recovery.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements functions needed to recover from unclean un-mounts.
  24. * When UBIFS is mounted, it checks a flag on the master node to determine if
  25. * an un-mount was completed successfully. If not, the process of mounting
  26. * incorporates additional checking and fixing of on-flash data structures.
  27. * UBIFS always cleans away all remnants of an unclean un-mount, so that
  28. * errors do not accumulate. However UBIFS defers recovery if it is mounted
  29. * read-only, and the flash is not modified in that case.
  30. *
  31. * The general UBIFS approach to the recovery is that it recovers from
  32. * corruptions which could be caused by power cuts, but it refuses to recover
  33. * from corruption caused by other reasons. And UBIFS tries to distinguish
  34. * between these 2 reasons of corruptions and silently recover in the former
  35. * case and loudly complain in the latter case.
  36. *
  37. * UBIFS writes only to erased LEBs, so it writes only to the flash space
  38. * containing only 0xFFs. UBIFS also always writes strictly from the beginning
  39. * of the LEB to the end. And UBIFS assumes that the underlying flash media
  40. * writes in @c->max_write_size bytes at a time.
  41. *
  42. * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
  43. * I/O unit corresponding to offset X to contain corrupted data, all the
  44. * following min. I/O units have to contain empty space (all 0xFFs). If this is
  45. * not true, the corruption cannot be the result of a power cut, and UBIFS
  46. * refuses to mount.
  47. */
  48. #include <linux/crc32.h>
  49. #include <linux/slab.h>
  50. #include "ubifs.h"
  51. /**
  52. * is_empty - determine whether a buffer is empty (contains all 0xff).
  53. * @buf: buffer to clean
  54. * @len: length of buffer
  55. *
  56. * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
  57. * %0 is returned.
  58. */
  59. static int is_empty(void *buf, int len)
  60. {
  61. uint8_t *p = buf;
  62. int i;
  63. for (i = 0; i < len; i++)
  64. if (*p++ != 0xff)
  65. return 0;
  66. return 1;
  67. }
  68. /**
  69. * first_non_ff - find offset of the first non-0xff byte.
  70. * @buf: buffer to search in
  71. * @len: length of buffer
  72. *
  73. * This function returns offset of the first non-0xff byte in @buf or %-1 if
  74. * the buffer contains only 0xff bytes.
  75. */
  76. static int first_non_ff(void *buf, int len)
  77. {
  78. uint8_t *p = buf;
  79. int i;
  80. for (i = 0; i < len; i++)
  81. if (*p++ != 0xff)
  82. return i;
  83. return -1;
  84. }
  85. /**
  86. * get_master_node - get the last valid master node allowing for corruption.
  87. * @c: UBIFS file-system description object
  88. * @lnum: LEB number
  89. * @pbuf: buffer containing the LEB read, is returned here
  90. * @mst: master node, if found, is returned here
  91. * @cor: corruption, if found, is returned here
  92. *
  93. * This function allocates a buffer, reads the LEB into it, and finds and
  94. * returns the last valid master node allowing for one area of corruption.
  95. * The corrupt area, if there is one, must be consistent with the assumption
  96. * that it is the result of an unclean unmount while the master node was being
  97. * written. Under those circumstances, it is valid to use the previously written
  98. * master node.
  99. *
  100. * This function returns %0 on success and a negative error code on failure.
  101. */
  102. static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
  103. struct ubifs_mst_node **mst, void **cor)
  104. {
  105. const int sz = c->mst_node_alsz;
  106. int err, offs, len;
  107. void *sbuf, *buf;
  108. sbuf = vmalloc(c->leb_size);
  109. if (!sbuf)
  110. return -ENOMEM;
  111. err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
  112. if (err && err != -EBADMSG)
  113. goto out_free;
  114. /* Find the first position that is definitely not a node */
  115. offs = 0;
  116. buf = sbuf;
  117. len = c->leb_size;
  118. while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
  119. struct ubifs_ch *ch = buf;
  120. if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
  121. break;
  122. offs += sz;
  123. buf += sz;
  124. len -= sz;
  125. }
  126. /* See if there was a valid master node before that */
  127. if (offs) {
  128. int ret;
  129. offs -= sz;
  130. buf -= sz;
  131. len += sz;
  132. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
  133. if (ret != SCANNED_A_NODE && offs) {
  134. /* Could have been corruption so check one place back */
  135. offs -= sz;
  136. buf -= sz;
  137. len += sz;
  138. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
  139. if (ret != SCANNED_A_NODE)
  140. /*
  141. * We accept only one area of corruption because
  142. * we are assuming that it was caused while
  143. * trying to write a master node.
  144. */
  145. goto out_err;
  146. }
  147. if (ret == SCANNED_A_NODE) {
  148. struct ubifs_ch *ch = buf;
  149. if (ch->node_type != UBIFS_MST_NODE)
  150. goto out_err;
  151. dbg_rcvry("found a master node at %d:%d", lnum, offs);
  152. *mst = buf;
  153. offs += sz;
  154. buf += sz;
  155. len -= sz;
  156. }
  157. }
  158. /* Check for corruption */
  159. if (offs < c->leb_size) {
  160. if (!is_empty(buf, min_t(int, len, sz))) {
  161. *cor = buf;
  162. dbg_rcvry("found corruption at %d:%d", lnum, offs);
  163. }
  164. offs += sz;
  165. buf += sz;
  166. len -= sz;
  167. }
  168. /* Check remaining empty space */
  169. if (offs < c->leb_size)
  170. if (!is_empty(buf, len))
  171. goto out_err;
  172. *pbuf = sbuf;
  173. return 0;
  174. out_err:
  175. err = -EINVAL;
  176. out_free:
  177. vfree(sbuf);
  178. *mst = NULL;
  179. *cor = NULL;
  180. return err;
  181. }
  182. /**
  183. * write_rcvrd_mst_node - write recovered master node.
  184. * @c: UBIFS file-system description object
  185. * @mst: master node
  186. *
  187. * This function returns %0 on success and a negative error code on failure.
  188. */
  189. static int write_rcvrd_mst_node(struct ubifs_info *c,
  190. struct ubifs_mst_node *mst)
  191. {
  192. int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
  193. __le32 save_flags;
  194. dbg_rcvry("recovery");
  195. save_flags = mst->flags;
  196. mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
  197. ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
  198. err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
  199. if (err)
  200. goto out;
  201. err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
  202. if (err)
  203. goto out;
  204. out:
  205. mst->flags = save_flags;
  206. return err;
  207. }
  208. /**
  209. * ubifs_recover_master_node - recover the master node.
  210. * @c: UBIFS file-system description object
  211. *
  212. * This function recovers the master node from corruption that may occur due to
  213. * an unclean unmount.
  214. *
  215. * This function returns %0 on success and a negative error code on failure.
  216. */
  217. int ubifs_recover_master_node(struct ubifs_info *c)
  218. {
  219. void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
  220. struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
  221. const int sz = c->mst_node_alsz;
  222. int err, offs1, offs2;
  223. dbg_rcvry("recovery");
  224. err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
  225. if (err)
  226. goto out_free;
  227. err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
  228. if (err)
  229. goto out_free;
  230. if (mst1) {
  231. offs1 = (void *)mst1 - buf1;
  232. if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
  233. (offs1 == 0 && !cor1)) {
  234. /*
  235. * mst1 was written by recovery at offset 0 with no
  236. * corruption.
  237. */
  238. dbg_rcvry("recovery recovery");
  239. mst = mst1;
  240. } else if (mst2) {
  241. offs2 = (void *)mst2 - buf2;
  242. if (offs1 == offs2) {
  243. /* Same offset, so must be the same */
  244. if (memcmp((void *)mst1 + UBIFS_CH_SZ,
  245. (void *)mst2 + UBIFS_CH_SZ,
  246. UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
  247. goto out_err;
  248. mst = mst1;
  249. } else if (offs2 + sz == offs1) {
  250. /* 1st LEB was written, 2nd was not */
  251. if (cor1)
  252. goto out_err;
  253. mst = mst1;
  254. } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
  255. /* 1st LEB was unmapped and written, 2nd not */
  256. if (cor1)
  257. goto out_err;
  258. mst = mst1;
  259. } else
  260. goto out_err;
  261. } else {
  262. /*
  263. * 2nd LEB was unmapped and about to be written, so
  264. * there must be only one master node in the first LEB
  265. * and no corruption.
  266. */
  267. if (offs1 != 0 || cor1)
  268. goto out_err;
  269. mst = mst1;
  270. }
  271. } else {
  272. if (!mst2)
  273. goto out_err;
  274. /*
  275. * 1st LEB was unmapped and about to be written, so there must
  276. * be no room left in 2nd LEB.
  277. */
  278. offs2 = (void *)mst2 - buf2;
  279. if (offs2 + sz + sz <= c->leb_size)
  280. goto out_err;
  281. mst = mst2;
  282. }
  283. ubifs_msg("recovered master node from LEB %d",
  284. (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
  285. memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
  286. if (c->ro_mount) {
  287. /* Read-only mode. Keep a copy for switching to rw mode */
  288. c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
  289. if (!c->rcvrd_mst_node) {
  290. err = -ENOMEM;
  291. goto out_free;
  292. }
  293. memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
  294. /*
  295. * We had to recover the master node, which means there was an
  296. * unclean reboot. However, it is possible that the master node
  297. * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
  298. * E.g., consider the following chain of events:
  299. *
  300. * 1. UBIFS was cleanly unmounted, so the master node is clean
  301. * 2. UBIFS is being mounted R/W and starts changing the master
  302. * node in the first (%UBIFS_MST_LNUM). A power cut happens,
  303. * so this LEB ends up with some amount of garbage at the
  304. * end.
  305. * 3. UBIFS is being mounted R/O. We reach this place and
  306. * recover the master node from the second LEB
  307. * (%UBIFS_MST_LNUM + 1). But we cannot update the media
  308. * because we are being mounted R/O. We have to defer the
  309. * operation.
  310. * 4. However, this master node (@c->mst_node) is marked as
  311. * clean (since the step 1). And if we just return, the
  312. * mount code will be confused and won't recover the master
  313. * node when it is re-mounter R/W later.
  314. *
  315. * Thus, to force the recovery by marking the master node as
  316. * dirty.
  317. */
  318. c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  319. } else {
  320. /* Write the recovered master node */
  321. c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
  322. err = write_rcvrd_mst_node(c, c->mst_node);
  323. if (err)
  324. goto out_free;
  325. }
  326. vfree(buf2);
  327. vfree(buf1);
  328. return 0;
  329. out_err:
  330. err = -EINVAL;
  331. out_free:
  332. ubifs_err("failed to recover master node");
  333. if (mst1) {
  334. dbg_err("dumping first master node");
  335. dbg_dump_node(c, mst1);
  336. }
  337. if (mst2) {
  338. dbg_err("dumping second master node");
  339. dbg_dump_node(c, mst2);
  340. }
  341. vfree(buf2);
  342. vfree(buf1);
  343. return err;
  344. }
  345. /**
  346. * ubifs_write_rcvrd_mst_node - write the recovered master node.
  347. * @c: UBIFS file-system description object
  348. *
  349. * This function writes the master node that was recovered during mounting in
  350. * read-only mode and must now be written because we are remounting rw.
  351. *
  352. * This function returns %0 on success and a negative error code on failure.
  353. */
  354. int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
  355. {
  356. int err;
  357. if (!c->rcvrd_mst_node)
  358. return 0;
  359. c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  360. c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
  361. err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
  362. if (err)
  363. return err;
  364. kfree(c->rcvrd_mst_node);
  365. c->rcvrd_mst_node = NULL;
  366. return 0;
  367. }
  368. /**
  369. * is_last_write - determine if an offset was in the last write to a LEB.
  370. * @c: UBIFS file-system description object
  371. * @buf: buffer to check
  372. * @offs: offset to check
  373. *
  374. * This function returns %1 if @offs was in the last write to the LEB whose data
  375. * is in @buf, otherwise %0 is returned. The determination is made by checking
  376. * for subsequent empty space starting from the next @c->max_write_size
  377. * boundary.
  378. */
  379. static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
  380. {
  381. int empty_offs, check_len;
  382. uint8_t *p;
  383. /*
  384. * Round up to the next @c->max_write_size boundary i.e. @offs is in
  385. * the last wbuf written. After that should be empty space.
  386. */
  387. empty_offs = ALIGN(offs + 1, c->max_write_size);
  388. check_len = c->leb_size - empty_offs;
  389. p = buf + empty_offs - offs;
  390. return is_empty(p, check_len);
  391. }
  392. /**
  393. * clean_buf - clean the data from an LEB sitting in a buffer.
  394. * @c: UBIFS file-system description object
  395. * @buf: buffer to clean
  396. * @lnum: LEB number to clean
  397. * @offs: offset from which to clean
  398. * @len: length of buffer
  399. *
  400. * This function pads up to the next min_io_size boundary (if there is one) and
  401. * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
  402. * @c->min_io_size boundary.
  403. */
  404. static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
  405. int *offs, int *len)
  406. {
  407. int empty_offs, pad_len;
  408. lnum = lnum;
  409. dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
  410. ubifs_assert(!(*offs & 7));
  411. empty_offs = ALIGN(*offs, c->min_io_size);
  412. pad_len = empty_offs - *offs;
  413. ubifs_pad(c, *buf, pad_len);
  414. *offs += pad_len;
  415. *buf += pad_len;
  416. *len -= pad_len;
  417. memset(*buf, 0xff, c->leb_size - empty_offs);
  418. }
  419. /**
  420. * no_more_nodes - determine if there are no more nodes in a buffer.
  421. * @c: UBIFS file-system description object
  422. * @buf: buffer to check
  423. * @len: length of buffer
  424. * @lnum: LEB number of the LEB from which @buf was read
  425. * @offs: offset from which @buf was read
  426. *
  427. * This function ensures that the corrupted node at @offs is the last thing
  428. * written to a LEB. This function returns %1 if more data is not found and
  429. * %0 if more data is found.
  430. */
  431. static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
  432. int lnum, int offs)
  433. {
  434. struct ubifs_ch *ch = buf;
  435. int skip, dlen = le32_to_cpu(ch->len);
  436. /* Check for empty space after the corrupt node's common header */
  437. skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
  438. if (is_empty(buf + skip, len - skip))
  439. return 1;
  440. /*
  441. * The area after the common header size is not empty, so the common
  442. * header must be intact. Check it.
  443. */
  444. if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
  445. dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
  446. return 0;
  447. }
  448. /* Now we know the corrupt node's length we can skip over it */
  449. skip = ALIGN(offs + dlen, c->max_write_size) - offs;
  450. /* After which there should be empty space */
  451. if (is_empty(buf + skip, len - skip))
  452. return 1;
  453. dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
  454. return 0;
  455. }
  456. /**
  457. * fix_unclean_leb - fix an unclean LEB.
  458. * @c: UBIFS file-system description object
  459. * @sleb: scanned LEB information
  460. * @start: offset where scan started
  461. */
  462. static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  463. int start)
  464. {
  465. int lnum = sleb->lnum, endpt = start;
  466. /* Get the end offset of the last node we are keeping */
  467. if (!list_empty(&sleb->nodes)) {
  468. struct ubifs_scan_node *snod;
  469. snod = list_entry(sleb->nodes.prev,
  470. struct ubifs_scan_node, list);
  471. endpt = snod->offs + snod->len;
  472. }
  473. if (c->ro_mount && !c->remounting_rw) {
  474. /* Add to recovery list */
  475. struct ubifs_unclean_leb *ucleb;
  476. dbg_rcvry("need to fix LEB %d start %d endpt %d",
  477. lnum, start, sleb->endpt);
  478. ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
  479. if (!ucleb)
  480. return -ENOMEM;
  481. ucleb->lnum = lnum;
  482. ucleb->endpt = endpt;
  483. list_add_tail(&ucleb->list, &c->unclean_leb_list);
  484. } else {
  485. /* Write the fixed LEB back to flash */
  486. int err;
  487. dbg_rcvry("fixing LEB %d start %d endpt %d",
  488. lnum, start, sleb->endpt);
  489. if (endpt == 0) {
  490. err = ubifs_leb_unmap(c, lnum);
  491. if (err)
  492. return err;
  493. } else {
  494. int len = ALIGN(endpt, c->min_io_size);
  495. if (start) {
  496. err = ubi_read(c->ubi, lnum, sleb->buf, 0,
  497. start);
  498. if (err)
  499. return err;
  500. }
  501. /* Pad to min_io_size */
  502. if (len > endpt) {
  503. int pad_len = len - ALIGN(endpt, 8);
  504. if (pad_len > 0) {
  505. void *buf = sleb->buf + len - pad_len;
  506. ubifs_pad(c, buf, pad_len);
  507. }
  508. }
  509. err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
  510. UBI_UNKNOWN);
  511. if (err)
  512. return err;
  513. }
  514. }
  515. return 0;
  516. }
  517. /**
  518. * drop_incomplete_group - drop nodes from an incomplete group.
  519. * @sleb: scanned LEB information
  520. * @offs: offset of dropped nodes is returned here
  521. *
  522. * This function returns %1 if nodes are dropped and %0 otherwise.
  523. */
  524. static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
  525. {
  526. int dropped = 0;
  527. while (!list_empty(&sleb->nodes)) {
  528. struct ubifs_scan_node *snod;
  529. struct ubifs_ch *ch;
  530. snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
  531. list);
  532. ch = snod->node;
  533. if (ch->group_type != UBIFS_IN_NODE_GROUP)
  534. return dropped;
  535. dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
  536. *offs = snod->offs;
  537. list_del(&snod->list);
  538. kfree(snod);
  539. sleb->nodes_cnt -= 1;
  540. dropped = 1;
  541. }
  542. return dropped;
  543. }
  544. /**
  545. * ubifs_recover_leb - scan and recover a LEB.
  546. * @c: UBIFS file-system description object
  547. * @lnum: LEB number
  548. * @offs: offset
  549. * @sbuf: LEB-sized buffer to use
  550. * @grouped: nodes may be grouped for recovery
  551. *
  552. * This function does a scan of a LEB, but caters for errors that might have
  553. * been caused by the unclean unmount from which we are attempting to recover.
  554. * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
  555. * found, and a negative error code in case of failure.
  556. */
  557. struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
  558. int offs, void *sbuf, int grouped)
  559. {
  560. int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
  561. int empty_chkd = 0, start = offs;
  562. struct ubifs_scan_leb *sleb;
  563. void *buf = sbuf + offs;
  564. dbg_rcvry("%d:%d", lnum, offs);
  565. sleb = ubifs_start_scan(c, lnum, offs, sbuf);
  566. if (IS_ERR(sleb))
  567. return sleb;
  568. if (sleb->ecc)
  569. need_clean = 1;
  570. while (len >= 8) {
  571. int ret;
  572. dbg_scan("look at LEB %d:%d (%d bytes left)",
  573. lnum, offs, len);
  574. cond_resched();
  575. /*
  576. * Scan quietly until there is an error from which we cannot
  577. * recover
  578. */
  579. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
  580. if (ret == SCANNED_A_NODE) {
  581. /* A valid node, and not a padding node */
  582. struct ubifs_ch *ch = buf;
  583. int node_len;
  584. err = ubifs_add_snod(c, sleb, buf, offs);
  585. if (err)
  586. goto error;
  587. node_len = ALIGN(le32_to_cpu(ch->len), 8);
  588. offs += node_len;
  589. buf += node_len;
  590. len -= node_len;
  591. continue;
  592. }
  593. if (ret > 0) {
  594. /* Padding bytes or a valid padding node */
  595. offs += ret;
  596. buf += ret;
  597. len -= ret;
  598. continue;
  599. }
  600. if (ret == SCANNED_EMPTY_SPACE) {
  601. if (!is_empty(buf, len)) {
  602. if (!is_last_write(c, buf, offs))
  603. break;
  604. clean_buf(c, &buf, lnum, &offs, &len);
  605. need_clean = 1;
  606. }
  607. empty_chkd = 1;
  608. break;
  609. }
  610. if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
  611. if (is_last_write(c, buf, offs)) {
  612. clean_buf(c, &buf, lnum, &offs, &len);
  613. need_clean = 1;
  614. empty_chkd = 1;
  615. break;
  616. }
  617. if (ret == SCANNED_A_CORRUPT_NODE)
  618. if (no_more_nodes(c, buf, len, lnum, offs)) {
  619. clean_buf(c, &buf, lnum, &offs, &len);
  620. need_clean = 1;
  621. empty_chkd = 1;
  622. break;
  623. }
  624. if (quiet) {
  625. /* Redo the last scan but noisily */
  626. quiet = 0;
  627. continue;
  628. }
  629. switch (ret) {
  630. case SCANNED_GARBAGE:
  631. dbg_err("garbage");
  632. goto corrupted;
  633. case SCANNED_A_CORRUPT_NODE:
  634. case SCANNED_A_BAD_PAD_NODE:
  635. dbg_err("bad node");
  636. goto corrupted;
  637. default:
  638. dbg_err("unknown");
  639. err = -EINVAL;
  640. goto error;
  641. }
  642. }
  643. if (!empty_chkd && !is_empty(buf, len)) {
  644. if (is_last_write(c, buf, offs)) {
  645. clean_buf(c, &buf, lnum, &offs, &len);
  646. need_clean = 1;
  647. } else {
  648. int corruption = first_non_ff(buf, len);
  649. /*
  650. * See header comment for this file for more
  651. * explanations about the reasons we have this check.
  652. */
  653. ubifs_err("corrupt empty space LEB %d:%d, corruption "
  654. "starts at %d", lnum, offs, corruption);
  655. /* Make sure we dump interesting non-0xFF data */
  656. offs += corruption;
  657. buf += corruption;
  658. goto corrupted;
  659. }
  660. }
  661. /* Drop nodes from incomplete group */
  662. if (grouped && drop_incomplete_group(sleb, &offs)) {
  663. buf = sbuf + offs;
  664. len = c->leb_size - offs;
  665. clean_buf(c, &buf, lnum, &offs, &len);
  666. need_clean = 1;
  667. }
  668. if (offs % c->min_io_size) {
  669. clean_buf(c, &buf, lnum, &offs, &len);
  670. need_clean = 1;
  671. }
  672. ubifs_end_scan(c, sleb, lnum, offs);
  673. if (need_clean) {
  674. err = fix_unclean_leb(c, sleb, start);
  675. if (err)
  676. goto error;
  677. }
  678. return sleb;
  679. corrupted:
  680. ubifs_scanned_corruption(c, lnum, offs, buf);
  681. err = -EUCLEAN;
  682. error:
  683. ubifs_err("LEB %d scanning failed", lnum);
  684. ubifs_scan_destroy(sleb);
  685. return ERR_PTR(err);
  686. }
  687. /**
  688. * get_cs_sqnum - get commit start sequence number.
  689. * @c: UBIFS file-system description object
  690. * @lnum: LEB number of commit start node
  691. * @offs: offset of commit start node
  692. * @cs_sqnum: commit start sequence number is returned here
  693. *
  694. * This function returns %0 on success and a negative error code on failure.
  695. */
  696. static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
  697. unsigned long long *cs_sqnum)
  698. {
  699. struct ubifs_cs_node *cs_node = NULL;
  700. int err, ret;
  701. dbg_rcvry("at %d:%d", lnum, offs);
  702. cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
  703. if (!cs_node)
  704. return -ENOMEM;
  705. if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
  706. goto out_err;
  707. err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
  708. if (err && err != -EBADMSG)
  709. goto out_free;
  710. ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
  711. if (ret != SCANNED_A_NODE) {
  712. dbg_err("Not a valid node");
  713. goto out_err;
  714. }
  715. if (cs_node->ch.node_type != UBIFS_CS_NODE) {
  716. dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
  717. goto out_err;
  718. }
  719. if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
  720. dbg_err("CS node cmt_no %llu != current cmt_no %llu",
  721. (unsigned long long)le64_to_cpu(cs_node->cmt_no),
  722. c->cmt_no);
  723. goto out_err;
  724. }
  725. *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
  726. dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
  727. kfree(cs_node);
  728. return 0;
  729. out_err:
  730. err = -EINVAL;
  731. out_free:
  732. ubifs_err("failed to get CS sqnum");
  733. kfree(cs_node);
  734. return err;
  735. }
  736. /**
  737. * ubifs_recover_log_leb - scan and recover a log LEB.
  738. * @c: UBIFS file-system description object
  739. * @lnum: LEB number
  740. * @offs: offset
  741. * @sbuf: LEB-sized buffer to use
  742. *
  743. * This function does a scan of a LEB, but caters for errors that might have
  744. * been caused by unclean reboots from which we are attempting to recover
  745. * (assume that only the last log LEB can be corrupted by an unclean reboot).
  746. *
  747. * This function returns %0 on success and a negative error code on failure.
  748. */
  749. struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
  750. int offs, void *sbuf)
  751. {
  752. struct ubifs_scan_leb *sleb;
  753. int next_lnum;
  754. dbg_rcvry("LEB %d", lnum);
  755. next_lnum = lnum + 1;
  756. if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
  757. next_lnum = UBIFS_LOG_LNUM;
  758. if (next_lnum != c->ltail_lnum) {
  759. /*
  760. * We can only recover at the end of the log, so check that the
  761. * next log LEB is empty or out of date.
  762. */
  763. sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
  764. if (IS_ERR(sleb))
  765. return sleb;
  766. if (sleb->nodes_cnt) {
  767. struct ubifs_scan_node *snod;
  768. unsigned long long cs_sqnum = c->cs_sqnum;
  769. snod = list_entry(sleb->nodes.next,
  770. struct ubifs_scan_node, list);
  771. if (cs_sqnum == 0) {
  772. int err;
  773. err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
  774. if (err) {
  775. ubifs_scan_destroy(sleb);
  776. return ERR_PTR(err);
  777. }
  778. }
  779. if (snod->sqnum > cs_sqnum) {
  780. ubifs_err("unrecoverable log corruption "
  781. "in LEB %d", lnum);
  782. ubifs_scan_destroy(sleb);
  783. return ERR_PTR(-EUCLEAN);
  784. }
  785. }
  786. ubifs_scan_destroy(sleb);
  787. }
  788. return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
  789. }
  790. /**
  791. * recover_head - recover a head.
  792. * @c: UBIFS file-system description object
  793. * @lnum: LEB number of head to recover
  794. * @offs: offset of head to recover
  795. * @sbuf: LEB-sized buffer to use
  796. *
  797. * This function ensures that there is no data on the flash at a head location.
  798. *
  799. * This function returns %0 on success and a negative error code on failure.
  800. */
  801. static int recover_head(const struct ubifs_info *c, int lnum, int offs,
  802. void *sbuf)
  803. {
  804. int len = c->max_write_size, err;
  805. if (offs + len > c->leb_size)
  806. len = c->leb_size - offs;
  807. if (!len)
  808. return 0;
  809. /* Read at the head location and check it is empty flash */
  810. err = ubi_read(c->ubi, lnum, sbuf, offs, len);
  811. if (err || !is_empty(sbuf, len)) {
  812. dbg_rcvry("cleaning head at %d:%d", lnum, offs);
  813. if (offs == 0)
  814. return ubifs_leb_unmap(c, lnum);
  815. err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
  816. if (err)
  817. return err;
  818. return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
  819. }
  820. return 0;
  821. }
  822. /**
  823. * ubifs_recover_inl_heads - recover index and LPT heads.
  824. * @c: UBIFS file-system description object
  825. * @sbuf: LEB-sized buffer to use
  826. *
  827. * This function ensures that there is no data on the flash at the index and
  828. * LPT head locations.
  829. *
  830. * This deals with the recovery of a half-completed journal commit. UBIFS is
  831. * careful never to overwrite the last version of the index or the LPT. Because
  832. * the index and LPT are wandering trees, data from a half-completed commit will
  833. * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
  834. * assumed to be empty and will be unmapped anyway before use, or in the index
  835. * and LPT heads.
  836. *
  837. * This function returns %0 on success and a negative error code on failure.
  838. */
  839. int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
  840. {
  841. int err;
  842. ubifs_assert(!c->ro_mount || c->remounting_rw);
  843. dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
  844. err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
  845. if (err)
  846. return err;
  847. dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
  848. err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
  849. if (err)
  850. return err;
  851. return 0;
  852. }
  853. /**
  854. * clean_an_unclean_leb - read and write a LEB to remove corruption.
  855. * @c: UBIFS file-system description object
  856. * @ucleb: unclean LEB information
  857. * @sbuf: LEB-sized buffer to use
  858. *
  859. * This function reads a LEB up to a point pre-determined by the mount recovery,
  860. * checks the nodes, and writes the result back to the flash, thereby cleaning
  861. * off any following corruption, or non-fatal ECC errors.
  862. *
  863. * This function returns %0 on success and a negative error code on failure.
  864. */
  865. static int clean_an_unclean_leb(const struct ubifs_info *c,
  866. struct ubifs_unclean_leb *ucleb, void *sbuf)
  867. {
  868. int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
  869. void *buf = sbuf;
  870. dbg_rcvry("LEB %d len %d", lnum, len);
  871. if (len == 0) {
  872. /* Nothing to read, just unmap it */
  873. err = ubifs_leb_unmap(c, lnum);
  874. if (err)
  875. return err;
  876. return 0;
  877. }
  878. err = ubi_read(c->ubi, lnum, buf, offs, len);
  879. if (err && err != -EBADMSG)
  880. return err;
  881. while (len >= 8) {
  882. int ret;
  883. cond_resched();
  884. /* Scan quietly until there is an error */
  885. ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
  886. if (ret == SCANNED_A_NODE) {
  887. /* A valid node, and not a padding node */
  888. struct ubifs_ch *ch = buf;
  889. int node_len;
  890. node_len = ALIGN(le32_to_cpu(ch->len), 8);
  891. offs += node_len;
  892. buf += node_len;
  893. len -= node_len;
  894. continue;
  895. }
  896. if (ret > 0) {
  897. /* Padding bytes or a valid padding node */
  898. offs += ret;
  899. buf += ret;
  900. len -= ret;
  901. continue;
  902. }
  903. if (ret == SCANNED_EMPTY_SPACE) {
  904. ubifs_err("unexpected empty space at %d:%d",
  905. lnum, offs);
  906. return -EUCLEAN;
  907. }
  908. if (quiet) {
  909. /* Redo the last scan but noisily */
  910. quiet = 0;
  911. continue;
  912. }
  913. ubifs_scanned_corruption(c, lnum, offs, buf);
  914. return -EUCLEAN;
  915. }
  916. /* Pad to min_io_size */
  917. len = ALIGN(ucleb->endpt, c->min_io_size);
  918. if (len > ucleb->endpt) {
  919. int pad_len = len - ALIGN(ucleb->endpt, 8);
  920. if (pad_len > 0) {
  921. buf = c->sbuf + len - pad_len;
  922. ubifs_pad(c, buf, pad_len);
  923. }
  924. }
  925. /* Write back the LEB atomically */
  926. err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
  927. if (err)
  928. return err;
  929. dbg_rcvry("cleaned LEB %d", lnum);
  930. return 0;
  931. }
  932. /**
  933. * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
  934. * @c: UBIFS file-system description object
  935. * @sbuf: LEB-sized buffer to use
  936. *
  937. * This function cleans a LEB identified during recovery that needs to be
  938. * written but was not because UBIFS was mounted read-only. This happens when
  939. * remounting to read-write mode.
  940. *
  941. * This function returns %0 on success and a negative error code on failure.
  942. */
  943. int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
  944. {
  945. dbg_rcvry("recovery");
  946. while (!list_empty(&c->unclean_leb_list)) {
  947. struct ubifs_unclean_leb *ucleb;
  948. int err;
  949. ucleb = list_entry(c->unclean_leb_list.next,
  950. struct ubifs_unclean_leb, list);
  951. err = clean_an_unclean_leb(c, ucleb, sbuf);
  952. if (err)
  953. return err;
  954. list_del(&ucleb->list);
  955. kfree(ucleb);
  956. }
  957. return 0;
  958. }
  959. /**
  960. * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
  961. * @c: UBIFS file-system description object
  962. *
  963. * Out-of-place garbage collection requires always one empty LEB with which to
  964. * start garbage collection. The LEB number is recorded in c->gc_lnum and is
  965. * written to the master node on unmounting. In the case of an unclean unmount
  966. * the value of gc_lnum recorded in the master node is out of date and cannot
  967. * be used. Instead, recovery must allocate an empty LEB for this purpose.
  968. * However, there may not be enough empty space, in which case it must be
  969. * possible to GC the dirtiest LEB into the GC head LEB.
  970. *
  971. * This function also runs the commit which causes the TNC updates from
  972. * size-recovery and orphans to be written to the flash. That is important to
  973. * ensure correct replay order for subsequent mounts.
  974. *
  975. * This function returns %0 on success and a negative error code on failure.
  976. */
  977. int ubifs_rcvry_gc_commit(struct ubifs_info *c)
  978. {
  979. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  980. struct ubifs_lprops lp;
  981. int lnum, err;
  982. c->gc_lnum = -1;
  983. if (wbuf->lnum == -1) {
  984. dbg_rcvry("no GC head LEB");
  985. goto find_free;
  986. }
  987. /*
  988. * See whether the used space in the dirtiest LEB fits in the GC head
  989. * LEB.
  990. */
  991. if (wbuf->offs == c->leb_size) {
  992. dbg_rcvry("no room in GC head LEB");
  993. goto find_free;
  994. }
  995. err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
  996. if (err) {
  997. /*
  998. * There are no dirty or empty LEBs subject to here being
  999. * enough for the index. Try to use
  1000. * 'ubifs_find_free_leb_for_idx()', which will return any empty
  1001. * LEBs (ignoring index requirements). If the index then
  1002. * doesn't have enough LEBs the recovery commit will fail -
  1003. * which is the same result anyway i.e. recovery fails. So
  1004. * there is no problem ignoring index requirements and just
  1005. * grabbing a free LEB since we have already established there
  1006. * is not a dirty LEB we could have used instead.
  1007. */
  1008. if (err == -ENOSPC) {
  1009. dbg_rcvry("could not find a dirty LEB");
  1010. goto find_free;
  1011. }
  1012. return err;
  1013. }
  1014. ubifs_assert(!(lp.flags & LPROPS_INDEX));
  1015. lnum = lp.lnum;
  1016. if (lp.free + lp.dirty == c->leb_size) {
  1017. /* An empty LEB was returned */
  1018. if (lp.free != c->leb_size) {
  1019. err = ubifs_change_one_lp(c, lnum, c->leb_size,
  1020. 0, 0, 0, 0);
  1021. if (err)
  1022. return err;
  1023. }
  1024. err = ubifs_leb_unmap(c, lnum);
  1025. if (err)
  1026. return err;
  1027. c->gc_lnum = lnum;
  1028. dbg_rcvry("allocated LEB %d for GC", lnum);
  1029. /* Run the commit */
  1030. dbg_rcvry("committing");
  1031. return ubifs_run_commit(c);
  1032. }
  1033. /*
  1034. * There was no empty LEB so the used space in the dirtiest LEB must fit
  1035. * in the GC head LEB.
  1036. */
  1037. if (lp.free + lp.dirty < wbuf->offs) {
  1038. dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
  1039. lnum, wbuf->lnum, wbuf->offs);
  1040. err = ubifs_return_leb(c, lnum);
  1041. if (err)
  1042. return err;
  1043. goto find_free;
  1044. }
  1045. /*
  1046. * We run the commit before garbage collection otherwise subsequent
  1047. * mounts will see the GC and orphan deletion in a different order.
  1048. */
  1049. dbg_rcvry("committing");
  1050. err = ubifs_run_commit(c);
  1051. if (err)
  1052. return err;
  1053. /*
  1054. * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
  1055. * - use locking to keep 'ubifs_assert()' happy.
  1056. */
  1057. dbg_rcvry("GC'ing LEB %d", lnum);
  1058. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  1059. err = ubifs_garbage_collect_leb(c, &lp);
  1060. if (err >= 0) {
  1061. int err2 = ubifs_wbuf_sync_nolock(wbuf);
  1062. if (err2)
  1063. err = err2;
  1064. }
  1065. mutex_unlock(&wbuf->io_mutex);
  1066. if (err < 0) {
  1067. dbg_err("GC failed, error %d", err);
  1068. if (err == -EAGAIN)
  1069. err = -EINVAL;
  1070. return err;
  1071. }
  1072. if (err != LEB_RETAINED) {
  1073. dbg_err("GC returned %d", err);
  1074. return -EINVAL;
  1075. }
  1076. err = ubifs_leb_unmap(c, c->gc_lnum);
  1077. if (err)
  1078. return err;
  1079. dbg_rcvry("allocated LEB %d for GC", lnum);
  1080. return 0;
  1081. find_free:
  1082. /*
  1083. * There is no GC head LEB or the free space in the GC head LEB is too
  1084. * small, or there are not dirty LEBs. Allocate gc_lnum by calling
  1085. * 'ubifs_find_free_leb_for_idx()' so GC is not run.
  1086. */
  1087. lnum = ubifs_find_free_leb_for_idx(c);
  1088. if (lnum < 0) {
  1089. dbg_err("could not find an empty LEB");
  1090. return lnum;
  1091. }
  1092. /* And reset the index flag */
  1093. err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
  1094. LPROPS_INDEX, 0);
  1095. if (err)
  1096. return err;
  1097. c->gc_lnum = lnum;
  1098. dbg_rcvry("allocated LEB %d for GC", lnum);
  1099. /* Run the commit */
  1100. dbg_rcvry("committing");
  1101. return ubifs_run_commit(c);
  1102. }
  1103. /**
  1104. * struct size_entry - inode size information for recovery.
  1105. * @rb: link in the RB-tree of sizes
  1106. * @inum: inode number
  1107. * @i_size: size on inode
  1108. * @d_size: maximum size based on data nodes
  1109. * @exists: indicates whether the inode exists
  1110. * @inode: inode if pinned in memory awaiting rw mode to fix it
  1111. */
  1112. struct size_entry {
  1113. struct rb_node rb;
  1114. ino_t inum;
  1115. loff_t i_size;
  1116. loff_t d_size;
  1117. int exists;
  1118. struct inode *inode;
  1119. };
  1120. /**
  1121. * add_ino - add an entry to the size tree.
  1122. * @c: UBIFS file-system description object
  1123. * @inum: inode number
  1124. * @i_size: size on inode
  1125. * @d_size: maximum size based on data nodes
  1126. * @exists: indicates whether the inode exists
  1127. */
  1128. static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
  1129. loff_t d_size, int exists)
  1130. {
  1131. struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
  1132. struct size_entry *e;
  1133. while (*p) {
  1134. parent = *p;
  1135. e = rb_entry(parent, struct size_entry, rb);
  1136. if (inum < e->inum)
  1137. p = &(*p)->rb_left;
  1138. else
  1139. p = &(*p)->rb_right;
  1140. }
  1141. e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
  1142. if (!e)
  1143. return -ENOMEM;
  1144. e->inum = inum;
  1145. e->i_size = i_size;
  1146. e->d_size = d_size;
  1147. e->exists = exists;
  1148. rb_link_node(&e->rb, parent, p);
  1149. rb_insert_color(&e->rb, &c->size_tree);
  1150. return 0;
  1151. }
  1152. /**
  1153. * find_ino - find an entry on the size tree.
  1154. * @c: UBIFS file-system description object
  1155. * @inum: inode number
  1156. */
  1157. static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
  1158. {
  1159. struct rb_node *p = c->size_tree.rb_node;
  1160. struct size_entry *e;
  1161. while (p) {
  1162. e = rb_entry(p, struct size_entry, rb);
  1163. if (inum < e->inum)
  1164. p = p->rb_left;
  1165. else if (inum > e->inum)
  1166. p = p->rb_right;
  1167. else
  1168. return e;
  1169. }
  1170. return NULL;
  1171. }
  1172. /**
  1173. * remove_ino - remove an entry from the size tree.
  1174. * @c: UBIFS file-system description object
  1175. * @inum: inode number
  1176. */
  1177. static void remove_ino(struct ubifs_info *c, ino_t inum)
  1178. {
  1179. struct size_entry *e = find_ino(c, inum);
  1180. if (!e)
  1181. return;
  1182. rb_erase(&e->rb, &c->size_tree);
  1183. kfree(e);
  1184. }
  1185. /**
  1186. * ubifs_destroy_size_tree - free resources related to the size tree.
  1187. * @c: UBIFS file-system description object
  1188. */
  1189. void ubifs_destroy_size_tree(struct ubifs_info *c)
  1190. {
  1191. struct rb_node *this = c->size_tree.rb_node;
  1192. struct size_entry *e;
  1193. while (this) {
  1194. if (this->rb_left) {
  1195. this = this->rb_left;
  1196. continue;
  1197. } else if (this->rb_right) {
  1198. this = this->rb_right;
  1199. continue;
  1200. }
  1201. e = rb_entry(this, struct size_entry, rb);
  1202. if (e->inode)
  1203. iput(e->inode);
  1204. this = rb_parent(this);
  1205. if (this) {
  1206. if (this->rb_left == &e->rb)
  1207. this->rb_left = NULL;
  1208. else
  1209. this->rb_right = NULL;
  1210. }
  1211. kfree(e);
  1212. }
  1213. c->size_tree = RB_ROOT;
  1214. }
  1215. /**
  1216. * ubifs_recover_size_accum - accumulate inode sizes for recovery.
  1217. * @c: UBIFS file-system description object
  1218. * @key: node key
  1219. * @deletion: node is for a deletion
  1220. * @new_size: inode size
  1221. *
  1222. * This function has two purposes:
  1223. * 1) to ensure there are no data nodes that fall outside the inode size
  1224. * 2) to ensure there are no data nodes for inodes that do not exist
  1225. * To accomplish those purposes, a rb-tree is constructed containing an entry
  1226. * for each inode number in the journal that has not been deleted, and recording
  1227. * the size from the inode node, the maximum size of any data node (also altered
  1228. * by truncations) and a flag indicating a inode number for which no inode node
  1229. * was present in the journal.
  1230. *
  1231. * Note that there is still the possibility that there are data nodes that have
  1232. * been committed that are beyond the inode size, however the only way to find
  1233. * them would be to scan the entire index. Alternatively, some provision could
  1234. * be made to record the size of inodes at the start of commit, which would seem
  1235. * very cumbersome for a scenario that is quite unlikely and the only negative
  1236. * consequence of which is wasted space.
  1237. *
  1238. * This functions returns %0 on success and a negative error code on failure.
  1239. */
  1240. int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
  1241. int deletion, loff_t new_size)
  1242. {
  1243. ino_t inum = key_inum(c, key);
  1244. struct size_entry *e;
  1245. int err;
  1246. switch (key_type(c, key)) {
  1247. case UBIFS_INO_KEY:
  1248. if (deletion)
  1249. remove_ino(c, inum);
  1250. else {
  1251. e = find_ino(c, inum);
  1252. if (e) {
  1253. e->i_size = new_size;
  1254. e->exists = 1;
  1255. } else {
  1256. err = add_ino(c, inum, new_size, 0, 1);
  1257. if (err)
  1258. return err;
  1259. }
  1260. }
  1261. break;
  1262. case UBIFS_DATA_KEY:
  1263. e = find_ino(c, inum);
  1264. if (e) {
  1265. if (new_size > e->d_size)
  1266. e->d_size = new_size;
  1267. } else {
  1268. err = add_ino(c, inum, 0, new_size, 0);
  1269. if (err)
  1270. return err;
  1271. }
  1272. break;
  1273. case UBIFS_TRUN_KEY:
  1274. e = find_ino(c, inum);
  1275. if (e)
  1276. e->d_size = new_size;
  1277. break;
  1278. }
  1279. return 0;
  1280. }
  1281. /**
  1282. * fix_size_in_place - fix inode size in place on flash.
  1283. * @c: UBIFS file-system description object
  1284. * @e: inode size information for recovery
  1285. */
  1286. static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
  1287. {
  1288. struct ubifs_ino_node *ino = c->sbuf;
  1289. unsigned char *p;
  1290. union ubifs_key key;
  1291. int err, lnum, offs, len;
  1292. loff_t i_size;
  1293. uint32_t crc;
  1294. /* Locate the inode node LEB number and offset */
  1295. ino_key_init(c, &key, e->inum);
  1296. err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
  1297. if (err)
  1298. goto out;
  1299. /*
  1300. * If the size recorded on the inode node is greater than the size that
  1301. * was calculated from nodes in the journal then don't change the inode.
  1302. */
  1303. i_size = le64_to_cpu(ino->size);
  1304. if (i_size >= e->d_size)
  1305. return 0;
  1306. /* Read the LEB */
  1307. err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
  1308. if (err)
  1309. goto out;
  1310. /* Change the size field and recalculate the CRC */
  1311. ino = c->sbuf + offs;
  1312. ino->size = cpu_to_le64(e->d_size);
  1313. len = le32_to_cpu(ino->ch.len);
  1314. crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
  1315. ino->ch.crc = cpu_to_le32(crc);
  1316. /* Work out where data in the LEB ends and free space begins */
  1317. p = c->sbuf;
  1318. len = c->leb_size - 1;
  1319. while (p[len] == 0xff)
  1320. len -= 1;
  1321. len = ALIGN(len + 1, c->min_io_size);
  1322. /* Atomically write the fixed LEB back again */
  1323. err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
  1324. if (err)
  1325. goto out;
  1326. dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
  1327. (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
  1328. return 0;
  1329. out:
  1330. ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
  1331. (unsigned long)e->inum, e->i_size, e->d_size, err);
  1332. return err;
  1333. }
  1334. /**
  1335. * ubifs_recover_size - recover inode size.
  1336. * @c: UBIFS file-system description object
  1337. *
  1338. * This function attempts to fix inode size discrepancies identified by the
  1339. * 'ubifs_recover_size_accum()' function.
  1340. *
  1341. * This functions returns %0 on success and a negative error code on failure.
  1342. */
  1343. int ubifs_recover_size(struct ubifs_info *c)
  1344. {
  1345. struct rb_node *this = rb_first(&c->size_tree);
  1346. while (this) {
  1347. struct size_entry *e;
  1348. int err;
  1349. e = rb_entry(this, struct size_entry, rb);
  1350. if (!e->exists) {
  1351. union ubifs_key key;
  1352. ino_key_init(c, &key, e->inum);
  1353. err = ubifs_tnc_lookup(c, &key, c->sbuf);
  1354. if (err && err != -ENOENT)
  1355. return err;
  1356. if (err == -ENOENT) {
  1357. /* Remove data nodes that have no inode */
  1358. dbg_rcvry("removing ino %lu",
  1359. (unsigned long)e->inum);
  1360. err = ubifs_tnc_remove_ino(c, e->inum);
  1361. if (err)
  1362. return err;
  1363. } else {
  1364. struct ubifs_ino_node *ino = c->sbuf;
  1365. e->exists = 1;
  1366. e->i_size = le64_to_cpu(ino->size);
  1367. }
  1368. }
  1369. if (e->exists && e->i_size < e->d_size) {
  1370. if (!e->inode && c->ro_mount) {
  1371. /* Fix the inode size and pin it in memory */
  1372. struct inode *inode;
  1373. inode = ubifs_iget(c->vfs_sb, e->inum);
  1374. if (IS_ERR(inode))
  1375. return PTR_ERR(inode);
  1376. if (inode->i_size < e->d_size) {
  1377. dbg_rcvry("ino %lu size %lld -> %lld",
  1378. (unsigned long)e->inum,
  1379. e->d_size, inode->i_size);
  1380. inode->i_size = e->d_size;
  1381. ubifs_inode(inode)->ui_size = e->d_size;
  1382. e->inode = inode;
  1383. this = rb_next(this);
  1384. continue;
  1385. }
  1386. iput(inode);
  1387. } else {
  1388. /* Fix the size in place */
  1389. err = fix_size_in_place(c, e);
  1390. if (err)
  1391. return err;
  1392. if (e->inode)
  1393. iput(e->inode);
  1394. }
  1395. }
  1396. this = rb_next(this);
  1397. rb_erase(&e->rb, &c->size_tree);
  1398. kfree(e);
  1399. }
  1400. return 0;
  1401. }