snapshot.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321
  1. /*
  2. * linux/kernel/power/snapshot.c
  3. *
  4. * This file provides system snapshot/restore functionality for swsusp.
  5. *
  6. * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
  7. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  8. *
  9. * This file is released under the GPLv2.
  10. *
  11. */
  12. #include <linux/version.h>
  13. #include <linux/module.h>
  14. #include <linux/mm.h>
  15. #include <linux/suspend.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kernel.h>
  20. #include <linux/pm.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/syscalls.h>
  25. #include <linux/console.h>
  26. #include <linux/highmem.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/io.h>
  34. #include "power.h"
  35. static int swsusp_page_is_free(struct page *);
  36. static void swsusp_set_page_forbidden(struct page *);
  37. static void swsusp_unset_page_forbidden(struct page *);
  38. /*
  39. * Number of bytes to reserve for memory allocations made by device drivers
  40. * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  41. * cause image creation to fail (tunable via /sys/power/reserved_size).
  42. */
  43. unsigned long reserved_size;
  44. void __init hibernate_reserved_size_init(void)
  45. {
  46. reserved_size = SPARE_PAGES * PAGE_SIZE;
  47. }
  48. /*
  49. * Preferred image size in bytes (tunable via /sys/power/image_size).
  50. * When it is set to N, swsusp will do its best to ensure the image
  51. * size will not exceed N bytes, but if that is impossible, it will
  52. * try to create the smallest image possible.
  53. */
  54. unsigned long image_size;
  55. void __init hibernate_image_size_init(void)
  56. {
  57. image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  58. }
  59. /* List of PBEs needed for restoring the pages that were allocated before
  60. * the suspend and included in the suspend image, but have also been
  61. * allocated by the "resume" kernel, so their contents cannot be written
  62. * directly to their "original" page frames.
  63. */
  64. struct pbe *restore_pblist;
  65. /* Pointer to an auxiliary buffer (1 page) */
  66. static void *buffer;
  67. /**
  68. * @safe_needed - on resume, for storing the PBE list and the image,
  69. * we can only use memory pages that do not conflict with the pages
  70. * used before suspend. The unsafe pages have PageNosaveFree set
  71. * and we count them using unsafe_pages.
  72. *
  73. * Each allocated image page is marked as PageNosave and PageNosaveFree
  74. * so that swsusp_free() can release it.
  75. */
  76. #define PG_ANY 0
  77. #define PG_SAFE 1
  78. #define PG_UNSAFE_CLEAR 1
  79. #define PG_UNSAFE_KEEP 0
  80. static unsigned int allocated_unsafe_pages;
  81. static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  82. {
  83. void *res;
  84. res = (void *)get_zeroed_page(gfp_mask);
  85. if (safe_needed)
  86. while (res && swsusp_page_is_free(virt_to_page(res))) {
  87. /* The page is unsafe, mark it for swsusp_free() */
  88. swsusp_set_page_forbidden(virt_to_page(res));
  89. allocated_unsafe_pages++;
  90. res = (void *)get_zeroed_page(gfp_mask);
  91. }
  92. if (res) {
  93. swsusp_set_page_forbidden(virt_to_page(res));
  94. swsusp_set_page_free(virt_to_page(res));
  95. }
  96. return res;
  97. }
  98. unsigned long get_safe_page(gfp_t gfp_mask)
  99. {
  100. return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
  101. }
  102. static struct page *alloc_image_page(gfp_t gfp_mask)
  103. {
  104. struct page *page;
  105. page = alloc_page(gfp_mask);
  106. if (page) {
  107. swsusp_set_page_forbidden(page);
  108. swsusp_set_page_free(page);
  109. }
  110. return page;
  111. }
  112. /**
  113. * free_image_page - free page represented by @addr, allocated with
  114. * get_image_page (page flags set by it must be cleared)
  115. */
  116. static inline void free_image_page(void *addr, int clear_nosave_free)
  117. {
  118. struct page *page;
  119. BUG_ON(!virt_addr_valid(addr));
  120. page = virt_to_page(addr);
  121. swsusp_unset_page_forbidden(page);
  122. if (clear_nosave_free)
  123. swsusp_unset_page_free(page);
  124. __free_page(page);
  125. }
  126. /* struct linked_page is used to build chains of pages */
  127. #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
  128. struct linked_page {
  129. struct linked_page *next;
  130. char data[LINKED_PAGE_DATA_SIZE];
  131. } __attribute__((packed));
  132. static inline void
  133. free_list_of_pages(struct linked_page *list, int clear_page_nosave)
  134. {
  135. while (list) {
  136. struct linked_page *lp = list->next;
  137. free_image_page(list, clear_page_nosave);
  138. list = lp;
  139. }
  140. }
  141. /**
  142. * struct chain_allocator is used for allocating small objects out of
  143. * a linked list of pages called 'the chain'.
  144. *
  145. * The chain grows each time when there is no room for a new object in
  146. * the current page. The allocated objects cannot be freed individually.
  147. * It is only possible to free them all at once, by freeing the entire
  148. * chain.
  149. *
  150. * NOTE: The chain allocator may be inefficient if the allocated objects
  151. * are not much smaller than PAGE_SIZE.
  152. */
  153. struct chain_allocator {
  154. struct linked_page *chain; /* the chain */
  155. unsigned int used_space; /* total size of objects allocated out
  156. * of the current page
  157. */
  158. gfp_t gfp_mask; /* mask for allocating pages */
  159. int safe_needed; /* if set, only "safe" pages are allocated */
  160. };
  161. static void
  162. chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
  163. {
  164. ca->chain = NULL;
  165. ca->used_space = LINKED_PAGE_DATA_SIZE;
  166. ca->gfp_mask = gfp_mask;
  167. ca->safe_needed = safe_needed;
  168. }
  169. static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
  170. {
  171. void *ret;
  172. if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
  173. struct linked_page *lp;
  174. lp = get_image_page(ca->gfp_mask, ca->safe_needed);
  175. if (!lp)
  176. return NULL;
  177. lp->next = ca->chain;
  178. ca->chain = lp;
  179. ca->used_space = 0;
  180. }
  181. ret = ca->chain->data + ca->used_space;
  182. ca->used_space += size;
  183. return ret;
  184. }
  185. /**
  186. * Data types related to memory bitmaps.
  187. *
  188. * Memory bitmap is a structure consiting of many linked lists of
  189. * objects. The main list's elements are of type struct zone_bitmap
  190. * and each of them corresonds to one zone. For each zone bitmap
  191. * object there is a list of objects of type struct bm_block that
  192. * represent each blocks of bitmap in which information is stored.
  193. *
  194. * struct memory_bitmap contains a pointer to the main list of zone
  195. * bitmap objects, a struct bm_position used for browsing the bitmap,
  196. * and a pointer to the list of pages used for allocating all of the
  197. * zone bitmap objects and bitmap block objects.
  198. *
  199. * NOTE: It has to be possible to lay out the bitmap in memory
  200. * using only allocations of order 0. Additionally, the bitmap is
  201. * designed to work with arbitrary number of zones (this is over the
  202. * top for now, but let's avoid making unnecessary assumptions ;-).
  203. *
  204. * struct zone_bitmap contains a pointer to a list of bitmap block
  205. * objects and a pointer to the bitmap block object that has been
  206. * most recently used for setting bits. Additionally, it contains the
  207. * pfns that correspond to the start and end of the represented zone.
  208. *
  209. * struct bm_block contains a pointer to the memory page in which
  210. * information is stored (in the form of a block of bitmap)
  211. * It also contains the pfns that correspond to the start and end of
  212. * the represented memory area.
  213. */
  214. #define BM_END_OF_MAP (~0UL)
  215. #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
  216. struct bm_block {
  217. struct list_head hook; /* hook into a list of bitmap blocks */
  218. unsigned long start_pfn; /* pfn represented by the first bit */
  219. unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
  220. unsigned long *data; /* bitmap representing pages */
  221. };
  222. static inline unsigned long bm_block_bits(struct bm_block *bb)
  223. {
  224. return bb->end_pfn - bb->start_pfn;
  225. }
  226. /* strcut bm_position is used for browsing memory bitmaps */
  227. struct bm_position {
  228. struct bm_block *block;
  229. int bit;
  230. };
  231. struct memory_bitmap {
  232. struct list_head blocks; /* list of bitmap blocks */
  233. struct linked_page *p_list; /* list of pages used to store zone
  234. * bitmap objects and bitmap block
  235. * objects
  236. */
  237. struct bm_position cur; /* most recently used bit position */
  238. };
  239. /* Functions that operate on memory bitmaps */
  240. static void memory_bm_position_reset(struct memory_bitmap *bm)
  241. {
  242. bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
  243. bm->cur.bit = 0;
  244. }
  245. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
  246. /**
  247. * create_bm_block_list - create a list of block bitmap objects
  248. * @pages - number of pages to track
  249. * @list - list to put the allocated blocks into
  250. * @ca - chain allocator to be used for allocating memory
  251. */
  252. static int create_bm_block_list(unsigned long pages,
  253. struct list_head *list,
  254. struct chain_allocator *ca)
  255. {
  256. unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
  257. while (nr_blocks-- > 0) {
  258. struct bm_block *bb;
  259. bb = chain_alloc(ca, sizeof(struct bm_block));
  260. if (!bb)
  261. return -ENOMEM;
  262. list_add(&bb->hook, list);
  263. }
  264. return 0;
  265. }
  266. struct mem_extent {
  267. struct list_head hook;
  268. unsigned long start;
  269. unsigned long end;
  270. };
  271. /**
  272. * free_mem_extents - free a list of memory extents
  273. * @list - list of extents to empty
  274. */
  275. static void free_mem_extents(struct list_head *list)
  276. {
  277. struct mem_extent *ext, *aux;
  278. list_for_each_entry_safe(ext, aux, list, hook) {
  279. list_del(&ext->hook);
  280. kfree(ext);
  281. }
  282. }
  283. /**
  284. * create_mem_extents - create a list of memory extents representing
  285. * contiguous ranges of PFNs
  286. * @list - list to put the extents into
  287. * @gfp_mask - mask to use for memory allocations
  288. */
  289. static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
  290. {
  291. struct zone *zone;
  292. INIT_LIST_HEAD(list);
  293. for_each_populated_zone(zone) {
  294. unsigned long zone_start, zone_end;
  295. struct mem_extent *ext, *cur, *aux;
  296. zone_start = zone->zone_start_pfn;
  297. zone_end = zone->zone_start_pfn + zone->spanned_pages;
  298. list_for_each_entry(ext, list, hook)
  299. if (zone_start <= ext->end)
  300. break;
  301. if (&ext->hook == list || zone_end < ext->start) {
  302. /* New extent is necessary */
  303. struct mem_extent *new_ext;
  304. new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
  305. if (!new_ext) {
  306. free_mem_extents(list);
  307. return -ENOMEM;
  308. }
  309. new_ext->start = zone_start;
  310. new_ext->end = zone_end;
  311. list_add_tail(&new_ext->hook, &ext->hook);
  312. continue;
  313. }
  314. /* Merge this zone's range of PFNs with the existing one */
  315. if (zone_start < ext->start)
  316. ext->start = zone_start;
  317. if (zone_end > ext->end)
  318. ext->end = zone_end;
  319. /* More merging may be possible */
  320. cur = ext;
  321. list_for_each_entry_safe_continue(cur, aux, list, hook) {
  322. if (zone_end < cur->start)
  323. break;
  324. if (zone_end < cur->end)
  325. ext->end = cur->end;
  326. list_del(&cur->hook);
  327. kfree(cur);
  328. }
  329. }
  330. return 0;
  331. }
  332. /**
  333. * memory_bm_create - allocate memory for a memory bitmap
  334. */
  335. static int
  336. memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
  337. {
  338. struct chain_allocator ca;
  339. struct list_head mem_extents;
  340. struct mem_extent *ext;
  341. int error;
  342. chain_init(&ca, gfp_mask, safe_needed);
  343. INIT_LIST_HEAD(&bm->blocks);
  344. error = create_mem_extents(&mem_extents, gfp_mask);
  345. if (error)
  346. return error;
  347. list_for_each_entry(ext, &mem_extents, hook) {
  348. struct bm_block *bb;
  349. unsigned long pfn = ext->start;
  350. unsigned long pages = ext->end - ext->start;
  351. bb = list_entry(bm->blocks.prev, struct bm_block, hook);
  352. error = create_bm_block_list(pages, bm->blocks.prev, &ca);
  353. if (error)
  354. goto Error;
  355. list_for_each_entry_continue(bb, &bm->blocks, hook) {
  356. bb->data = get_image_page(gfp_mask, safe_needed);
  357. if (!bb->data) {
  358. error = -ENOMEM;
  359. goto Error;
  360. }
  361. bb->start_pfn = pfn;
  362. if (pages >= BM_BITS_PER_BLOCK) {
  363. pfn += BM_BITS_PER_BLOCK;
  364. pages -= BM_BITS_PER_BLOCK;
  365. } else {
  366. /* This is executed only once in the loop */
  367. pfn += pages;
  368. }
  369. bb->end_pfn = pfn;
  370. }
  371. }
  372. bm->p_list = ca.chain;
  373. memory_bm_position_reset(bm);
  374. Exit:
  375. free_mem_extents(&mem_extents);
  376. return error;
  377. Error:
  378. bm->p_list = ca.chain;
  379. memory_bm_free(bm, PG_UNSAFE_CLEAR);
  380. goto Exit;
  381. }
  382. /**
  383. * memory_bm_free - free memory occupied by the memory bitmap @bm
  384. */
  385. static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
  386. {
  387. struct bm_block *bb;
  388. list_for_each_entry(bb, &bm->blocks, hook)
  389. if (bb->data)
  390. free_image_page(bb->data, clear_nosave_free);
  391. free_list_of_pages(bm->p_list, clear_nosave_free);
  392. INIT_LIST_HEAD(&bm->blocks);
  393. }
  394. /**
  395. * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
  396. * to given pfn. The cur_zone_bm member of @bm and the cur_block member
  397. * of @bm->cur_zone_bm are updated.
  398. */
  399. static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
  400. void **addr, unsigned int *bit_nr)
  401. {
  402. struct bm_block *bb;
  403. /*
  404. * Check if the pfn corresponds to the current bitmap block and find
  405. * the block where it fits if this is not the case.
  406. */
  407. bb = bm->cur.block;
  408. if (pfn < bb->start_pfn)
  409. list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
  410. if (pfn >= bb->start_pfn)
  411. break;
  412. if (pfn >= bb->end_pfn)
  413. list_for_each_entry_continue(bb, &bm->blocks, hook)
  414. if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
  415. break;
  416. if (&bb->hook == &bm->blocks)
  417. return -EFAULT;
  418. /* The block has been found */
  419. bm->cur.block = bb;
  420. pfn -= bb->start_pfn;
  421. bm->cur.bit = pfn + 1;
  422. *bit_nr = pfn;
  423. *addr = bb->data;
  424. return 0;
  425. }
  426. static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
  427. {
  428. void *addr;
  429. unsigned int bit;
  430. int error;
  431. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  432. BUG_ON(error);
  433. set_bit(bit, addr);
  434. }
  435. static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
  436. {
  437. void *addr;
  438. unsigned int bit;
  439. int error;
  440. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  441. if (!error)
  442. set_bit(bit, addr);
  443. return error;
  444. }
  445. static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
  446. {
  447. void *addr;
  448. unsigned int bit;
  449. int error;
  450. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  451. BUG_ON(error);
  452. clear_bit(bit, addr);
  453. }
  454. static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
  455. {
  456. void *addr;
  457. unsigned int bit;
  458. int error;
  459. error = memory_bm_find_bit(bm, pfn, &addr, &bit);
  460. BUG_ON(error);
  461. return test_bit(bit, addr);
  462. }
  463. static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
  464. {
  465. void *addr;
  466. unsigned int bit;
  467. return !memory_bm_find_bit(bm, pfn, &addr, &bit);
  468. }
  469. /**
  470. * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
  471. * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
  472. * returned.
  473. *
  474. * It is required to run memory_bm_position_reset() before the first call to
  475. * this function.
  476. */
  477. static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
  478. {
  479. struct bm_block *bb;
  480. int bit;
  481. bb = bm->cur.block;
  482. do {
  483. bit = bm->cur.bit;
  484. bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
  485. if (bit < bm_block_bits(bb))
  486. goto Return_pfn;
  487. bb = list_entry(bb->hook.next, struct bm_block, hook);
  488. bm->cur.block = bb;
  489. bm->cur.bit = 0;
  490. } while (&bb->hook != &bm->blocks);
  491. memory_bm_position_reset(bm);
  492. return BM_END_OF_MAP;
  493. Return_pfn:
  494. bm->cur.bit = bit + 1;
  495. return bb->start_pfn + bit;
  496. }
  497. /**
  498. * This structure represents a range of page frames the contents of which
  499. * should not be saved during the suspend.
  500. */
  501. struct nosave_region {
  502. struct list_head list;
  503. unsigned long start_pfn;
  504. unsigned long end_pfn;
  505. };
  506. static LIST_HEAD(nosave_regions);
  507. /**
  508. * register_nosave_region - register a range of page frames the contents
  509. * of which should not be saved during the suspend (to be used in the early
  510. * initialization code)
  511. */
  512. void __init
  513. __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
  514. int use_kmalloc)
  515. {
  516. struct nosave_region *region;
  517. if (start_pfn >= end_pfn)
  518. return;
  519. if (!list_empty(&nosave_regions)) {
  520. /* Try to extend the previous region (they should be sorted) */
  521. region = list_entry(nosave_regions.prev,
  522. struct nosave_region, list);
  523. if (region->end_pfn == start_pfn) {
  524. region->end_pfn = end_pfn;
  525. goto Report;
  526. }
  527. }
  528. if (use_kmalloc) {
  529. /* during init, this shouldn't fail */
  530. region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
  531. BUG_ON(!region);
  532. } else
  533. /* This allocation cannot fail */
  534. region = alloc_bootmem(sizeof(struct nosave_region));
  535. region->start_pfn = start_pfn;
  536. region->end_pfn = end_pfn;
  537. list_add_tail(&region->list, &nosave_regions);
  538. Report:
  539. printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
  540. start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
  541. }
  542. /*
  543. * Set bits in this map correspond to the page frames the contents of which
  544. * should not be saved during the suspend.
  545. */
  546. static struct memory_bitmap *forbidden_pages_map;
  547. /* Set bits in this map correspond to free page frames. */
  548. static struct memory_bitmap *free_pages_map;
  549. /*
  550. * Each page frame allocated for creating the image is marked by setting the
  551. * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
  552. */
  553. void swsusp_set_page_free(struct page *page)
  554. {
  555. if (free_pages_map)
  556. memory_bm_set_bit(free_pages_map, page_to_pfn(page));
  557. }
  558. static int swsusp_page_is_free(struct page *page)
  559. {
  560. return free_pages_map ?
  561. memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
  562. }
  563. void swsusp_unset_page_free(struct page *page)
  564. {
  565. if (free_pages_map)
  566. memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
  567. }
  568. static void swsusp_set_page_forbidden(struct page *page)
  569. {
  570. if (forbidden_pages_map)
  571. memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
  572. }
  573. int swsusp_page_is_forbidden(struct page *page)
  574. {
  575. return forbidden_pages_map ?
  576. memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
  577. }
  578. static void swsusp_unset_page_forbidden(struct page *page)
  579. {
  580. if (forbidden_pages_map)
  581. memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
  582. }
  583. /**
  584. * mark_nosave_pages - set bits corresponding to the page frames the
  585. * contents of which should not be saved in a given bitmap.
  586. */
  587. static void mark_nosave_pages(struct memory_bitmap *bm)
  588. {
  589. struct nosave_region *region;
  590. if (list_empty(&nosave_regions))
  591. return;
  592. list_for_each_entry(region, &nosave_regions, list) {
  593. unsigned long pfn;
  594. pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
  595. region->start_pfn << PAGE_SHIFT,
  596. region->end_pfn << PAGE_SHIFT);
  597. for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
  598. if (pfn_valid(pfn)) {
  599. /*
  600. * It is safe to ignore the result of
  601. * mem_bm_set_bit_check() here, since we won't
  602. * touch the PFNs for which the error is
  603. * returned anyway.
  604. */
  605. mem_bm_set_bit_check(bm, pfn);
  606. }
  607. }
  608. }
  609. /**
  610. * create_basic_memory_bitmaps - create bitmaps needed for marking page
  611. * frames that should not be saved and free page frames. The pointers
  612. * forbidden_pages_map and free_pages_map are only modified if everything
  613. * goes well, because we don't want the bits to be used before both bitmaps
  614. * are set up.
  615. */
  616. int create_basic_memory_bitmaps(void)
  617. {
  618. struct memory_bitmap *bm1, *bm2;
  619. int error = 0;
  620. BUG_ON(forbidden_pages_map || free_pages_map);
  621. bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  622. if (!bm1)
  623. return -ENOMEM;
  624. error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
  625. if (error)
  626. goto Free_first_object;
  627. bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
  628. if (!bm2)
  629. goto Free_first_bitmap;
  630. error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
  631. if (error)
  632. goto Free_second_object;
  633. forbidden_pages_map = bm1;
  634. free_pages_map = bm2;
  635. mark_nosave_pages(forbidden_pages_map);
  636. pr_debug("PM: Basic memory bitmaps created\n");
  637. return 0;
  638. Free_second_object:
  639. kfree(bm2);
  640. Free_first_bitmap:
  641. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  642. Free_first_object:
  643. kfree(bm1);
  644. return -ENOMEM;
  645. }
  646. /**
  647. * free_basic_memory_bitmaps - free memory bitmaps allocated by
  648. * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
  649. * so that the bitmaps themselves are not referred to while they are being
  650. * freed.
  651. */
  652. void free_basic_memory_bitmaps(void)
  653. {
  654. struct memory_bitmap *bm1, *bm2;
  655. BUG_ON(!(forbidden_pages_map && free_pages_map));
  656. bm1 = forbidden_pages_map;
  657. bm2 = free_pages_map;
  658. forbidden_pages_map = NULL;
  659. free_pages_map = NULL;
  660. memory_bm_free(bm1, PG_UNSAFE_CLEAR);
  661. kfree(bm1);
  662. memory_bm_free(bm2, PG_UNSAFE_CLEAR);
  663. kfree(bm2);
  664. pr_debug("PM: Basic memory bitmaps freed\n");
  665. }
  666. /**
  667. * snapshot_additional_pages - estimate the number of additional pages
  668. * be needed for setting up the suspend image data structures for given
  669. * zone (usually the returned value is greater than the exact number)
  670. */
  671. unsigned int snapshot_additional_pages(struct zone *zone)
  672. {
  673. unsigned int res;
  674. res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
  675. res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
  676. return 2 * res;
  677. }
  678. #ifdef CONFIG_HIGHMEM
  679. /**
  680. * count_free_highmem_pages - compute the total number of free highmem
  681. * pages, system-wide.
  682. */
  683. static unsigned int count_free_highmem_pages(void)
  684. {
  685. struct zone *zone;
  686. unsigned int cnt = 0;
  687. for_each_populated_zone(zone)
  688. if (is_highmem(zone))
  689. cnt += zone_page_state(zone, NR_FREE_PAGES);
  690. return cnt;
  691. }
  692. /**
  693. * saveable_highmem_page - Determine whether a highmem page should be
  694. * included in the suspend image.
  695. *
  696. * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
  697. * and it isn't a part of a free chunk of pages.
  698. */
  699. static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
  700. {
  701. struct page *page;
  702. if (!pfn_valid(pfn))
  703. return NULL;
  704. page = pfn_to_page(pfn);
  705. if (page_zone(page) != zone)
  706. return NULL;
  707. BUG_ON(!PageHighMem(page));
  708. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
  709. PageReserved(page))
  710. return NULL;
  711. return page;
  712. }
  713. /**
  714. * count_highmem_pages - compute the total number of saveable highmem
  715. * pages.
  716. */
  717. static unsigned int count_highmem_pages(void)
  718. {
  719. struct zone *zone;
  720. unsigned int n = 0;
  721. for_each_populated_zone(zone) {
  722. unsigned long pfn, max_zone_pfn;
  723. if (!is_highmem(zone))
  724. continue;
  725. mark_free_pages(zone);
  726. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  727. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  728. if (saveable_highmem_page(zone, pfn))
  729. n++;
  730. }
  731. return n;
  732. }
  733. #else
  734. static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
  735. {
  736. return NULL;
  737. }
  738. #endif /* CONFIG_HIGHMEM */
  739. /**
  740. * saveable_page - Determine whether a non-highmem page should be included
  741. * in the suspend image.
  742. *
  743. * We should save the page if it isn't Nosave, and is not in the range
  744. * of pages statically defined as 'unsaveable', and it isn't a part of
  745. * a free chunk of pages.
  746. */
  747. static struct page *saveable_page(struct zone *zone, unsigned long pfn)
  748. {
  749. struct page *page;
  750. if (!pfn_valid(pfn))
  751. return NULL;
  752. page = pfn_to_page(pfn);
  753. if (page_zone(page) != zone)
  754. return NULL;
  755. BUG_ON(PageHighMem(page));
  756. if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
  757. return NULL;
  758. if (PageReserved(page)
  759. && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
  760. return NULL;
  761. return page;
  762. }
  763. /**
  764. * count_data_pages - compute the total number of saveable non-highmem
  765. * pages.
  766. */
  767. static unsigned int count_data_pages(void)
  768. {
  769. struct zone *zone;
  770. unsigned long pfn, max_zone_pfn;
  771. unsigned int n = 0;
  772. for_each_populated_zone(zone) {
  773. if (is_highmem(zone))
  774. continue;
  775. mark_free_pages(zone);
  776. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  777. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  778. if (saveable_page(zone, pfn))
  779. n++;
  780. }
  781. return n;
  782. }
  783. /* This is needed, because copy_page and memcpy are not usable for copying
  784. * task structs.
  785. */
  786. static inline void do_copy_page(long *dst, long *src)
  787. {
  788. int n;
  789. for (n = PAGE_SIZE / sizeof(long); n; n--)
  790. *dst++ = *src++;
  791. }
  792. /**
  793. * safe_copy_page - check if the page we are going to copy is marked as
  794. * present in the kernel page tables (this always is the case if
  795. * CONFIG_DEBUG_PAGEALLOC is not set and in that case
  796. * kernel_page_present() always returns 'true').
  797. */
  798. static void safe_copy_page(void *dst, struct page *s_page)
  799. {
  800. if (kernel_page_present(s_page)) {
  801. do_copy_page(dst, page_address(s_page));
  802. } else {
  803. kernel_map_pages(s_page, 1, 1);
  804. do_copy_page(dst, page_address(s_page));
  805. kernel_map_pages(s_page, 1, 0);
  806. }
  807. }
  808. #ifdef CONFIG_HIGHMEM
  809. static inline struct page *
  810. page_is_saveable(struct zone *zone, unsigned long pfn)
  811. {
  812. return is_highmem(zone) ?
  813. saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
  814. }
  815. static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  816. {
  817. struct page *s_page, *d_page;
  818. void *src, *dst;
  819. s_page = pfn_to_page(src_pfn);
  820. d_page = pfn_to_page(dst_pfn);
  821. if (PageHighMem(s_page)) {
  822. src = kmap_atomic(s_page, KM_USER0);
  823. dst = kmap_atomic(d_page, KM_USER1);
  824. do_copy_page(dst, src);
  825. kunmap_atomic(dst, KM_USER1);
  826. kunmap_atomic(src, KM_USER0);
  827. } else {
  828. if (PageHighMem(d_page)) {
  829. /* Page pointed to by src may contain some kernel
  830. * data modified by kmap_atomic()
  831. */
  832. safe_copy_page(buffer, s_page);
  833. dst = kmap_atomic(d_page, KM_USER0);
  834. copy_page(dst, buffer);
  835. kunmap_atomic(dst, KM_USER0);
  836. } else {
  837. safe_copy_page(page_address(d_page), s_page);
  838. }
  839. }
  840. }
  841. #else
  842. #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
  843. static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
  844. {
  845. safe_copy_page(page_address(pfn_to_page(dst_pfn)),
  846. pfn_to_page(src_pfn));
  847. }
  848. #endif /* CONFIG_HIGHMEM */
  849. static void
  850. copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
  851. {
  852. struct zone *zone;
  853. unsigned long pfn;
  854. for_each_populated_zone(zone) {
  855. unsigned long max_zone_pfn;
  856. mark_free_pages(zone);
  857. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  858. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  859. if (page_is_saveable(zone, pfn))
  860. memory_bm_set_bit(orig_bm, pfn);
  861. }
  862. memory_bm_position_reset(orig_bm);
  863. memory_bm_position_reset(copy_bm);
  864. for(;;) {
  865. pfn = memory_bm_next_pfn(orig_bm);
  866. if (unlikely(pfn == BM_END_OF_MAP))
  867. break;
  868. copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
  869. }
  870. }
  871. /* Total number of image pages */
  872. static unsigned int nr_copy_pages;
  873. /* Number of pages needed for saving the original pfns of the image pages */
  874. static unsigned int nr_meta_pages;
  875. /*
  876. * Numbers of normal and highmem page frames allocated for hibernation image
  877. * before suspending devices.
  878. */
  879. unsigned int alloc_normal, alloc_highmem;
  880. /*
  881. * Memory bitmap used for marking saveable pages (during hibernation) or
  882. * hibernation image pages (during restore)
  883. */
  884. static struct memory_bitmap orig_bm;
  885. /*
  886. * Memory bitmap used during hibernation for marking allocated page frames that
  887. * will contain copies of saveable pages. During restore it is initially used
  888. * for marking hibernation image pages, but then the set bits from it are
  889. * duplicated in @orig_bm and it is released. On highmem systems it is next
  890. * used for marking "safe" highmem pages, but it has to be reinitialized for
  891. * this purpose.
  892. */
  893. static struct memory_bitmap copy_bm;
  894. /**
  895. * swsusp_free - free pages allocated for the suspend.
  896. *
  897. * Suspend pages are alocated before the atomic copy is made, so we
  898. * need to release them after the resume.
  899. */
  900. void swsusp_free(void)
  901. {
  902. struct zone *zone;
  903. unsigned long pfn, max_zone_pfn;
  904. for_each_populated_zone(zone) {
  905. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  906. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  907. if (pfn_valid(pfn)) {
  908. struct page *page = pfn_to_page(pfn);
  909. if (swsusp_page_is_forbidden(page) &&
  910. swsusp_page_is_free(page)) {
  911. swsusp_unset_page_forbidden(page);
  912. swsusp_unset_page_free(page);
  913. __free_page(page);
  914. }
  915. }
  916. }
  917. nr_copy_pages = 0;
  918. nr_meta_pages = 0;
  919. restore_pblist = NULL;
  920. buffer = NULL;
  921. alloc_normal = 0;
  922. alloc_highmem = 0;
  923. }
  924. /* Helper functions used for the shrinking of memory. */
  925. #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
  926. /**
  927. * preallocate_image_pages - Allocate a number of pages for hibernation image
  928. * @nr_pages: Number of page frames to allocate.
  929. * @mask: GFP flags to use for the allocation.
  930. *
  931. * Return value: Number of page frames actually allocated
  932. */
  933. static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
  934. {
  935. unsigned long nr_alloc = 0;
  936. while (nr_pages > 0) {
  937. struct page *page;
  938. page = alloc_image_page(mask);
  939. if (!page)
  940. break;
  941. memory_bm_set_bit(&copy_bm, page_to_pfn(page));
  942. if (PageHighMem(page))
  943. alloc_highmem++;
  944. else
  945. alloc_normal++;
  946. nr_pages--;
  947. nr_alloc++;
  948. }
  949. return nr_alloc;
  950. }
  951. static unsigned long preallocate_image_memory(unsigned long nr_pages,
  952. unsigned long avail_normal)
  953. {
  954. unsigned long alloc;
  955. if (avail_normal <= alloc_normal)
  956. return 0;
  957. alloc = avail_normal - alloc_normal;
  958. if (nr_pages < alloc)
  959. alloc = nr_pages;
  960. return preallocate_image_pages(alloc, GFP_IMAGE);
  961. }
  962. #ifdef CONFIG_HIGHMEM
  963. static unsigned long preallocate_image_highmem(unsigned long nr_pages)
  964. {
  965. return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
  966. }
  967. /**
  968. * __fraction - Compute (an approximation of) x * (multiplier / base)
  969. */
  970. static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
  971. {
  972. x *= multiplier;
  973. do_div(x, base);
  974. return (unsigned long)x;
  975. }
  976. static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  977. unsigned long highmem,
  978. unsigned long total)
  979. {
  980. unsigned long alloc = __fraction(nr_pages, highmem, total);
  981. return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
  982. }
  983. #else /* CONFIG_HIGHMEM */
  984. static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
  985. {
  986. return 0;
  987. }
  988. static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
  989. unsigned long highmem,
  990. unsigned long total)
  991. {
  992. return 0;
  993. }
  994. #endif /* CONFIG_HIGHMEM */
  995. /**
  996. * free_unnecessary_pages - Release preallocated pages not needed for the image
  997. */
  998. static void free_unnecessary_pages(void)
  999. {
  1000. unsigned long save, to_free_normal, to_free_highmem;
  1001. save = count_data_pages();
  1002. if (alloc_normal >= save) {
  1003. to_free_normal = alloc_normal - save;
  1004. save = 0;
  1005. } else {
  1006. to_free_normal = 0;
  1007. save -= alloc_normal;
  1008. }
  1009. save += count_highmem_pages();
  1010. if (alloc_highmem >= save) {
  1011. to_free_highmem = alloc_highmem - save;
  1012. } else {
  1013. to_free_highmem = 0;
  1014. to_free_normal -= save - alloc_highmem;
  1015. }
  1016. memory_bm_position_reset(&copy_bm);
  1017. while (to_free_normal > 0 || to_free_highmem > 0) {
  1018. unsigned long pfn = memory_bm_next_pfn(&copy_bm);
  1019. struct page *page = pfn_to_page(pfn);
  1020. if (PageHighMem(page)) {
  1021. if (!to_free_highmem)
  1022. continue;
  1023. to_free_highmem--;
  1024. alloc_highmem--;
  1025. } else {
  1026. if (!to_free_normal)
  1027. continue;
  1028. to_free_normal--;
  1029. alloc_normal--;
  1030. }
  1031. memory_bm_clear_bit(&copy_bm, pfn);
  1032. swsusp_unset_page_forbidden(page);
  1033. swsusp_unset_page_free(page);
  1034. __free_page(page);
  1035. }
  1036. }
  1037. /**
  1038. * minimum_image_size - Estimate the minimum acceptable size of an image
  1039. * @saveable: Number of saveable pages in the system.
  1040. *
  1041. * We want to avoid attempting to free too much memory too hard, so estimate the
  1042. * minimum acceptable size of a hibernation image to use as the lower limit for
  1043. * preallocating memory.
  1044. *
  1045. * We assume that the minimum image size should be proportional to
  1046. *
  1047. * [number of saveable pages] - [number of pages that can be freed in theory]
  1048. *
  1049. * where the second term is the sum of (1) reclaimable slab pages, (2) active
  1050. * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
  1051. * minus mapped file pages.
  1052. */
  1053. static unsigned long minimum_image_size(unsigned long saveable)
  1054. {
  1055. unsigned long size;
  1056. size = global_page_state(NR_SLAB_RECLAIMABLE)
  1057. + global_page_state(NR_ACTIVE_ANON)
  1058. + global_page_state(NR_INACTIVE_ANON)
  1059. + global_page_state(NR_ACTIVE_FILE)
  1060. + global_page_state(NR_INACTIVE_FILE)
  1061. - global_page_state(NR_FILE_MAPPED);
  1062. return saveable <= size ? 0 : saveable - size;
  1063. }
  1064. /**
  1065. * hibernate_preallocate_memory - Preallocate memory for hibernation image
  1066. *
  1067. * To create a hibernation image it is necessary to make a copy of every page
  1068. * frame in use. We also need a number of page frames to be free during
  1069. * hibernation for allocations made while saving the image and for device
  1070. * drivers, in case they need to allocate memory from their hibernation
  1071. * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
  1072. * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
  1073. * /sys/power/reserved_size, respectively). To make this happen, we compute the
  1074. * total number of available page frames and allocate at least
  1075. *
  1076. * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
  1077. * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
  1078. *
  1079. * of them, which corresponds to the maximum size of a hibernation image.
  1080. *
  1081. * If image_size is set below the number following from the above formula,
  1082. * the preallocation of memory is continued until the total number of saveable
  1083. * pages in the system is below the requested image size or the minimum
  1084. * acceptable image size returned by minimum_image_size(), whichever is greater.
  1085. */
  1086. int hibernate_preallocate_memory(void)
  1087. {
  1088. struct zone *zone;
  1089. unsigned long saveable, size, max_size, count, highmem, pages = 0;
  1090. unsigned long alloc, save_highmem, pages_highmem, avail_normal;
  1091. struct timeval start, stop;
  1092. int error;
  1093. printk(KERN_INFO "PM: Preallocating image memory... ");
  1094. do_gettimeofday(&start);
  1095. error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
  1096. if (error)
  1097. goto err_out;
  1098. error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
  1099. if (error)
  1100. goto err_out;
  1101. alloc_normal = 0;
  1102. alloc_highmem = 0;
  1103. /* Count the number of saveable data pages. */
  1104. save_highmem = count_highmem_pages();
  1105. saveable = count_data_pages();
  1106. /*
  1107. * Compute the total number of page frames we can use (count) and the
  1108. * number of pages needed for image metadata (size).
  1109. */
  1110. count = saveable;
  1111. saveable += save_highmem;
  1112. highmem = save_highmem;
  1113. size = 0;
  1114. for_each_populated_zone(zone) {
  1115. size += snapshot_additional_pages(zone);
  1116. if (is_highmem(zone))
  1117. highmem += zone_page_state(zone, NR_FREE_PAGES);
  1118. else
  1119. count += zone_page_state(zone, NR_FREE_PAGES);
  1120. }
  1121. avail_normal = count;
  1122. count += highmem;
  1123. count -= totalreserve_pages;
  1124. /* Compute the maximum number of saveable pages to leave in memory. */
  1125. max_size = (count - (size + PAGES_FOR_IO)) / 2
  1126. - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
  1127. /* Compute the desired number of image pages specified by image_size. */
  1128. size = DIV_ROUND_UP(image_size, PAGE_SIZE);
  1129. if (size > max_size)
  1130. size = max_size;
  1131. /*
  1132. * If the desired number of image pages is at least as large as the
  1133. * current number of saveable pages in memory, allocate page frames for
  1134. * the image and we're done.
  1135. */
  1136. if (size >= saveable) {
  1137. pages = preallocate_image_highmem(save_highmem);
  1138. pages += preallocate_image_memory(saveable - pages, avail_normal);
  1139. goto out;
  1140. }
  1141. /* Estimate the minimum size of the image. */
  1142. pages = minimum_image_size(saveable);
  1143. /*
  1144. * To avoid excessive pressure on the normal zone, leave room in it to
  1145. * accommodate an image of the minimum size (unless it's already too
  1146. * small, in which case don't preallocate pages from it at all).
  1147. */
  1148. if (avail_normal > pages)
  1149. avail_normal -= pages;
  1150. else
  1151. avail_normal = 0;
  1152. if (size < pages)
  1153. size = min_t(unsigned long, pages, max_size);
  1154. /*
  1155. * Let the memory management subsystem know that we're going to need a
  1156. * large number of page frames to allocate and make it free some memory.
  1157. * NOTE: If this is not done, performance will be hurt badly in some
  1158. * test cases.
  1159. */
  1160. shrink_all_memory(saveable - size);
  1161. /*
  1162. * The number of saveable pages in memory was too high, so apply some
  1163. * pressure to decrease it. First, make room for the largest possible
  1164. * image and fail if that doesn't work. Next, try to decrease the size
  1165. * of the image as much as indicated by 'size' using allocations from
  1166. * highmem and non-highmem zones separately.
  1167. */
  1168. pages_highmem = preallocate_image_highmem(highmem / 2);
  1169. alloc = (count - max_size) - pages_highmem;
  1170. pages = preallocate_image_memory(alloc, avail_normal);
  1171. if (pages < alloc) {
  1172. /* We have exhausted non-highmem pages, try highmem. */
  1173. alloc -= pages;
  1174. pages += pages_highmem;
  1175. pages_highmem = preallocate_image_highmem(alloc);
  1176. if (pages_highmem < alloc)
  1177. goto err_out;
  1178. pages += pages_highmem;
  1179. /*
  1180. * size is the desired number of saveable pages to leave in
  1181. * memory, so try to preallocate (all memory - size) pages.
  1182. */
  1183. alloc = (count - pages) - size;
  1184. pages += preallocate_image_highmem(alloc);
  1185. } else {
  1186. /*
  1187. * There are approximately max_size saveable pages at this point
  1188. * and we want to reduce this number down to size.
  1189. */
  1190. alloc = max_size - size;
  1191. size = preallocate_highmem_fraction(alloc, highmem, count);
  1192. pages_highmem += size;
  1193. alloc -= size;
  1194. size = preallocate_image_memory(alloc, avail_normal);
  1195. pages_highmem += preallocate_image_highmem(alloc - size);
  1196. pages += pages_highmem + size;
  1197. }
  1198. /*
  1199. * We only need as many page frames for the image as there are saveable
  1200. * pages in memory, but we have allocated more. Release the excessive
  1201. * ones now.
  1202. */
  1203. free_unnecessary_pages();
  1204. out:
  1205. do_gettimeofday(&stop);
  1206. printk(KERN_CONT "done (allocated %lu pages)\n", pages);
  1207. swsusp_show_speed(&start, &stop, pages, "Allocated");
  1208. return 0;
  1209. err_out:
  1210. printk(KERN_CONT "\n");
  1211. swsusp_free();
  1212. return -ENOMEM;
  1213. }
  1214. #ifdef CONFIG_HIGHMEM
  1215. /**
  1216. * count_pages_for_highmem - compute the number of non-highmem pages
  1217. * that will be necessary for creating copies of highmem pages.
  1218. */
  1219. static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
  1220. {
  1221. unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
  1222. if (free_highmem >= nr_highmem)
  1223. nr_highmem = 0;
  1224. else
  1225. nr_highmem -= free_highmem;
  1226. return nr_highmem;
  1227. }
  1228. #else
  1229. static unsigned int
  1230. count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
  1231. #endif /* CONFIG_HIGHMEM */
  1232. /**
  1233. * enough_free_mem - Make sure we have enough free memory for the
  1234. * snapshot image.
  1235. */
  1236. static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
  1237. {
  1238. struct zone *zone;
  1239. unsigned int free = alloc_normal;
  1240. for_each_populated_zone(zone)
  1241. if (!is_highmem(zone))
  1242. free += zone_page_state(zone, NR_FREE_PAGES);
  1243. nr_pages += count_pages_for_highmem(nr_highmem);
  1244. pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
  1245. nr_pages, PAGES_FOR_IO, free);
  1246. return free > nr_pages + PAGES_FOR_IO;
  1247. }
  1248. #ifdef CONFIG_HIGHMEM
  1249. /**
  1250. * get_highmem_buffer - if there are some highmem pages in the suspend
  1251. * image, we may need the buffer to copy them and/or load their data.
  1252. */
  1253. static inline int get_highmem_buffer(int safe_needed)
  1254. {
  1255. buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
  1256. return buffer ? 0 : -ENOMEM;
  1257. }
  1258. /**
  1259. * alloc_highmem_image_pages - allocate some highmem pages for the image.
  1260. * Try to allocate as many pages as needed, but if the number of free
  1261. * highmem pages is lesser than that, allocate them all.
  1262. */
  1263. static inline unsigned int
  1264. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
  1265. {
  1266. unsigned int to_alloc = count_free_highmem_pages();
  1267. if (to_alloc > nr_highmem)
  1268. to_alloc = nr_highmem;
  1269. nr_highmem -= to_alloc;
  1270. while (to_alloc-- > 0) {
  1271. struct page *page;
  1272. page = alloc_image_page(__GFP_HIGHMEM);
  1273. memory_bm_set_bit(bm, page_to_pfn(page));
  1274. }
  1275. return nr_highmem;
  1276. }
  1277. #else
  1278. static inline int get_highmem_buffer(int safe_needed) { return 0; }
  1279. static inline unsigned int
  1280. alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
  1281. #endif /* CONFIG_HIGHMEM */
  1282. /**
  1283. * swsusp_alloc - allocate memory for the suspend image
  1284. *
  1285. * We first try to allocate as many highmem pages as there are
  1286. * saveable highmem pages in the system. If that fails, we allocate
  1287. * non-highmem pages for the copies of the remaining highmem ones.
  1288. *
  1289. * In this approach it is likely that the copies of highmem pages will
  1290. * also be located in the high memory, because of the way in which
  1291. * copy_data_pages() works.
  1292. */
  1293. static int
  1294. swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
  1295. unsigned int nr_pages, unsigned int nr_highmem)
  1296. {
  1297. if (nr_highmem > 0) {
  1298. if (get_highmem_buffer(PG_ANY))
  1299. goto err_out;
  1300. if (nr_highmem > alloc_highmem) {
  1301. nr_highmem -= alloc_highmem;
  1302. nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
  1303. }
  1304. }
  1305. if (nr_pages > alloc_normal) {
  1306. nr_pages -= alloc_normal;
  1307. while (nr_pages-- > 0) {
  1308. struct page *page;
  1309. page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
  1310. if (!page)
  1311. goto err_out;
  1312. memory_bm_set_bit(copy_bm, page_to_pfn(page));
  1313. }
  1314. }
  1315. return 0;
  1316. err_out:
  1317. swsusp_free();
  1318. return -ENOMEM;
  1319. }
  1320. asmlinkage int swsusp_save(void)
  1321. {
  1322. unsigned int nr_pages, nr_highmem;
  1323. printk(KERN_INFO "PM: Creating hibernation image:\n");
  1324. drain_local_pages(NULL);
  1325. nr_pages = count_data_pages();
  1326. nr_highmem = count_highmem_pages();
  1327. printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
  1328. if (!enough_free_mem(nr_pages, nr_highmem)) {
  1329. printk(KERN_ERR "PM: Not enough free memory\n");
  1330. return -ENOMEM;
  1331. }
  1332. if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
  1333. printk(KERN_ERR "PM: Memory allocation failed\n");
  1334. return -ENOMEM;
  1335. }
  1336. /* During allocating of suspend pagedir, new cold pages may appear.
  1337. * Kill them.
  1338. */
  1339. drain_local_pages(NULL);
  1340. copy_data_pages(&copy_bm, &orig_bm);
  1341. /*
  1342. * End of critical section. From now on, we can write to memory,
  1343. * but we should not touch disk. This specially means we must _not_
  1344. * touch swap space! Except we must write out our image of course.
  1345. */
  1346. nr_pages += nr_highmem;
  1347. nr_copy_pages = nr_pages;
  1348. nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
  1349. printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
  1350. nr_pages);
  1351. return 0;
  1352. }
  1353. #ifndef CONFIG_ARCH_HIBERNATION_HEADER
  1354. static int init_header_complete(struct swsusp_info *info)
  1355. {
  1356. memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
  1357. info->version_code = LINUX_VERSION_CODE;
  1358. return 0;
  1359. }
  1360. static char *check_image_kernel(struct swsusp_info *info)
  1361. {
  1362. if (info->version_code != LINUX_VERSION_CODE)
  1363. return "kernel version";
  1364. if (strcmp(info->uts.sysname,init_utsname()->sysname))
  1365. return "system type";
  1366. if (strcmp(info->uts.release,init_utsname()->release))
  1367. return "kernel release";
  1368. if (strcmp(info->uts.version,init_utsname()->version))
  1369. return "version";
  1370. if (strcmp(info->uts.machine,init_utsname()->machine))
  1371. return "machine";
  1372. return NULL;
  1373. }
  1374. #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
  1375. unsigned long snapshot_get_image_size(void)
  1376. {
  1377. return nr_copy_pages + nr_meta_pages + 1;
  1378. }
  1379. static int init_header(struct swsusp_info *info)
  1380. {
  1381. memset(info, 0, sizeof(struct swsusp_info));
  1382. info->num_physpages = num_physpages;
  1383. info->image_pages = nr_copy_pages;
  1384. info->pages = snapshot_get_image_size();
  1385. info->size = info->pages;
  1386. info->size <<= PAGE_SHIFT;
  1387. return init_header_complete(info);
  1388. }
  1389. /**
  1390. * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
  1391. * are stored in the array @buf[] (1 page at a time)
  1392. */
  1393. static inline void
  1394. pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1395. {
  1396. int j;
  1397. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1398. buf[j] = memory_bm_next_pfn(bm);
  1399. if (unlikely(buf[j] == BM_END_OF_MAP))
  1400. break;
  1401. }
  1402. }
  1403. /**
  1404. * snapshot_read_next - used for reading the system memory snapshot.
  1405. *
  1406. * On the first call to it @handle should point to a zeroed
  1407. * snapshot_handle structure. The structure gets updated and a pointer
  1408. * to it should be passed to this function every next time.
  1409. *
  1410. * On success the function returns a positive number. Then, the caller
  1411. * is allowed to read up to the returned number of bytes from the memory
  1412. * location computed by the data_of() macro.
  1413. *
  1414. * The function returns 0 to indicate the end of data stream condition,
  1415. * and a negative number is returned on error. In such cases the
  1416. * structure pointed to by @handle is not updated and should not be used
  1417. * any more.
  1418. */
  1419. int snapshot_read_next(struct snapshot_handle *handle)
  1420. {
  1421. if (handle->cur > nr_meta_pages + nr_copy_pages)
  1422. return 0;
  1423. if (!buffer) {
  1424. /* This makes the buffer be freed by swsusp_free() */
  1425. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1426. if (!buffer)
  1427. return -ENOMEM;
  1428. }
  1429. if (!handle->cur) {
  1430. int error;
  1431. error = init_header((struct swsusp_info *)buffer);
  1432. if (error)
  1433. return error;
  1434. handle->buffer = buffer;
  1435. memory_bm_position_reset(&orig_bm);
  1436. memory_bm_position_reset(&copy_bm);
  1437. } else if (handle->cur <= nr_meta_pages) {
  1438. clear_page(buffer);
  1439. pack_pfns(buffer, &orig_bm);
  1440. } else {
  1441. struct page *page;
  1442. page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
  1443. if (PageHighMem(page)) {
  1444. /* Highmem pages are copied to the buffer,
  1445. * because we can't return with a kmapped
  1446. * highmem page (we may not be called again).
  1447. */
  1448. void *kaddr;
  1449. kaddr = kmap_atomic(page, KM_USER0);
  1450. copy_page(buffer, kaddr);
  1451. kunmap_atomic(kaddr, KM_USER0);
  1452. handle->buffer = buffer;
  1453. } else {
  1454. handle->buffer = page_address(page);
  1455. }
  1456. }
  1457. handle->cur++;
  1458. return PAGE_SIZE;
  1459. }
  1460. /**
  1461. * mark_unsafe_pages - mark the pages that cannot be used for storing
  1462. * the image during resume, because they conflict with the pages that
  1463. * had been used before suspend
  1464. */
  1465. static int mark_unsafe_pages(struct memory_bitmap *bm)
  1466. {
  1467. struct zone *zone;
  1468. unsigned long pfn, max_zone_pfn;
  1469. /* Clear page flags */
  1470. for_each_populated_zone(zone) {
  1471. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1472. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1473. if (pfn_valid(pfn))
  1474. swsusp_unset_page_free(pfn_to_page(pfn));
  1475. }
  1476. /* Mark pages that correspond to the "original" pfns as "unsafe" */
  1477. memory_bm_position_reset(bm);
  1478. do {
  1479. pfn = memory_bm_next_pfn(bm);
  1480. if (likely(pfn != BM_END_OF_MAP)) {
  1481. if (likely(pfn_valid(pfn)))
  1482. swsusp_set_page_free(pfn_to_page(pfn));
  1483. else
  1484. return -EFAULT;
  1485. }
  1486. } while (pfn != BM_END_OF_MAP);
  1487. allocated_unsafe_pages = 0;
  1488. return 0;
  1489. }
  1490. static void
  1491. duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
  1492. {
  1493. unsigned long pfn;
  1494. memory_bm_position_reset(src);
  1495. pfn = memory_bm_next_pfn(src);
  1496. while (pfn != BM_END_OF_MAP) {
  1497. memory_bm_set_bit(dst, pfn);
  1498. pfn = memory_bm_next_pfn(src);
  1499. }
  1500. }
  1501. static int check_header(struct swsusp_info *info)
  1502. {
  1503. char *reason;
  1504. reason = check_image_kernel(info);
  1505. if (!reason && info->num_physpages != num_physpages)
  1506. reason = "memory size";
  1507. if (reason) {
  1508. printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
  1509. return -EPERM;
  1510. }
  1511. return 0;
  1512. }
  1513. /**
  1514. * load header - check the image header and copy data from it
  1515. */
  1516. static int
  1517. load_header(struct swsusp_info *info)
  1518. {
  1519. int error;
  1520. restore_pblist = NULL;
  1521. error = check_header(info);
  1522. if (!error) {
  1523. nr_copy_pages = info->image_pages;
  1524. nr_meta_pages = info->pages - info->image_pages - 1;
  1525. }
  1526. return error;
  1527. }
  1528. /**
  1529. * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
  1530. * the corresponding bit in the memory bitmap @bm
  1531. */
  1532. static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
  1533. {
  1534. int j;
  1535. for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
  1536. if (unlikely(buf[j] == BM_END_OF_MAP))
  1537. break;
  1538. if (memory_bm_pfn_present(bm, buf[j]))
  1539. memory_bm_set_bit(bm, buf[j]);
  1540. else
  1541. return -EFAULT;
  1542. }
  1543. return 0;
  1544. }
  1545. /* List of "safe" pages that may be used to store data loaded from the suspend
  1546. * image
  1547. */
  1548. static struct linked_page *safe_pages_list;
  1549. #ifdef CONFIG_HIGHMEM
  1550. /* struct highmem_pbe is used for creating the list of highmem pages that
  1551. * should be restored atomically during the resume from disk, because the page
  1552. * frames they have occupied before the suspend are in use.
  1553. */
  1554. struct highmem_pbe {
  1555. struct page *copy_page; /* data is here now */
  1556. struct page *orig_page; /* data was here before the suspend */
  1557. struct highmem_pbe *next;
  1558. };
  1559. /* List of highmem PBEs needed for restoring the highmem pages that were
  1560. * allocated before the suspend and included in the suspend image, but have
  1561. * also been allocated by the "resume" kernel, so their contents cannot be
  1562. * written directly to their "original" page frames.
  1563. */
  1564. static struct highmem_pbe *highmem_pblist;
  1565. /**
  1566. * count_highmem_image_pages - compute the number of highmem pages in the
  1567. * suspend image. The bits in the memory bitmap @bm that correspond to the
  1568. * image pages are assumed to be set.
  1569. */
  1570. static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
  1571. {
  1572. unsigned long pfn;
  1573. unsigned int cnt = 0;
  1574. memory_bm_position_reset(bm);
  1575. pfn = memory_bm_next_pfn(bm);
  1576. while (pfn != BM_END_OF_MAP) {
  1577. if (PageHighMem(pfn_to_page(pfn)))
  1578. cnt++;
  1579. pfn = memory_bm_next_pfn(bm);
  1580. }
  1581. return cnt;
  1582. }
  1583. /**
  1584. * prepare_highmem_image - try to allocate as many highmem pages as
  1585. * there are highmem image pages (@nr_highmem_p points to the variable
  1586. * containing the number of highmem image pages). The pages that are
  1587. * "safe" (ie. will not be overwritten when the suspend image is
  1588. * restored) have the corresponding bits set in @bm (it must be
  1589. * unitialized).
  1590. *
  1591. * NOTE: This function should not be called if there are no highmem
  1592. * image pages.
  1593. */
  1594. static unsigned int safe_highmem_pages;
  1595. static struct memory_bitmap *safe_highmem_bm;
  1596. static int
  1597. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1598. {
  1599. unsigned int to_alloc;
  1600. if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
  1601. return -ENOMEM;
  1602. if (get_highmem_buffer(PG_SAFE))
  1603. return -ENOMEM;
  1604. to_alloc = count_free_highmem_pages();
  1605. if (to_alloc > *nr_highmem_p)
  1606. to_alloc = *nr_highmem_p;
  1607. else
  1608. *nr_highmem_p = to_alloc;
  1609. safe_highmem_pages = 0;
  1610. while (to_alloc-- > 0) {
  1611. struct page *page;
  1612. page = alloc_page(__GFP_HIGHMEM);
  1613. if (!swsusp_page_is_free(page)) {
  1614. /* The page is "safe", set its bit the bitmap */
  1615. memory_bm_set_bit(bm, page_to_pfn(page));
  1616. safe_highmem_pages++;
  1617. }
  1618. /* Mark the page as allocated */
  1619. swsusp_set_page_forbidden(page);
  1620. swsusp_set_page_free(page);
  1621. }
  1622. memory_bm_position_reset(bm);
  1623. safe_highmem_bm = bm;
  1624. return 0;
  1625. }
  1626. /**
  1627. * get_highmem_page_buffer - for given highmem image page find the buffer
  1628. * that suspend_write_next() should set for its caller to write to.
  1629. *
  1630. * If the page is to be saved to its "original" page frame or a copy of
  1631. * the page is to be made in the highmem, @buffer is returned. Otherwise,
  1632. * the copy of the page is to be made in normal memory, so the address of
  1633. * the copy is returned.
  1634. *
  1635. * If @buffer is returned, the caller of suspend_write_next() will write
  1636. * the page's contents to @buffer, so they will have to be copied to the
  1637. * right location on the next call to suspend_write_next() and it is done
  1638. * with the help of copy_last_highmem_page(). For this purpose, if
  1639. * @buffer is returned, @last_highmem page is set to the page to which
  1640. * the data will have to be copied from @buffer.
  1641. */
  1642. static struct page *last_highmem_page;
  1643. static void *
  1644. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1645. {
  1646. struct highmem_pbe *pbe;
  1647. void *kaddr;
  1648. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
  1649. /* We have allocated the "original" page frame and we can
  1650. * use it directly to store the loaded page.
  1651. */
  1652. last_highmem_page = page;
  1653. return buffer;
  1654. }
  1655. /* The "original" page frame has not been allocated and we have to
  1656. * use a "safe" page frame to store the loaded page.
  1657. */
  1658. pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
  1659. if (!pbe) {
  1660. swsusp_free();
  1661. return ERR_PTR(-ENOMEM);
  1662. }
  1663. pbe->orig_page = page;
  1664. if (safe_highmem_pages > 0) {
  1665. struct page *tmp;
  1666. /* Copy of the page will be stored in high memory */
  1667. kaddr = buffer;
  1668. tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
  1669. safe_highmem_pages--;
  1670. last_highmem_page = tmp;
  1671. pbe->copy_page = tmp;
  1672. } else {
  1673. /* Copy of the page will be stored in normal memory */
  1674. kaddr = safe_pages_list;
  1675. safe_pages_list = safe_pages_list->next;
  1676. pbe->copy_page = virt_to_page(kaddr);
  1677. }
  1678. pbe->next = highmem_pblist;
  1679. highmem_pblist = pbe;
  1680. return kaddr;
  1681. }
  1682. /**
  1683. * copy_last_highmem_page - copy the contents of a highmem image from
  1684. * @buffer, where the caller of snapshot_write_next() has place them,
  1685. * to the right location represented by @last_highmem_page .
  1686. */
  1687. static void copy_last_highmem_page(void)
  1688. {
  1689. if (last_highmem_page) {
  1690. void *dst;
  1691. dst = kmap_atomic(last_highmem_page, KM_USER0);
  1692. copy_page(dst, buffer);
  1693. kunmap_atomic(dst, KM_USER0);
  1694. last_highmem_page = NULL;
  1695. }
  1696. }
  1697. static inline int last_highmem_page_copied(void)
  1698. {
  1699. return !last_highmem_page;
  1700. }
  1701. static inline void free_highmem_data(void)
  1702. {
  1703. if (safe_highmem_bm)
  1704. memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
  1705. if (buffer)
  1706. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1707. }
  1708. #else
  1709. static inline int get_safe_write_buffer(void) { return 0; }
  1710. static unsigned int
  1711. count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
  1712. static inline int
  1713. prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
  1714. {
  1715. return 0;
  1716. }
  1717. static inline void *
  1718. get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
  1719. {
  1720. return ERR_PTR(-EINVAL);
  1721. }
  1722. static inline void copy_last_highmem_page(void) {}
  1723. static inline int last_highmem_page_copied(void) { return 1; }
  1724. static inline void free_highmem_data(void) {}
  1725. #endif /* CONFIG_HIGHMEM */
  1726. /**
  1727. * prepare_image - use the memory bitmap @bm to mark the pages that will
  1728. * be overwritten in the process of restoring the system memory state
  1729. * from the suspend image ("unsafe" pages) and allocate memory for the
  1730. * image.
  1731. *
  1732. * The idea is to allocate a new memory bitmap first and then allocate
  1733. * as many pages as needed for the image data, but not to assign these
  1734. * pages to specific tasks initially. Instead, we just mark them as
  1735. * allocated and create a lists of "safe" pages that will be used
  1736. * later. On systems with high memory a list of "safe" highmem pages is
  1737. * also created.
  1738. */
  1739. #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
  1740. static int
  1741. prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
  1742. {
  1743. unsigned int nr_pages, nr_highmem;
  1744. struct linked_page *sp_list, *lp;
  1745. int error;
  1746. /* If there is no highmem, the buffer will not be necessary */
  1747. free_image_page(buffer, PG_UNSAFE_CLEAR);
  1748. buffer = NULL;
  1749. nr_highmem = count_highmem_image_pages(bm);
  1750. error = mark_unsafe_pages(bm);
  1751. if (error)
  1752. goto Free;
  1753. error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
  1754. if (error)
  1755. goto Free;
  1756. duplicate_memory_bitmap(new_bm, bm);
  1757. memory_bm_free(bm, PG_UNSAFE_KEEP);
  1758. if (nr_highmem > 0) {
  1759. error = prepare_highmem_image(bm, &nr_highmem);
  1760. if (error)
  1761. goto Free;
  1762. }
  1763. /* Reserve some safe pages for potential later use.
  1764. *
  1765. * NOTE: This way we make sure there will be enough safe pages for the
  1766. * chain_alloc() in get_buffer(). It is a bit wasteful, but
  1767. * nr_copy_pages cannot be greater than 50% of the memory anyway.
  1768. */
  1769. sp_list = NULL;
  1770. /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
  1771. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1772. nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
  1773. while (nr_pages > 0) {
  1774. lp = get_image_page(GFP_ATOMIC, PG_SAFE);
  1775. if (!lp) {
  1776. error = -ENOMEM;
  1777. goto Free;
  1778. }
  1779. lp->next = sp_list;
  1780. sp_list = lp;
  1781. nr_pages--;
  1782. }
  1783. /* Preallocate memory for the image */
  1784. safe_pages_list = NULL;
  1785. nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
  1786. while (nr_pages > 0) {
  1787. lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
  1788. if (!lp) {
  1789. error = -ENOMEM;
  1790. goto Free;
  1791. }
  1792. if (!swsusp_page_is_free(virt_to_page(lp))) {
  1793. /* The page is "safe", add it to the list */
  1794. lp->next = safe_pages_list;
  1795. safe_pages_list = lp;
  1796. }
  1797. /* Mark the page as allocated */
  1798. swsusp_set_page_forbidden(virt_to_page(lp));
  1799. swsusp_set_page_free(virt_to_page(lp));
  1800. nr_pages--;
  1801. }
  1802. /* Free the reserved safe pages so that chain_alloc() can use them */
  1803. while (sp_list) {
  1804. lp = sp_list->next;
  1805. free_image_page(sp_list, PG_UNSAFE_CLEAR);
  1806. sp_list = lp;
  1807. }
  1808. return 0;
  1809. Free:
  1810. swsusp_free();
  1811. return error;
  1812. }
  1813. /**
  1814. * get_buffer - compute the address that snapshot_write_next() should
  1815. * set for its caller to write to.
  1816. */
  1817. static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
  1818. {
  1819. struct pbe *pbe;
  1820. struct page *page;
  1821. unsigned long pfn = memory_bm_next_pfn(bm);
  1822. if (pfn == BM_END_OF_MAP)
  1823. return ERR_PTR(-EFAULT);
  1824. page = pfn_to_page(pfn);
  1825. if (PageHighMem(page))
  1826. return get_highmem_page_buffer(page, ca);
  1827. if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
  1828. /* We have allocated the "original" page frame and we can
  1829. * use it directly to store the loaded page.
  1830. */
  1831. return page_address(page);
  1832. /* The "original" page frame has not been allocated and we have to
  1833. * use a "safe" page frame to store the loaded page.
  1834. */
  1835. pbe = chain_alloc(ca, sizeof(struct pbe));
  1836. if (!pbe) {
  1837. swsusp_free();
  1838. return ERR_PTR(-ENOMEM);
  1839. }
  1840. pbe->orig_address = page_address(page);
  1841. pbe->address = safe_pages_list;
  1842. safe_pages_list = safe_pages_list->next;
  1843. pbe->next = restore_pblist;
  1844. restore_pblist = pbe;
  1845. return pbe->address;
  1846. }
  1847. /**
  1848. * snapshot_write_next - used for writing the system memory snapshot.
  1849. *
  1850. * On the first call to it @handle should point to a zeroed
  1851. * snapshot_handle structure. The structure gets updated and a pointer
  1852. * to it should be passed to this function every next time.
  1853. *
  1854. * On success the function returns a positive number. Then, the caller
  1855. * is allowed to write up to the returned number of bytes to the memory
  1856. * location computed by the data_of() macro.
  1857. *
  1858. * The function returns 0 to indicate the "end of file" condition,
  1859. * and a negative number is returned on error. In such cases the
  1860. * structure pointed to by @handle is not updated and should not be used
  1861. * any more.
  1862. */
  1863. int snapshot_write_next(struct snapshot_handle *handle)
  1864. {
  1865. static struct chain_allocator ca;
  1866. int error = 0;
  1867. /* Check if we have already loaded the entire image */
  1868. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
  1869. return 0;
  1870. handle->sync_read = 1;
  1871. if (!handle->cur) {
  1872. if (!buffer)
  1873. /* This makes the buffer be freed by swsusp_free() */
  1874. buffer = get_image_page(GFP_ATOMIC, PG_ANY);
  1875. if (!buffer)
  1876. return -ENOMEM;
  1877. handle->buffer = buffer;
  1878. } else if (handle->cur == 1) {
  1879. error = load_header(buffer);
  1880. if (error)
  1881. return error;
  1882. error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
  1883. if (error)
  1884. return error;
  1885. } else if (handle->cur <= nr_meta_pages + 1) {
  1886. error = unpack_orig_pfns(buffer, &copy_bm);
  1887. if (error)
  1888. return error;
  1889. if (handle->cur == nr_meta_pages + 1) {
  1890. error = prepare_image(&orig_bm, &copy_bm);
  1891. if (error)
  1892. return error;
  1893. chain_init(&ca, GFP_ATOMIC, PG_SAFE);
  1894. memory_bm_position_reset(&orig_bm);
  1895. restore_pblist = NULL;
  1896. handle->buffer = get_buffer(&orig_bm, &ca);
  1897. handle->sync_read = 0;
  1898. if (IS_ERR(handle->buffer))
  1899. return PTR_ERR(handle->buffer);
  1900. }
  1901. } else {
  1902. copy_last_highmem_page();
  1903. handle->buffer = get_buffer(&orig_bm, &ca);
  1904. if (IS_ERR(handle->buffer))
  1905. return PTR_ERR(handle->buffer);
  1906. if (handle->buffer != buffer)
  1907. handle->sync_read = 0;
  1908. }
  1909. handle->cur++;
  1910. return PAGE_SIZE;
  1911. }
  1912. /**
  1913. * snapshot_write_finalize - must be called after the last call to
  1914. * snapshot_write_next() in case the last page in the image happens
  1915. * to be a highmem page and its contents should be stored in the
  1916. * highmem. Additionally, it releases the memory that will not be
  1917. * used any more.
  1918. */
  1919. void snapshot_write_finalize(struct snapshot_handle *handle)
  1920. {
  1921. copy_last_highmem_page();
  1922. /* Free only if we have loaded the image entirely */
  1923. if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
  1924. memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
  1925. free_highmem_data();
  1926. }
  1927. }
  1928. int snapshot_image_loaded(struct snapshot_handle *handle)
  1929. {
  1930. return !(!nr_copy_pages || !last_highmem_page_copied() ||
  1931. handle->cur <= nr_meta_pages + nr_copy_pages);
  1932. }
  1933. #ifdef CONFIG_HIGHMEM
  1934. /* Assumes that @buf is ready and points to a "safe" page */
  1935. static inline void
  1936. swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
  1937. {
  1938. void *kaddr1, *kaddr2;
  1939. kaddr1 = kmap_atomic(p1, KM_USER0);
  1940. kaddr2 = kmap_atomic(p2, KM_USER1);
  1941. copy_page(buf, kaddr1);
  1942. copy_page(kaddr1, kaddr2);
  1943. copy_page(kaddr2, buf);
  1944. kunmap_atomic(kaddr2, KM_USER1);
  1945. kunmap_atomic(kaddr1, KM_USER0);
  1946. }
  1947. /**
  1948. * restore_highmem - for each highmem page that was allocated before
  1949. * the suspend and included in the suspend image, and also has been
  1950. * allocated by the "resume" kernel swap its current (ie. "before
  1951. * resume") contents with the previous (ie. "before suspend") one.
  1952. *
  1953. * If the resume eventually fails, we can call this function once
  1954. * again and restore the "before resume" highmem state.
  1955. */
  1956. int restore_highmem(void)
  1957. {
  1958. struct highmem_pbe *pbe = highmem_pblist;
  1959. void *buf;
  1960. if (!pbe)
  1961. return 0;
  1962. buf = get_image_page(GFP_ATOMIC, PG_SAFE);
  1963. if (!buf)
  1964. return -ENOMEM;
  1965. while (pbe) {
  1966. swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
  1967. pbe = pbe->next;
  1968. }
  1969. free_image_page(buf, PG_UNSAFE_CLEAR);
  1970. return 0;
  1971. }
  1972. #endif /* CONFIG_HIGHMEM */