calibrate.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. /* calibrate.c: default delay calibration
  2. *
  3. * Excised from init/main.c
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/jiffies.h>
  7. #include <linux/delay.h>
  8. #include <linux/init.h>
  9. #include <linux/timex.h>
  10. #include <linux/smp.h>
  11. unsigned long lpj_fine;
  12. unsigned long preset_lpj;
  13. static int __init lpj_setup(char *str)
  14. {
  15. preset_lpj = simple_strtoul(str,NULL,0);
  16. return 1;
  17. }
  18. __setup("lpj=", lpj_setup);
  19. #ifdef ARCH_HAS_READ_CURRENT_TIMER
  20. /* This routine uses the read_current_timer() routine and gets the
  21. * loops per jiffy directly, instead of guessing it using delay().
  22. * Also, this code tries to handle non-maskable asynchronous events
  23. * (like SMIs)
  24. */
  25. #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
  26. #define MAX_DIRECT_CALIBRATION_RETRIES 5
  27. static unsigned long __cpuinit calibrate_delay_direct(void)
  28. {
  29. unsigned long pre_start, start, post_start;
  30. unsigned long pre_end, end, post_end;
  31. unsigned long start_jiffies;
  32. unsigned long timer_rate_min, timer_rate_max;
  33. unsigned long good_timer_sum = 0;
  34. unsigned long good_timer_count = 0;
  35. int i;
  36. if (read_current_timer(&pre_start) < 0 )
  37. return 0;
  38. /*
  39. * A simple loop like
  40. * while ( jiffies < start_jiffies+1)
  41. * start = read_current_timer();
  42. * will not do. As we don't really know whether jiffy switch
  43. * happened first or timer_value was read first. And some asynchronous
  44. * event can happen between these two events introducing errors in lpj.
  45. *
  46. * So, we do
  47. * 1. pre_start <- When we are sure that jiffy switch hasn't happened
  48. * 2. check jiffy switch
  49. * 3. start <- timer value before or after jiffy switch
  50. * 4. post_start <- When we are sure that jiffy switch has happened
  51. *
  52. * Note, we don't know anything about order of 2 and 3.
  53. * Now, by looking at post_start and pre_start difference, we can
  54. * check whether any asynchronous event happened or not
  55. */
  56. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  57. pre_start = 0;
  58. read_current_timer(&start);
  59. start_jiffies = jiffies;
  60. while (time_before_eq(jiffies, start_jiffies + 1)) {
  61. pre_start = start;
  62. read_current_timer(&start);
  63. }
  64. read_current_timer(&post_start);
  65. pre_end = 0;
  66. end = post_start;
  67. while (time_before_eq(jiffies, start_jiffies + 1 +
  68. DELAY_CALIBRATION_TICKS)) {
  69. pre_end = end;
  70. read_current_timer(&end);
  71. }
  72. read_current_timer(&post_end);
  73. timer_rate_max = (post_end - pre_start) /
  74. DELAY_CALIBRATION_TICKS;
  75. timer_rate_min = (pre_end - post_start) /
  76. DELAY_CALIBRATION_TICKS;
  77. /*
  78. * If the upper limit and lower limit of the timer_rate is
  79. * >= 12.5% apart, redo calibration.
  80. */
  81. if (pre_start != 0 && pre_end != 0 &&
  82. (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  83. good_timer_count++;
  84. good_timer_sum += timer_rate_max;
  85. }
  86. }
  87. if (good_timer_count)
  88. return (good_timer_sum/good_timer_count);
  89. printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
  90. "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
  91. return 0;
  92. }
  93. #else
  94. static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
  95. #endif
  96. /*
  97. * This is the number of bits of precision for the loops_per_jiffy. Each
  98. * time we refine our estimate after the first takes 1.5/HZ seconds, so try
  99. * to start with a good estimate.
  100. * For the boot cpu we can skip the delay calibration and assign it a value
  101. * calculated based on the timer frequency.
  102. * For the rest of the CPUs we cannot assume that the timer frequency is same as
  103. * the cpu frequency, hence do the calibration for those.
  104. */
  105. #define LPS_PREC 8
  106. static unsigned long __cpuinit calibrate_delay_converge(void)
  107. {
  108. /* First stage - slowly accelerate to find initial bounds */
  109. unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
  110. int trials = 0, band = 0, trial_in_band = 0;
  111. lpj = (1<<12);
  112. /* wait for "start of" clock tick */
  113. ticks = jiffies;
  114. while (ticks == jiffies)
  115. ; /* nothing */
  116. /* Go .. */
  117. ticks = jiffies;
  118. do {
  119. if (++trial_in_band == (1<<band)) {
  120. ++band;
  121. trial_in_band = 0;
  122. }
  123. __delay(lpj * band);
  124. trials += band;
  125. } while (ticks == jiffies);
  126. /*
  127. * We overshot, so retreat to a clear underestimate. Then estimate
  128. * the largest likely undershoot. This defines our chop bounds.
  129. */
  130. trials -= band;
  131. loopadd_base = lpj * band;
  132. lpj_base = lpj * trials;
  133. recalibrate:
  134. lpj = lpj_base;
  135. loopadd = loopadd_base;
  136. /*
  137. * Do a binary approximation to get lpj set to
  138. * equal one clock (up to LPS_PREC bits)
  139. */
  140. chop_limit = lpj >> LPS_PREC;
  141. while (loopadd > chop_limit) {
  142. lpj += loopadd;
  143. ticks = jiffies;
  144. while (ticks == jiffies)
  145. ; /* nothing */
  146. ticks = jiffies;
  147. __delay(lpj);
  148. if (jiffies != ticks) /* longer than 1 tick */
  149. lpj -= loopadd;
  150. loopadd >>= 1;
  151. }
  152. /*
  153. * If we incremented every single time possible, presume we've
  154. * massively underestimated initially, and retry with a higher
  155. * start, and larger range. (Only seen on x86_64, due to SMIs)
  156. */
  157. if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
  158. lpj_base = lpj;
  159. loopadd_base <<= 2;
  160. goto recalibrate;
  161. }
  162. return lpj;
  163. }
  164. void __cpuinit calibrate_delay(void)
  165. {
  166. static bool printed;
  167. if (preset_lpj) {
  168. loops_per_jiffy = preset_lpj;
  169. if (!printed)
  170. pr_info("Calibrating delay loop (skipped) "
  171. "preset value.. ");
  172. } else if ((!printed) && lpj_fine) {
  173. loops_per_jiffy = lpj_fine;
  174. pr_info("Calibrating delay loop (skipped), "
  175. "value calculated using timer frequency.. ");
  176. } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
  177. if (!printed)
  178. pr_info("Calibrating delay using timer "
  179. "specific routine.. ");
  180. } else {
  181. if (!printed)
  182. pr_info("Calibrating delay loop... ");
  183. loops_per_jiffy = calibrate_delay_converge();
  184. }
  185. if (!printed)
  186. pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
  187. loops_per_jiffy/(500000/HZ),
  188. (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
  189. printed = true;
  190. }