specific task to be
  3934. * signaled or for a specified timeout to expire. It can be
  3935. * interrupted by a kill signal. The timeout is in jiffies.
  3936. */
  3937. long __sched
  3938. wait_for_completion_killable_timeout(struct completion *x,
  3939. unsigned long timeout)
  3940. {
  3941. return wait_for_common(x, timeout, TASK_KILLABLE);
  3942. }
  3943. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3944. /**
  3945. * try_wait_for_completion - try to decrement a completion without blocking
  3946. * @x: completion structure
  3947. *
  3948. * Returns: 0 if a decrement cannot be done without blocking
  3949. * 1 if a decrement succeeded.
  3950. *
  3951. * If a completion is being used as a counting completion,
  3952. * attempt to decrement the counter without blocking. This
  3953. * enables us to avoid waiting if the resource the completion
  3954. * is protecting is not available.
  3955. */
  3956. bool try_wait_for_completion(struct completion *x)
  3957. {
  3958. unsigned long flags;
  3959. int ret = 1;
  3960. spin_lock_irqsave(&x->wait.lock, flags);
  3961. if (!x->done)
  3962. ret = 0;
  3963. else
  3964. x->done--;
  3965. spin_unlock_irqrestore(&x->wait.lock, flags);
  3966. return ret;
  3967. }
  3968. EXPORT_SYMBOL(try_wait_for_completion);
  3969. /**
  3970. * completion_done - Test to see if a completion has any waiters
  3971. * @x: completion structure
  3972. *
  3973. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3974. * 1 if there are no waiters.
  3975. *
  3976. */
  3977. bool completion_done(struct completion *x)
  3978. {
  3979. unsigned long flags;
  3980. int ret = 1;
  3981. spin_lock_irqsave(&x->wait.lock, flags);
  3982. if (!x->done)
  3983. ret = 0;
  3984. spin_unlock_irqrestore(&x->wait.lock, flags);
  3985. return ret;
  3986. }
  3987. EXPORT_SYMBOL(completion_done);
  3988. static long __sched
  3989. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3990. {
  3991. unsigned long flags;
  3992. wait_queue_t wait;
  3993. init_waitqueue_entry(&wait, current);
  3994. __set_current_state(state);
  3995. spin_lock_irqsave(&q->lock, flags);
  3996. __add_wait_queue(q, &wait);
  3997. spin_unlock(&q->lock);
  3998. timeout = schedule_timeout(timeout);
  3999. spin_lock_irq(&q->lock);
  4000. __remove_wait_queue(q, &wait);
  4001. spin_unlock_irqrestore(&q->lock, flags);
  4002. return timeout;
  4003. }
  4004. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4005. {
  4006. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4007. }
  4008. EXPORT_SYMBOL(interruptible_sleep_on);
  4009. long __sched
  4010. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4011. {
  4012. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4013. }
  4014. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4015. void __sched sleep_on(wait_queue_head_t *q)
  4016. {
  4017. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4018. }
  4019. EXPORT_SYMBOL(sleep_on);
  4020. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4021. {
  4022. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4023. }
  4024. EXPORT_SYMBOL(sleep_on_timeout);
  4025. #ifdef CONFIG_RT_MUTEXES
  4026. /*
  4027. * rt_mutex_setprio - set the current priority of a task
  4028. * @p: task
  4029. * @prio: prio value (kernel-internal form)
  4030. *
  4031. * This function changes the 'effective' priority of a task. It does
  4032. * not touch ->normal_prio like __setscheduler().
  4033. *
  4034. * Used by the rt_mutex code to implement priority inheritance logic.
  4035. */
  4036. void rt_mutex_setprio(struct task_struct *p, int prio)
  4037. {
  4038. int oldprio, on_rq, running;
  4039. struct rq *rq;
  4040. const struct sched_class *prev_class;
  4041. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4042. rq = __task_rq_lock(p);
  4043. trace_sched_pi_setprio(p, prio);
  4044. oldprio = p->prio;
  4045. prev_class = p->sched_class;
  4046. on_rq = p->on_rq;
  4047. running = task_current(rq, p);
  4048. if (on_rq)
  4049. dequeue_task(rq, p, 0);
  4050. if (running)
  4051. p->sched_class->put_prev_task(rq, p);
  4052. if (rt_prio(prio))
  4053. p->sched_class = &rt_sched_class;
  4054. else
  4055. p->sched_class = &fair_sched_class;
  4056. p->prio = prio;
  4057. if (running)
  4058. p->sched_class->set_curr_task(rq);
  4059. if (on_rq)
  4060. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4061. check_class_changed(rq, p, prev_class, oldprio);
  4062. __task_rq_unlock(rq);
  4063. }
  4064. #endif
  4065. void set_user_nice(struct task_struct *p, long nice)
  4066. {
  4067. int old_prio, delta, on_rq;
  4068. unsigned long flags;
  4069. struct rq *rq;
  4070. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4071. return;
  4072. /*
  4073. * We have to be careful, if called from sys_setpriority(),
  4074. * the task might be in the middle of scheduling on another CPU.
  4075. */
  4076. rq = task_rq_lock(p, &flags);
  4077. /*
  4078. * The RT priorities are set via sched_setscheduler(), but we still
  4079. * allow the 'normal' nice value to be set - but as expected
  4080. * it wont have any effect on scheduling until the task is
  4081. * SCHED_FIFO/SCHED_RR:
  4082. */
  4083. if (task_has_rt_policy(p)) {
  4084. p->static_prio = NICE_TO_PRIO(nice);
  4085. goto out_unlock;
  4086. }
  4087. on_rq = p->on_rq;
  4088. if (on_rq)
  4089. dequeue_task(rq, p, 0);
  4090. p->static_prio = NICE_TO_PRIO(nice);
  4091. set_load_weight(p);
  4092. old_prio = p->prio;
  4093. p->prio = effective_prio(p);
  4094. delta = p->prio - old_prio;
  4095. if (on_rq) {
  4096. enqueue_task(rq, p, 0);
  4097. /*
  4098. * If the task increased its priority or is running and
  4099. * lowered its priority, then reschedule its CPU:
  4100. */
  4101. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4102. resched_task(rq->curr);
  4103. }
  4104. out_unlock:
  4105. task_rq_unlock(rq, p, &flags);
  4106. }
  4107. EXPORT_SYMBOL(set_user_nice);
  4108. /*
  4109. * can_nice - check if a task can reduce its nice value
  4110. * @p: task
  4111. * @nice: nice value
  4112. */
  4113. int can_nice(const struct task_struct *p, const int nice)
  4114. {
  4115. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4116. int nice_rlim = 20 - nice;
  4117. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4118. capable(CAP_SYS_NICE));
  4119. }
  4120. #ifdef __ARCH_WANT_SYS_NICE
  4121. /*
  4122. * sys_nice - change the priority of the current process.
  4123. * @increment: priority increment
  4124. *
  4125. * sys_setpriority is a more generic, but much slower function that
  4126. * does similar things.
  4127. */
  4128. SYSCALL_DEFINE1(nice, int, increment)
  4129. {
  4130. long nice, retval;
  4131. /*
  4132. * Setpriority might change our priority at the same moment.
  4133. * We don't have to worry. Conceptually one call occurs first
  4134. * and we have a single winner.
  4135. */
  4136. if (increment < -40)
  4137. increment = -40;
  4138. if (increment > 40)
  4139. increment = 40;
  4140. nice = TASK_NICE(current) + increment;
  4141. if (nice < -20)
  4142. nice = -20;
  4143. if (nice > 19)
  4144. nice = 19;
  4145. if (increment < 0 && !can_nice(current, nice))
  4146. return -EPERM;
  4147. retval = security_task_setnice(current, nice);
  4148. if (retval)
  4149. return retval;
  4150. set_user_nice(current, nice);
  4151. return 0;
  4152. }
  4153. #endif
  4154. /**
  4155. * task_prio - return the priority value of a given task.
  4156. * @p: the task in question.
  4157. *
  4158. * This is the priority value as seen by users in /proc.
  4159. * RT tasks are offset by -200. Normal tasks are centered
  4160. * around 0, value goes from -16 to +15.
  4161. */
  4162. int task_prio(const struct task_struct *p)
  4163. {
  4164. return p->prio - MAX_RT_PRIO;
  4165. }
  4166. /**
  4167. * task_nice - return the nice value of a given task.
  4168. * @p: the task in question.
  4169. */
  4170. int task_nice(const struct task_struct *p)
  4171. {
  4172. return TASK_NICE(p);
  4173. }
  4174. EXPORT_SYMBOL(task_nice);
  4175. /**
  4176. * idle_cpu - is a given cpu idle currently?
  4177. * @cpu: the processor in question.
  4178. */
  4179. int idle_cpu(int cpu)
  4180. {
  4181. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4182. }
  4183. /**
  4184. * idle_task - return the idle task for a given cpu.
  4185. * @cpu: the processor in question.
  4186. */
  4187. struct task_struct *idle_task(int cpu)
  4188. {
  4189. return cpu_rq(cpu)->idle;
  4190. }
  4191. /**
  4192. * find_process_by_pid - find a process with a matching PID value.
  4193. * @pid: the pid in question.
  4194. */
  4195. static struct task_struct *find_process_by_pid(pid_t pid)
  4196. {
  4197. return pid ? find_task_by_vpid(pid) : current;
  4198. }
  4199. /* Actually do priority change: must hold rq lock. */
  4200. static void
  4201. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4202. {
  4203. p->policy = policy;
  4204. p->rt_priority = prio;
  4205. p->normal_prio = normal_prio(p);
  4206. /* we are holding p->pi_lock already */
  4207. p->prio = rt_mutex_getprio(p);
  4208. if (rt_prio(p->prio))
  4209. p->sched_class = &rt_sched_class;
  4210. else
  4211. p->sched_class = &fair_sched_class;
  4212. set_load_weight(p);
  4213. }
  4214. /*
  4215. * check the target process has a UID that matches the current process's
  4216. */
  4217. static bool check_same_owner(struct task_struct *p)
  4218. {
  4219. const struct cred *cred = current_cred(), *pcred;
  4220. bool match;
  4221. rcu_read_lock();
  4222. pcred = __task_cred(p);
  4223. if (cred->user->user_ns == pcred->user->user_ns)
  4224. match = (cred->euid == pcred->euid ||
  4225. cred->euid == pcred->uid);
  4226. else
  4227. match = false;
  4228. rcu_read_unlock();
  4229. return match;
  4230. }
  4231. static int __sched_setscheduler(struct task_struct *p, int policy,
  4232. const struct sched_param *param, bool user)
  4233. {
  4234. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4235. unsigned long flags;
  4236. const struct sched_class *prev_class;
  4237. struct rq *rq;
  4238. int reset_on_fork;
  4239. /* may grab non-irq protected spin_locks */
  4240. BUG_ON(in_interrupt());
  4241. recheck:
  4242. /* double check policy once rq lock held */
  4243. if (policy < 0) {
  4244. reset_on_fork = p->sched_reset_on_fork;
  4245. policy = oldpolicy = p->policy;
  4246. } else {
  4247. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4248. policy &= ~SCHED_RESET_ON_FORK;
  4249. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4250. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4251. policy != SCHED_IDLE)
  4252. return -EINVAL;
  4253. }
  4254. /*
  4255. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4256. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4257. * SCHED_BATCH and SCHED_IDLE is 0.
  4258. */
  4259. if (param->sched_priority < 0 ||
  4260. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4261. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4262. return -EINVAL;
  4263. if (rt_policy(policy) != (param->sched_priority != 0))
  4264. return -EINVAL;
  4265. /*
  4266. * Allow unprivileged RT tasks to decrease priority:
  4267. */
  4268. if (user && !capable(CAP_SYS_NICE)) {
  4269. if (rt_policy(policy)) {
  4270. unsigned long rlim_rtprio =
  4271. task_rlimit(p, RLIMIT_RTPRIO);
  4272. /* can't set/change the rt policy */
  4273. if (policy != p->policy && !rlim_rtprio)
  4274. return -EPERM;
  4275. /* can't increase priority */
  4276. if (param->sched_priority > p->rt_priority &&
  4277. param->sched_priority > rlim_rtprio)
  4278. return -EPERM;
  4279. }
  4280. /*
  4281. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4282. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4283. */
  4284. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4285. if (!can_nice(p, TASK_NICE(p)))
  4286. return -EPERM;
  4287. }
  4288. /* can't change other user's priorities */
  4289. if (!check_same_owner(p))
  4290. return -EPERM;
  4291. /* Normal users shall not reset the sched_reset_on_fork flag */
  4292. if (p->sched_reset_on_fork && !reset_on_fork)
  4293. return -EPERM;
  4294. }
  4295. if (user) {
  4296. retval = security_task_setscheduler(p);
  4297. if (retval)
  4298. return retval;
  4299. }
  4300. /*
  4301. * make sure no PI-waiters arrive (or leave) while we are
  4302. * changing the priority of the task:
  4303. *
  4304. * To be able to change p->policy safely, the appropriate
  4305. * runqueue lock must be held.
  4306. */
  4307. rq = task_rq_lock(p, &flags);
  4308. /*
  4309. * Changing the policy of the stop threads its a very bad idea
  4310. */
  4311. if (p == rq->stop) {
  4312. task_rq_unlock(rq, p, &flags);
  4313. return -EINVAL;
  4314. }
  4315. /*
  4316. * If not changing anything there's no need to proceed further:
  4317. */
  4318. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4319. param->sched_priority == p->rt_priority))) {
  4320. __task_rq_unlock(rq);
  4321. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4322. return 0;
  4323. }
  4324. #ifdef CONFIG_RT_GROUP_SCHED
  4325. if (user) {
  4326. /*
  4327. * Do not allow realtime tasks into groups that have no runtime
  4328. * assigned.
  4329. */
  4330. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4331. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4332. !task_group_is_autogroup(task_group(p))) {
  4333. task_rq_unlock(rq, p, &flags);
  4334. return -EPERM;
  4335. }
  4336. }
  4337. #endif
  4338. /* recheck policy now with rq lock held */
  4339. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4340. policy = oldpolicy = -1;
  4341. task_rq_unlock(rq, p, &flags);
  4342. goto recheck;
  4343. }
  4344. on_rq = p->on_rq;
  4345. running = task_current(rq, p);
  4346. if (on_rq)
  4347. deactivate_task(rq, p, 0);
  4348. if (running)
  4349. p->sched_class->put_prev_task(rq, p);
  4350. p->sched_reset_on_fork = reset_on_fork;
  4351. oldprio = p->prio;
  4352. prev_class = p->sched_class;
  4353. __setscheduler(rq, p, policy, param->sched_priority);
  4354. if (running)
  4355. p->sched_class->set_curr_task(rq);
  4356. if (on_rq)
  4357. activate_task(rq, p, 0);
  4358. check_class_changed(rq, p, prev_class, oldprio);
  4359. task_rq_unlock(rq, p, &flags);
  4360. rt_mutex_adjust_pi(p);
  4361. return 0;
  4362. }
  4363. /**
  4364. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4365. * @p: the task in question.
  4366. * @policy: new policy.
  4367. * @param: structure containing the new RT priority.
  4368. *
  4369. * NOTE that the task may be already dead.
  4370. */
  4371. int sched_setscheduler(struct task_struct *p, int policy,
  4372. const struct sched_param *param)
  4373. {
  4374. return __sched_setscheduler(p, policy, param, true);
  4375. }
  4376. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4377. /**
  4378. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4379. * @p: the task in question.
  4380. * @policy: new policy.
  4381. * @param: structure containing the new RT priority.
  4382. *
  4383. * Just like sched_setscheduler, only don't bother checking if the
  4384. * current context has permission. For example, this is needed in
  4385. * stop_machine(): we create temporary high priority worker threads,
  4386. * but our caller might not have that capability.
  4387. */
  4388. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4389. const struct sched_param *param)
  4390. {
  4391. return __sched_setscheduler(p, policy, param, false);
  4392. }
  4393. static int
  4394. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4395. {
  4396. struct sched_param lparam;
  4397. struct task_struct *p;
  4398. int retval;
  4399. if (!param || pid < 0)
  4400. return -EINVAL;
  4401. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4402. return -EFAULT;
  4403. rcu_read_lock();
  4404. retval = -ESRCH;
  4405. p = find_process_by_pid(pid);
  4406. if (p != NULL)
  4407. retval = sched_setscheduler(p, policy, &lparam);
  4408. rcu_read_unlock();
  4409. return retval;
  4410. }
  4411. /**
  4412. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4413. * @pid: the pid in question.
  4414. * @policy: new policy.
  4415. * @param: structure containing the new RT priority.
  4416. */
  4417. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4418. struct sched_param __user *, param)
  4419. {
  4420. /* negative values for policy are not valid */
  4421. if (policy < 0)
  4422. return -EINVAL;
  4423. return do_sched_setscheduler(pid, policy, param);
  4424. }
  4425. /**
  4426. * sys_sched_setparam - set/change the RT priority of a thread
  4427. * @pid: the pid in question.
  4428. * @param: structure containing the new RT priority.
  4429. */
  4430. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4431. {
  4432. return do_sched_setscheduler(pid, -1, param);
  4433. }
  4434. /**
  4435. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4436. * @pid: the pid in question.
  4437. */
  4438. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4439. {
  4440. struct task_struct *p;
  4441. int retval;
  4442. if (pid < 0)
  4443. return -EINVAL;
  4444. retval = -ESRCH;
  4445. rcu_read_lock();
  4446. p = find_process_by_pid(pid);
  4447. if (p) {
  4448. retval = security_task_getscheduler(p);
  4449. if (!retval)
  4450. retval = p->policy
  4451. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4452. }
  4453. rcu_read_unlock();
  4454. return retval;
  4455. }
  4456. /**
  4457. * sys_sched_getparam - get the RT priority of a thread
  4458. * @pid: the pid in question.
  4459. * @param: structure containing the RT priority.
  4460. */
  4461. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4462. {
  4463. struct sched_param lp;
  4464. struct task_struct *p;
  4465. int retval;
  4466. if (!param || pid < 0)
  4467. return -EINVAL;
  4468. rcu_read_lock();
  4469. p = find_process_by_pid(pid);
  4470. retval = -ESRCH;
  4471. if (!p)
  4472. goto out_unlock;
  4473. retval = security_task_getscheduler(p);
  4474. if (retval)
  4475. goto out_unlock;
  4476. lp.sched_priority = p->rt_priority;
  4477. rcu_read_unlock();
  4478. /*
  4479. * This one might sleep, we cannot do it with a spinlock held ...
  4480. */
  4481. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4482. return retval;
  4483. out_unlock:
  4484. rcu_read_unlock();
  4485. return retval;
  4486. }
  4487. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4488. {
  4489. cpumask_var_t cpus_allowed, new_mask;
  4490. struct task_struct *p;
  4491. int retval;
  4492. get_online_cpus();
  4493. rcu_read_lock();
  4494. p = find_process_by_pid(pid);
  4495. if (!p) {
  4496. rcu_read_unlock();
  4497. put_online_cpus();
  4498. return -ESRCH;
  4499. }
  4500. /* Prevent p going away */
  4501. get_task_struct(p);
  4502. rcu_read_unlock();
  4503. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4504. retval = -ENOMEM;
  4505. goto out_put_task;
  4506. }
  4507. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4508. retval = -ENOMEM;
  4509. goto out_free_cpus_allowed;
  4510. }
  4511. retval = -EPERM;
  4512. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4513. goto out_unlock;
  4514. retval = security_task_setscheduler(p);
  4515. if (retval)
  4516. goto out_unlock;
  4517. cpuset_cpus_allowed(p, cpus_allowed);
  4518. cpumask_and(new_mask, in_mask, cpus_allowed);
  4519. again:
  4520. retval = set_cpus_allowed_ptr(p, new_mask);
  4521. if (!retval) {
  4522. cpuset_cpus_allowed(p, cpus_allowed);
  4523. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4524. /*
  4525. * We must have raced with a concurrent cpuset
  4526. * update. Just reset the cpus_allowed to the
  4527. * cpuset's cpus_allowed
  4528. */
  4529. cpumask_copy(new_mask, cpus_allowed);
  4530. goto again;
  4531. }
  4532. }
  4533. out_unlock:
  4534. free_cpumask_var(new_mask);
  4535. out_free_cpus_allowed:
  4536. free_cpumask_var(cpus_allowed);
  4537. out_put_task:
  4538. put_task_struct(p);
  4539. put_online_cpus();
  4540. return retval;
  4541. }
  4542. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4543. struct cpumask *new_mask)
  4544. {
  4545. if (len < cpumask_size())
  4546. cpumask_clear(new_mask);
  4547. else if (len > cpumask_size())
  4548. len = cpumask_size();
  4549. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4550. }
  4551. /**
  4552. * sys_sched_setaffinity - set the cpu affinity of a process
  4553. * @pid: pid of the process
  4554. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4555. * @user_mask_ptr: user-space pointer to the new cpu mask
  4556. */
  4557. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4558. unsigned long __user *, user_mask_ptr)
  4559. {
  4560. cpumask_var_t new_mask;
  4561. int retval;
  4562. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4563. return -ENOMEM;
  4564. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4565. if (retval == 0)
  4566. retval = sched_setaffinity(pid, new_mask);
  4567. free_cpumask_var(new_mask);
  4568. return retval;
  4569. }
  4570. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4571. {
  4572. struct task_struct *p;
  4573. unsigned long flags;
  4574. int retval;
  4575. get_online_cpus();
  4576. rcu_read_lock();
  4577. retval = -ESRCH;
  4578. p = find_process_by_pid(pid);
  4579. if (!p)
  4580. goto out_unlock;
  4581. retval = security_task_getscheduler(p);
  4582. if (retval)
  4583. goto out_unlock;
  4584. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4585. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4586. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4587. out_unlock:
  4588. rcu_read_unlock();
  4589. put_online_cpus();
  4590. return retval;
  4591. }
  4592. /**
  4593. * sys_sched_getaffinity - get the cpu affinity of a process
  4594. * @pid: pid of the process
  4595. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4596. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4597. */
  4598. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4599. unsigned long __user *, user_mask_ptr)
  4600. {
  4601. int ret;
  4602. cpumask_var_t mask;
  4603. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4604. return -EINVAL;
  4605. if (len & (sizeof(unsigned long)-1))
  4606. return -EINVAL;
  4607. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4608. return -ENOMEM;
  4609. ret = sched_getaffinity(pid, mask);
  4610. if (ret == 0) {
  4611. size_t retlen = min_t(size_t, len, cpumask_size());
  4612. if (copy_to_user(user_mask_ptr, mask, retlen))
  4613. ret = -EFAULT;
  4614. else
  4615. ret = retlen;
  4616. }
  4617. free_cpumask_var(mask);
  4618. return ret;
  4619. }
  4620. /**
  4621. * sys_sched_yield - yield the current processor to other threads.
  4622. *
  4623. * This function yields the current CPU to other tasks. If there are no
  4624. * other threads running on this CPU then this function will return.
  4625. */
  4626. SYSCALL_DEFINE0(sched_yield)
  4627. {
  4628. struct rq *rq = this_rq_lock();
  4629. schedstat_inc(rq, yld_count);
  4630. current->sched_class->yield_task(rq);
  4631. /*
  4632. * Since we are going to call schedule() anyway, there's
  4633. * no need to preempt or enable interrupts:
  4634. */
  4635. __release(rq->lock);
  4636. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4637. do_raw_spin_unlock(&rq->lock);
  4638. preempt_enable_no_resched();
  4639. schedule();
  4640. return 0;
  4641. }
  4642. static inline int should_resched(void)
  4643. {
  4644. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4645. }
  4646. static void __cond_resched(void)
  4647. {
  4648. add_preempt_count(PREEMPT_ACTIVE);
  4649. schedule();
  4650. sub_preempt_count(PREEMPT_ACTIVE);
  4651. }
  4652. int __sched _cond_resched(void)
  4653. {
  4654. if (should_resched()) {
  4655. __cond_resched();
  4656. return 1;
  4657. }
  4658. return 0;
  4659. }
  4660. EXPORT_SYMBOL(_cond_resched);
  4661. /*
  4662. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4663. * call schedule, and on return reacquire the lock.
  4664. *
  4665. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4666. * operations here to prevent schedule() from being called twice (once via
  4667. * spin_unlock(), once by hand).
  4668. */
  4669. int __cond_resched_lock(spinlock_t *lock)
  4670. {
  4671. int resched = should_resched();
  4672. int ret = 0;
  4673. lockdep_assert_held(lock);
  4674. if (spin_needbreak(lock) || resched) {
  4675. spin_unlock(lock);
  4676. if (resched)
  4677. __cond_resched();
  4678. else
  4679. cpu_relax();
  4680. ret = 1;
  4681. spin_lock(lock);
  4682. }
  4683. return ret;
  4684. }
  4685. EXPORT_SYMBOL(__cond_resched_lock);
  4686. int __sched __cond_resched_softirq(void)
  4687. {
  4688. BUG_ON(!in_softirq());
  4689. if (should_resched()) {
  4690. local_bh_enable();
  4691. __cond_resched();
  4692. local_bh_disable();
  4693. return 1;
  4694. }
  4695. return 0;
  4696. }
  4697. EXPORT_SYMBOL(__cond_resched_softirq);
  4698. /**
  4699. * yield - yield the current processor to other threads.
  4700. *
  4701. * This is a shortcut for kernel-space yielding - it marks the
  4702. * thread runnable and calls sys_sched_yield().
  4703. */
  4704. void __sched yield(void)
  4705. {
  4706. set_current_state(TASK_RUNNING);
  4707. sys_sched_yield();
  4708. }
  4709. EXPORT_SYMBOL(yield);
  4710. /**
  4711. * yield_to - yield the current processor to another thread in
  4712. * your thread group, or accelerate that thread toward the
  4713. * processor it's on.
  4714. * @p: target task
  4715. * @preempt: whether task preemption is allowed or not
  4716. *
  4717. * It's the caller's job to ensure that the target task struct
  4718. * can't go away on us before we can do any checks.
  4719. *
  4720. * Returns true if we indeed boosted the target task.
  4721. */
  4722. bool __sched yield_to(struct task_struct *p, bool preempt)
  4723. {
  4724. struct task_struct *curr = current;
  4725. struct rq *rq, *p_rq;
  4726. unsigned long flags;
  4727. bool yielded = 0;
  4728. local_irq_save(flags);
  4729. rq = this_rq();
  4730. again:
  4731. p_rq = task_rq(p);
  4732. double_rq_lock(rq, p_rq);
  4733. while (task_rq(p) != p_rq) {
  4734. double_rq_unlock(rq, p_rq);
  4735. goto again;
  4736. }
  4737. if (!curr->sched_class->yield_to_task)
  4738. goto out;
  4739. if (curr->sched_class != p->sched_class)
  4740. goto out;
  4741. if (task_running(p_rq, p) || p->state)
  4742. goto out;
  4743. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4744. if (yielded) {
  4745. schedstat_inc(rq, yld_count);
  4746. /*
  4747. * Make p's CPU reschedule; pick_next_entity takes care of
  4748. * fairness.
  4749. */
  4750. if (preempt && rq != p_rq)
  4751. resched_task(p_rq->curr);
  4752. }
  4753. out:
  4754. double_rq_unlock(rq, p_rq);
  4755. local_irq_restore(flags);
  4756. if (yielded)
  4757. schedule();
  4758. return yielded;
  4759. }
  4760. EXPORT_SYMBOL_GPL(yield_to);
  4761. /*
  4762. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4763. * that process accounting knows that this is a task in IO wait state.
  4764. */
  4765. void __sched io_schedule(void)
  4766. {
  4767. struct rq *rq = raw_rq();
  4768. delayacct_blkio_start();
  4769. atomic_inc(&rq->nr_iowait);
  4770. blk_flush_plug(current);
  4771. current->in_iowait = 1;
  4772. schedule();
  4773. current->in_iowait = 0;
  4774. atomic_dec(&rq->nr_iowait);
  4775. delayacct_blkio_end();
  4776. }
  4777. EXPORT_SYMBOL(io_schedule);
  4778. long __sched io_schedule_timeout(long timeout)
  4779. {
  4780. struct rq *rq = raw_rq();
  4781. long ret;
  4782. delayacct_blkio_start();
  4783. atomic_inc(&rq->nr_iowait);
  4784. blk_flush_plug(current);
  4785. current->in_iowait = 1;
  4786. ret = schedule_timeout(timeout);
  4787. current->in_iowait = 0;
  4788. atomic_dec(&rq->nr_iowait);
  4789. delayacct_blkio_end();
  4790. return ret;
  4791. }
  4792. /**
  4793. * sys_sched_get_priority_max - return maximum RT priority.
  4794. * @policy: scheduling class.
  4795. *
  4796. * this syscall returns the maximum rt_priority that can be used
  4797. * by a given scheduling class.
  4798. */
  4799. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4800. {
  4801. int ret = -EINVAL;
  4802. switch (policy) {
  4803. case SCHED_FIFO:
  4804. case SCHED_RR:
  4805. ret = MAX_USER_RT_PRIO-1;
  4806. break;
  4807. case SCHED_NORMAL:
  4808. case SCHED_BATCH:
  4809. case SCHED_IDLE:
  4810. ret = 0;
  4811. break;
  4812. }
  4813. return ret;
  4814. }
  4815. /**
  4816. * sys_sched_get_priority_min - return minimum RT priority.
  4817. * @policy: scheduling class.
  4818. *
  4819. * this syscall returns the minimum rt_priority that can be used
  4820. * by a given scheduling class.
  4821. */
  4822. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4823. {
  4824. int ret = -EINVAL;
  4825. switch (policy) {
  4826. case SCHED_FIFO:
  4827. case SCHED_RR:
  4828. ret = 1;
  4829. break;
  4830. case SCHED_NORMAL:
  4831. case SCHED_BATCH:
  4832. case SCHED_IDLE:
  4833. ret = 0;
  4834. }
  4835. return ret;
  4836. }
  4837. /**
  4838. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4839. * @pid: pid of the process.
  4840. * @interval: userspace pointer to the timeslice value.
  4841. *
  4842. * this syscall writes the default timeslice value of a given process
  4843. * into the user-space timespec buffer. A value of '0' means infinity.
  4844. */
  4845. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4846. struct timespec __user *, interval)
  4847. {
  4848. struct task_struct *p;
  4849. unsigned int time_slice;
  4850. unsigned long flags;
  4851. struct rq *rq;
  4852. int retval;
  4853. struct timespec t;
  4854. if (pid < 0)
  4855. return -EINVAL;
  4856. retval = -ESRCH;
  4857. rcu_read_lock();
  4858. p = find_process_by_pid(pid);
  4859. if (!p)
  4860. goto out_unlock;
  4861. retval = security_task_getscheduler(p);
  4862. if (retval)
  4863. goto out_unlock;
  4864. rq = task_rq_lock(p, &flags);
  4865. time_slice = p->sched_class->get_rr_interval(rq, p);
  4866. task_rq_unlock(rq, p, &flags);
  4867. rcu_read_unlock();
  4868. jiffies_to_timespec(time_slice, &t);
  4869. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4870. return retval;
  4871. out_unlock:
  4872. rcu_read_unlock();
  4873. return retval;
  4874. }
  4875. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4876. void sched_show_task(struct task_struct *p)
  4877. {
  4878. unsigned long free = 0;
  4879. unsigned state;
  4880. state = p->state ? __ffs(p->state) + 1 : 0;
  4881. printk(KERN_INFO "%-15.15s %c", p->comm,
  4882. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4883. #if BITS_PER_LONG == 32
  4884. if (state == TASK_RUNNING)
  4885. printk(KERN_CONT " running ");
  4886. else
  4887. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4888. #else
  4889. if (state == TASK_RUNNING)
  4890. printk(KERN_CONT " running task ");
  4891. else
  4892. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4893. #endif
  4894. #ifdef CONFIG_DEBUG_STACK_USAGE
  4895. free = stack_not_used(p);
  4896. #endif
  4897. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4898. task_pid_nr(p), task_pid_nr(p->real_parent),
  4899. (unsigned long)task_thread_info(p)->flags);
  4900. show_stack(p, NULL);
  4901. }
  4902. void show_state_filter(unsigned long state_filter)
  4903. {
  4904. struct task_struct *g, *p;
  4905. #if BITS_PER_LONG == 32
  4906. printk(KERN_INFO
  4907. " task PC stack pid father\n");
  4908. #else
  4909. printk(KERN_INFO
  4910. " task PC stack pid father\n");
  4911. #endif
  4912. read_lock(&tasklist_lock);
  4913. do_each_thread(g, p) {
  4914. /*
  4915. * reset the NMI-timeout, listing all files on a slow
  4916. * console might take a lot of time:
  4917. */
  4918. touch_nmi_watchdog();
  4919. if (!state_filter || (p->state & state_filter))
  4920. sched_show_task(p);
  4921. } while_each_thread(g, p);
  4922. touch_all_softlockup_watchdogs();
  4923. #ifdef CONFIG_SCHED_DEBUG
  4924. sysrq_sched_debug_show();
  4925. #endif
  4926. read_unlock(&tasklist_lock);
  4927. /*
  4928. * Only show locks if all tasks are dumped:
  4929. */
  4930. if (!state_filter)
  4931. debug_show_all_locks();
  4932. }
  4933. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4934. {
  4935. idle->sched_class = &idle_sched_class;
  4936. }
  4937. /**
  4938. * init_idle - set up an idle thread for a given CPU
  4939. * @idle: task in question
  4940. * @cpu: cpu the idle task belongs to
  4941. *
  4942. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4943. * flag, to make booting more robust.
  4944. */
  4945. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4946. {
  4947. struct rq *rq = cpu_rq(cpu);
  4948. unsigned long flags;
  4949. raw_spin_lock_irqsave(&rq->lock, flags);
  4950. __sched_fork(idle);
  4951. idle->state = TASK_RUNNING;
  4952. idle->se.exec_start = sched_clock();
  4953. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4954. /*
  4955. * We're having a chicken and egg problem, even though we are
  4956. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4957. * lockdep check in task_group() will fail.
  4958. *
  4959. * Similar case to sched_fork(). / Alternatively we could
  4960. * use task_rq_lock() here and obtain the other rq->lock.
  4961. *
  4962. * Silence PROVE_RCU
  4963. */
  4964. rcu_read_lock();
  4965. __set_task_cpu(idle, cpu);
  4966. rcu_read_unlock();
  4967. rq->curr = rq->idle = idle;
  4968. #if defined(CONFIG_SMP)
  4969. idle->on_cpu = 1;
  4970. #endif
  4971. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4972. /* Set the preempt count _outside_ the spinlocks! */
  4973. task_thread_info(idle)->preempt_count = 0;
  4974. /*
  4975. * The idle tasks have their own, simple scheduling class:
  4976. */
  4977. idle->sched_class = &idle_sched_class;
  4978. ftrace_graph_init_idle_task(idle, cpu);
  4979. }
  4980. /*
  4981. * In a system that switches off the HZ timer nohz_cpu_mask
  4982. * indicates which cpus entered this state. This is used
  4983. * in the rcu update to wait only for active cpus. For system
  4984. * which do not switch off the HZ timer nohz_cpu_mask should
  4985. * always be CPU_BITS_NONE.
  4986. */
  4987. cpumask_var_t nohz_cpu_mask;
  4988. /*
  4989. * Increase the granularity value when there are more CPUs,
  4990. * because with more CPUs the 'effective latency' as visible
  4991. * to users decreases. But the relationship is not linear,
  4992. * so pick a second-best guess by going with the log2 of the
  4993. * number of CPUs.
  4994. *
  4995. * This idea comes from the SD scheduler of Con Kolivas:
  4996. */
  4997. static int get_update_sysctl_factor(void)
  4998. {
  4999. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5000. unsigned int factor;
  5001. switch (sysctl_sched_tunable_scaling) {
  5002. case SCHED_TUNABLESCALING_NONE:
  5003. factor = 1;
  5004. break;
  5005. case SCHED_TUNABLESCALING_LINEAR:
  5006. factor = cpus;
  5007. break;
  5008. case SCHED_TUNABLESCALING_LOG:
  5009. default:
  5010. factor = 1 + ilog2(cpus);
  5011. break;
  5012. }
  5013. return factor;
  5014. }
  5015. static void update_sysctl(void)
  5016. {
  5017. unsigned int factor = get_update_sysctl_factor();
  5018. #define SET_SYSCTL(name) \
  5019. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5020. SET_SYSCTL(sched_min_granularity);
  5021. SET_SYSCTL(sched_latency);
  5022. SET_SYSCTL(sched_wakeup_granularity);
  5023. #undef SET_SYSCTL
  5024. }
  5025. static inline void sched_init_granularity(void)
  5026. {
  5027. update_sysctl();
  5028. }
  5029. #ifdef CONFIG_SMP
  5030. /*
  5031. * This is how migration works:
  5032. *
  5033. * 1) we invoke migration_cpu_stop() on the target CPU using
  5034. * stop_one_cpu().
  5035. * 2) stopper starts to run (implicitly forcing the migrated thread
  5036. * off the CPU)
  5037. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5038. * 4) if it's in the wrong runqueue then the migration thread removes
  5039. * it and puts it into the right queue.
  5040. * 5) stopper completes and stop_one_cpu() returns and the migration
  5041. * is done.
  5042. */
  5043. /*
  5044. * Change a given task's CPU affinity. Migrate the thread to a
  5045. * proper CPU and schedule it away if the CPU it's executing on
  5046. * is removed from the allowed bitmask.
  5047. *
  5048. * NOTE: the caller must have a valid reference to the task, the
  5049. * task must not exit() & deallocate itself prematurely. The
  5050. * call is not atomic; no spinlocks may be held.
  5051. */
  5052. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5053. {
  5054. unsigned long flags;
  5055. struct rq *rq;
  5056. unsigned int dest_cpu;
  5057. int ret = 0;
  5058. rq = task_rq_lock(p, &flags);
  5059. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5060. goto out;
  5061. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5062. ret = -EINVAL;
  5063. goto out;
  5064. }
  5065. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5066. ret = -EINVAL;
  5067. goto out;
  5068. }
  5069. if (p->sched_class->set_cpus_allowed)
  5070. p->sched_class->set_cpus_allowed(p, new_mask);
  5071. else {
  5072. cpumask_copy(&p->cpus_allowed, new_mask);
  5073. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5074. }
  5075. /* Can the task run on the task's current CPU? If so, we're done */
  5076. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5077. goto out;
  5078. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5079. if (p->on_rq) {
  5080. struct migration_arg arg = { p, dest_cpu };
  5081. /* Need help from migration thread: drop lock and wait. */
  5082. task_rq_unlock(rq, p, &flags);
  5083. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5084. tlb_migrate_finish(p->mm);
  5085. return 0;
  5086. }
  5087. out:
  5088. task_rq_unlock(rq, p, &flags);
  5089. return ret;
  5090. }
  5091. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5092. /*
  5093. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5094. * this because either it can't run here any more (set_cpus_allowed()
  5095. * away from this CPU, or CPU going down), or because we're
  5096. * attempting to rebalance this task on exec (sched_exec).
  5097. *
  5098. * So we race with normal scheduler movements, but that's OK, as long
  5099. * as the task is no longer on this CPU.
  5100. *
  5101. * Returns non-zero if task was successfully migrated.
  5102. */
  5103. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5104. {
  5105. struct rq *rq_dest, *rq_src;
  5106. int ret = 0;
  5107. if (unlikely(!cpu_active(dest_cpu)))
  5108. return ret;
  5109. rq_src = cpu_rq(src_cpu);
  5110. rq_dest = cpu_rq(dest_cpu);
  5111. raw_spin_lock(&p->pi_lock);
  5112. double_rq_lock(rq_src, rq_dest);
  5113. /* Already moved. */
  5114. if (task_cpu(p) != src_cpu)
  5115. goto done;
  5116. /* Affinity changed (again). */
  5117. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5118. goto fail;
  5119. /*
  5120. * If we're not on a rq, the next wake-up will ensure we're
  5121. * placed properly.
  5122. */
  5123. if (p->on_rq) {
  5124. deactivate_task(rq_src, p, 0);
  5125. set_task_cpu(p, dest_cpu);
  5126. activate_task(rq_dest, p, 0);
  5127. check_preempt_curr(rq_dest, p, 0);
  5128. }
  5129. done:
  5130. ret = 1;
  5131. fail:
  5132. double_rq_unlock(rq_src, rq_dest);
  5133. raw_spin_unlock(&p->pi_lock);
  5134. return ret;
  5135. }
  5136. /*
  5137. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5138. * and performs thread migration by bumping thread off CPU then
  5139. * 'pushing' onto another runqueue.
  5140. */
  5141. static int migration_cpu_stop(void *data)
  5142. {
  5143. struct migration_arg *arg = data;
  5144. /*
  5145. * The original target cpu might have gone down and we might
  5146. * be on another cpu but it doesn't matter.
  5147. */
  5148. local_irq_disable();
  5149. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5150. local_irq_enable();
  5151. return 0;
  5152. }
  5153. #ifdef CONFIG_HOTPLUG_CPU
  5154. /*
  5155. * Ensures that the idle task is using init_mm right before its cpu goes
  5156. * offline.
  5157. */
  5158. void idle_task_exit(void)
  5159. {
  5160. struct mm_struct *mm = current->active_mm;
  5161. BUG_ON(cpu_online(smp_processor_id()));
  5162. if (mm != &init_mm)
  5163. switch_mm(mm, &init_mm, current);
  5164. mmdrop(mm);
  5165. }
  5166. /*
  5167. * While a dead CPU has no uninterruptible tasks queued at this point,
  5168. * it might still have a nonzero ->nr_uninterruptible counter, because
  5169. * for performance reasons the counter is not stricly tracking tasks to
  5170. * their home CPUs. So we just add the counter to another CPU's counter,
  5171. * to keep the global sum constant after CPU-down:
  5172. */
  5173. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5174. {
  5175. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5176. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5177. rq_src->nr_uninterruptible = 0;
  5178. }
  5179. /*
  5180. * remove the tasks which were accounted by rq from calc_load_tasks.
  5181. */
  5182. static void calc_global_load_remove(struct rq *rq)
  5183. {
  5184. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5185. rq->calc_load_active = 0;
  5186. }
  5187. /*
  5188. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5189. * try_to_wake_up()->select_task_rq().
  5190. *
  5191. * Called with rq->lock held even though we'er in stop_machine() and
  5192. * there's no concurrency possible, we hold the required locks anyway
  5193. * because of lock validation efforts.
  5194. */
  5195. static void migrate_tasks(unsigned int dead_cpu)
  5196. {
  5197. struct rq *rq = cpu_rq(dead_cpu);
  5198. struct task_struct *next, *stop = rq->stop;
  5199. int dest_cpu;
  5200. /*
  5201. * Fudge the rq selection such that the below task selection loop
  5202. * doesn't get stuck on the currently eligible stop task.
  5203. *
  5204. * We're currently inside stop_machine() and the rq is either stuck
  5205. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5206. * either way we should never end up calling schedule() until we're
  5207. * done here.
  5208. */
  5209. rq->stop = NULL;
  5210. for ( ; ; ) {
  5211. /*
  5212. * There's this thread running, bail when that's the only
  5213. * remaining thread.
  5214. */
  5215. if (rq->nr_running == 1)
  5216. break;
  5217. next = pick_next_task(rq);
  5218. BUG_ON(!next);
  5219. next->sched_class->put_prev_task(rq, next);
  5220. /* Find suitable destination for @next, with force if needed. */
  5221. dest_cpu = select_fallback_rq(dead_cpu, next);
  5222. raw_spin_unlock(&rq->lock);
  5223. __migrate_task(next, dead_cpu, dest_cpu);
  5224. raw_spin_lock(&rq->lock);
  5225. }
  5226. rq->stop = stop;
  5227. }
  5228. #endif /* CONFIG_HOTPLUG_CPU */
  5229. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5230. static struct ctl_table sd_ctl_dir[] = {
  5231. {
  5232. .procname = "sched_domain",
  5233. .mode = 0555,
  5234. },
  5235. {}
  5236. };
  5237. static struct ctl_table sd_ctl_root[] = {
  5238. {
  5239. .procname = "kernel",
  5240. .mode = 0555,
  5241. .child = sd_ctl_dir,
  5242. },
  5243. {}
  5244. };
  5245. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5246. {
  5247. struct ctl_table *entry =
  5248. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5249. return entry;
  5250. }
  5251. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5252. {
  5253. struct ctl_table *entry;
  5254. /*
  5255. * In the intermediate directories, both the child directory and
  5256. * procname are dynamically allocated and could fail but the mode
  5257. * will always be set. In the lowest directory the names are
  5258. * static strings and all have proc handlers.
  5259. */
  5260. for (entry = *tablep; entry->mode; entry++) {
  5261. if (entry->child)
  5262. sd_free_ctl_entry(&entry->child);
  5263. if (entry->proc_handler == NULL)
  5264. kfree(entry->procname);
  5265. }
  5266. kfree(*tablep);
  5267. *tablep = NULL;
  5268. }
  5269. static void
  5270. set_table_entry(struct ctl_table *entry,
  5271. const char *procname, void *data, int maxlen,
  5272. mode_t mode, proc_handler *proc_handler)
  5273. {
  5274. entry->procname = procname;
  5275. entry->data = data;
  5276. entry->maxlen = maxlen;
  5277. entry->mode = mode;
  5278. entry->proc_handler = proc_handler;
  5279. }
  5280. static struct ctl_table *
  5281. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5282. {
  5283. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5284. if (table == NULL)
  5285. return NULL;
  5286. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5287. sizeof(long), 0644, proc_doulongvec_minmax);
  5288. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5289. sizeof(long), 0644, proc_doulongvec_minmax);
  5290. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5291. sizeof(int), 0644, proc_dointvec_minmax);
  5292. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5293. sizeof(int), 0644, proc_dointvec_minmax);
  5294. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5295. sizeof(int), 0644, proc_dointvec_minmax);
  5296. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5297. sizeof(int), 0644, proc_dointvec_minmax);
  5298. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5299. sizeof(int), 0644, proc_dointvec_minmax);
  5300. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5301. sizeof(int), 0644, proc_dointvec_minmax);
  5302. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5303. sizeof(int), 0644, proc_dointvec_minmax);
  5304. set_table_entry(&table[9], "cache_nice_tries",
  5305. &sd->cache_nice_tries,
  5306. sizeof(int), 0644, proc_dointvec_minmax);
  5307. set_table_entry(&table[10], "flags", &sd->flags,
  5308. sizeof(int), 0644, proc_dointvec_minmax);
  5309. set_table_entry(&table[11], "name", sd->name,
  5310. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5311. /* &table[12] is terminator */
  5312. return table;
  5313. }
  5314. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5315. {
  5316. struct ctl_table *entry, *table;
  5317. struct sched_domain *sd;
  5318. int domain_num = 0, i;
  5319. char buf[32];
  5320. for_each_domain(cpu, sd)
  5321. domain_num++;
  5322. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5323. if (table == NULL)
  5324. return NULL;
  5325. i = 0;
  5326. for_each_domain(cpu, sd) {
  5327. snprintf(buf, 32, "domain%d", i);
  5328. entry->procname = kstrdup(buf, GFP_KERNEL);
  5329. entry->mode = 0555;
  5330. entry->child = sd_alloc_ctl_domain_table(sd);
  5331. entry++;
  5332. i++;
  5333. }
  5334. return table;
  5335. }
  5336. static struct ctl_table_header *sd_sysctl_header;
  5337. static void register_sched_domain_sysctl(void)
  5338. {
  5339. int i, cpu_num = num_possible_cpus();
  5340. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5341. char buf[32];
  5342. WARN_ON(sd_ctl_dir[0].child);
  5343. sd_ctl_dir[0].child = entry;
  5344. if (entry == NULL)
  5345. return;
  5346. for_each_possible_cpu(i) {
  5347. snprintf(buf, 32, "cpu%d", i);
  5348. entry->procname = kstrdup(buf, GFP_KERNEL);
  5349. entry->mode = 0555;
  5350. entry->child = sd_alloc_ctl_cpu_table(i);
  5351. entry++;
  5352. }
  5353. WARN_ON(sd_sysctl_header);
  5354. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5355. }
  5356. /* may be called multiple times per register */
  5357. static void unregister_sched_domain_sysctl(void)
  5358. {
  5359. if (sd_sysctl_header)
  5360. unregister_sysctl_table(sd_sysctl_header);
  5361. sd_sysctl_header = NULL;
  5362. if (sd_ctl_dir[0].child)
  5363. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5364. }
  5365. #else
  5366. static void register_sched_domain_sysctl(void)
  5367. {
  5368. }
  5369. static void unregister_sched_domain_sysctl(void)
  5370. {
  5371. }
  5372. #endif
  5373. static void set_rq_online(struct rq *rq)
  5374. {
  5375. if (!rq->online) {
  5376. const struct sched_class *class;
  5377. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5378. rq->online = 1;
  5379. for_each_class(class) {
  5380. if (class->rq_online)
  5381. class->rq_online(rq);
  5382. }
  5383. }
  5384. }
  5385. static void set_rq_offline(struct rq *rq)
  5386. {
  5387. if (rq->online) {
  5388. const struct sched_class *class;
  5389. for_each_class(class) {
  5390. if (class->rq_offline)
  5391. class->rq_offline(rq);
  5392. }
  5393. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5394. rq->online = 0;
  5395. }
  5396. }
  5397. /*
  5398. * migration_call - callback that gets triggered when a CPU is added.
  5399. * Here we can start up the necessary migration thread for the new CPU.
  5400. */
  5401. static int __cpuinit
  5402. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5403. {
  5404. int cpu = (long)hcpu;
  5405. unsigned long flags;
  5406. struct rq *rq = cpu_rq(cpu);
  5407. switch (action & ~CPU_TASKS_FROZEN) {
  5408. case CPU_UP_PREPARE:
  5409. rq->calc_load_update = calc_load_update;
  5410. break;
  5411. case CPU_ONLINE:
  5412. /* Update our root-domain */
  5413. raw_spin_lock_irqsave(&rq->lock, flags);
  5414. if (rq->rd) {
  5415. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5416. set_rq_online(rq);
  5417. }
  5418. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5419. break;
  5420. #ifdef CONFIG_HOTPLUG_CPU
  5421. case CPU_DYING:
  5422. sched_ttwu_pending();
  5423. /* Update our root-domain */
  5424. raw_spin_lock_irqsave(&rq->lock, flags);
  5425. if (rq->rd) {
  5426. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5427. set_rq_offline(rq);
  5428. }
  5429. migrate_tasks(cpu);
  5430. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5431. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5432. migrate_nr_uninterruptible(rq);
  5433. calc_global_load_remove(rq);
  5434. break;
  5435. #endif
  5436. }
  5437. update_max_interval();
  5438. return NOTIFY_OK;
  5439. }
  5440. /*
  5441. * Register at high priority so that task migration (migrate_all_tasks)
  5442. * happens before everything else. This has to be lower priority than
  5443. * the notifier in the perf_event subsystem, though.
  5444. */
  5445. static struct notifier_block __cpuinitdata migration_notifier = {
  5446. .notifier_call = migration_call,
  5447. .priority = CPU_PRI_MIGRATION,
  5448. };
  5449. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5450. unsigned long action, void *hcpu)
  5451. {
  5452. switch (action & ~CPU_TASKS_FROZEN) {
  5453. case CPU_ONLINE:
  5454. case CPU_DOWN_FAILED:
  5455. set_cpu_active((long)hcpu, true);
  5456. return NOTIFY_OK;
  5457. default:
  5458. return NOTIFY_DONE;
  5459. }
  5460. }
  5461. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5462. unsigned long action, void *hcpu)
  5463. {
  5464. switch (action & ~CPU_TASKS_FROZEN) {
  5465. case CPU_DOWN_PREPARE:
  5466. set_cpu_active((long)hcpu, false);
  5467. return NOTIFY_OK;
  5468. default:
  5469. return NOTIFY_DONE;
  5470. }
  5471. }
  5472. static int __init migration_init(void)
  5473. {
  5474. void *cpu = (void *)(long)smp_processor_id();
  5475. int err;
  5476. /* Initialize migration for the boot CPU */
  5477. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5478. BUG_ON(err == NOTIFY_BAD);
  5479. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5480. register_cpu_notifier(&migration_notifier);
  5481. /* Register cpu active notifiers */
  5482. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5483. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5484. return 0;
  5485. }
  5486. early_initcall(migration_init);
  5487. #endif
  5488. #ifdef CONFIG_SMP
  5489. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5490. #ifdef CONFIG_SCHED_DEBUG
  5491. static __read_mostly int sched_domain_debug_enabled;
  5492. static int __init sched_domain_debug_setup(char *str)
  5493. {
  5494. sched_domain_debug_enabled = 1;
  5495. return 0;
  5496. }
  5497. early_param("sched_debug", sched_domain_debug_setup);
  5498. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5499. struct cpumask *groupmask)
  5500. {
  5501. struct sched_group *group = sd->groups;
  5502. char str[256];
  5503. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5504. cpumask_clear(groupmask);
  5505. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5506. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5507. printk("does not load-balance\n");
  5508. if (sd->parent)
  5509. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5510. " has parent");
  5511. return -1;
  5512. }
  5513. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5514. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5515. printk(KERN_ERR "ERROR: domain->span does not contain "
  5516. "CPU%d\n", cpu);
  5517. }
  5518. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5519. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5520. " CPU%d\n", cpu);
  5521. }
  5522. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5523. do {
  5524. if (!group) {
  5525. printk("\n");
  5526. printk(KERN_ERR "ERROR: group is NULL\n");
  5527. break;
  5528. }
  5529. if (!group->cpu_power) {
  5530. printk(KERN_CONT "\n");
  5531. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5532. "set\n");
  5533. break;
  5534. }
  5535. if (!cpumask_weight(sched_group_cpus(group))) {
  5536. printk(KERN_CONT "\n");
  5537. printk(KERN_ERR "ERROR: empty group\n");
  5538. break;
  5539. }
  5540. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5541. printk(KERN_CONT "\n");
  5542. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5543. break;
  5544. }
  5545. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5546. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5547. printk(KERN_CONT " %s", str);
  5548. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5549. printk(KERN_CONT " (cpu_power = %d)",
  5550. group->cpu_power);
  5551. }
  5552. group = group->next;
  5553. } while (group != sd->groups);
  5554. printk(KERN_CONT "\n");
  5555. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5556. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5557. if (sd->parent &&
  5558. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5559. printk(KERN_ERR "ERROR: parent span is not a superset "
  5560. "of domain->span\n");
  5561. return 0;
  5562. }
  5563. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5564. {
  5565. int level = 0;
  5566. if (!sched_domain_debug_enabled)
  5567. return;
  5568. if (!sd) {
  5569. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5570. return;
  5571. }
  5572. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5573. for (;;) {
  5574. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5575. break;
  5576. level++;
  5577. sd = sd->parent;
  5578. if (!sd)
  5579. break;
  5580. }
  5581. }
  5582. #else /* !CONFIG_SCHED_DEBUG */
  5583. # define sched_domain_debug(sd, cpu) do { } while (0)
  5584. #endif /* CONFIG_SCHED_DEBUG */
  5585. static int sd_degenerate(struct sched_domain *sd)
  5586. {
  5587. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5588. return 1;
  5589. /* Following flags need at least 2 groups */
  5590. if (sd->flags & (SD_LOAD_BALANCE |
  5591. SD_BALANCE_NEWIDLE |
  5592. SD_BALANCE_FORK |
  5593. SD_BALANCE_EXEC |
  5594. SD_SHARE_CPUPOWER |
  5595. SD_SHARE_PKG_RESOURCES)) {
  5596. if (sd->groups != sd->groups->next)
  5597. return 0;
  5598. }
  5599. /* Following flags don't use groups */
  5600. if (sd->flags & (SD_WAKE_AFFINE))
  5601. return 0;
  5602. return 1;
  5603. }
  5604. static int
  5605. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5606. {
  5607. unsigned long cflags = sd->flags, pflags = parent->flags;
  5608. if (sd_degenerate(parent))
  5609. return 1;
  5610. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5611. return 0;
  5612. /* Flags needing groups don't count if only 1 group in parent */
  5613. if (parent->groups == parent->groups->next) {
  5614. pflags &= ~(SD_LOAD_BALANCE |
  5615. SD_BALANCE_NEWIDLE |
  5616. SD_BALANCE_FORK |
  5617. SD_BALANCE_EXEC |
  5618. SD_SHARE_CPUPOWER |
  5619. SD_SHARE_PKG_RESOURCES);
  5620. if (nr_node_ids == 1)
  5621. pflags &= ~SD_SERIALIZE;
  5622. }
  5623. if (~cflags & pflags)
  5624. return 0;
  5625. return 1;
  5626. }
  5627. static void free_rootdomain(struct rcu_head *rcu)
  5628. {
  5629. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5630. cpupri_cleanup(&rd->cpupri);
  5631. free_cpumask_var(rd->rto_mask);
  5632. free_cpumask_var(rd->online);
  5633. free_cpumask_var(rd->span);
  5634. kfree(rd);
  5635. }
  5636. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5637. {
  5638. struct root_domain *old_rd = NULL;
  5639. unsigned long flags;
  5640. raw_spin_lock_irqsave(&rq->lock, flags);
  5641. if (rq->rd) {
  5642. old_rd = rq->rd;
  5643. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5644. set_rq_offline(rq);
  5645. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5646. /*
  5647. * If we dont want to free the old_rt yet then
  5648. * set old_rd to NULL to skip the freeing later
  5649. * in this function:
  5650. */
  5651. if (!atomic_dec_and_test(&old_rd->refcount))
  5652. old_rd = NULL;
  5653. }
  5654. atomic_inc(&rd->refcount);
  5655. rq->rd = rd;
  5656. cpumask_set_cpu(rq->cpu, rd->span);
  5657. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5658. set_rq_online(rq);
  5659. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5660. if (old_rd)
  5661. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5662. }
  5663. static int init_rootdomain(struct root_domain *rd)
  5664. {
  5665. memset(rd, 0, sizeof(*rd));
  5666. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5667. goto out;
  5668. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5669. goto free_span;
  5670. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5671. goto free_online;
  5672. if (cpupri_init(&rd->cpupri) != 0)
  5673. goto free_rto_mask;
  5674. return 0;
  5675. free_rto_mask:
  5676. free_cpumask_var(rd->rto_mask);
  5677. free_online:
  5678. free_cpumask_var(rd->online);
  5679. free_span:
  5680. free_cpumask_var(rd->span);
  5681. out:
  5682. return -ENOMEM;
  5683. }
  5684. static void init_defrootdomain(void)
  5685. {
  5686. init_rootdomain(&def_root_domain);
  5687. atomic_set(&def_root_domain.refcount, 1);
  5688. }
  5689. static struct root_domain *alloc_rootdomain(void)
  5690. {
  5691. struct root_domain *rd;
  5692. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5693. if (!rd)
  5694. return NULL;
  5695. if (init_rootdomain(rd) != 0) {
  5696. kfree(rd);
  5697. return NULL;
  5698. }
  5699. return rd;
  5700. }
  5701. static void free_sched_domain(struct rcu_head *rcu)
  5702. {
  5703. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5704. if (atomic_dec_and_test(&sd->groups->ref))
  5705. kfree(sd->groups);
  5706. kfree(sd);
  5707. }
  5708. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5709. {
  5710. call_rcu(&sd->rcu, free_sched_domain);
  5711. }
  5712. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5713. {
  5714. for (; sd; sd = sd->parent)
  5715. destroy_sched_domain(sd, cpu);
  5716. }
  5717. /*
  5718. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5719. * hold the hotplug lock.
  5720. */
  5721. static void
  5722. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5723. {
  5724. struct rq *rq = cpu_rq(cpu);
  5725. struct sched_domain *tmp;
  5726. /* Remove the sched domains which do not contribute to scheduling. */
  5727. for (tmp = sd; tmp; ) {
  5728. struct sched_domain *parent = tmp->parent;
  5729. if (!parent)
  5730. break;
  5731. if (sd_parent_degenerate(tmp, parent)) {
  5732. tmp->parent = parent->parent;
  5733. if (parent->parent)
  5734. parent->parent->child = tmp;
  5735. destroy_sched_domain(parent, cpu);
  5736. } else
  5737. tmp = tmp->parent;
  5738. }
  5739. if (sd && sd_degenerate(sd)) {
  5740. tmp = sd;
  5741. sd = sd->parent;
  5742. destroy_sched_domain(tmp, cpu);
  5743. if (sd)
  5744. sd->child = NULL;
  5745. }
  5746. sched_domain_debug(sd, cpu);
  5747. rq_attach_root(rq, rd);
  5748. tmp = rq->sd;
  5749. rcu_assign_pointer(rq->sd, sd);
  5750. destroy_sched_domains(tmp, cpu);
  5751. }
  5752. /* cpus with isolated domains */
  5753. static cpumask_var_t cpu_isolated_map;
  5754. /* Setup the mask of cpus configured for isolated domains */
  5755. static int __init isolated_cpu_setup(char *str)
  5756. {
  5757. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5758. cpulist_parse(str, cpu_isolated_map);
  5759. return 1;
  5760. }
  5761. __setup("isolcpus=", isolated_cpu_setup);
  5762. #define SD_NODES_PER_DOMAIN 16
  5763. #ifdef CONFIG_NUMA
  5764. /**
  5765. * find_next_best_node - find the next node to include in a sched_domain
  5766. * @node: node whose sched_domain we're building
  5767. * @used_nodes: nodes already in the sched_domain
  5768. *
  5769. * Find the next node to include in a given scheduling domain. Simply
  5770. * finds the closest node not already in the @used_nodes map.
  5771. *
  5772. * Should use nodemask_t.
  5773. */
  5774. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5775. {
  5776. int i, n, val, min_val, best_node = -1;
  5777. min_val = INT_MAX;
  5778. for (i = 0; i < nr_node_ids; i++) {
  5779. /* Start at @node */
  5780. n = (node + i) % nr_node_ids;
  5781. if (!nr_cpus_node(n))
  5782. continue;
  5783. /* Skip already used nodes */
  5784. if (node_isset(n, *used_nodes))
  5785. continue;
  5786. /* Simple min distance search */
  5787. val = node_distance(node, n);
  5788. if (val < min_val) {
  5789. min_val = val;
  5790. best_node = n;
  5791. }
  5792. }
  5793. if (best_node != -1)
  5794. node_set(best_node, *used_nodes);
  5795. return best_node;
  5796. }
  5797. /**
  5798. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5799. * @node: node whose cpumask we're constructing
  5800. * @span: resulting cpumask
  5801. *
  5802. * Given a node, construct a good cpumask for its sched_domain to span. It
  5803. * should be one that prevents unnecessary balancing, but also spreads tasks
  5804. * out optimally.
  5805. */
  5806. static void sched_domain_node_span(int node, struct cpumask *span)
  5807. {
  5808. nodemask_t used_nodes;
  5809. int i;
  5810. cpumask_clear(span);
  5811. nodes_clear(used_nodes);
  5812. cpumask_or(span, span, cpumask_of_node(node));
  5813. node_set(node, used_nodes);
  5814. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5815. int next_node = find_next_best_node(node, &used_nodes);
  5816. if (next_node < 0)
  5817. break;
  5818. cpumask_or(span, span, cpumask_of_node(next_node));
  5819. }
  5820. }
  5821. static const struct cpumask *cpu_node_mask(int cpu)
  5822. {
  5823. lockdep_assert_held(&sched_domains_mutex);
  5824. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5825. return sched_domains_tmpmask;
  5826. }
  5827. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5828. {
  5829. return cpu_possible_mask;
  5830. }
  5831. #endif /* CONFIG_NUMA */
  5832. static const struct cpumask *cpu_cpu_mask(int cpu)
  5833. {
  5834. return cpumask_of_node(cpu_to_node(cpu));
  5835. }
  5836. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5837. struct sd_data {
  5838. struct sched_domain **__percpu sd;
  5839. struct sched_group **__percpu sg;
  5840. };
  5841. struct s_data {
  5842. struct sched_domain ** __percpu sd;
  5843. struct root_domain *rd;
  5844. };
  5845. enum s_alloc {
  5846. sa_rootdomain,
  5847. sa_sd,
  5848. sa_sd_storage,
  5849. sa_none,
  5850. };
  5851. struct sched_domain_topology_level;
  5852. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5853. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5854. struct sched_domain_topology_level {
  5855. sched_domain_init_f init;
  5856. sched_domain_mask_f mask;
  5857. struct sd_data data;
  5858. };
  5859. /*
  5860. * Assumes the sched_domain tree is fully constructed
  5861. */
  5862. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5863. {
  5864. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5865. struct sched_domain *child = sd->child;
  5866. if (child)
  5867. cpu = cpumask_first(sched_domain_span(child));
  5868. if (sg)
  5869. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5870. return cpu;
  5871. }
  5872. /*
  5873. * build_sched_groups takes the cpumask we wish to span, and a pointer
  5874. * to a function which identifies what group(along with sched group) a CPU
  5875. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5876. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5877. *
  5878. * build_sched_groups will build a circular linked list of the groups
  5879. * covered by the given span, and will set each group's ->cpumask correctly,
  5880. * and ->cpu_power to 0.
  5881. */
  5882. static void
  5883. build_sched_groups(struct sched_domain *sd)
  5884. {
  5885. struct sched_group *first = NULL, *last = NULL;
  5886. struct sd_data *sdd = sd->private;
  5887. const struct cpumask *span = sched_domain_span(sd);
  5888. struct cpumask *covered;
  5889. int i;
  5890. lockdep_assert_held(&sched_domains_mutex);
  5891. covered = sched_domains_tmpmask;
  5892. cpumask_clear(covered);
  5893. for_each_cpu(i, span) {
  5894. struct sched_group *sg;
  5895. int group = get_group(i, sdd, &sg);
  5896. int j;
  5897. if (cpumask_test_cpu(i, covered))
  5898. continue;
  5899. cpumask_clear(sched_group_cpus(sg));
  5900. sg->cpu_power = 0;
  5901. for_each_cpu(j, span) {
  5902. if (get_group(j, sdd, NULL) != group)
  5903. continue;
  5904. cpumask_set_cpu(j, covered);
  5905. cpumask_set_cpu(j, sched_group_cpus(sg));
  5906. }
  5907. if (!first)
  5908. first = sg;
  5909. if (last)
  5910. last->next = sg;
  5911. last = sg;
  5912. }
  5913. last->next = first;
  5914. }
  5915. /*
  5916. * Initialize sched groups cpu_power.
  5917. *
  5918. * cpu_power indicates the capacity of sched group, which is used while
  5919. * distributing the load between different sched groups in a sched domain.
  5920. * Typically cpu_power for all the groups in a sched domain will be same unless
  5921. * there are asymmetries in the topology. If there are asymmetries, group
  5922. * having more cpu_power will pickup more load compared to the group having
  5923. * less cpu_power.
  5924. */
  5925. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5926. {
  5927. WARN_ON(!sd || !sd->groups);
  5928. if (cpu != group_first_cpu(sd->groups))
  5929. return;
  5930. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5931. update_group_power(sd, cpu);
  5932. }
  5933. /*
  5934. * Initializers for schedule domains
  5935. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5936. */
  5937. #ifdef CONFIG_SCHED_DEBUG
  5938. # define SD_INIT_NAME(sd, type) sd->name = #type
  5939. #else
  5940. # define SD_INIT_NAME(sd, type) do { } while (0)
  5941. #endif
  5942. #define SD_INIT_FUNC(type) \
  5943. static noinline struct sched_domain * \
  5944. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5945. { \
  5946. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5947. *sd = SD_##type##_INIT; \
  5948. SD_INIT_NAME(sd, type); \
  5949. sd->private = &tl->data; \
  5950. return sd; \
  5951. }
  5952. SD_INIT_FUNC(CPU)
  5953. #ifdef CONFIG_NUMA
  5954. SD_INIT_FUNC(ALLNODES)
  5955. SD_INIT_FUNC(NODE)
  5956. #endif
  5957. #ifdef CONFIG_SCHED_SMT
  5958. SD_INIT_FUNC(SIBLING)
  5959. #endif
  5960. #ifdef CONFIG_SCHED_MC
  5961. SD_INIT_FUNC(MC)
  5962. #endif
  5963. #ifdef CONFIG_SCHED_BOOK
  5964. SD_INIT_FUNC(BOOK)
  5965. #endif
  5966. static int default_relax_domain_level = -1;
  5967. int sched_domain_level_max;
  5968. static int __init setup_relax_domain_level(char *str)
  5969. {
  5970. unsigned long val;
  5971. val = simple_strtoul(str, NULL, 0);
  5972. if (val < sched_domain_level_max)
  5973. default_relax_domain_level = val;
  5974. return 1;
  5975. }
  5976. __setup("relax_domain_level=", setup_relax_domain_level);
  5977. static void set_domain_attribute(struct sched_domain *sd,
  5978. struct sched_domain_attr *attr)
  5979. {
  5980. int request;
  5981. if (!attr || attr->relax_domain_level < 0) {
  5982. if (default_relax_domain_level < 0)
  5983. return;
  5984. else
  5985. request = default_relax_domain_level;
  5986. } else
  5987. request = attr->relax_domain_level;
  5988. if (request < sd->level) {
  5989. /* turn off idle balance on this domain */
  5990. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5991. } else {
  5992. /* turn on idle balance on this domain */
  5993. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5994. }
  5995. }
  5996. static void __sdt_free(const struct cpumask *cpu_map);
  5997. static int __sdt_alloc(const struct cpumask *cpu_map);
  5998. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5999. const struct cpumask *cpu_map)
  6000. {
  6001. switch (what) {
  6002. case sa_rootdomain:
  6003. if (!atomic_read(&d->rd->refcount))
  6004. free_rootdomain(&d->rd->rcu); /* fall through */
  6005. case sa_sd:
  6006. free_percpu(d->sd); /* fall through */
  6007. case sa_sd_storage:
  6008. __sdt_free(cpu_map); /* fall through */
  6009. case sa_none:
  6010. break;
  6011. }
  6012. }
  6013. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6014. const struct cpumask *cpu_map)
  6015. {
  6016. memset(d, 0, sizeof(*d));
  6017. if (__sdt_alloc(cpu_map))
  6018. return sa_sd_storage;
  6019. d->sd = alloc_percpu(struct sched_domain *);
  6020. if (!d->sd)
  6021. return sa_sd_storage;
  6022. d->rd = alloc_rootdomain();
  6023. if (!d->rd)
  6024. return sa_sd;
  6025. return sa_rootdomain;
  6026. }
  6027. /*
  6028. * NULL the sd_data elements we've used to build the sched_domain and
  6029. * sched_group structure so that the subsequent __free_domain_allocs()
  6030. * will not free the data we're using.
  6031. */
  6032. static void claim_allocations(int cpu, struct sched_domain *sd)
  6033. {
  6034. struct sd_data *sdd = sd->private;
  6035. struct sched_group *sg = sd->groups;
  6036. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6037. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6038. if (cpu == cpumask_first(sched_group_cpus(sg))) {
  6039. WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
  6040. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6041. }
  6042. }
  6043. #ifdef CONFIG_SCHED_SMT
  6044. static const struct cpumask *cpu_smt_mask(int cpu)
  6045. {
  6046. return topology_thread_cpumask(cpu);
  6047. }
  6048. #endif
  6049. /*
  6050. * Topology list, bottom-up.
  6051. */
  6052. static struct sched_domain_topology_level default_topology[] = {
  6053. #ifdef CONFIG_SCHED_SMT
  6054. { sd_init_SIBLING, cpu_smt_mask, },
  6055. #endif
  6056. #ifdef CONFIG_SCHED_MC
  6057. { sd_init_MC, cpu_coregroup_mask, },
  6058. #endif
  6059. #ifdef CONFIG_SCHED_BOOK
  6060. { sd_init_BOOK, cpu_book_mask, },
  6061. #endif
  6062. { sd_init_CPU, cpu_cpu_mask, },
  6063. #ifdef CONFIG_NUMA
  6064. { sd_init_NODE, cpu_node_mask, },
  6065. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6066. #endif
  6067. { NULL, },
  6068. };
  6069. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6070. static int __sdt_alloc(const struct cpumask *cpu_map)
  6071. {
  6072. struct sched_domain_topology_level *tl;
  6073. int j;
  6074. for (tl = sched_domain_topology; tl->init; tl++) {
  6075. struct sd_data *sdd = &tl->data;
  6076. sdd->sd = alloc_percpu(struct sched_domain *);
  6077. if (!sdd->sd)
  6078. return -ENOMEM;
  6079. sdd->sg = alloc_percpu(struct sched_group *);
  6080. if (!sdd->sg)
  6081. return -ENOMEM;
  6082. for_each_cpu(j, cpu_map) {
  6083. struct sched_domain *sd;
  6084. struct sched_group *sg;
  6085. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6086. GFP_KERNEL, cpu_to_node(j));
  6087. if (!sd)
  6088. return -ENOMEM;
  6089. *per_cpu_ptr(sdd->sd, j) = sd;
  6090. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6091. GFP_KERNEL, cpu_to_node(j));
  6092. if (!sg)
  6093. return -ENOMEM;
  6094. *per_cpu_ptr(sdd->sg, j) = sg;
  6095. }
  6096. }
  6097. return 0;
  6098. }
  6099. static void __sdt_free(const struct cpumask *cpu_map)
  6100. {
  6101. struct sched_domain_topology_level *tl;
  6102. int j;
  6103. for (tl = sched_domain_topology; tl->init; tl++) {
  6104. struct sd_data *sdd = &tl->data;
  6105. for_each_cpu(j, cpu_map) {
  6106. kfree(*per_cpu_ptr(sdd->sd, j));
  6107. kfree(*per_cpu_ptr(sdd->sg, j));
  6108. }
  6109. free_percpu(sdd->sd);
  6110. free_percpu(sdd->sg);
  6111. }
  6112. }
  6113. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6114. struct s_data *d, const struct cpumask *cpu_map,
  6115. struct sched_domain_attr *attr, struct sched_domain *child,
  6116. int cpu)
  6117. {
  6118. struct sched_domain *sd = tl->init(tl, cpu);
  6119. if (!sd)
  6120. return child;
  6121. set_domain_attribute(sd, attr);
  6122. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6123. if (child) {
  6124. sd->level = child->level + 1;
  6125. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6126. child->parent = sd;
  6127. }
  6128. sd->child = child;
  6129. return sd;
  6130. }
  6131. /*
  6132. * Build sched domains for a given set of cpus and attach the sched domains
  6133. * to the individual cpus
  6134. */
  6135. static int build_sched_domains(const struct cpumask *cpu_map,
  6136. struct sched_domain_attr *attr)
  6137. {
  6138. enum s_alloc alloc_state = sa_none;
  6139. struct sched_domain *sd;
  6140. struct s_data d;
  6141. int i, ret = -ENOMEM;
  6142. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6143. if (alloc_state != sa_rootdomain)
  6144. goto error;
  6145. /* Set up domains for cpus specified by the cpu_map. */
  6146. for_each_cpu(i, cpu_map) {
  6147. struct sched_domain_topology_level *tl;
  6148. sd = NULL;
  6149. for (tl = sched_domain_topology; tl->init; tl++)
  6150. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6151. while (sd->child)
  6152. sd = sd->child;
  6153. *per_cpu_ptr(d.sd, i) = sd;
  6154. }
  6155. /* Build the groups for the domains */
  6156. for_each_cpu(i, cpu_map) {
  6157. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6158. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6159. get_group(i, sd->private, &sd->groups);
  6160. atomic_inc(&sd->groups->ref);
  6161. if (i != cpumask_first(sched_domain_span(sd)))
  6162. continue;
  6163. build_sched_groups(sd);
  6164. }
  6165. }
  6166. /* Calculate CPU power for physical packages and nodes */
  6167. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6168. if (!cpumask_test_cpu(i, cpu_map))
  6169. continue;
  6170. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6171. claim_allocations(i, sd);
  6172. init_sched_groups_power(i, sd);
  6173. }
  6174. }
  6175. /* Attach the domains */
  6176. rcu_read_lock();
  6177. for_each_cpu(i, cpu_map) {
  6178. sd = *per_cpu_ptr(d.sd, i);
  6179. cpu_attach_domain(sd, d.rd, i);
  6180. }
  6181. rcu_read_unlock();
  6182. ret = 0;
  6183. error:
  6184. __free_domain_allocs(&d, alloc_state, cpu_map);
  6185. return ret;
  6186. }
  6187. static cpumask_var_t *doms_cur; /* current sched domains */
  6188. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6189. static struct sched_domain_attr *dattr_cur;
  6190. /* attribues of custom domains in 'doms_cur' */
  6191. /*
  6192. * Special case: If a kmalloc of a doms_cur partition (array of
  6193. * cpumask) fails, then fallback to a single sched domain,
  6194. * as determined by the single cpumask fallback_doms.
  6195. */
  6196. static cpumask_var_t fallback_doms;
  6197. /*
  6198. * arch_update_cpu_topology lets virtualized architectures update the
  6199. * cpu core maps. It is supposed to return 1 if the topology changed
  6200. * or 0 if it stayed the same.
  6201. */
  6202. int __attribute__((weak)) arch_update_cpu_topology(void)
  6203. {
  6204. return 0;
  6205. }
  6206. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6207. {
  6208. int i;
  6209. cpumask_var_t *doms;
  6210. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6211. if (!doms)
  6212. return NULL;
  6213. for (i = 0; i < ndoms; i++) {
  6214. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6215. free_sched_domains(doms, i);
  6216. return NULL;
  6217. }
  6218. }
  6219. return doms;
  6220. }
  6221. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6222. {
  6223. unsigned int i;
  6224. for (i = 0; i < ndoms; i++)
  6225. free_cpumask_var(doms[i]);
  6226. kfree(doms);
  6227. }
  6228. /*
  6229. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6230. * For now this just excludes isolated cpus, but could be used to
  6231. * exclude other special cases in the future.
  6232. */
  6233. static int init_sched_domains(const struct cpumask *cpu_map)
  6234. {
  6235. int err;
  6236. arch_update_cpu_topology();
  6237. ndoms_cur = 1;
  6238. doms_cur = alloc_sched_domains(ndoms_cur);
  6239. if (!doms_cur)
  6240. doms_cur = &fallback_doms;
  6241. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6242. dattr_cur = NULL;
  6243. err = build_sched_domains(doms_cur[0], NULL);
  6244. register_sched_domain_sysctl();
  6245. return err;
  6246. }
  6247. /*
  6248. * Detach sched domains from a group of cpus specified in cpu_map
  6249. * These cpus will now be attached to the NULL domain
  6250. */
  6251. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6252. {
  6253. int i;
  6254. rcu_read_lock();
  6255. for_each_cpu(i, cpu_map)
  6256. cpu_attach_domain(NULL, &def_root_domain, i);
  6257. rcu_read_unlock();
  6258. }
  6259. /* handle null as "default" */
  6260. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6261. struct sched_domain_attr *new, int idx_new)
  6262. {
  6263. struct sched_domain_attr tmp;
  6264. /* fast path */
  6265. if (!new && !cur)
  6266. return 1;
  6267. tmp = SD_ATTR_INIT;
  6268. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6269. new ? (new + idx_new) : &tmp,
  6270. sizeof(struct sched_domain_attr));
  6271. }
  6272. /*
  6273. * Partition sched domains as specified by the 'ndoms_new'
  6274. * cpumasks in the array doms_new[] of cpumasks. This compares
  6275. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6276. * It destroys each deleted domain and builds each new domain.
  6277. *
  6278. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6279. * The masks don't intersect (don't overlap.) We should setup one
  6280. * sched domain for each mask. CPUs not in any of the cpumasks will
  6281. * not be load balanced. If the same cpumask appears both in the
  6282. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6283. * it as it is.
  6284. *
  6285. * The passed in 'doms_new' should be allocated using
  6286. * alloc_sched_domains. This routine takes ownership of it and will
  6287. * free_sched_domains it when done with it. If the caller failed the
  6288. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6289. * and partition_sched_domains() will fallback to the single partition
  6290. * 'fallback_doms', it also forces the domains to be rebuilt.
  6291. *
  6292. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6293. * ndoms_new == 0 is a special case for destroying existing domains,
  6294. * and it will not create the default domain.
  6295. *
  6296. * Call with hotplug lock held
  6297. */
  6298. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6299. struct sched_domain_attr *dattr_new)
  6300. {
  6301. int i, j, n;
  6302. int new_topology;
  6303. mutex_lock(&sched_domains_mutex);
  6304. /* always unregister in case we don't destroy any domains */
  6305. unregister_sched_domain_sysctl();
  6306. /* Let architecture update cpu core mappings. */
  6307. new_topology = arch_update_cpu_topology();
  6308. n = doms_new ? ndoms_new : 0;
  6309. /* Destroy deleted domains */
  6310. for (i = 0; i < ndoms_cur; i++) {
  6311. for (j = 0; j < n && !new_topology; j++) {
  6312. if (cpumask_equal(doms_cur[i], doms_new[j])
  6313. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6314. goto match1;
  6315. }
  6316. /* no match - a current sched domain not in new doms_new[] */
  6317. detach_destroy_domains(doms_cur[i]);
  6318. match1:
  6319. ;
  6320. }
  6321. if (doms_new == NULL) {
  6322. ndoms_cur = 0;
  6323. doms_new = &fallback_doms;
  6324. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6325. WARN_ON_ONCE(dattr_new);
  6326. }
  6327. /* Build new domains */
  6328. for (i = 0; i < ndoms_new; i++) {
  6329. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6330. if (cpumask_equal(doms_new[i], doms_cur[j])
  6331. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6332. goto match2;
  6333. }
  6334. /* no match - add a new doms_new */
  6335. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6336. match2:
  6337. ;
  6338. }
  6339. /* Remember the new sched domains */
  6340. if (doms_cur != &fallback_doms)
  6341. free_sched_domains(doms_cur, ndoms_cur);
  6342. kfree(dattr_cur); /* kfree(NULL) is safe */
  6343. doms_cur = doms_new;
  6344. dattr_cur = dattr_new;
  6345. ndoms_cur = ndoms_new;
  6346. register_sched_domain_sysctl();
  6347. mutex_unlock(&sched_domains_mutex);
  6348. }
  6349. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6350. static void reinit_sched_domains(void)
  6351. {
  6352. get_online_cpus();
  6353. /* Destroy domains first to force the rebuild */
  6354. partition_sched_domains(0, NULL, NULL);
  6355. rebuild_sched_domains();
  6356. put_online_cpus();
  6357. }
  6358. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6359. {
  6360. unsigned int level = 0;
  6361. if (sscanf(buf, "%u", &level) != 1)
  6362. return -EINVAL;
  6363. /*
  6364. * level is always be positive so don't check for
  6365. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6366. * What happens on 0 or 1 byte write,
  6367. * need to check for count as well?
  6368. */
  6369. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6370. return -EINVAL;
  6371. if (smt)
  6372. sched_smt_power_savings = level;
  6373. else
  6374. sched_mc_power_savings = level;
  6375. reinit_sched_domains();
  6376. return count;
  6377. }
  6378. #ifdef CONFIG_SCHED_MC
  6379. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6380. struct sysdev_class_attribute *attr,
  6381. char *page)
  6382. {
  6383. return sprintf(page, "%u\n", sched_mc_power_savings);
  6384. }
  6385. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6386. struct sysdev_class_attribute *attr,
  6387. const char *buf, size_t count)
  6388. {
  6389. return sched_power_savings_store(buf, count, 0);
  6390. }
  6391. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6392. sched_mc_power_savings_show,
  6393. sched_mc_power_savings_store);
  6394. #endif
  6395. #ifdef CONFIG_SCHED_SMT
  6396. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6397. struct sysdev_class_attribute *attr,
  6398. char *page)
  6399. {
  6400. return sprintf(page, "%u\n", sched_smt_power_savings);
  6401. }
  6402. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6403. struct sysdev_class_attribute *attr,
  6404. const char *buf, size_t count)
  6405. {
  6406. return sched_power_savings_store(buf, count, 1);
  6407. }
  6408. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6409. sched_smt_power_savings_show,
  6410. sched_smt_power_savings_store);
  6411. #endif
  6412. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6413. {
  6414. int err = 0;
  6415. #ifdef CONFIG_SCHED_SMT
  6416. if (smt_capable())
  6417. err = sysfs_create_file(&cls->kset.kobj,
  6418. &attr_sched_smt_power_savings.attr);
  6419. #endif
  6420. #ifdef CONFIG_SCHED_MC
  6421. if (!err && mc_capable())
  6422. err = sysfs_create_file(&cls->kset.kobj,
  6423. &attr_sched_mc_power_savings.attr);
  6424. #endif
  6425. return err;
  6426. }
  6427. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6428. /*
  6429. * Update cpusets according to cpu_active mask. If cpusets are
  6430. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6431. * around partition_sched_domains().
  6432. */
  6433. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6434. void *hcpu)
  6435. {
  6436. switch (action & ~CPU_TASKS_FROZEN) {
  6437. case CPU_ONLINE:
  6438. case CPU_DOWN_FAILED:
  6439. cpuset_update_active_cpus();
  6440. return NOTIFY_OK;
  6441. default:
  6442. return NOTIFY_DONE;
  6443. }
  6444. }
  6445. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6446. void *hcpu)
  6447. {
  6448. switch (action & ~CPU_TASKS_FROZEN) {
  6449. case CPU_DOWN_PREPARE:
  6450. cpuset_update_active_cpus();
  6451. return NOTIFY_OK;
  6452. default:
  6453. return NOTIFY_DONE;
  6454. }
  6455. }
  6456. static int update_runtime(struct notifier_block *nfb,
  6457. unsigned long action, void *hcpu)
  6458. {
  6459. int cpu = (int)(long)hcpu;
  6460. switch (action) {
  6461. case CPU_DOWN_PREPARE:
  6462. case CPU_DOWN_PREPARE_FROZEN:
  6463. disable_runtime(cpu_rq(cpu));
  6464. return NOTIFY_OK;
  6465. case CPU_DOWN_FAILED:
  6466. case CPU_DOWN_FAILED_FROZEN:
  6467. case CPU_ONLINE:
  6468. case CPU_ONLINE_FROZEN:
  6469. enable_runtime(cpu_rq(cpu));
  6470. return NOTIFY_OK;
  6471. default:
  6472. return NOTIFY_DONE;
  6473. }
  6474. }
  6475. void __init sched_init_smp(void)
  6476. {
  6477. cpumask_var_t non_isolated_cpus;
  6478. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6479. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6480. get_online_cpus();
  6481. mutex_lock(&sched_domains_mutex);
  6482. init_sched_domains(cpu_active_mask);
  6483. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6484. if (cpumask_empty(non_isolated_cpus))
  6485. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6486. mutex_unlock(&sched_domains_mutex);
  6487. put_online_cpus();
  6488. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6489. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6490. /* RT runtime code needs to handle some hotplug events */
  6491. hotcpu_notifier(update_runtime, 0);
  6492. init_hrtick();
  6493. /* Move init over to a non-isolated CPU */
  6494. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6495. BUG();
  6496. sched_init_granularity();
  6497. free_cpumask_var(non_isolated_cpus);
  6498. init_sched_rt_class();
  6499. }
  6500. #else
  6501. void __init sched_init_smp(void)
  6502. {
  6503. sched_init_granularity();
  6504. }
  6505. #endif /* CONFIG_SMP */
  6506. const_debug unsigned int sysctl_timer_migration = 1;
  6507. int in_sched_functions(unsigned long addr)
  6508. {
  6509. return in_lock_functions(addr) ||
  6510. (addr >= (unsigned long)__sched_text_start
  6511. && addr < (unsigned long)__sched_text_end);
  6512. }
  6513. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6514. {
  6515. cfs_rq->tasks_timeline = RB_ROOT;
  6516. INIT_LIST_HEAD(&cfs_rq->tasks);
  6517. #ifdef CONFIG_FAIR_GROUP_SCHED
  6518. cfs_rq->rq = rq;
  6519. /* allow initial update_cfs_load() to truncate */
  6520. #ifdef CONFIG_SMP
  6521. cfs_rq->load_stamp = 1;
  6522. #endif
  6523. #endif
  6524. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6525. }
  6526. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6527. {
  6528. struct rt_prio_array *array;
  6529. int i;
  6530. array = &rt_rq->active;
  6531. for (i = 0; i < MAX_RT_PRIO; i++) {
  6532. INIT_LIST_HEAD(array->queue + i);
  6533. __clear_bit(i, array->bitmap);
  6534. }
  6535. /* delimiter for bitsearch: */
  6536. __set_bit(MAX_RT_PRIO, array->bitmap);
  6537. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6538. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6539. #ifdef CONFIG_SMP
  6540. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6541. #endif
  6542. #endif
  6543. #ifdef CONFIG_SMP
  6544. rt_rq->rt_nr_migratory = 0;
  6545. rt_rq->overloaded = 0;
  6546. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6547. #endif
  6548. rt_rq->rt_time = 0;
  6549. rt_rq->rt_throttled = 0;
  6550. rt_rq->rt_runtime = 0;
  6551. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6552. #ifdef CONFIG_RT_GROUP_SCHED
  6553. rt_rq->rt_nr_boosted = 0;
  6554. rt_rq->rq = rq;
  6555. #endif
  6556. }
  6557. #ifdef CONFIG_FAIR_GROUP_SCHED
  6558. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6559. struct sched_entity *se, int cpu,
  6560. struct sched_entity *parent)
  6561. {
  6562. struct rq *rq = cpu_rq(cpu);
  6563. tg->cfs_rq[cpu] = cfs_rq;
  6564. init_cfs_rq(cfs_rq, rq);
  6565. cfs_rq->tg = tg;
  6566. tg->se[cpu] = se;
  6567. /* se could be NULL for root_task_group */
  6568. if (!se)
  6569. return;
  6570. if (!parent)
  6571. se->cfs_rq = &rq->cfs;
  6572. else
  6573. se->cfs_rq = parent->my_q;
  6574. se->my_q = cfs_rq;
  6575. update_load_set(&se->load, 0);
  6576. se->parent = parent;
  6577. }
  6578. #endif
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6581. struct sched_rt_entity *rt_se, int cpu,
  6582. struct sched_rt_entity *parent)
  6583. {
  6584. struct rq *rq = cpu_rq(cpu);
  6585. tg->rt_rq[cpu] = rt_rq;
  6586. init_rt_rq(rt_rq, rq);
  6587. rt_rq->tg = tg;
  6588. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6589. tg->rt_se[cpu] = rt_se;
  6590. if (!rt_se)
  6591. return;
  6592. if (!parent)
  6593. rt_se->rt_rq = &rq->rt;
  6594. else
  6595. rt_se->rt_rq = parent->my_q;
  6596. rt_se->my_q = rt_rq;
  6597. rt_se->parent = parent;
  6598. INIT_LIST_HEAD(&rt_se->run_list);
  6599. }
  6600. #endif
  6601. void __init sched_init(void)
  6602. {
  6603. int i, j;
  6604. unsigned long alloc_size = 0, ptr;
  6605. #ifdef CONFIG_FAIR_GROUP_SCHED
  6606. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6607. #endif
  6608. #ifdef CONFIG_RT_GROUP_SCHED
  6609. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6610. #endif
  6611. #ifdef CONFIG_CPUMASK_OFFSTACK
  6612. alloc_size += num_possible_cpus() * cpumask_size();
  6613. #endif
  6614. if (alloc_size) {
  6615. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6616. #ifdef CONFIG_FAIR_GROUP_SCHED
  6617. root_task_group.se = (struct sched_entity **)ptr;
  6618. ptr += nr_cpu_ids * sizeof(void **);
  6619. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6620. ptr += nr_cpu_ids * sizeof(void **);
  6621. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6622. #ifdef CONFIG_RT_GROUP_SCHED
  6623. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6624. ptr += nr_cpu_ids * sizeof(void **);
  6625. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6626. ptr += nr_cpu_ids * sizeof(void **);
  6627. #endif /* CONFIG_RT_GROUP_SCHED */
  6628. #ifdef CONFIG_CPUMASK_OFFSTACK
  6629. for_each_possible_cpu(i) {
  6630. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6631. ptr += cpumask_size();
  6632. }
  6633. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6634. }
  6635. #ifdef CONFIG_SMP
  6636. init_defrootdomain();
  6637. #endif
  6638. init_rt_bandwidth(&def_rt_bandwidth,
  6639. global_rt_period(), global_rt_runtime());
  6640. #ifdef CONFIG_RT_GROUP_SCHED
  6641. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6642. global_rt_period(), global_rt_runtime());
  6643. #endif /* CONFIG_RT_GROUP_SCHED */
  6644. #ifdef CONFIG_CGROUP_SCHED
  6645. list_add(&root_task_group.list, &task_groups);
  6646. INIT_LIST_HEAD(&root_task_group.children);
  6647. autogroup_init(&init_task);
  6648. #endif /* CONFIG_CGROUP_SCHED */
  6649. for_each_possible_cpu(i) {
  6650. struct rq *rq;
  6651. rq = cpu_rq(i);
  6652. raw_spin_lock_init(&rq->lock);
  6653. rq->nr_running = 0;
  6654. rq->calc_load_active = 0;
  6655. rq->calc_load_update = jiffies + LOAD_FREQ;
  6656. init_cfs_rq(&rq->cfs, rq);
  6657. init_rt_rq(&rq->rt, rq);
  6658. #ifdef CONFIG_FAIR_GROUP_SCHED
  6659. root_task_group.shares = root_task_group_load;
  6660. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6661. /*
  6662. * How much cpu bandwidth does root_task_group get?
  6663. *
  6664. * In case of task-groups formed thr' the cgroup filesystem, it
  6665. * gets 100% of the cpu resources in the system. This overall
  6666. * system cpu resource is divided among the tasks of
  6667. * root_task_group and its child task-groups in a fair manner,
  6668. * based on each entity's (task or task-group's) weight
  6669. * (se->load.weight).
  6670. *
  6671. * In other words, if root_task_group has 10 tasks of weight
  6672. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6673. * then A0's share of the cpu resource is:
  6674. *
  6675. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6676. *
  6677. * We achieve this by letting root_task_group's tasks sit
  6678. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6679. */
  6680. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6681. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6682. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6683. #ifdef CONFIG_RT_GROUP_SCHED
  6684. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6685. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6686. #endif
  6687. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6688. rq->cpu_load[j] = 0;
  6689. rq->last_load_update_tick = jiffies;
  6690. #ifdef CONFIG_SMP
  6691. rq->sd = NULL;
  6692. rq->rd = NULL;
  6693. rq->cpu_power = SCHED_LOAD_SCALE;
  6694. rq->post_schedule = 0;
  6695. rq->active_balance = 0;
  6696. rq->next_balance = jiffies;
  6697. rq->push_cpu = 0;
  6698. rq->cpu = i;
  6699. rq->online = 0;
  6700. rq->idle_stamp = 0;
  6701. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6702. rq_attach_root(rq, &def_root_domain);
  6703. #ifdef CONFIG_NO_HZ
  6704. rq->nohz_balance_kick = 0;
  6705. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6706. #endif
  6707. #endif
  6708. init_rq_hrtick(rq);
  6709. atomic_set(&rq->nr_iowait, 0);
  6710. }
  6711. set_load_weight(&init_task);
  6712. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6713. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6714. #endif
  6715. #ifdef CONFIG_SMP
  6716. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6717. #endif
  6718. #ifdef CONFIG_RT_MUTEXES
  6719. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6720. #endif
  6721. /*
  6722. * The boot idle thread does lazy MMU switching as well:
  6723. */
  6724. atomic_inc(&init_mm.mm_count);
  6725. enter_lazy_tlb(&init_mm, current);
  6726. /*
  6727. * Make us the idle thread. Technically, schedule() should not be
  6728. * called from this thread, however somewhere below it might be,
  6729. * but because we are the idle thread, we just pick up running again
  6730. * when this runqueue becomes "idle".
  6731. */
  6732. init_idle(current, smp_processor_id());
  6733. calc_load_update = jiffies + LOAD_FREQ;
  6734. /*
  6735. * During early bootup we pretend to be a normal task:
  6736. */
  6737. current->sched_class = &fair_sched_class;
  6738. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6739. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6740. #ifdef CONFIG_SMP
  6741. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6742. #ifdef CONFIG_NO_HZ
  6743. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6744. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6745. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6746. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6747. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6748. #endif
  6749. /* May be allocated at isolcpus cmdline parse time */
  6750. if (cpu_isolated_map == NULL)
  6751. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6752. #endif /* SMP */
  6753. scheduler_running = 1;
  6754. }
  6755. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6756. static inline int preempt_count_equals(int preempt_offset)
  6757. {
  6758. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6759. return (nested == preempt_offset);
  6760. }
  6761. void __might_sleep(const char *file, int line, int preempt_offset)
  6762. {
  6763. #ifdef in_atomic
  6764. static unsigned long prev_jiffy; /* ratelimiting */
  6765. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6766. system_state != SYSTEM_RUNNING || oops_in_progress)
  6767. return;
  6768. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6769. return;
  6770. prev_jiffy = jiffies;
  6771. printk(KERN_ERR
  6772. "BUG: sleeping function called from invalid context at %s:%d\n",
  6773. file, line);
  6774. printk(KERN_ERR
  6775. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6776. in_atomic(), irqs_disabled(),
  6777. current->pid, current->comm);
  6778. debug_show_held_locks(current);
  6779. if (irqs_disabled())
  6780. print_irqtrace_events(current);
  6781. dump_stack();
  6782. #endif
  6783. }
  6784. EXPORT_SYMBOL(__might_sleep);
  6785. #endif
  6786. #ifdef CONFIG_MAGIC_SYSRQ
  6787. static void normalize_task(struct rq *rq, struct task_struct *p)
  6788. {
  6789. const struct sched_class *prev_class = p->sched_class;
  6790. int old_prio = p->prio;
  6791. int on_rq;
  6792. on_rq = p->on_rq;
  6793. if (on_rq)
  6794. deactivate_task(rq, p, 0);
  6795. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6796. if (on_rq) {
  6797. activate_task(rq, p, 0);
  6798. resched_task(rq->curr);
  6799. }
  6800. check_class_changed(rq, p, prev_class, old_prio);
  6801. }
  6802. void normalize_rt_tasks(void)
  6803. {
  6804. struct task_struct *g, *p;
  6805. unsigned long flags;
  6806. struct rq *rq;
  6807. read_lock_irqsave(&tasklist_lock, flags);
  6808. do_each_thread(g, p) {
  6809. /*
  6810. * Only normalize user tasks:
  6811. */
  6812. if (!p->mm)
  6813. continue;
  6814. p->se.exec_start = 0;
  6815. #ifdef CONFIG_SCHEDSTATS
  6816. p->se.statistics.wait_start = 0;
  6817. p->se.statistics.sleep_start = 0;
  6818. p->se.statistics.block_start = 0;
  6819. #endif
  6820. if (!rt_task(p)) {
  6821. /*
  6822. * Renice negative nice level userspace
  6823. * tasks back to 0:
  6824. */
  6825. if (TASK_NICE(p) < 0 && p->mm)
  6826. set_user_nice(p, 0);
  6827. continue;
  6828. }
  6829. raw_spin_lock(&p->pi_lock);
  6830. rq = __task_rq_lock(p);
  6831. normalize_task(rq, p);
  6832. __task_rq_unlock(rq);
  6833. raw_spin_unlock(&p->pi_lock);
  6834. } while_each_thread(g, p);
  6835. read_unlock_irqrestore(&tasklist_lock, flags);
  6836. }
  6837. #endif /* CONFIG_MAGIC_SYSRQ */
  6838. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6839. /*
  6840. * These functions are only useful for the IA64 MCA handling, or kdb.
  6841. *
  6842. * They can only be called when the whole system has been
  6843. * stopped - every CPU needs to be quiescent, and no scheduling
  6844. * activity can take place. Using them for anything else would
  6845. * be a serious bug, and as a result, they aren't even visible
  6846. * under any other configuration.
  6847. */
  6848. /**
  6849. * curr_task - return the current task for a given cpu.
  6850. * @cpu: the processor in question.
  6851. *
  6852. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6853. */
  6854. struct task_struct *curr_task(int cpu)
  6855. {
  6856. return cpu_curr(cpu);
  6857. }
  6858. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6859. #ifdef CONFIG_IA64
  6860. /**
  6861. * set_curr_task - set the current task for a given cpu.
  6862. * @cpu: the processor in question.
  6863. * @p: the task pointer to set.
  6864. *
  6865. * Description: This function must only be used when non-maskable interrupts
  6866. * are serviced on a separate stack. It allows the architecture to switch the
  6867. * notion of the current task on a cpu in a non-blocking manner. This function
  6868. * must be called with all CPU's synchronized, and interrupts disabled, the
  6869. * and caller must save the original value of the current task (see
  6870. * curr_task() above) and restore that value before reenabling interrupts and
  6871. * re-starting the system.
  6872. *
  6873. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6874. */
  6875. void set_curr_task(int cpu, struct task_struct *p)
  6876. {
  6877. cpu_curr(cpu) = p;
  6878. }
  6879. #endif
  6880. #ifdef CONFIG_FAIR_GROUP_SCHED
  6881. static void free_fair_sched_group(struct task_group *tg)
  6882. {
  6883. int i;
  6884. for_each_possible_cpu(i) {
  6885. if (tg->cfs_rq)
  6886. kfree(tg->cfs_rq[i]);
  6887. if (tg->se)
  6888. kfree(tg->se[i]);
  6889. }
  6890. kfree(tg->cfs_rq);
  6891. kfree(tg->se);
  6892. }
  6893. static
  6894. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6895. {
  6896. struct cfs_rq *cfs_rq;
  6897. struct sched_entity *se;
  6898. int i;
  6899. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6900. if (!tg->cfs_rq)
  6901. goto err;
  6902. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6903. if (!tg->se)
  6904. goto err;
  6905. tg->shares = NICE_0_LOAD;
  6906. for_each_possible_cpu(i) {
  6907. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6908. GFP_KERNEL, cpu_to_node(i));
  6909. if (!cfs_rq)
  6910. goto err;
  6911. se = kzalloc_node(sizeof(struct sched_entity),
  6912. GFP_KERNEL, cpu_to_node(i));
  6913. if (!se)
  6914. goto err_free_rq;
  6915. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6916. }
  6917. return 1;
  6918. err_free_rq:
  6919. kfree(cfs_rq);
  6920. err:
  6921. return 0;
  6922. }
  6923. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6924. {
  6925. struct rq *rq = cpu_rq(cpu);
  6926. unsigned long flags;
  6927. /*
  6928. * Only empty task groups can be destroyed; so we can speculatively
  6929. * check on_list without danger of it being re-added.
  6930. */
  6931. if (!tg->cfs_rq[cpu]->on_list)
  6932. return;
  6933. raw_spin_lock_irqsave(&rq->lock, flags);
  6934. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6935. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6936. }
  6937. #else /* !CONFG_FAIR_GROUP_SCHED */
  6938. static inline void free_fair_sched_group(struct task_group *tg)
  6939. {
  6940. }
  6941. static inline
  6942. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6943. {
  6944. return 1;
  6945. }
  6946. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6947. {
  6948. }
  6949. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6950. #ifdef CONFIG_RT_GROUP_SCHED
  6951. static void free_rt_sched_group(struct task_group *tg)
  6952. {
  6953. int i;
  6954. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6955. for_each_possible_cpu(i) {
  6956. if (tg->rt_rq)
  6957. kfree(tg->rt_rq[i]);
  6958. if (tg->rt_se)
  6959. kfree(tg->rt_se[i]);
  6960. }
  6961. kfree(tg->rt_rq);
  6962. kfree(tg->rt_se);
  6963. }
  6964. static
  6965. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6966. {
  6967. struct rt_rq *rt_rq;
  6968. struct sched_rt_entity *rt_se;
  6969. int i;
  6970. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6971. if (!tg->rt_rq)
  6972. goto err;
  6973. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6974. if (!tg->rt_se)
  6975. goto err;
  6976. init_rt_bandwidth(&tg->rt_bandwidth,
  6977. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6978. for_each_possible_cpu(i) {
  6979. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6980. GFP_KERNEL, cpu_to_node(i));
  6981. if (!rt_rq)
  6982. goto err;
  6983. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6984. GFP_KERNEL, cpu_to_node(i));
  6985. if (!rt_se)
  6986. goto err_free_rq;
  6987. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6988. }
  6989. return 1;
  6990. err_free_rq:
  6991. kfree(rt_rq);
  6992. err:
  6993. return 0;
  6994. }
  6995. #else /* !CONFIG_RT_GROUP_SCHED */
  6996. static inline void free_rt_sched_group(struct task_group *tg)
  6997. {
  6998. }
  6999. static inline
  7000. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7001. {
  7002. return 1;
  7003. }
  7004. #endif /* CONFIG_RT_GROUP_SCHED */
  7005. #ifdef CONFIG_CGROUP_SCHED
  7006. static void free_sched_group(struct task_group *tg)
  7007. {
  7008. free_fair_sched_group(tg);
  7009. free_rt_sched_group(tg);
  7010. autogroup_free(tg);
  7011. kfree(tg);
  7012. }
  7013. /* allocate runqueue etc for a new task group */
  7014. struct task_group *sched_create_group(struct task_group *parent)
  7015. {
  7016. struct task_group *tg;
  7017. unsigned long flags;
  7018. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7019. if (!tg)
  7020. return ERR_PTR(-ENOMEM);
  7021. if (!alloc_fair_sched_group(tg, parent))
  7022. goto err;
  7023. if (!alloc_rt_sched_group(tg, parent))
  7024. goto err;
  7025. spin_lock_irqsave(&task_group_lock, flags);
  7026. list_add_rcu(&tg->list, &task_groups);
  7027. WARN_ON(!parent); /* root should already exist */
  7028. tg->parent = parent;
  7029. INIT_LIST_HEAD(&tg->children);
  7030. list_add_rcu(&tg->siblings, &parent->children);
  7031. spin_unlock_irqrestore(&task_group_lock, flags);
  7032. return tg;
  7033. err:
  7034. free_sched_group(tg);
  7035. return ERR_PTR(-ENOMEM);
  7036. }
  7037. /* rcu callback to free various structures associated with a task group */
  7038. static void free_sched_group_rcu(struct rcu_head *rhp)
  7039. {
  7040. /* now it should be safe to free those cfs_rqs */
  7041. free_sched_group(container_of(rhp, struct task_group, rcu));
  7042. }
  7043. /* Destroy runqueue etc associated with a task group */
  7044. void sched_destroy_group(struct task_group *tg)
  7045. {
  7046. unsigned long flags;
  7047. int i;
  7048. /* end participation in shares distribution */
  7049. for_each_possible_cpu(i)
  7050. unregister_fair_sched_group(tg, i);
  7051. spin_lock_irqsave(&task_group_lock, flags);
  7052. list_del_rcu(&tg->list);
  7053. list_del_rcu(&tg->siblings);
  7054. spin_unlock_irqrestore(&task_group_lock, flags);
  7055. /* wait for possible concurrent references to cfs_rqs complete */
  7056. call_rcu(&tg->rcu, free_sched_group_rcu);
  7057. }
  7058. /* change task's runqueue when it moves between groups.
  7059. * The caller of this function should have put the task in its new group
  7060. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7061. * reflect its new group.
  7062. */
  7063. void sched_move_task(struct task_struct *tsk)
  7064. {
  7065. int on_rq, running;
  7066. unsigned long flags;
  7067. struct rq *rq;
  7068. rq = task_rq_lock(tsk, &flags);
  7069. running = task_current(rq, tsk);
  7070. on_rq = tsk->on_rq;
  7071. if (on_rq)
  7072. dequeue_task(rq, tsk, 0);
  7073. if (unlikely(running))
  7074. tsk->sched_class->put_prev_task(rq, tsk);
  7075. #ifdef CONFIG_FAIR_GROUP_SCHED
  7076. if (tsk->sched_class->task_move_group)
  7077. tsk->sched_class->task_move_group(tsk, on_rq);
  7078. else
  7079. #endif
  7080. set_task_rq(tsk, task_cpu(tsk));
  7081. if (unlikely(running))
  7082. tsk->sched_class->set_curr_task(rq);
  7083. if (on_rq)
  7084. enqueue_task(rq, tsk, 0);
  7085. task_rq_unlock(rq, tsk, &flags);
  7086. }
  7087. #endif /* CONFIG_CGROUP_SCHED */
  7088. #ifdef CONFIG_FAIR_GROUP_SCHED
  7089. static DEFINE_MUTEX(shares_mutex);
  7090. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7091. {
  7092. int i;
  7093. unsigned long flags;
  7094. /*
  7095. * We can't change the weight of the root cgroup.
  7096. */
  7097. if (!tg->se[0])
  7098. return -EINVAL;
  7099. if (shares < MIN_SHARES)
  7100. shares = MIN_SHARES;
  7101. else if (shares > MAX_SHARES)
  7102. shares = MAX_SHARES;
  7103. mutex_lock(&shares_mutex);
  7104. if (tg->shares == shares)
  7105. goto done;
  7106. tg->shares = shares;
  7107. for_each_possible_cpu(i) {
  7108. struct rq *rq = cpu_rq(i);
  7109. struct sched_entity *se;
  7110. se = tg->se[i];
  7111. /* Propagate contribution to hierarchy */
  7112. raw_spin_lock_irqsave(&rq->lock, flags);
  7113. for_each_sched_entity(se)
  7114. update_cfs_shares(group_cfs_rq(se));
  7115. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7116. }
  7117. done:
  7118. mutex_unlock(&shares_mutex);
  7119. return 0;
  7120. }
  7121. unsigned long sched_group_shares(struct task_group *tg)
  7122. {
  7123. return tg->shares;
  7124. }
  7125. #endif
  7126. #ifdef CONFIG_RT_GROUP_SCHED
  7127. /*
  7128. * Ensure that the real time constraints are schedulable.
  7129. */
  7130. static DEFINE_MUTEX(rt_constraints_mutex);
  7131. static unsigned long to_ratio(u64 period, u64 runtime)
  7132. {
  7133. if (runtime == RUNTIME_INF)
  7134. return 1ULL << 20;
  7135. return div64_u64(runtime << 20, period);
  7136. }
  7137. /* Must be called with tasklist_lock held */
  7138. static inline int tg_has_rt_tasks(struct task_group *tg)
  7139. {
  7140. struct task_struct *g, *p;
  7141. do_each_thread(g, p) {
  7142. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7143. return 1;
  7144. } while_each_thread(g, p);
  7145. return 0;
  7146. }
  7147. struct rt_schedulable_data {
  7148. struct task_group *tg;
  7149. u64 rt_period;
  7150. u64 rt_runtime;
  7151. };
  7152. static int tg_schedulable(struct task_group *tg, void *data)
  7153. {
  7154. struct rt_schedulable_data *d = data;
  7155. struct task_group *child;
  7156. unsigned long total, sum = 0;
  7157. u64 period, runtime;
  7158. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7159. runtime = tg->rt_bandwidth.rt_runtime;
  7160. if (tg == d->tg) {
  7161. period = d->rt_period;
  7162. runtime = d->rt_runtime;
  7163. }
  7164. /*
  7165. * Cannot have more runtime than the period.
  7166. */
  7167. if (runtime > period && runtime != RUNTIME_INF)
  7168. return -EINVAL;
  7169. /*
  7170. * Ensure we don't starve existing RT tasks.
  7171. */
  7172. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7173. return -EBUSY;
  7174. total = to_ratio(period, runtime);
  7175. /*
  7176. * Nobody can have more than the global setting allows.
  7177. */
  7178. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7179. return -EINVAL;
  7180. /*
  7181. * The sum of our children's runtime should not exceed our own.
  7182. */
  7183. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7184. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7185. runtime = child->rt_bandwidth.rt_runtime;
  7186. if (child == d->tg) {
  7187. period = d->rt_period;
  7188. runtime = d->rt_runtime;
  7189. }
  7190. sum += to_ratio(period, runtime);
  7191. }
  7192. if (sum > total)
  7193. return -EINVAL;
  7194. return 0;
  7195. }
  7196. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7197. {
  7198. struct rt_schedulable_data data = {
  7199. .tg = tg,
  7200. .rt_period = period,
  7201. .rt_runtime = runtime,
  7202. };
  7203. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7204. }
  7205. static int tg_set_bandwidth(struct task_group *tg,
  7206. u64 rt_period, u64 rt_runtime)
  7207. {
  7208. int i, err = 0;
  7209. mutex_lock(&rt_constraints_mutex);
  7210. read_lock(&tasklist_lock);
  7211. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7212. if (err)
  7213. goto unlock;
  7214. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7215. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7216. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7217. for_each_possible_cpu(i) {
  7218. struct rt_rq *rt_rq = tg->rt_rq[i];
  7219. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7220. rt_rq->rt_runtime = rt_runtime;
  7221. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7222. }
  7223. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7224. unlock:
  7225. read_unlock(&tasklist_lock);
  7226. mutex_unlock(&rt_constraints_mutex);
  7227. return err;
  7228. }
  7229. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7230. {
  7231. u64 rt_runtime, rt_period;
  7232. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7233. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7234. if (rt_runtime_us < 0)
  7235. rt_runtime = RUNTIME_INF;
  7236. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7237. }
  7238. long sched_group_rt_runtime(struct task_group *tg)
  7239. {
  7240. u64 rt_runtime_us;
  7241. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7242. return -1;
  7243. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7244. do_div(rt_runtime_us, NSEC_PER_USEC);
  7245. return rt_runtime_us;
  7246. }
  7247. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7248. {
  7249. u64 rt_runtime, rt_period;
  7250. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7251. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7252. if (rt_period == 0)
  7253. return -EINVAL;
  7254. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7255. }
  7256. long sched_group_rt_period(struct task_group *tg)
  7257. {
  7258. u64 rt_period_us;
  7259. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7260. do_div(rt_period_us, NSEC_PER_USEC);
  7261. return rt_period_us;
  7262. }
  7263. static int sched_rt_global_constraints(void)
  7264. {
  7265. u64 runtime, period;
  7266. int ret = 0;
  7267. if (sysctl_sched_rt_period <= 0)
  7268. return -EINVAL;
  7269. runtime = global_rt_runtime();
  7270. period = global_rt_period();
  7271. /*
  7272. * Sanity check on the sysctl variables.
  7273. */
  7274. if (runtime > period && runtime != RUNTIME_INF)
  7275. return -EINVAL;
  7276. mutex_lock(&rt_constraints_mutex);
  7277. read_lock(&tasklist_lock);
  7278. ret = __rt_schedulable(NULL, 0, 0);
  7279. read_unlock(&tasklist_lock);
  7280. mutex_unlock(&rt_constraints_mutex);
  7281. return ret;
  7282. }
  7283. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7284. {
  7285. /* Don't accept realtime tasks when there is no way for them to run */
  7286. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7287. return 0;
  7288. return 1;
  7289. }
  7290. #else /* !CONFIG_RT_GROUP_SCHED */
  7291. static int sched_rt_global_constraints(void)
  7292. {
  7293. unsigned long flags;
  7294. int i;
  7295. if (sysctl_sched_rt_period <= 0)
  7296. return -EINVAL;
  7297. /*
  7298. * There's always some RT tasks in the root group
  7299. * -- migration, kstopmachine etc..
  7300. */
  7301. if (sysctl_sched_rt_runtime == 0)
  7302. return -EBUSY;
  7303. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7304. for_each_possible_cpu(i) {
  7305. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7306. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7307. rt_rq->rt_runtime = global_rt_runtime();
  7308. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7309. }
  7310. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7311. return 0;
  7312. }
  7313. #endif /* CONFIG_RT_GROUP_SCHED */
  7314. int sched_rt_handler(struct ctl_table *table, int write,
  7315. void __user *buffer, size_t *lenp,
  7316. loff_t *ppos)
  7317. {
  7318. int ret;
  7319. int old_period, old_runtime;
  7320. static DEFINE_MUTEX(mutex);
  7321. mutex_lock(&mutex);
  7322. old_period = sysctl_sched_rt_period;
  7323. old_runtime = sysctl_sched_rt_runtime;
  7324. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7325. if (!ret && write) {
  7326. ret = sched_rt_global_constraints();
  7327. if (ret) {
  7328. sysctl_sched_rt_period = old_period;
  7329. sysctl_sched_rt_runtime = old_runtime;
  7330. } else {
  7331. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7332. def_rt_bandwidth.rt_period =
  7333. ns_to_ktime(global_rt_period());
  7334. }
  7335. }
  7336. mutex_unlock(&mutex);
  7337. return ret;
  7338. }
  7339. #ifdef CONFIG_CGROUP_SCHED
  7340. /* return corresponding task_group object of a cgroup */
  7341. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7342. {
  7343. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7344. struct task_group, css);
  7345. }
  7346. static struct cgroup_subsys_state *
  7347. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7348. {
  7349. struct task_group *tg, *parent;
  7350. if (!cgrp->parent) {
  7351. /* This is early initialization for the top cgroup */
  7352. return &root_task_group.css;
  7353. }
  7354. parent = cgroup_tg(cgrp->parent);
  7355. tg = sched_create_group(parent);
  7356. if (IS_ERR(tg))
  7357. return ERR_PTR(-ENOMEM);
  7358. return &tg->css;
  7359. }
  7360. static void
  7361. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7362. {
  7363. struct task_group *tg = cgroup_tg(cgrp);
  7364. sched_destroy_group(tg);
  7365. }
  7366. static int
  7367. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7368. {
  7369. #ifdef CONFIG_RT_GROUP_SCHED
  7370. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7371. return -EINVAL;
  7372. #else
  7373. /* We don't support RT-tasks being in separate groups */
  7374. if (tsk->sched_class != &fair_sched_class)
  7375. return -EINVAL;
  7376. #endif
  7377. return 0;
  7378. }
  7379. static int
  7380. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7381. struct task_struct *tsk, bool threadgroup)
  7382. {
  7383. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7384. if (retval)
  7385. return retval;
  7386. if (threadgroup) {
  7387. struct task_struct *c;
  7388. rcu_read_lock();
  7389. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7390. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7391. if (retval) {
  7392. rcu_read_unlock();
  7393. return retval;
  7394. }
  7395. }
  7396. rcu_read_unlock();
  7397. }
  7398. return 0;
  7399. }
  7400. static void
  7401. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7402. struct cgroup *old_cont, struct task_struct *tsk,
  7403. bool threadgroup)
  7404. {
  7405. sched_move_task(tsk);
  7406. if (threadgroup) {
  7407. struct task_struct *c;
  7408. rcu_read_lock();
  7409. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7410. sched_move_task(c);
  7411. }
  7412. rcu_read_unlock();
  7413. }
  7414. }
  7415. static void
  7416. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7417. struct cgroup *old_cgrp, struct task_struct *task)
  7418. {
  7419. /*
  7420. * cgroup_exit() is called in the copy_process() failure path.
  7421. * Ignore this case since the task hasn't ran yet, this avoids
  7422. * trying to poke a half freed task state from generic code.
  7423. */
  7424. if (!(task->flags & PF_EXITING))
  7425. return;
  7426. sched_move_task(task);
  7427. }
  7428. #ifdef CONFIG_FAIR_GROUP_SCHED
  7429. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7430. u64 shareval)
  7431. {
  7432. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7433. }
  7434. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7435. {
  7436. struct task_group *tg = cgroup_tg(cgrp);
  7437. return (u64) tg->shares;
  7438. }
  7439. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7440. #ifdef CONFIG_RT_GROUP_SCHED
  7441. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7442. s64 val)
  7443. {
  7444. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7445. }
  7446. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7447. {
  7448. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7449. }
  7450. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7451. u64 rt_period_us)
  7452. {
  7453. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7454. }
  7455. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7456. {
  7457. return sched_group_rt_period(cgroup_tg(cgrp));
  7458. }
  7459. #endif /* CONFIG_RT_GROUP_SCHED */
  7460. static struct cftype cpu_files[] = {
  7461. #ifdef CONFIG_FAIR_GROUP_SCHED
  7462. {
  7463. .name = "shares",
  7464. .read_u64 = cpu_shares_read_u64,
  7465. .write_u64 = cpu_shares_write_u64,
  7466. },
  7467. #endif
  7468. #ifdef CONFIG_RT_GROUP_SCHED
  7469. {
  7470. .name = "rt_runtime_us",
  7471. .read_s64 = cpu_rt_runtime_read,
  7472. .write_s64 = cpu_rt_runtime_write,
  7473. },
  7474. {
  7475. .name = "rt_period_us",
  7476. .read_u64 = cpu_rt_period_read_uint,
  7477. .write_u64 = cpu_rt_period_write_uint,
  7478. },
  7479. #endif
  7480. };
  7481. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7482. {
  7483. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7484. }
  7485. struct cgroup_subsys cpu_cgroup_subsys = {
  7486. .name = "cpu",
  7487. .create = cpu_cgroup_create,
  7488. .destroy = cpu_cgroup_destroy,
  7489. .can_attach = cpu_cgroup_can_attach,
  7490. .attach = cpu_cgroup_attach,
  7491. .exit = cpu_cgroup_exit,
  7492. .populate = cpu_cgroup_populate,
  7493. .subsys_id = cpu_cgroup_subsys_id,
  7494. .early_init = 1,
  7495. };
  7496. #endif /* CONFIG_CGROUP_SCHED */
  7497. #ifdef CONFIG_CGROUP_CPUACCT
  7498. /*
  7499. * CPU accounting code for task groups.
  7500. *
  7501. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7502. * (balbir@in.ibm.com).
  7503. */
  7504. /* track cpu usage of a group of tasks and its child groups */
  7505. struct cpuacct {
  7506. struct cgroup_subsys_state css;
  7507. /* cpuusage holds pointer to a u64-type object on every cpu */
  7508. u64 __percpu *cpuusage;
  7509. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7510. struct cpuacct *parent;
  7511. };
  7512. struct cgroup_subsys cpuacct_subsys;
  7513. /* return cpu accounting group corresponding to this container */
  7514. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7515. {
  7516. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7517. struct cpuacct, css);
  7518. }
  7519. /* return cpu accounting group to which this task belongs */
  7520. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7521. {
  7522. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7523. struct cpuacct, css);
  7524. }
  7525. /* create a new cpu accounting group */
  7526. static struct cgroup_subsys_state *cpuacct_create(
  7527. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7528. {
  7529. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7530. int i;
  7531. if (!ca)
  7532. goto out;
  7533. ca->cpuusage = alloc_percpu(u64);
  7534. if (!ca->cpuusage)
  7535. goto out_free_ca;
  7536. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7537. if (percpu_counter_init(&ca->cpustat[i], 0))
  7538. goto out_free_counters;
  7539. if (cgrp->parent)
  7540. ca->parent = cgroup_ca(cgrp->parent);
  7541. return &ca->css;
  7542. out_free_counters:
  7543. while (--i >= 0)
  7544. percpu_counter_destroy(&ca->cpustat[i]);
  7545. free_percpu(ca->cpuusage);
  7546. out_free_ca:
  7547. kfree(ca);
  7548. out:
  7549. return ERR_PTR(-ENOMEM);
  7550. }
  7551. /* destroy an existing cpu accounting group */
  7552. static void
  7553. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7554. {
  7555. struct cpuacct *ca = cgroup_ca(cgrp);
  7556. int i;
  7557. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7558. percpu_counter_destroy(&ca->cpustat[i]);
  7559. free_percpu(ca->cpuusage);
  7560. kfree(ca);
  7561. }
  7562. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7563. {
  7564. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7565. u64 data;
  7566. #ifndef CONFIG_64BIT
  7567. /*
  7568. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7569. */
  7570. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7571. data = *cpuusage;
  7572. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7573. #else
  7574. data = *cpuusage;
  7575. #endif
  7576. return data;
  7577. }
  7578. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7579. {
  7580. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7581. #ifndef CONFIG_64BIT
  7582. /*
  7583. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7584. */
  7585. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7586. *cpuusage = val;
  7587. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7588. #else
  7589. *cpuusage = val;
  7590. #endif
  7591. }
  7592. /* return total cpu usage (in nanoseconds) of a group */
  7593. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7594. {
  7595. struct cpuacct *ca = cgroup_ca(cgrp);
  7596. u64 totalcpuusage = 0;
  7597. int i;
  7598. for_each_present_cpu(i)
  7599. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7600. return totalcpuusage;
  7601. }
  7602. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7603. u64 reset)
  7604. {
  7605. struct cpuacct *ca = cgroup_ca(cgrp);
  7606. int err = 0;
  7607. int i;
  7608. if (reset) {
  7609. err = -EINVAL;
  7610. goto out;
  7611. }
  7612. for_each_present_cpu(i)
  7613. cpuacct_cpuusage_write(ca, i, 0);
  7614. out:
  7615. return err;
  7616. }
  7617. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7618. struct seq_file *m)
  7619. {
  7620. struct cpuacct *ca = cgroup_ca(cgroup);
  7621. u64 percpu;
  7622. int i;
  7623. for_each_present_cpu(i) {
  7624. percpu = cpuacct_cpuusage_read(ca, i);
  7625. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7626. }
  7627. seq_printf(m, "\n");
  7628. return 0;
  7629. }
  7630. static const char *cpuacct_stat_desc[] = {
  7631. [CPUACCT_STAT_USER] = "user",
  7632. [CPUACCT_STAT_SYSTEM] = "system",
  7633. };
  7634. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7635. struct cgroup_map_cb *cb)
  7636. {
  7637. struct cpuacct *ca = cgroup_ca(cgrp);
  7638. int i;
  7639. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7640. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7641. val = cputime64_to_clock_t(val);
  7642. cb->fill(cb, cpuacct_stat_desc[i], val);
  7643. }
  7644. return 0;
  7645. }
  7646. static struct cftype files[] = {
  7647. {
  7648. .name = "usage",
  7649. .read_u64 = cpuusage_read,
  7650. .write_u64 = cpuusage_write,
  7651. },
  7652. {
  7653. .name = "usage_percpu",
  7654. .read_seq_string = cpuacct_percpu_seq_read,
  7655. },
  7656. {
  7657. .name = "stat",
  7658. .read_map = cpuacct_stats_show,
  7659. },
  7660. };
  7661. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7662. {
  7663. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7664. }
  7665. /*
  7666. * charge this task's execution time to its accounting group.
  7667. *
  7668. * called with rq->lock held.
  7669. */
  7670. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7671. {
  7672. struct cpuacct *ca;
  7673. int cpu;
  7674. if (unlikely(!cpuacct_subsys.active))
  7675. return;
  7676. cpu = task_cpu(tsk);
  7677. rcu_read_lock();
  7678. ca = task_ca(tsk);
  7679. for (; ca; ca = ca->parent) {
  7680. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7681. *cpuusage += cputime;
  7682. }
  7683. rcu_read_unlock();
  7684. }
  7685. /*
  7686. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7687. * in cputime_t units. As a result, cpuacct_update_stats calls
  7688. * percpu_counter_add with values large enough to always overflow the
  7689. * per cpu batch limit causing bad SMP scalability.
  7690. *
  7691. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7692. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7693. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7694. */
  7695. #ifdef CONFIG_SMP
  7696. #define CPUACCT_BATCH \
  7697. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7698. #else
  7699. #define CPUACCT_BATCH 0
  7700. #endif
  7701. /*
  7702. * Charge the system/user time to the task's accounting group.
  7703. */
  7704. static void cpuacct_update_stats(struct task_struct *tsk,
  7705. enum cpuacct_stat_index idx, cputime_t val)
  7706. {
  7707. struct cpuacct *ca;
  7708. int batch = CPUACCT_BATCH;
  7709. if (unlikely(!cpuacct_subsys.active))
  7710. return;
  7711. rcu_read_lock();
  7712. ca = task_ca(tsk);
  7713. do {
  7714. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7715. ca = ca->parent;
  7716. } while (ca);
  7717. rcu_read_unlock();
  7718. }
  7719. struct cgroup_subsys cpuacct_subsys = {
  7720. .name = "cpuacct",
  7721. .create = cpuacct_create,
  7722. .destroy = cpuacct_destroy,
  7723. .populate = cpuacct_populate,
  7724. .subsys_id = cpuacct_subsys_id,
  7725. };
  7726. #endif /* CONFIG_CGROUP_CPUACCT */