free-space-cache.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #include "extent_io.h"
  27. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  28. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  29. static void recalculate_thresholds(struct btrfs_block_group_cache
  30. *block_group);
  31. static int link_free_space(struct btrfs_block_group_cache *block_group,
  32. struct btrfs_free_space *info);
  33. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  34. struct btrfs_block_group_cache
  35. *block_group, struct btrfs_path *path)
  36. {
  37. struct btrfs_key key;
  38. struct btrfs_key location;
  39. struct btrfs_disk_key disk_key;
  40. struct btrfs_free_space_header *header;
  41. struct extent_buffer *leaf;
  42. struct inode *inode = NULL;
  43. int ret;
  44. spin_lock(&block_group->lock);
  45. if (block_group->inode)
  46. inode = igrab(block_group->inode);
  47. spin_unlock(&block_group->lock);
  48. if (inode)
  49. return inode;
  50. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  51. key.offset = block_group->key.objectid;
  52. key.type = 0;
  53. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  54. if (ret < 0)
  55. return ERR_PTR(ret);
  56. if (ret > 0) {
  57. btrfs_release_path(root, path);
  58. return ERR_PTR(-ENOENT);
  59. }
  60. leaf = path->nodes[0];
  61. header = btrfs_item_ptr(leaf, path->slots[0],
  62. struct btrfs_free_space_header);
  63. btrfs_free_space_key(leaf, header, &disk_key);
  64. btrfs_disk_key_to_cpu(&location, &disk_key);
  65. btrfs_release_path(root, path);
  66. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  67. if (!inode)
  68. return ERR_PTR(-ENOENT);
  69. if (IS_ERR(inode))
  70. return inode;
  71. if (is_bad_inode(inode)) {
  72. iput(inode);
  73. return ERR_PTR(-ENOENT);
  74. }
  75. inode->i_mapping->flags &= ~__GFP_FS;
  76. spin_lock(&block_group->lock);
  77. if (!root->fs_info->closing) {
  78. block_group->inode = igrab(inode);
  79. block_group->iref = 1;
  80. }
  81. spin_unlock(&block_group->lock);
  82. return inode;
  83. }
  84. int create_free_space_inode(struct btrfs_root *root,
  85. struct btrfs_trans_handle *trans,
  86. struct btrfs_block_group_cache *block_group,
  87. struct btrfs_path *path)
  88. {
  89. struct btrfs_key key;
  90. struct btrfs_disk_key disk_key;
  91. struct btrfs_free_space_header *header;
  92. struct btrfs_inode_item *inode_item;
  93. struct extent_buffer *leaf;
  94. u64 objectid;
  95. int ret;
  96. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  97. if (ret < 0)
  98. return ret;
  99. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  100. if (ret)
  101. return ret;
  102. leaf = path->nodes[0];
  103. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  104. struct btrfs_inode_item);
  105. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  106. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  107. sizeof(*inode_item));
  108. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  109. btrfs_set_inode_size(leaf, inode_item, 0);
  110. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  111. btrfs_set_inode_uid(leaf, inode_item, 0);
  112. btrfs_set_inode_gid(leaf, inode_item, 0);
  113. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  114. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  115. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  116. btrfs_set_inode_nlink(leaf, inode_item, 1);
  117. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  118. btrfs_set_inode_block_group(leaf, inode_item,
  119. block_group->key.objectid);
  120. btrfs_mark_buffer_dirty(leaf);
  121. btrfs_release_path(root, path);
  122. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  123. key.offset = block_group->key.objectid;
  124. key.type = 0;
  125. ret = btrfs_insert_empty_item(trans, root, path, &key,
  126. sizeof(struct btrfs_free_space_header));
  127. if (ret < 0) {
  128. btrfs_release_path(root, path);
  129. return ret;
  130. }
  131. leaf = path->nodes[0];
  132. header = btrfs_item_ptr(leaf, path->slots[0],
  133. struct btrfs_free_space_header);
  134. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  135. btrfs_set_free_space_key(leaf, header, &disk_key);
  136. btrfs_mark_buffer_dirty(leaf);
  137. btrfs_release_path(root, path);
  138. return 0;
  139. }
  140. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  141. struct btrfs_trans_handle *trans,
  142. struct btrfs_path *path,
  143. struct inode *inode)
  144. {
  145. loff_t oldsize;
  146. int ret = 0;
  147. trans->block_rsv = root->orphan_block_rsv;
  148. ret = btrfs_block_rsv_check(trans, root,
  149. root->orphan_block_rsv,
  150. 0, 5);
  151. if (ret)
  152. return ret;
  153. oldsize = i_size_read(inode);
  154. btrfs_i_size_write(inode, 0);
  155. truncate_pagecache(inode, oldsize, 0);
  156. /*
  157. * We don't need an orphan item because truncating the free space cache
  158. * will never be split across transactions.
  159. */
  160. ret = btrfs_truncate_inode_items(trans, root, inode,
  161. 0, BTRFS_EXTENT_DATA_KEY);
  162. if (ret) {
  163. WARN_ON(1);
  164. return ret;
  165. }
  166. return btrfs_update_inode(trans, root, inode);
  167. }
  168. static int readahead_cache(struct inode *inode)
  169. {
  170. struct file_ra_state *ra;
  171. unsigned long last_index;
  172. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  173. if (!ra)
  174. return -ENOMEM;
  175. file_ra_state_init(ra, inode->i_mapping);
  176. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  177. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  178. kfree(ra);
  179. return 0;
  180. }
  181. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  182. struct btrfs_block_group_cache *block_group)
  183. {
  184. struct btrfs_root *root = fs_info->tree_root;
  185. struct inode *inode;
  186. struct btrfs_free_space_header *header;
  187. struct extent_buffer *leaf;
  188. struct page *page;
  189. struct btrfs_path *path;
  190. u32 *checksums = NULL, *crc;
  191. char *disk_crcs = NULL;
  192. struct btrfs_key key;
  193. struct list_head bitmaps;
  194. u64 num_entries;
  195. u64 num_bitmaps;
  196. u64 generation;
  197. u64 used = btrfs_block_group_used(&block_group->item);
  198. u32 cur_crc = ~(u32)0;
  199. pgoff_t index = 0;
  200. unsigned long first_page_offset;
  201. int num_checksums;
  202. int ret = 0;
  203. /*
  204. * If we're unmounting then just return, since this does a search on the
  205. * normal root and not the commit root and we could deadlock.
  206. */
  207. smp_mb();
  208. if (fs_info->closing)
  209. return 0;
  210. /*
  211. * If this block group has been marked to be cleared for one reason or
  212. * another then we can't trust the on disk cache, so just return.
  213. */
  214. spin_lock(&block_group->lock);
  215. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  216. spin_unlock(&block_group->lock);
  217. return 0;
  218. }
  219. spin_unlock(&block_group->lock);
  220. INIT_LIST_HEAD(&bitmaps);
  221. path = btrfs_alloc_path();
  222. if (!path)
  223. return 0;
  224. inode = lookup_free_space_inode(root, block_group, path);
  225. if (IS_ERR(inode)) {
  226. btrfs_free_path(path);
  227. return 0;
  228. }
  229. /* Nothing in the space cache, goodbye */
  230. if (!i_size_read(inode)) {
  231. btrfs_free_path(path);
  232. goto out;
  233. }
  234. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  235. key.offset = block_group->key.objectid;
  236. key.type = 0;
  237. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  238. if (ret) {
  239. btrfs_free_path(path);
  240. goto out;
  241. }
  242. leaf = path->nodes[0];
  243. header = btrfs_item_ptr(leaf, path->slots[0],
  244. struct btrfs_free_space_header);
  245. num_entries = btrfs_free_space_entries(leaf, header);
  246. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  247. generation = btrfs_free_space_generation(leaf, header);
  248. btrfs_free_path(path);
  249. if (BTRFS_I(inode)->generation != generation) {
  250. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  251. " not match free space cache generation (%llu) for "
  252. "block group %llu\n",
  253. (unsigned long long)BTRFS_I(inode)->generation,
  254. (unsigned long long)generation,
  255. (unsigned long long)block_group->key.objectid);
  256. goto free_cache;
  257. }
  258. if (!num_entries)
  259. goto out;
  260. /* Setup everything for doing checksumming */
  261. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  262. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  263. if (!checksums)
  264. goto out;
  265. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  266. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  267. if (!disk_crcs)
  268. goto out;
  269. ret = readahead_cache(inode);
  270. if (ret) {
  271. ret = 0;
  272. goto out;
  273. }
  274. while (1) {
  275. struct btrfs_free_space_entry *entry;
  276. struct btrfs_free_space *e;
  277. void *addr;
  278. unsigned long offset = 0;
  279. unsigned long start_offset = 0;
  280. int need_loop = 0;
  281. if (!num_entries && !num_bitmaps)
  282. break;
  283. if (index == 0) {
  284. start_offset = first_page_offset;
  285. offset = start_offset;
  286. }
  287. page = grab_cache_page(inode->i_mapping, index);
  288. if (!page) {
  289. ret = 0;
  290. goto free_cache;
  291. }
  292. if (!PageUptodate(page)) {
  293. btrfs_readpage(NULL, page);
  294. lock_page(page);
  295. if (!PageUptodate(page)) {
  296. unlock_page(page);
  297. page_cache_release(page);
  298. printk(KERN_ERR "btrfs: error reading free "
  299. "space cache: %llu\n",
  300. (unsigned long long)
  301. block_group->key.objectid);
  302. goto free_cache;
  303. }
  304. }
  305. addr = kmap(page);
  306. if (index == 0) {
  307. u64 *gen;
  308. memcpy(disk_crcs, addr, first_page_offset);
  309. gen = addr + (sizeof(u32) * num_checksums);
  310. if (*gen != BTRFS_I(inode)->generation) {
  311. printk(KERN_ERR "btrfs: space cache generation"
  312. " (%llu) does not match inode (%llu) "
  313. "for block group %llu\n",
  314. (unsigned long long)*gen,
  315. (unsigned long long)
  316. BTRFS_I(inode)->generation,
  317. (unsigned long long)
  318. block_group->key.objectid);
  319. kunmap(page);
  320. unlock_page(page);
  321. page_cache_release(page);
  322. goto free_cache;
  323. }
  324. crc = (u32 *)disk_crcs;
  325. }
  326. entry = addr + start_offset;
  327. /* First lets check our crc before we do anything fun */
  328. cur_crc = ~(u32)0;
  329. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  330. PAGE_CACHE_SIZE - start_offset);
  331. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  332. if (cur_crc != *crc) {
  333. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  334. "block group %llu\n", index,
  335. (unsigned long long)block_group->key.objectid);
  336. kunmap(page);
  337. unlock_page(page);
  338. page_cache_release(page);
  339. goto free_cache;
  340. }
  341. crc++;
  342. while (1) {
  343. if (!num_entries)
  344. break;
  345. need_loop = 1;
  346. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  347. GFP_NOFS);
  348. if (!e) {
  349. kunmap(page);
  350. unlock_page(page);
  351. page_cache_release(page);
  352. goto free_cache;
  353. }
  354. e->offset = le64_to_cpu(entry->offset);
  355. e->bytes = le64_to_cpu(entry->bytes);
  356. if (!e->bytes) {
  357. kunmap(page);
  358. kmem_cache_free(btrfs_free_space_cachep, e);
  359. unlock_page(page);
  360. page_cache_release(page);
  361. goto free_cache;
  362. }
  363. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  364. spin_lock(&block_group->tree_lock);
  365. ret = link_free_space(block_group, e);
  366. spin_unlock(&block_group->tree_lock);
  367. BUG_ON(ret);
  368. } else {
  369. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  370. if (!e->bitmap) {
  371. kunmap(page);
  372. kmem_cache_free(
  373. btrfs_free_space_cachep, e);
  374. unlock_page(page);
  375. page_cache_release(page);
  376. goto free_cache;
  377. }
  378. spin_lock(&block_group->tree_lock);
  379. ret = link_free_space(block_group, e);
  380. block_group->total_bitmaps++;
  381. recalculate_thresholds(block_group);
  382. spin_unlock(&block_group->tree_lock);
  383. list_add_tail(&e->list, &bitmaps);
  384. }
  385. num_entries--;
  386. offset += sizeof(struct btrfs_free_space_entry);
  387. if (offset + sizeof(struct btrfs_free_space_entry) >=
  388. PAGE_CACHE_SIZE)
  389. break;
  390. entry++;
  391. }
  392. /*
  393. * We read an entry out of this page, we need to move on to the
  394. * next page.
  395. */
  396. if (need_loop) {
  397. kunmap(page);
  398. goto next;
  399. }
  400. /*
  401. * We add the bitmaps at the end of the entries in order that
  402. * the bitmap entries are added to the cache.
  403. */
  404. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  405. list_del_init(&e->list);
  406. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  407. kunmap(page);
  408. num_bitmaps--;
  409. next:
  410. unlock_page(page);
  411. page_cache_release(page);
  412. index++;
  413. }
  414. spin_lock(&block_group->tree_lock);
  415. if (block_group->free_space != (block_group->key.offset - used -
  416. block_group->bytes_super)) {
  417. spin_unlock(&block_group->tree_lock);
  418. printk(KERN_ERR "block group %llu has an wrong amount of free "
  419. "space\n", block_group->key.objectid);
  420. ret = 0;
  421. goto free_cache;
  422. }
  423. spin_unlock(&block_group->tree_lock);
  424. ret = 1;
  425. out:
  426. kfree(checksums);
  427. kfree(disk_crcs);
  428. iput(inode);
  429. return ret;
  430. free_cache:
  431. /* This cache is bogus, make sure it gets cleared */
  432. spin_lock(&block_group->lock);
  433. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  434. spin_unlock(&block_group->lock);
  435. btrfs_remove_free_space_cache(block_group);
  436. goto out;
  437. }
  438. int btrfs_write_out_cache(struct btrfs_root *root,
  439. struct btrfs_trans_handle *trans,
  440. struct btrfs_block_group_cache *block_group,
  441. struct btrfs_path *path)
  442. {
  443. struct btrfs_free_space_header *header;
  444. struct extent_buffer *leaf;
  445. struct inode *inode;
  446. struct rb_node *node;
  447. struct list_head *pos, *n;
  448. struct page **pages;
  449. struct page *page;
  450. struct extent_state *cached_state = NULL;
  451. struct btrfs_free_cluster *cluster = NULL;
  452. struct extent_io_tree *unpin = NULL;
  453. struct list_head bitmap_list;
  454. struct btrfs_key key;
  455. u64 start, end, len;
  456. u64 bytes = 0;
  457. u32 *crc, *checksums;
  458. unsigned long first_page_offset;
  459. int index = 0, num_pages = 0;
  460. int entries = 0;
  461. int bitmaps = 0;
  462. int ret = 0;
  463. bool next_page = false;
  464. bool out_of_space = false;
  465. root = root->fs_info->tree_root;
  466. INIT_LIST_HEAD(&bitmap_list);
  467. spin_lock(&block_group->lock);
  468. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  469. spin_unlock(&block_group->lock);
  470. return 0;
  471. }
  472. spin_unlock(&block_group->lock);
  473. inode = lookup_free_space_inode(root, block_group, path);
  474. if (IS_ERR(inode))
  475. return 0;
  476. if (!i_size_read(inode)) {
  477. iput(inode);
  478. return 0;
  479. }
  480. node = rb_first(&block_group->free_space_offset);
  481. if (!node) {
  482. iput(inode);
  483. return 0;
  484. }
  485. num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
  486. PAGE_CACHE_SHIFT;
  487. filemap_write_and_wait(inode->i_mapping);
  488. btrfs_wait_ordered_range(inode, inode->i_size &
  489. ~(root->sectorsize - 1), (u64)-1);
  490. /* We need a checksum per page. */
  491. crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
  492. if (!crc) {
  493. iput(inode);
  494. return 0;
  495. }
  496. pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
  497. if (!pages) {
  498. kfree(crc);
  499. iput(inode);
  500. return 0;
  501. }
  502. /* Since the first page has all of our checksums and our generation we
  503. * need to calculate the offset into the page that we can start writing
  504. * our entries.
  505. */
  506. first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
  507. /* Get the cluster for this block_group if it exists */
  508. if (!list_empty(&block_group->cluster_list))
  509. cluster = list_entry(block_group->cluster_list.next,
  510. struct btrfs_free_cluster,
  511. block_group_list);
  512. /*
  513. * We shouldn't have switched the pinned extents yet so this is the
  514. * right one
  515. */
  516. unpin = root->fs_info->pinned_extents;
  517. /*
  518. * Lock all pages first so we can lock the extent safely.
  519. *
  520. * NOTE: Because we hold the ref the entire time we're going to write to
  521. * the page find_get_page should never fail, so we don't do a check
  522. * after find_get_page at this point. Just putting this here so people
  523. * know and don't freak out.
  524. */
  525. while (index < num_pages) {
  526. page = grab_cache_page(inode->i_mapping, index);
  527. if (!page) {
  528. int i;
  529. for (i = 0; i < num_pages; i++) {
  530. unlock_page(pages[i]);
  531. page_cache_release(pages[i]);
  532. }
  533. goto out_free;
  534. }
  535. pages[index] = page;
  536. index++;
  537. }
  538. index = 0;
  539. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  540. 0, &cached_state, GFP_NOFS);
  541. /*
  542. * When searching for pinned extents, we need to start at our start
  543. * offset.
  544. */
  545. start = block_group->key.objectid;
  546. /* Write out the extent entries */
  547. do {
  548. struct btrfs_free_space_entry *entry;
  549. void *addr;
  550. unsigned long offset = 0;
  551. unsigned long start_offset = 0;
  552. next_page = false;
  553. if (index == 0) {
  554. start_offset = first_page_offset;
  555. offset = start_offset;
  556. }
  557. if (index >= num_pages) {
  558. out_of_space = true;
  559. break;
  560. }
  561. page = pages[index];
  562. addr = kmap(page);
  563. entry = addr + start_offset;
  564. memset(addr, 0, PAGE_CACHE_SIZE);
  565. while (node && !next_page) {
  566. struct btrfs_free_space *e;
  567. e = rb_entry(node, struct btrfs_free_space, offset_index);
  568. entries++;
  569. entry->offset = cpu_to_le64(e->offset);
  570. entry->bytes = cpu_to_le64(e->bytes);
  571. if (e->bitmap) {
  572. entry->type = BTRFS_FREE_SPACE_BITMAP;
  573. list_add_tail(&e->list, &bitmap_list);
  574. bitmaps++;
  575. } else {
  576. entry->type = BTRFS_FREE_SPACE_EXTENT;
  577. }
  578. node = rb_next(node);
  579. if (!node && cluster) {
  580. node = rb_first(&cluster->root);
  581. cluster = NULL;
  582. }
  583. offset += sizeof(struct btrfs_free_space_entry);
  584. if (offset + sizeof(struct btrfs_free_space_entry) >=
  585. PAGE_CACHE_SIZE)
  586. next_page = true;
  587. entry++;
  588. }
  589. /*
  590. * We want to add any pinned extents to our free space cache
  591. * so we don't leak the space
  592. */
  593. while (!next_page && (start < block_group->key.objectid +
  594. block_group->key.offset)) {
  595. ret = find_first_extent_bit(unpin, start, &start, &end,
  596. EXTENT_DIRTY);
  597. if (ret) {
  598. ret = 0;
  599. break;
  600. }
  601. /* This pinned extent is out of our range */
  602. if (start >= block_group->key.objectid +
  603. block_group->key.offset)
  604. break;
  605. len = block_group->key.objectid +
  606. block_group->key.offset - start;
  607. len = min(len, end + 1 - start);
  608. entries++;
  609. entry->offset = cpu_to_le64(start);
  610. entry->bytes = cpu_to_le64(len);
  611. entry->type = BTRFS_FREE_SPACE_EXTENT;
  612. start = end + 1;
  613. offset += sizeof(struct btrfs_free_space_entry);
  614. if (offset + sizeof(struct btrfs_free_space_entry) >=
  615. PAGE_CACHE_SIZE)
  616. next_page = true;
  617. entry++;
  618. }
  619. *crc = ~(u32)0;
  620. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  621. PAGE_CACHE_SIZE - start_offset);
  622. kunmap(page);
  623. btrfs_csum_final(*crc, (char *)crc);
  624. crc++;
  625. bytes += PAGE_CACHE_SIZE;
  626. index++;
  627. } while (node || next_page);
  628. /* Write out the bitmaps */
  629. list_for_each_safe(pos, n, &bitmap_list) {
  630. void *addr;
  631. struct btrfs_free_space *entry =
  632. list_entry(pos, struct btrfs_free_space, list);
  633. if (index >= num_pages) {
  634. out_of_space = true;
  635. break;
  636. }
  637. page = pages[index];
  638. addr = kmap(page);
  639. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  640. *crc = ~(u32)0;
  641. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  642. kunmap(page);
  643. btrfs_csum_final(*crc, (char *)crc);
  644. crc++;
  645. bytes += PAGE_CACHE_SIZE;
  646. list_del_init(&entry->list);
  647. index++;
  648. }
  649. if (out_of_space) {
  650. btrfs_drop_pages(pages, num_pages);
  651. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  652. i_size_read(inode) - 1, &cached_state,
  653. GFP_NOFS);
  654. ret = 0;
  655. goto out_free;
  656. }
  657. /* Zero out the rest of the pages just to make sure */
  658. while (index < num_pages) {
  659. void *addr;
  660. page = pages[index];
  661. addr = kmap(page);
  662. memset(addr, 0, PAGE_CACHE_SIZE);
  663. kunmap(page);
  664. bytes += PAGE_CACHE_SIZE;
  665. index++;
  666. }
  667. /* Write the checksums and trans id to the first page */
  668. {
  669. void *addr;
  670. u64 *gen;
  671. page = pages[0];
  672. addr = kmap(page);
  673. memcpy(addr, checksums, sizeof(u32) * num_pages);
  674. gen = addr + (sizeof(u32) * num_pages);
  675. *gen = trans->transid;
  676. kunmap(page);
  677. }
  678. ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
  679. bytes, &cached_state);
  680. btrfs_drop_pages(pages, num_pages);
  681. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  682. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  683. if (ret) {
  684. ret = 0;
  685. goto out_free;
  686. }
  687. BTRFS_I(inode)->generation = trans->transid;
  688. filemap_write_and_wait(inode->i_mapping);
  689. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  690. key.offset = block_group->key.objectid;
  691. key.type = 0;
  692. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  693. if (ret < 0) {
  694. ret = 0;
  695. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  696. EXTENT_DIRTY | EXTENT_DELALLOC |
  697. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  698. goto out_free;
  699. }
  700. leaf = path->nodes[0];
  701. if (ret > 0) {
  702. struct btrfs_key found_key;
  703. BUG_ON(!path->slots[0]);
  704. path->slots[0]--;
  705. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  706. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  707. found_key.offset != block_group->key.objectid) {
  708. ret = 0;
  709. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  710. EXTENT_DIRTY | EXTENT_DELALLOC |
  711. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  712. GFP_NOFS);
  713. btrfs_release_path(root, path);
  714. goto out_free;
  715. }
  716. }
  717. header = btrfs_item_ptr(leaf, path->slots[0],
  718. struct btrfs_free_space_header);
  719. btrfs_set_free_space_entries(leaf, header, entries);
  720. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  721. btrfs_set_free_space_generation(leaf, header, trans->transid);
  722. btrfs_mark_buffer_dirty(leaf);
  723. btrfs_release_path(root, path);
  724. ret = 1;
  725. out_free:
  726. if (ret == 0) {
  727. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  728. spin_lock(&block_group->lock);
  729. block_group->disk_cache_state = BTRFS_DC_ERROR;
  730. spin_unlock(&block_group->lock);
  731. BTRFS_I(inode)->generation = 0;
  732. }
  733. kfree(checksums);
  734. kfree(pages);
  735. btrfs_update_inode(trans, root, inode);
  736. iput(inode);
  737. return ret;
  738. }
  739. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  740. u64 offset)
  741. {
  742. BUG_ON(offset < bitmap_start);
  743. offset -= bitmap_start;
  744. return (unsigned long)(div64_u64(offset, sectorsize));
  745. }
  746. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  747. {
  748. return (unsigned long)(div64_u64(bytes, sectorsize));
  749. }
  750. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  751. u64 offset)
  752. {
  753. u64 bitmap_start;
  754. u64 bytes_per_bitmap;
  755. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  756. bitmap_start = offset - block_group->key.objectid;
  757. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  758. bitmap_start *= bytes_per_bitmap;
  759. bitmap_start += block_group->key.objectid;
  760. return bitmap_start;
  761. }
  762. static int tree_insert_offset(struct rb_root *root, u64 offset,
  763. struct rb_node *node, int bitmap)
  764. {
  765. struct rb_node **p = &root->rb_node;
  766. struct rb_node *parent = NULL;
  767. struct btrfs_free_space *info;
  768. while (*p) {
  769. parent = *p;
  770. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  771. if (offset < info->offset) {
  772. p = &(*p)->rb_left;
  773. } else if (offset > info->offset) {
  774. p = &(*p)->rb_right;
  775. } else {
  776. /*
  777. * we could have a bitmap entry and an extent entry
  778. * share the same offset. If this is the case, we want
  779. * the extent entry to always be found first if we do a
  780. * linear search through the tree, since we want to have
  781. * the quickest allocation time, and allocating from an
  782. * extent is faster than allocating from a bitmap. So
  783. * if we're inserting a bitmap and we find an entry at
  784. * this offset, we want to go right, or after this entry
  785. * logically. If we are inserting an extent and we've
  786. * found a bitmap, we want to go left, or before
  787. * logically.
  788. */
  789. if (bitmap) {
  790. WARN_ON(info->bitmap);
  791. p = &(*p)->rb_right;
  792. } else {
  793. WARN_ON(!info->bitmap);
  794. p = &(*p)->rb_left;
  795. }
  796. }
  797. }
  798. rb_link_node(node, parent, p);
  799. rb_insert_color(node, root);
  800. return 0;
  801. }
  802. /*
  803. * searches the tree for the given offset.
  804. *
  805. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  806. * want a section that has at least bytes size and comes at or after the given
  807. * offset.
  808. */
  809. static struct btrfs_free_space *
  810. tree_search_offset(struct btrfs_block_group_cache *block_group,
  811. u64 offset, int bitmap_only, int fuzzy)
  812. {
  813. struct rb_node *n = block_group->free_space_offset.rb_node;
  814. struct btrfs_free_space *entry, *prev = NULL;
  815. /* find entry that is closest to the 'offset' */
  816. while (1) {
  817. if (!n) {
  818. entry = NULL;
  819. break;
  820. }
  821. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  822. prev = entry;
  823. if (offset < entry->offset)
  824. n = n->rb_left;
  825. else if (offset > entry->offset)
  826. n = n->rb_right;
  827. else
  828. break;
  829. }
  830. if (bitmap_only) {
  831. if (!entry)
  832. return NULL;
  833. if (entry->bitmap)
  834. return entry;
  835. /*
  836. * bitmap entry and extent entry may share same offset,
  837. * in that case, bitmap entry comes after extent entry.
  838. */
  839. n = rb_next(n);
  840. if (!n)
  841. return NULL;
  842. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  843. if (entry->offset != offset)
  844. return NULL;
  845. WARN_ON(!entry->bitmap);
  846. return entry;
  847. } else if (entry) {
  848. if (entry->bitmap) {
  849. /*
  850. * if previous extent entry covers the offset,
  851. * we should return it instead of the bitmap entry
  852. */
  853. n = &entry->offset_index;
  854. while (1) {
  855. n = rb_prev(n);
  856. if (!n)
  857. break;
  858. prev = rb_entry(n, struct btrfs_free_space,
  859. offset_index);
  860. if (!prev->bitmap) {
  861. if (prev->offset + prev->bytes > offset)
  862. entry = prev;
  863. break;
  864. }
  865. }
  866. }
  867. return entry;
  868. }
  869. if (!prev)
  870. return NULL;
  871. /* find last entry before the 'offset' */
  872. entry = prev;
  873. if (entry->offset > offset) {
  874. n = rb_prev(&entry->offset_index);
  875. if (n) {
  876. entry = rb_entry(n, struct btrfs_free_space,
  877. offset_index);
  878. BUG_ON(entry->offset > offset);
  879. } else {
  880. if (fuzzy)
  881. return entry;
  882. else
  883. return NULL;
  884. }
  885. }
  886. if (entry->bitmap) {
  887. n = &entry->offset_index;
  888. while (1) {
  889. n = rb_prev(n);
  890. if (!n)
  891. break;
  892. prev = rb_entry(n, struct btrfs_free_space,
  893. offset_index);
  894. if (!prev->bitmap) {
  895. if (prev->offset + prev->bytes > offset)
  896. return prev;
  897. break;
  898. }
  899. }
  900. if (entry->offset + BITS_PER_BITMAP *
  901. block_group->sectorsize > offset)
  902. return entry;
  903. } else if (entry->offset + entry->bytes > offset)
  904. return entry;
  905. if (!fuzzy)
  906. return NULL;
  907. while (1) {
  908. if (entry->bitmap) {
  909. if (entry->offset + BITS_PER_BITMAP *
  910. block_group->sectorsize > offset)
  911. break;
  912. } else {
  913. if (entry->offset + entry->bytes > offset)
  914. break;
  915. }
  916. n = rb_next(&entry->offset_index);
  917. if (!n)
  918. return NULL;
  919. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  920. }
  921. return entry;
  922. }
  923. static inline void
  924. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  925. struct btrfs_free_space *info)
  926. {
  927. rb_erase(&info->offset_index, &block_group->free_space_offset);
  928. block_group->free_extents--;
  929. }
  930. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  931. struct btrfs_free_space *info)
  932. {
  933. __unlink_free_space(block_group, info);
  934. block_group->free_space -= info->bytes;
  935. }
  936. static int link_free_space(struct btrfs_block_group_cache *block_group,
  937. struct btrfs_free_space *info)
  938. {
  939. int ret = 0;
  940. BUG_ON(!info->bitmap && !info->bytes);
  941. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  942. &info->offset_index, (info->bitmap != NULL));
  943. if (ret)
  944. return ret;
  945. block_group->free_space += info->bytes;
  946. block_group->free_extents++;
  947. return ret;
  948. }
  949. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  950. {
  951. u64 max_bytes;
  952. u64 bitmap_bytes;
  953. u64 extent_bytes;
  954. u64 size = block_group->key.offset;
  955. /*
  956. * The goal is to keep the total amount of memory used per 1gb of space
  957. * at or below 32k, so we need to adjust how much memory we allow to be
  958. * used by extent based free space tracking
  959. */
  960. if (size < 1024 * 1024 * 1024)
  961. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  962. else
  963. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  964. div64_u64(size, 1024 * 1024 * 1024);
  965. /*
  966. * we want to account for 1 more bitmap than what we have so we can make
  967. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  968. * we add more bitmaps.
  969. */
  970. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  971. if (bitmap_bytes >= max_bytes) {
  972. block_group->extents_thresh = 0;
  973. return;
  974. }
  975. /*
  976. * we want the extent entry threshold to always be at most 1/2 the maxw
  977. * bytes we can have, or whatever is less than that.
  978. */
  979. extent_bytes = max_bytes - bitmap_bytes;
  980. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  981. block_group->extents_thresh =
  982. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  983. }
  984. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  985. struct btrfs_free_space *info, u64 offset,
  986. u64 bytes)
  987. {
  988. unsigned long start, end;
  989. unsigned long i;
  990. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  991. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  992. BUG_ON(end > BITS_PER_BITMAP);
  993. for (i = start; i < end; i++)
  994. clear_bit(i, info->bitmap);
  995. info->bytes -= bytes;
  996. block_group->free_space -= bytes;
  997. }
  998. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  999. struct btrfs_free_space *info, u64 offset,
  1000. u64 bytes)
  1001. {
  1002. unsigned long start, end;
  1003. unsigned long i;
  1004. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  1005. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  1006. BUG_ON(end > BITS_PER_BITMAP);
  1007. for (i = start; i < end; i++)
  1008. set_bit(i, info->bitmap);
  1009. info->bytes += bytes;
  1010. block_group->free_space += bytes;
  1011. }
  1012. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  1013. struct btrfs_free_space *bitmap_info, u64 *offset,
  1014. u64 *bytes)
  1015. {
  1016. unsigned long found_bits = 0;
  1017. unsigned long bits, i;
  1018. unsigned long next_zero;
  1019. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  1020. max_t(u64, *offset, bitmap_info->offset));
  1021. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  1022. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  1023. i < BITS_PER_BITMAP;
  1024. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  1025. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  1026. BITS_PER_BITMAP, i);
  1027. if ((next_zero - i) >= bits) {
  1028. found_bits = next_zero - i;
  1029. break;
  1030. }
  1031. i = next_zero;
  1032. }
  1033. if (found_bits) {
  1034. *offset = (u64)(i * block_group->sectorsize) +
  1035. bitmap_info->offset;
  1036. *bytes = (u64)(found_bits) * block_group->sectorsize;
  1037. return 0;
  1038. }
  1039. return -1;
  1040. }
  1041. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  1042. *block_group, u64 *offset,
  1043. u64 *bytes, int debug)
  1044. {
  1045. struct btrfs_free_space *entry;
  1046. struct rb_node *node;
  1047. int ret;
  1048. if (!block_group->free_space_offset.rb_node)
  1049. return NULL;
  1050. entry = tree_search_offset(block_group,
  1051. offset_to_bitmap(block_group, *offset),
  1052. 0, 1);
  1053. if (!entry)
  1054. return NULL;
  1055. for (node = &entry->offset_index; node; node = rb_next(node)) {
  1056. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1057. if (entry->bytes < *bytes)
  1058. continue;
  1059. if (entry->bitmap) {
  1060. ret = search_bitmap(block_group, entry, offset, bytes);
  1061. if (!ret)
  1062. return entry;
  1063. continue;
  1064. }
  1065. *offset = entry->offset;
  1066. *bytes = entry->bytes;
  1067. return entry;
  1068. }
  1069. return NULL;
  1070. }
  1071. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1072. struct btrfs_free_space *info, u64 offset)
  1073. {
  1074. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1075. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1076. bytes_per_bg - 1, bytes_per_bg);
  1077. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1078. info->offset = offset_to_bitmap(block_group, offset);
  1079. info->bytes = 0;
  1080. link_free_space(block_group, info);
  1081. block_group->total_bitmaps++;
  1082. recalculate_thresholds(block_group);
  1083. }
  1084. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1085. struct btrfs_free_space *bitmap_info)
  1086. {
  1087. unlink_free_space(block_group, bitmap_info);
  1088. kfree(bitmap_info->bitmap);
  1089. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1090. block_group->total_bitmaps--;
  1091. recalculate_thresholds(block_group);
  1092. }
  1093. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1094. struct btrfs_free_space *bitmap_info,
  1095. u64 *offset, u64 *bytes)
  1096. {
  1097. u64 end;
  1098. u64 search_start, search_bytes;
  1099. int ret;
  1100. again:
  1101. end = bitmap_info->offset +
  1102. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1103. /*
  1104. * XXX - this can go away after a few releases.
  1105. *
  1106. * since the only user of btrfs_remove_free_space is the tree logging
  1107. * stuff, and the only way to test that is under crash conditions, we
  1108. * want to have this debug stuff here just in case somethings not
  1109. * working. Search the bitmap for the space we are trying to use to
  1110. * make sure its actually there. If its not there then we need to stop
  1111. * because something has gone wrong.
  1112. */
  1113. search_start = *offset;
  1114. search_bytes = *bytes;
  1115. search_bytes = min(search_bytes, end - search_start + 1);
  1116. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1117. &search_bytes);
  1118. BUG_ON(ret < 0 || search_start != *offset);
  1119. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1120. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1121. end - *offset + 1);
  1122. *bytes -= end - *offset + 1;
  1123. *offset = end + 1;
  1124. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1125. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1126. *bytes = 0;
  1127. }
  1128. if (*bytes) {
  1129. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1130. if (!bitmap_info->bytes)
  1131. free_bitmap(block_group, bitmap_info);
  1132. /*
  1133. * no entry after this bitmap, but we still have bytes to
  1134. * remove, so something has gone wrong.
  1135. */
  1136. if (!next)
  1137. return -EINVAL;
  1138. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1139. offset_index);
  1140. /*
  1141. * if the next entry isn't a bitmap we need to return to let the
  1142. * extent stuff do its work.
  1143. */
  1144. if (!bitmap_info->bitmap)
  1145. return -EAGAIN;
  1146. /*
  1147. * Ok the next item is a bitmap, but it may not actually hold
  1148. * the information for the rest of this free space stuff, so
  1149. * look for it, and if we don't find it return so we can try
  1150. * everything over again.
  1151. */
  1152. search_start = *offset;
  1153. search_bytes = *bytes;
  1154. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1155. &search_bytes);
  1156. if (ret < 0 || search_start != *offset)
  1157. return -EAGAIN;
  1158. goto again;
  1159. } else if (!bitmap_info->bytes)
  1160. free_bitmap(block_group, bitmap_info);
  1161. return 0;
  1162. }
  1163. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1164. struct btrfs_free_space *info)
  1165. {
  1166. struct btrfs_free_space *bitmap_info;
  1167. int added = 0;
  1168. u64 bytes, offset, end;
  1169. int ret;
  1170. /*
  1171. * If we are below the extents threshold then we can add this as an
  1172. * extent, and don't have to deal with the bitmap
  1173. */
  1174. if (block_group->free_extents < block_group->extents_thresh) {
  1175. /*
  1176. * If this block group has some small extents we don't want to
  1177. * use up all of our free slots in the cache with them, we want
  1178. * to reserve them to larger extents, however if we have plent
  1179. * of cache left then go ahead an dadd them, no sense in adding
  1180. * the overhead of a bitmap if we don't have to.
  1181. */
  1182. if (info->bytes <= block_group->sectorsize * 4) {
  1183. if (block_group->free_extents * 2 <=
  1184. block_group->extents_thresh)
  1185. return 0;
  1186. } else {
  1187. return 0;
  1188. }
  1189. }
  1190. /*
  1191. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1192. * don't even bother to create a bitmap for this
  1193. */
  1194. if (BITS_PER_BITMAP * block_group->sectorsize >
  1195. block_group->key.offset)
  1196. return 0;
  1197. bytes = info->bytes;
  1198. offset = info->offset;
  1199. again:
  1200. bitmap_info = tree_search_offset(block_group,
  1201. offset_to_bitmap(block_group, offset),
  1202. 1, 0);
  1203. if (!bitmap_info) {
  1204. BUG_ON(added);
  1205. goto new_bitmap;
  1206. }
  1207. end = bitmap_info->offset +
  1208. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1209. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1210. bitmap_set_bits(block_group, bitmap_info, offset,
  1211. end - offset);
  1212. bytes -= end - offset;
  1213. offset = end;
  1214. added = 0;
  1215. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1216. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1217. bytes = 0;
  1218. } else {
  1219. BUG();
  1220. }
  1221. if (!bytes) {
  1222. ret = 1;
  1223. goto out;
  1224. } else
  1225. goto again;
  1226. new_bitmap:
  1227. if (info && info->bitmap) {
  1228. add_new_bitmap(block_group, info, offset);
  1229. added = 1;
  1230. info = NULL;
  1231. goto again;
  1232. } else {
  1233. spin_unlock(&block_group->tree_lock);
  1234. /* no pre-allocated info, allocate a new one */
  1235. if (!info) {
  1236. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1237. GFP_NOFS);
  1238. if (!info) {
  1239. spin_lock(&block_group->tree_lock);
  1240. ret = -ENOMEM;
  1241. goto out;
  1242. }
  1243. }
  1244. /* allocate the bitmap */
  1245. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1246. spin_lock(&block_group->tree_lock);
  1247. if (!info->bitmap) {
  1248. ret = -ENOMEM;
  1249. goto out;
  1250. }
  1251. goto again;
  1252. }
  1253. out:
  1254. if (info) {
  1255. if (info->bitmap)
  1256. kfree(info->bitmap);
  1257. kmem_cache_free(btrfs_free_space_cachep, info);
  1258. }
  1259. return ret;
  1260. }
  1261. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1262. struct btrfs_free_space *info, bool update_stat)
  1263. {
  1264. struct btrfs_free_space *left_info;
  1265. struct btrfs_free_space *right_info;
  1266. bool merged = false;
  1267. u64 offset = info->offset;
  1268. u64 bytes = info->bytes;
  1269. /*
  1270. * first we want to see if there is free space adjacent to the range we
  1271. * are adding, if there is remove that struct and add a new one to
  1272. * cover the entire range
  1273. */
  1274. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1275. if (right_info && rb_prev(&right_info->offset_index))
  1276. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1277. struct btrfs_free_space, offset_index);
  1278. else
  1279. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1280. if (right_info && !right_info->bitmap) {
  1281. if (update_stat)
  1282. unlink_free_space(block_group, right_info);
  1283. else
  1284. __unlink_free_space(block_group, right_info);
  1285. info->bytes += right_info->bytes;
  1286. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1287. merged = true;
  1288. }
  1289. if (left_info && !left_info->bitmap &&
  1290. left_info->offset + left_info->bytes == offset) {
  1291. if (update_stat)
  1292. unlink_free_space(block_group, left_info);
  1293. else
  1294. __unlink_free_space(block_group, left_info);
  1295. info->offset = left_info->offset;
  1296. info->bytes += left_info->bytes;
  1297. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1298. merged = true;
  1299. }
  1300. return merged;
  1301. }
  1302. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1303. u64 offset, u64 bytes)
  1304. {
  1305. struct btrfs_free_space *info;
  1306. int ret = 0;
  1307. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1308. if (!info)
  1309. return -ENOMEM;
  1310. info->offset = offset;
  1311. info->bytes = bytes;
  1312. spin_lock(&block_group->tree_lock);
  1313. if (try_merge_free_space(block_group, info, true))
  1314. goto link;
  1315. /*
  1316. * There was no extent directly to the left or right of this new
  1317. * extent then we know we're going to have to allocate a new extent, so
  1318. * before we do that see if we need to drop this into a bitmap
  1319. */
  1320. ret = insert_into_bitmap(block_group, info);
  1321. if (ret < 0) {
  1322. goto out;
  1323. } else if (ret) {
  1324. ret = 0;
  1325. goto out;
  1326. }
  1327. link:
  1328. ret = link_free_space(block_group, info);
  1329. if (ret)
  1330. kmem_cache_free(btrfs_free_space_cachep, info);
  1331. out:
  1332. spin_unlock(&block_group->tree_lock);
  1333. if (ret) {
  1334. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1335. BUG_ON(ret == -EEXIST);
  1336. }
  1337. return ret;
  1338. }
  1339. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1340. u64 offset, u64 bytes)
  1341. {
  1342. struct btrfs_free_space *info;
  1343. struct btrfs_free_space *next_info = NULL;
  1344. int ret = 0;
  1345. spin_lock(&block_group->tree_lock);
  1346. again:
  1347. info = tree_search_offset(block_group, offset, 0, 0);
  1348. if (!info) {
  1349. /*
  1350. * oops didn't find an extent that matched the space we wanted
  1351. * to remove, look for a bitmap instead
  1352. */
  1353. info = tree_search_offset(block_group,
  1354. offset_to_bitmap(block_group, offset),
  1355. 1, 0);
  1356. if (!info) {
  1357. WARN_ON(1);
  1358. goto out_lock;
  1359. }
  1360. }
  1361. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1362. u64 end;
  1363. next_info = rb_entry(rb_next(&info->offset_index),
  1364. struct btrfs_free_space,
  1365. offset_index);
  1366. if (next_info->bitmap)
  1367. end = next_info->offset + BITS_PER_BITMAP *
  1368. block_group->sectorsize - 1;
  1369. else
  1370. end = next_info->offset + next_info->bytes;
  1371. if (next_info->bytes < bytes ||
  1372. next_info->offset > offset || offset > end) {
  1373. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1374. " trying to use %llu\n",
  1375. (unsigned long long)info->offset,
  1376. (unsigned long long)info->bytes,
  1377. (unsigned long long)bytes);
  1378. WARN_ON(1);
  1379. ret = -EINVAL;
  1380. goto out_lock;
  1381. }
  1382. info = next_info;
  1383. }
  1384. if (info->bytes == bytes) {
  1385. unlink_free_space(block_group, info);
  1386. if (info->bitmap) {
  1387. kfree(info->bitmap);
  1388. block_group->total_bitmaps--;
  1389. }
  1390. kmem_cache_free(btrfs_free_space_cachep, info);
  1391. goto out_lock;
  1392. }
  1393. if (!info->bitmap && info->offset == offset) {
  1394. unlink_free_space(block_group, info);
  1395. info->offset += bytes;
  1396. info->bytes -= bytes;
  1397. link_free_space(block_group, info);
  1398. goto out_lock;
  1399. }
  1400. if (!info->bitmap && info->offset <= offset &&
  1401. info->offset + info->bytes >= offset + bytes) {
  1402. u64 old_start = info->offset;
  1403. /*
  1404. * we're freeing space in the middle of the info,
  1405. * this can happen during tree log replay
  1406. *
  1407. * first unlink the old info and then
  1408. * insert it again after the hole we're creating
  1409. */
  1410. unlink_free_space(block_group, info);
  1411. if (offset + bytes < info->offset + info->bytes) {
  1412. u64 old_end = info->offset + info->bytes;
  1413. info->offset = offset + bytes;
  1414. info->bytes = old_end - info->offset;
  1415. ret = link_free_space(block_group, info);
  1416. WARN_ON(ret);
  1417. if (ret)
  1418. goto out_lock;
  1419. } else {
  1420. /* the hole we're creating ends at the end
  1421. * of the info struct, just free the info
  1422. */
  1423. kmem_cache_free(btrfs_free_space_cachep, info);
  1424. }
  1425. spin_unlock(&block_group->tree_lock);
  1426. /* step two, insert a new info struct to cover
  1427. * anything before the hole
  1428. */
  1429. ret = btrfs_add_free_space(block_group, old_start,
  1430. offset - old_start);
  1431. WARN_ON(ret);
  1432. goto out;
  1433. }
  1434. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1435. if (ret == -EAGAIN)
  1436. goto again;
  1437. BUG_ON(ret);
  1438. out_lock:
  1439. spin_unlock(&block_group->tree_lock);
  1440. out:
  1441. return ret;
  1442. }
  1443. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1444. u64 bytes)
  1445. {
  1446. struct btrfs_free_space *info;
  1447. struct rb_node *n;
  1448. int count = 0;
  1449. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1450. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1451. if (info->bytes >= bytes)
  1452. count++;
  1453. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1454. (unsigned long long)info->offset,
  1455. (unsigned long long)info->bytes,
  1456. (info->bitmap) ? "yes" : "no");
  1457. }
  1458. printk(KERN_INFO "block group has cluster?: %s\n",
  1459. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1460. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1461. "\n", count);
  1462. }
  1463. u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
  1464. {
  1465. struct btrfs_free_space *info;
  1466. struct rb_node *n;
  1467. u64 ret = 0;
  1468. for (n = rb_first(&block_group->free_space_offset); n;
  1469. n = rb_next(n)) {
  1470. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1471. ret += info->bytes;
  1472. }
  1473. return ret;
  1474. }
  1475. /*
  1476. * for a given cluster, put all of its extents back into the free
  1477. * space cache. If the block group passed doesn't match the block group
  1478. * pointed to by the cluster, someone else raced in and freed the
  1479. * cluster already. In that case, we just return without changing anything
  1480. */
  1481. static int
  1482. __btrfs_return_cluster_to_free_space(
  1483. struct btrfs_block_group_cache *block_group,
  1484. struct btrfs_free_cluster *cluster)
  1485. {
  1486. struct btrfs_free_space *entry;
  1487. struct rb_node *node;
  1488. spin_lock(&cluster->lock);
  1489. if (cluster->block_group != block_group)
  1490. goto out;
  1491. cluster->block_group = NULL;
  1492. cluster->window_start = 0;
  1493. list_del_init(&cluster->block_group_list);
  1494. node = rb_first(&cluster->root);
  1495. while (node) {
  1496. bool bitmap;
  1497. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1498. node = rb_next(&entry->offset_index);
  1499. rb_erase(&entry->offset_index, &cluster->root);
  1500. bitmap = (entry->bitmap != NULL);
  1501. if (!bitmap)
  1502. try_merge_free_space(block_group, entry, false);
  1503. tree_insert_offset(&block_group->free_space_offset,
  1504. entry->offset, &entry->offset_index, bitmap);
  1505. }
  1506. cluster->root = RB_ROOT;
  1507. out:
  1508. spin_unlock(&cluster->lock);
  1509. btrfs_put_block_group(block_group);
  1510. return 0;
  1511. }
  1512. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1513. {
  1514. struct btrfs_free_space *info;
  1515. struct rb_node *node;
  1516. struct btrfs_free_cluster *cluster;
  1517. struct list_head *head;
  1518. spin_lock(&block_group->tree_lock);
  1519. while ((head = block_group->cluster_list.next) !=
  1520. &block_group->cluster_list) {
  1521. cluster = list_entry(head, struct btrfs_free_cluster,
  1522. block_group_list);
  1523. WARN_ON(cluster->block_group != block_group);
  1524. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1525. if (need_resched()) {
  1526. spin_unlock(&block_group->tree_lock);
  1527. cond_resched();
  1528. spin_lock(&block_group->tree_lock);
  1529. }
  1530. }
  1531. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1532. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1533. if (!info->bitmap) {
  1534. unlink_free_space(block_group, info);
  1535. kmem_cache_free(btrfs_free_space_cachep, info);
  1536. } else {
  1537. free_bitmap(block_group, info);
  1538. }
  1539. if (need_resched()) {
  1540. spin_unlock(&block_group->tree_lock);
  1541. cond_resched();
  1542. spin_lock(&block_group->tree_lock);
  1543. }
  1544. }
  1545. spin_unlock(&block_group->tree_lock);
  1546. }
  1547. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1548. u64 offset, u64 bytes, u64 empty_size)
  1549. {
  1550. struct btrfs_free_space *entry = NULL;
  1551. u64 bytes_search = bytes + empty_size;
  1552. u64 ret = 0;
  1553. spin_lock(&block_group->tree_lock);
  1554. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1555. if (!entry)
  1556. goto out;
  1557. ret = offset;
  1558. if (entry->bitmap) {
  1559. bitmap_clear_bits(block_group, entry, offset, bytes);
  1560. if (!entry->bytes)
  1561. free_bitmap(block_group, entry);
  1562. } else {
  1563. unlink_free_space(block_group, entry);
  1564. entry->offset += bytes;
  1565. entry->bytes -= bytes;
  1566. if (!entry->bytes)
  1567. kmem_cache_free(btrfs_free_space_cachep, entry);
  1568. else
  1569. link_free_space(block_group, entry);
  1570. }
  1571. out:
  1572. spin_unlock(&block_group->tree_lock);
  1573. return ret;
  1574. }
  1575. /*
  1576. * given a cluster, put all of its extents back into the free space
  1577. * cache. If a block group is passed, this function will only free
  1578. * a cluster that belongs to the passed block group.
  1579. *
  1580. * Otherwise, it'll get a reference on the block group pointed to by the
  1581. * cluster and remove the cluster from it.
  1582. */
  1583. int btrfs_return_cluster_to_free_space(
  1584. struct btrfs_block_group_cache *block_group,
  1585. struct btrfs_free_cluster *cluster)
  1586. {
  1587. int ret;
  1588. /* first, get a safe pointer to the block group */
  1589. spin_lock(&cluster->lock);
  1590. if (!block_group) {
  1591. block_group = cluster->block_group;
  1592. if (!block_group) {
  1593. spin_unlock(&cluster->lock);
  1594. return 0;
  1595. }
  1596. } else if (cluster->block_group != block_group) {
  1597. /* someone else has already freed it don't redo their work */
  1598. spin_unlock(&cluster->lock);
  1599. return 0;
  1600. }
  1601. atomic_inc(&block_group->count);
  1602. spin_unlock(&cluster->lock);
  1603. /* now return any extents the cluster had on it */
  1604. spin_lock(&block_group->tree_lock);
  1605. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1606. spin_unlock(&block_group->tree_lock);
  1607. /* finally drop our ref */
  1608. btrfs_put_block_group(block_group);
  1609. return ret;
  1610. }
  1611. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1612. struct btrfs_free_cluster *cluster,
  1613. struct btrfs_free_space *entry,
  1614. u64 bytes, u64 min_start)
  1615. {
  1616. int err;
  1617. u64 search_start = cluster->window_start;
  1618. u64 search_bytes = bytes;
  1619. u64 ret = 0;
  1620. search_start = min_start;
  1621. search_bytes = bytes;
  1622. err = search_bitmap(block_group, entry, &search_start,
  1623. &search_bytes);
  1624. if (err)
  1625. return 0;
  1626. ret = search_start;
  1627. bitmap_clear_bits(block_group, entry, ret, bytes);
  1628. return ret;
  1629. }
  1630. /*
  1631. * given a cluster, try to allocate 'bytes' from it, returns 0
  1632. * if it couldn't find anything suitably large, or a logical disk offset
  1633. * if things worked out
  1634. */
  1635. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1636. struct btrfs_free_cluster *cluster, u64 bytes,
  1637. u64 min_start)
  1638. {
  1639. struct btrfs_free_space *entry = NULL;
  1640. struct rb_node *node;
  1641. u64 ret = 0;
  1642. spin_lock(&cluster->lock);
  1643. if (bytes > cluster->max_size)
  1644. goto out;
  1645. if (cluster->block_group != block_group)
  1646. goto out;
  1647. node = rb_first(&cluster->root);
  1648. if (!node)
  1649. goto out;
  1650. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1651. while(1) {
  1652. if (entry->bytes < bytes ||
  1653. (!entry->bitmap && entry->offset < min_start)) {
  1654. struct rb_node *node;
  1655. node = rb_next(&entry->offset_index);
  1656. if (!node)
  1657. break;
  1658. entry = rb_entry(node, struct btrfs_free_space,
  1659. offset_index);
  1660. continue;
  1661. }
  1662. if (entry->bitmap) {
  1663. ret = btrfs_alloc_from_bitmap(block_group,
  1664. cluster, entry, bytes,
  1665. min_start);
  1666. if (ret == 0) {
  1667. struct rb_node *node;
  1668. node = rb_next(&entry->offset_index);
  1669. if (!node)
  1670. break;
  1671. entry = rb_entry(node, struct btrfs_free_space,
  1672. offset_index);
  1673. continue;
  1674. }
  1675. } else {
  1676. ret = entry->offset;
  1677. entry->offset += bytes;
  1678. entry->bytes -= bytes;
  1679. }
  1680. if (entry->bytes == 0)
  1681. rb_erase(&entry->offset_index, &cluster->root);
  1682. break;
  1683. }
  1684. out:
  1685. spin_unlock(&cluster->lock);
  1686. if (!ret)
  1687. return 0;
  1688. spin_lock(&block_group->tree_lock);
  1689. block_group->free_space -= bytes;
  1690. if (entry->bytes == 0) {
  1691. block_group->free_extents--;
  1692. if (entry->bitmap) {
  1693. kfree(entry->bitmap);
  1694. block_group->total_bitmaps--;
  1695. recalculate_thresholds(block_group);
  1696. }
  1697. kmem_cache_free(btrfs_free_space_cachep, entry);
  1698. }
  1699. spin_unlock(&block_group->tree_lock);
  1700. return ret;
  1701. }
  1702. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1703. struct btrfs_free_space *entry,
  1704. struct btrfs_free_cluster *cluster,
  1705. u64 offset, u64 bytes, u64 min_bytes)
  1706. {
  1707. unsigned long next_zero;
  1708. unsigned long i;
  1709. unsigned long search_bits;
  1710. unsigned long total_bits;
  1711. unsigned long found_bits;
  1712. unsigned long start = 0;
  1713. unsigned long total_found = 0;
  1714. int ret;
  1715. bool found = false;
  1716. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1717. max_t(u64, offset, entry->offset));
  1718. search_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1719. total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1720. again:
  1721. found_bits = 0;
  1722. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1723. i < BITS_PER_BITMAP;
  1724. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1725. next_zero = find_next_zero_bit(entry->bitmap,
  1726. BITS_PER_BITMAP, i);
  1727. if (next_zero - i >= search_bits) {
  1728. found_bits = next_zero - i;
  1729. break;
  1730. }
  1731. i = next_zero;
  1732. }
  1733. if (!found_bits)
  1734. return -ENOSPC;
  1735. if (!found) {
  1736. start = i;
  1737. found = true;
  1738. }
  1739. total_found += found_bits;
  1740. if (cluster->max_size < found_bits * block_group->sectorsize)
  1741. cluster->max_size = found_bits * block_group->sectorsize;
  1742. if (total_found < total_bits) {
  1743. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1744. if (i - start > total_bits * 2) {
  1745. total_found = 0;
  1746. cluster->max_size = 0;
  1747. found = false;
  1748. }
  1749. goto again;
  1750. }
  1751. cluster->window_start = start * block_group->sectorsize +
  1752. entry->offset;
  1753. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1754. ret = tree_insert_offset(&cluster->root, entry->offset,
  1755. &entry->offset_index, 1);
  1756. BUG_ON(ret);
  1757. return 0;
  1758. }
  1759. /*
  1760. * This searches the block group for just extents to fill the cluster with.
  1761. */
  1762. static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  1763. struct btrfs_free_cluster *cluster,
  1764. u64 offset, u64 bytes, u64 min_bytes)
  1765. {
  1766. struct btrfs_free_space *first = NULL;
  1767. struct btrfs_free_space *entry = NULL;
  1768. struct btrfs_free_space *prev = NULL;
  1769. struct btrfs_free_space *last;
  1770. struct rb_node *node;
  1771. u64 window_start;
  1772. u64 window_free;
  1773. u64 max_extent;
  1774. u64 max_gap = 128 * 1024;
  1775. entry = tree_search_offset(block_group, offset, 0, 1);
  1776. if (!entry)
  1777. return -ENOSPC;
  1778. /*
  1779. * We don't want bitmaps, so just move along until we find a normal
  1780. * extent entry.
  1781. */
  1782. while (entry->bitmap) {
  1783. node = rb_next(&entry->offset_index);
  1784. if (!node)
  1785. return -ENOSPC;
  1786. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1787. }
  1788. window_start = entry->offset;
  1789. window_free = entry->bytes;
  1790. max_extent = entry->bytes;
  1791. first = entry;
  1792. last = entry;
  1793. prev = entry;
  1794. while (window_free <= min_bytes) {
  1795. node = rb_next(&entry->offset_index);
  1796. if (!node)
  1797. return -ENOSPC;
  1798. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1799. if (entry->bitmap)
  1800. continue;
  1801. /*
  1802. * we haven't filled the empty size and the window is
  1803. * very large. reset and try again
  1804. */
  1805. if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
  1806. entry->offset - window_start > (min_bytes * 2)) {
  1807. first = entry;
  1808. window_start = entry->offset;
  1809. window_free = entry->bytes;
  1810. last = entry;
  1811. max_extent = entry->bytes;
  1812. } else {
  1813. last = entry;
  1814. window_free += entry->bytes;
  1815. if (entry->bytes > max_extent)
  1816. max_extent = entry->bytes;
  1817. }
  1818. prev = entry;
  1819. }
  1820. cluster->window_start = first->offset;
  1821. node = &first->offset_index;
  1822. /*
  1823. * now we've found our entries, pull them out of the free space
  1824. * cache and put them into the cluster rbtree
  1825. */
  1826. do {
  1827. int ret;
  1828. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1829. node = rb_next(&entry->offset_index);
  1830. if (entry->bitmap)
  1831. continue;
  1832. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1833. ret = tree_insert_offset(&cluster->root, entry->offset,
  1834. &entry->offset_index, 0);
  1835. BUG_ON(ret);
  1836. } while (node && entry != last);
  1837. cluster->max_size = max_extent;
  1838. return 0;
  1839. }
  1840. /*
  1841. * This specifically looks for bitmaps that may work in the cluster, we assume
  1842. * that we have already failed to find extents that will work.
  1843. */
  1844. static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  1845. struct btrfs_free_cluster *cluster,
  1846. u64 offset, u64 bytes, u64 min_bytes)
  1847. {
  1848. struct btrfs_free_space *entry;
  1849. struct rb_node *node;
  1850. int ret = -ENOSPC;
  1851. if (block_group->total_bitmaps == 0)
  1852. return -ENOSPC;
  1853. entry = tree_search_offset(block_group,
  1854. offset_to_bitmap(block_group, offset),
  1855. 0, 1);
  1856. if (!entry)
  1857. return -ENOSPC;
  1858. node = &entry->offset_index;
  1859. do {
  1860. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1861. node = rb_next(&entry->offset_index);
  1862. if (!entry->bitmap)
  1863. continue;
  1864. if (entry->bytes < min_bytes)
  1865. continue;
  1866. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  1867. bytes, min_bytes);
  1868. } while (ret && node);
  1869. return ret;
  1870. }
  1871. /*
  1872. * here we try to find a cluster of blocks in a block group. The goal
  1873. * is to find at least bytes free and up to empty_size + bytes free.
  1874. * We might not find them all in one contiguous area.
  1875. *
  1876. * returns zero and sets up cluster if things worked out, otherwise
  1877. * it returns -enospc
  1878. */
  1879. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1880. struct btrfs_root *root,
  1881. struct btrfs_block_group_cache *block_group,
  1882. struct btrfs_free_cluster *cluster,
  1883. u64 offset, u64 bytes, u64 empty_size)
  1884. {
  1885. u64 min_bytes;
  1886. int ret;
  1887. /* for metadata, allow allocates with more holes */
  1888. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1889. min_bytes = bytes + empty_size;
  1890. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1891. /*
  1892. * we want to do larger allocations when we are
  1893. * flushing out the delayed refs, it helps prevent
  1894. * making more work as we go along.
  1895. */
  1896. if (trans->transaction->delayed_refs.flushing)
  1897. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1898. else
  1899. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1900. } else
  1901. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1902. spin_lock(&block_group->tree_lock);
  1903. /*
  1904. * If we know we don't have enough space to make a cluster don't even
  1905. * bother doing all the work to try and find one.
  1906. */
  1907. if (block_group->free_space < min_bytes) {
  1908. spin_unlock(&block_group->tree_lock);
  1909. return -ENOSPC;
  1910. }
  1911. spin_lock(&cluster->lock);
  1912. /* someone already found a cluster, hooray */
  1913. if (cluster->block_group) {
  1914. ret = 0;
  1915. goto out;
  1916. }
  1917. ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
  1918. min_bytes);
  1919. if (ret)
  1920. ret = setup_cluster_bitmap(block_group, cluster, offset,
  1921. bytes, min_bytes);
  1922. if (!ret) {
  1923. atomic_inc(&block_group->count);
  1924. list_add_tail(&cluster->block_group_list,
  1925. &block_group->cluster_list);
  1926. cluster->block_group = block_group;
  1927. }
  1928. out:
  1929. spin_unlock(&cluster->lock);
  1930. spin_unlock(&block_group->tree_lock);
  1931. return ret;
  1932. }
  1933. /*
  1934. * simple code to zero out a cluster
  1935. */
  1936. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1937. {
  1938. spin_lock_init(&cluster->lock);
  1939. spin_lock_init(&cluster->refill_lock);
  1940. cluster->root = RB_ROOT;
  1941. cluster->max_size = 0;
  1942. INIT_LIST_HEAD(&cluster->block_group_list);
  1943. cluster->block_group = NULL;
  1944. }
  1945. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  1946. u64 *trimmed, u64 start, u64 end, u64 minlen)
  1947. {
  1948. struct btrfs_free_space *entry = NULL;
  1949. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1950. u64 bytes = 0;
  1951. u64 actually_trimmed;
  1952. int ret = 0;
  1953. *trimmed = 0;
  1954. while (start < end) {
  1955. spin_lock(&block_group->tree_lock);
  1956. if (block_group->free_space < minlen) {
  1957. spin_unlock(&block_group->tree_lock);
  1958. break;
  1959. }
  1960. entry = tree_search_offset(block_group, start, 0, 1);
  1961. if (!entry)
  1962. entry = tree_search_offset(block_group,
  1963. offset_to_bitmap(block_group,
  1964. start),
  1965. 1, 1);
  1966. if (!entry || entry->offset >= end) {
  1967. spin_unlock(&block_group->tree_lock);
  1968. break;
  1969. }
  1970. if (entry->bitmap) {
  1971. ret = search_bitmap(block_group, entry, &start, &bytes);
  1972. if (!ret) {
  1973. if (start >= end) {
  1974. spin_unlock(&block_group->tree_lock);
  1975. break;
  1976. }
  1977. bytes = min(bytes, end - start);
  1978. bitmap_clear_bits(block_group, entry,
  1979. start, bytes);
  1980. if (entry->bytes == 0)
  1981. free_bitmap(block_group, entry);
  1982. } else {
  1983. start = entry->offset + BITS_PER_BITMAP *
  1984. block_group->sectorsize;
  1985. spin_unlock(&block_group->tree_lock);
  1986. ret = 0;
  1987. continue;
  1988. }
  1989. } else {
  1990. start = entry->offset;
  1991. bytes = min(entry->bytes, end - start);
  1992. unlink_free_space(block_group, entry);
  1993. kmem_cache_free(btrfs_free_space_cachep, entry);
  1994. }
  1995. spin_unlock(&block_group->tree_lock);
  1996. if (bytes >= minlen) {
  1997. int update_ret;
  1998. update_ret = btrfs_update_reserved_bytes(block_group,
  1999. bytes, 1, 1);
  2000. ret = btrfs_error_discard_extent(fs_info->extent_root,
  2001. start,
  2002. bytes,
  2003. &actually_trimmed);
  2004. btrfs_add_free_space(block_group,
  2005. start, bytes);
  2006. if (!update_ret)
  2007. btrfs_update_reserved_bytes(block_group,
  2008. bytes, 0, 1);
  2009. if (ret)
  2010. break;
  2011. *trimmed += actually_trimmed;
  2012. }
  2013. start += bytes;
  2014. bytes = 0;
  2015. if (fatal_signal_pending(current)) {
  2016. ret = -ERESTARTSYS;
  2017. break;
  2018. }
  2019. cond_resched();
  2020. }
  2021. return ret;
  2022. }