tx.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Atheros CARL9170 driver
  3. *
  4. * 802.11 xmit & status routines
  5. *
  6. * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
  7. * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; see the file COPYING. If not, see
  21. * http://www.gnu.org/licenses/.
  22. *
  23. * This file incorporates work covered by the following copyright and
  24. * permission notice:
  25. * Copyright (c) 2007-2008 Atheros Communications, Inc.
  26. *
  27. * Permission to use, copy, modify, and/or distribute this software for any
  28. * purpose with or without fee is hereby granted, provided that the above
  29. * copyright notice and this permission notice appear in all copies.
  30. *
  31. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  32. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  33. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  34. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  35. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  36. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  37. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  38. */
  39. #include <linux/init.h>
  40. #include <linux/slab.h>
  41. #include <linux/module.h>
  42. #include <linux/etherdevice.h>
  43. #include <net/mac80211.h>
  44. #include "carl9170.h"
  45. #include "hw.h"
  46. #include "cmd.h"
  47. static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
  48. unsigned int queue)
  49. {
  50. if (unlikely(modparam_noht)) {
  51. return queue;
  52. } else {
  53. /*
  54. * This is just another workaround, until
  55. * someone figures out how to get QoS and
  56. * AMPDU to play nicely together.
  57. */
  58. return 2; /* AC_BE */
  59. }
  60. }
  61. static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
  62. struct sk_buff *skb)
  63. {
  64. return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
  65. }
  66. static bool is_mem_full(struct ar9170 *ar)
  67. {
  68. return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
  69. atomic_read(&ar->mem_free_blocks));
  70. }
  71. static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
  72. {
  73. int queue, i;
  74. bool mem_full;
  75. atomic_inc(&ar->tx_total_queued);
  76. queue = skb_get_queue_mapping(skb);
  77. spin_lock_bh(&ar->tx_stats_lock);
  78. /*
  79. * The driver has to accept the frame, regardless if the queue is
  80. * full to the brim, or not. We have to do the queuing internally,
  81. * since mac80211 assumes that a driver which can operate with
  82. * aggregated frames does not reject frames for this reason.
  83. */
  84. ar->tx_stats[queue].len++;
  85. ar->tx_stats[queue].count++;
  86. mem_full = is_mem_full(ar);
  87. for (i = 0; i < ar->hw->queues; i++) {
  88. if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
  89. ieee80211_stop_queue(ar->hw, i);
  90. ar->queue_stop_timeout[i] = jiffies;
  91. }
  92. }
  93. spin_unlock_bh(&ar->tx_stats_lock);
  94. }
  95. /* needs rcu_read_lock */
  96. static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
  97. struct sk_buff *skb)
  98. {
  99. struct _carl9170_tx_superframe *super = (void *) skb->data;
  100. struct ieee80211_hdr *hdr = (void *) super->frame_data;
  101. struct ieee80211_vif *vif;
  102. unsigned int vif_id;
  103. vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
  104. CARL9170_TX_SUPER_MISC_VIF_ID_S;
  105. if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
  106. return NULL;
  107. vif = rcu_dereference(ar->vif_priv[vif_id].vif);
  108. if (unlikely(!vif))
  109. return NULL;
  110. /*
  111. * Normally we should use wrappers like ieee80211_get_DA to get
  112. * the correct peer ieee80211_sta.
  113. *
  114. * But there is a problem with indirect traffic (broadcasts, or
  115. * data which is designated for other stations) in station mode.
  116. * The frame will be directed to the AP for distribution and not
  117. * to the actual destination.
  118. */
  119. return ieee80211_find_sta(vif, hdr->addr1);
  120. }
  121. static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
  122. {
  123. struct ieee80211_sta *sta;
  124. struct carl9170_sta_info *sta_info;
  125. rcu_read_lock();
  126. sta = __carl9170_get_tx_sta(ar, skb);
  127. if (unlikely(!sta))
  128. goto out_rcu;
  129. sta_info = (struct carl9170_sta_info *) sta->drv_priv;
  130. if (atomic_dec_return(&sta_info->pending_frames) == 0)
  131. ieee80211_sta_block_awake(ar->hw, sta, false);
  132. out_rcu:
  133. rcu_read_unlock();
  134. }
  135. static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
  136. {
  137. int queue;
  138. queue = skb_get_queue_mapping(skb);
  139. spin_lock_bh(&ar->tx_stats_lock);
  140. ar->tx_stats[queue].len--;
  141. if (!is_mem_full(ar)) {
  142. unsigned int i;
  143. for (i = 0; i < ar->hw->queues; i++) {
  144. if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
  145. continue;
  146. if (ieee80211_queue_stopped(ar->hw, i)) {
  147. unsigned long tmp;
  148. tmp = jiffies - ar->queue_stop_timeout[i];
  149. if (tmp > ar->max_queue_stop_timeout[i])
  150. ar->max_queue_stop_timeout[i] = tmp;
  151. }
  152. ieee80211_wake_queue(ar->hw, i);
  153. }
  154. }
  155. spin_unlock_bh(&ar->tx_stats_lock);
  156. if (atomic_dec_and_test(&ar->tx_total_queued))
  157. complete(&ar->tx_flush);
  158. }
  159. static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
  160. {
  161. struct _carl9170_tx_superframe *super = (void *) skb->data;
  162. unsigned int chunks;
  163. int cookie = -1;
  164. atomic_inc(&ar->mem_allocs);
  165. chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
  166. if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
  167. atomic_add(chunks, &ar->mem_free_blocks);
  168. return -ENOSPC;
  169. }
  170. spin_lock_bh(&ar->mem_lock);
  171. cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
  172. spin_unlock_bh(&ar->mem_lock);
  173. if (unlikely(cookie < 0)) {
  174. atomic_add(chunks, &ar->mem_free_blocks);
  175. return -ENOSPC;
  176. }
  177. super = (void *) skb->data;
  178. /*
  179. * Cookie #0 serves two special purposes:
  180. * 1. The firmware might use it generate BlockACK frames
  181. * in responds of an incoming BlockAckReqs.
  182. *
  183. * 2. Prevent double-free bugs.
  184. */
  185. super->s.cookie = (u8) cookie + 1;
  186. return 0;
  187. }
  188. static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
  189. {
  190. struct _carl9170_tx_superframe *super = (void *) skb->data;
  191. int cookie;
  192. /* make a local copy of the cookie */
  193. cookie = super->s.cookie;
  194. /* invalidate cookie */
  195. super->s.cookie = 0;
  196. /*
  197. * Do a out-of-bounds check on the cookie:
  198. *
  199. * * cookie "0" is reserved and won't be assigned to any
  200. * out-going frame. Internally however, it is used to
  201. * mark no longer/un-accounted frames and serves as a
  202. * cheap way of preventing frames from being freed
  203. * twice by _accident_. NB: There is a tiny race...
  204. *
  205. * * obviously, cookie number is limited by the amount
  206. * of available memory blocks, so the number can
  207. * never execeed the mem_blocks count.
  208. */
  209. if (unlikely(WARN_ON_ONCE(cookie == 0) ||
  210. WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
  211. return;
  212. atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
  213. &ar->mem_free_blocks);
  214. spin_lock_bh(&ar->mem_lock);
  215. bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
  216. spin_unlock_bh(&ar->mem_lock);
  217. }
  218. /* Called from any context */
  219. static void carl9170_tx_release(struct kref *ref)
  220. {
  221. struct ar9170 *ar;
  222. struct carl9170_tx_info *arinfo;
  223. struct ieee80211_tx_info *txinfo;
  224. struct sk_buff *skb;
  225. arinfo = container_of(ref, struct carl9170_tx_info, ref);
  226. txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
  227. rate_driver_data);
  228. skb = container_of((void *) txinfo, struct sk_buff, cb);
  229. ar = arinfo->ar;
  230. if (WARN_ON_ONCE(!ar))
  231. return;
  232. BUILD_BUG_ON(
  233. offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
  234. memset(&txinfo->status.ampdu_ack_len, 0,
  235. sizeof(struct ieee80211_tx_info) -
  236. offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
  237. if (atomic_read(&ar->tx_total_queued))
  238. ar->tx_schedule = true;
  239. if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
  240. if (!atomic_read(&ar->tx_ampdu_upload))
  241. ar->tx_ampdu_schedule = true;
  242. if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
  243. struct _carl9170_tx_superframe *super;
  244. super = (void *)skb->data;
  245. txinfo->status.ampdu_len = super->s.rix;
  246. txinfo->status.ampdu_ack_len = super->s.cnt;
  247. } else if (txinfo->flags & IEEE80211_TX_STAT_ACK) {
  248. /*
  249. * drop redundant tx_status reports:
  250. *
  251. * 1. ampdu_ack_len of the final tx_status does
  252. * include the feedback of this particular frame.
  253. *
  254. * 2. tx_status_irqsafe only queues up to 128
  255. * tx feedback reports and discards the rest.
  256. *
  257. * 3. minstrel_ht is picky, it only accepts
  258. * reports of frames with the TX_STATUS_AMPDU flag.
  259. */
  260. dev_kfree_skb_any(skb);
  261. return;
  262. } else {
  263. /*
  264. * Frame has failed, but we want to keep it in
  265. * case it was lost due to a power-state
  266. * transition.
  267. */
  268. }
  269. }
  270. skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
  271. ieee80211_tx_status_irqsafe(ar->hw, skb);
  272. }
  273. void carl9170_tx_get_skb(struct sk_buff *skb)
  274. {
  275. struct carl9170_tx_info *arinfo = (void *)
  276. (IEEE80211_SKB_CB(skb))->rate_driver_data;
  277. kref_get(&arinfo->ref);
  278. }
  279. int carl9170_tx_put_skb(struct sk_buff *skb)
  280. {
  281. struct carl9170_tx_info *arinfo = (void *)
  282. (IEEE80211_SKB_CB(skb))->rate_driver_data;
  283. return kref_put(&arinfo->ref, carl9170_tx_release);
  284. }
  285. /* Caller must hold the tid_info->lock & rcu_read_lock */
  286. static void carl9170_tx_shift_bm(struct ar9170 *ar,
  287. struct carl9170_sta_tid *tid_info, u16 seq)
  288. {
  289. u16 off;
  290. off = SEQ_DIFF(seq, tid_info->bsn);
  291. if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
  292. return;
  293. /*
  294. * Sanity check. For each MPDU we set the bit in bitmap and
  295. * clear it once we received the tx_status.
  296. * But if the bit is already cleared then we've been bitten
  297. * by a bug.
  298. */
  299. WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
  300. off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
  301. if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
  302. return;
  303. if (!bitmap_empty(tid_info->bitmap, off))
  304. off = find_first_bit(tid_info->bitmap, off);
  305. tid_info->bsn += off;
  306. tid_info->bsn &= 0x0fff;
  307. bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
  308. off, CARL9170_BAW_BITS);
  309. }
  310. static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
  311. struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
  312. {
  313. struct _carl9170_tx_superframe *super = (void *) skb->data;
  314. struct ieee80211_hdr *hdr = (void *) super->frame_data;
  315. struct ieee80211_sta *sta;
  316. struct carl9170_sta_info *sta_info;
  317. struct carl9170_sta_tid *tid_info;
  318. u8 tid;
  319. if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
  320. txinfo->flags & IEEE80211_TX_CTL_INJECTED ||
  321. (!(super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_AGGR))))
  322. return;
  323. rcu_read_lock();
  324. sta = __carl9170_get_tx_sta(ar, skb);
  325. if (unlikely(!sta))
  326. goto out_rcu;
  327. tid = get_tid_h(hdr);
  328. sta_info = (void *) sta->drv_priv;
  329. tid_info = rcu_dereference(sta_info->agg[tid]);
  330. if (!tid_info)
  331. goto out_rcu;
  332. spin_lock_bh(&tid_info->lock);
  333. if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
  334. carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
  335. if (sta_info->stats[tid].clear) {
  336. sta_info->stats[tid].clear = false;
  337. sta_info->stats[tid].req = false;
  338. sta_info->stats[tid].ampdu_len = 0;
  339. sta_info->stats[tid].ampdu_ack_len = 0;
  340. }
  341. sta_info->stats[tid].ampdu_len++;
  342. if (txinfo->status.rates[0].count == 1)
  343. sta_info->stats[tid].ampdu_ack_len++;
  344. if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
  345. sta_info->stats[tid].req = true;
  346. if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
  347. super->s.rix = sta_info->stats[tid].ampdu_len;
  348. super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
  349. txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
  350. if (sta_info->stats[tid].req)
  351. txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  352. sta_info->stats[tid].clear = true;
  353. }
  354. spin_unlock_bh(&tid_info->lock);
  355. out_rcu:
  356. rcu_read_unlock();
  357. }
  358. void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
  359. const bool success)
  360. {
  361. struct ieee80211_tx_info *txinfo;
  362. carl9170_tx_accounting_free(ar, skb);
  363. txinfo = IEEE80211_SKB_CB(skb);
  364. if (success)
  365. txinfo->flags |= IEEE80211_TX_STAT_ACK;
  366. else
  367. ar->tx_ack_failures++;
  368. if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
  369. carl9170_tx_status_process_ampdu(ar, skb, txinfo);
  370. carl9170_tx_ps_unblock(ar, skb);
  371. carl9170_tx_put_skb(skb);
  372. }
  373. /* This function may be called form any context */
  374. void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
  375. {
  376. struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
  377. atomic_dec(&ar->tx_total_pending);
  378. if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
  379. atomic_dec(&ar->tx_ampdu_upload);
  380. if (carl9170_tx_put_skb(skb))
  381. tasklet_hi_schedule(&ar->usb_tasklet);
  382. }
  383. static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
  384. struct sk_buff_head *queue)
  385. {
  386. struct sk_buff *skb;
  387. spin_lock_bh(&queue->lock);
  388. skb_queue_walk(queue, skb) {
  389. struct _carl9170_tx_superframe *txc = (void *) skb->data;
  390. if (txc->s.cookie != cookie)
  391. continue;
  392. __skb_unlink(skb, queue);
  393. spin_unlock_bh(&queue->lock);
  394. carl9170_release_dev_space(ar, skb);
  395. return skb;
  396. }
  397. spin_unlock_bh(&queue->lock);
  398. return NULL;
  399. }
  400. static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
  401. unsigned int tries, struct ieee80211_tx_info *txinfo)
  402. {
  403. unsigned int i;
  404. for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
  405. if (txinfo->status.rates[i].idx < 0)
  406. break;
  407. if (i == rix) {
  408. txinfo->status.rates[i].count = tries;
  409. i++;
  410. break;
  411. }
  412. }
  413. for (; i < IEEE80211_TX_MAX_RATES; i++) {
  414. txinfo->status.rates[i].idx = -1;
  415. txinfo->status.rates[i].count = 0;
  416. }
  417. }
  418. static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
  419. {
  420. int i;
  421. struct sk_buff *skb;
  422. struct ieee80211_tx_info *txinfo;
  423. struct carl9170_tx_info *arinfo;
  424. bool restart = false;
  425. for (i = 0; i < ar->hw->queues; i++) {
  426. spin_lock_bh(&ar->tx_status[i].lock);
  427. skb = skb_peek(&ar->tx_status[i]);
  428. if (!skb)
  429. goto next;
  430. txinfo = IEEE80211_SKB_CB(skb);
  431. arinfo = (void *) txinfo->rate_driver_data;
  432. if (time_is_before_jiffies(arinfo->timeout +
  433. msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
  434. restart = true;
  435. next:
  436. spin_unlock_bh(&ar->tx_status[i].lock);
  437. }
  438. if (restart) {
  439. /*
  440. * At least one queue has been stuck for long enough.
  441. * Give the device a kick and hope it gets back to
  442. * work.
  443. *
  444. * possible reasons may include:
  445. * - frames got lost/corrupted (bad connection to the device)
  446. * - stalled rx processing/usb controller hiccups
  447. * - firmware errors/bugs
  448. * - every bug you can think of.
  449. * - all bugs you can't...
  450. * - ...
  451. */
  452. carl9170_restart(ar, CARL9170_RR_STUCK_TX);
  453. }
  454. }
  455. static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
  456. {
  457. struct carl9170_sta_tid *iter;
  458. struct sk_buff *skb;
  459. struct ieee80211_tx_info *txinfo;
  460. struct carl9170_tx_info *arinfo;
  461. struct ieee80211_sta *sta;
  462. rcu_read_lock();
  463. list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
  464. if (iter->state < CARL9170_TID_STATE_IDLE)
  465. continue;
  466. spin_lock_bh(&iter->lock);
  467. skb = skb_peek(&iter->queue);
  468. if (!skb)
  469. goto unlock;
  470. txinfo = IEEE80211_SKB_CB(skb);
  471. arinfo = (void *)txinfo->rate_driver_data;
  472. if (time_is_after_jiffies(arinfo->timeout +
  473. msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
  474. goto unlock;
  475. sta = __carl9170_get_tx_sta(ar, skb);
  476. if (WARN_ON(!sta))
  477. goto unlock;
  478. ieee80211_stop_tx_ba_session(sta, iter->tid);
  479. unlock:
  480. spin_unlock_bh(&iter->lock);
  481. }
  482. rcu_read_unlock();
  483. }
  484. void carl9170_tx_janitor(struct work_struct *work)
  485. {
  486. struct ar9170 *ar = container_of(work, struct ar9170,
  487. tx_janitor.work);
  488. if (!IS_STARTED(ar))
  489. return;
  490. ar->tx_janitor_last_run = jiffies;
  491. carl9170_check_queue_stop_timeout(ar);
  492. carl9170_tx_ampdu_timeout(ar);
  493. if (!atomic_read(&ar->tx_total_queued))
  494. return;
  495. ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
  496. msecs_to_jiffies(CARL9170_TX_TIMEOUT));
  497. }
  498. static void __carl9170_tx_process_status(struct ar9170 *ar,
  499. const uint8_t cookie, const uint8_t info)
  500. {
  501. struct sk_buff *skb;
  502. struct ieee80211_tx_info *txinfo;
  503. unsigned int r, t, q;
  504. bool success = true;
  505. q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
  506. skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
  507. if (!skb) {
  508. /*
  509. * We have lost the race to another thread.
  510. */
  511. return ;
  512. }
  513. txinfo = IEEE80211_SKB_CB(skb);
  514. if (!(info & CARL9170_TX_STATUS_SUCCESS))
  515. success = false;
  516. r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
  517. t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
  518. carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
  519. carl9170_tx_status(ar, skb, success);
  520. }
  521. void carl9170_tx_process_status(struct ar9170 *ar,
  522. const struct carl9170_rsp *cmd)
  523. {
  524. unsigned int i;
  525. for (i = 0; i < cmd->hdr.ext; i++) {
  526. if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
  527. print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
  528. (void *) cmd, cmd->hdr.len + 4);
  529. break;
  530. }
  531. __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
  532. cmd->_tx_status[i].info);
  533. }
  534. }
  535. static __le32 carl9170_tx_physet(struct ar9170 *ar,
  536. struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
  537. {
  538. struct ieee80211_rate *rate = NULL;
  539. u32 power, chains;
  540. __le32 tmp;
  541. tmp = cpu_to_le32(0);
  542. if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  543. tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
  544. AR9170_TX_PHY_BW_S);
  545. /* this works because 40 MHz is 2 and dup is 3 */
  546. if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
  547. tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
  548. AR9170_TX_PHY_BW_S);
  549. if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
  550. tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
  551. if (txrate->flags & IEEE80211_TX_RC_MCS) {
  552. u32 r = txrate->idx;
  553. u8 *txpower;
  554. /* heavy clip control */
  555. tmp |= cpu_to_le32((r & 0x7) <<
  556. AR9170_TX_PHY_TX_HEAVY_CLIP_S);
  557. if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
  558. if (info->band == IEEE80211_BAND_5GHZ)
  559. txpower = ar->power_5G_ht40;
  560. else
  561. txpower = ar->power_2G_ht40;
  562. } else {
  563. if (info->band == IEEE80211_BAND_5GHZ)
  564. txpower = ar->power_5G_ht20;
  565. else
  566. txpower = ar->power_2G_ht20;
  567. }
  568. power = txpower[r & 7];
  569. /* +1 dBm for HT40 */
  570. if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  571. power += 2;
  572. r <<= AR9170_TX_PHY_MCS_S;
  573. BUG_ON(r & ~AR9170_TX_PHY_MCS);
  574. tmp |= cpu_to_le32(r & AR9170_TX_PHY_MCS);
  575. tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
  576. /*
  577. * green field preamble does not work.
  578. *
  579. * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
  580. * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
  581. */
  582. } else {
  583. u8 *txpower;
  584. u32 mod;
  585. u32 phyrate;
  586. u8 idx = txrate->idx;
  587. if (info->band != IEEE80211_BAND_2GHZ) {
  588. idx += 4;
  589. txpower = ar->power_5G_leg;
  590. mod = AR9170_TX_PHY_MOD_OFDM;
  591. } else {
  592. if (idx < 4) {
  593. txpower = ar->power_2G_cck;
  594. mod = AR9170_TX_PHY_MOD_CCK;
  595. } else {
  596. mod = AR9170_TX_PHY_MOD_OFDM;
  597. txpower = ar->power_2G_ofdm;
  598. }
  599. }
  600. rate = &__carl9170_ratetable[idx];
  601. phyrate = rate->hw_value & 0xF;
  602. power = txpower[(rate->hw_value & 0x30) >> 4];
  603. phyrate <<= AR9170_TX_PHY_MCS_S;
  604. tmp |= cpu_to_le32(mod);
  605. tmp |= cpu_to_le32(phyrate);
  606. /*
  607. * short preamble seems to be broken too.
  608. *
  609. * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  610. * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
  611. */
  612. }
  613. power <<= AR9170_TX_PHY_TX_PWR_S;
  614. power &= AR9170_TX_PHY_TX_PWR;
  615. tmp |= cpu_to_le32(power);
  616. /* set TX chains */
  617. if (ar->eeprom.tx_mask == 1) {
  618. chains = AR9170_TX_PHY_TXCHAIN_1;
  619. } else {
  620. chains = AR9170_TX_PHY_TXCHAIN_2;
  621. /* >= 36M legacy OFDM - use only one chain */
  622. if (rate && rate->bitrate >= 360 &&
  623. !(txrate->flags & IEEE80211_TX_RC_MCS))
  624. chains = AR9170_TX_PHY_TXCHAIN_1;
  625. }
  626. tmp |= cpu_to_le32(chains << AR9170_TX_PHY_TXCHAIN_S);
  627. return tmp;
  628. }
  629. static bool carl9170_tx_rts_check(struct ar9170 *ar,
  630. struct ieee80211_tx_rate *rate,
  631. bool ampdu, bool multi)
  632. {
  633. switch (ar->erp_mode) {
  634. case CARL9170_ERP_AUTO:
  635. if (ampdu)
  636. break;
  637. case CARL9170_ERP_MAC80211:
  638. if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
  639. break;
  640. case CARL9170_ERP_RTS:
  641. if (likely(!multi))
  642. return true;
  643. default:
  644. break;
  645. }
  646. return false;
  647. }
  648. static bool carl9170_tx_cts_check(struct ar9170 *ar,
  649. struct ieee80211_tx_rate *rate)
  650. {
  651. switch (ar->erp_mode) {
  652. case CARL9170_ERP_AUTO:
  653. case CARL9170_ERP_MAC80211:
  654. if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
  655. break;
  656. case CARL9170_ERP_CTS:
  657. return true;
  658. default:
  659. break;
  660. }
  661. return false;
  662. }
  663. static int carl9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb)
  664. {
  665. struct ieee80211_hdr *hdr;
  666. struct _carl9170_tx_superframe *txc;
  667. struct carl9170_vif_info *cvif;
  668. struct ieee80211_tx_info *info;
  669. struct ieee80211_tx_rate *txrate;
  670. struct ieee80211_sta *sta;
  671. struct carl9170_tx_info *arinfo;
  672. unsigned int hw_queue;
  673. int i;
  674. __le16 mac_tmp;
  675. u16 len;
  676. bool ampdu, no_ack;
  677. BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
  678. BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
  679. CARL9170_TX_SUPERDESC_LEN);
  680. BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
  681. AR9170_TX_HWDESC_LEN);
  682. BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
  683. BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
  684. ((CARL9170_TX_SUPER_MISC_VIF_ID >>
  685. CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
  686. hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
  687. hdr = (void *)skb->data;
  688. info = IEEE80211_SKB_CB(skb);
  689. len = skb->len;
  690. /*
  691. * Note: If the frame was sent through a monitor interface,
  692. * the ieee80211_vif pointer can be NULL.
  693. */
  694. if (likely(info->control.vif))
  695. cvif = (void *) info->control.vif->drv_priv;
  696. else
  697. cvif = NULL;
  698. sta = info->control.sta;
  699. txc = (void *)skb_push(skb, sizeof(*txc));
  700. memset(txc, 0, sizeof(*txc));
  701. SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
  702. if (likely(cvif))
  703. SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
  704. if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
  705. txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
  706. if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  707. txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
  708. if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
  709. txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
  710. mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
  711. AR9170_TX_MAC_BACKOFF);
  712. mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
  713. AR9170_TX_MAC_QOS);
  714. no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
  715. if (unlikely(no_ack))
  716. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
  717. if (info->control.hw_key) {
  718. len += info->control.hw_key->icv_len;
  719. switch (info->control.hw_key->cipher) {
  720. case WLAN_CIPHER_SUITE_WEP40:
  721. case WLAN_CIPHER_SUITE_WEP104:
  722. case WLAN_CIPHER_SUITE_TKIP:
  723. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
  724. break;
  725. case WLAN_CIPHER_SUITE_CCMP:
  726. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
  727. break;
  728. default:
  729. WARN_ON(1);
  730. goto err_out;
  731. }
  732. }
  733. ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
  734. if (ampdu) {
  735. unsigned int density, factor;
  736. if (unlikely(!sta || !cvif))
  737. goto err_out;
  738. factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
  739. density = sta->ht_cap.ampdu_density;
  740. if (density) {
  741. /*
  742. * Watch out!
  743. *
  744. * Otus uses slightly different density values than
  745. * those from the 802.11n spec.
  746. */
  747. density = max_t(unsigned int, density + 1, 7u);
  748. }
  749. SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
  750. txc->s.ampdu_settings, density);
  751. SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
  752. txc->s.ampdu_settings, factor);
  753. for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
  754. txrate = &info->control.rates[i];
  755. if (txrate->idx >= 0) {
  756. txc->s.ri[i] =
  757. CARL9170_TX_SUPER_RI_AMPDU;
  758. if (WARN_ON(!(txrate->flags &
  759. IEEE80211_TX_RC_MCS))) {
  760. /*
  761. * Not sure if it's even possible
  762. * to aggregate non-ht rates with
  763. * this HW.
  764. */
  765. goto err_out;
  766. }
  767. continue;
  768. }
  769. txrate->idx = 0;
  770. txrate->count = ar->hw->max_rate_tries;
  771. }
  772. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
  773. }
  774. /*
  775. * NOTE: For the first rate, the ERP & AMPDU flags are directly
  776. * taken from mac_control. For all fallback rate, the firmware
  777. * updates the mac_control flags from the rate info field.
  778. */
  779. for (i = 1; i < CARL9170_TX_MAX_RATES; i++) {
  780. txrate = &info->control.rates[i];
  781. if (txrate->idx < 0)
  782. break;
  783. SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
  784. txrate->count);
  785. if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
  786. txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
  787. CARL9170_TX_SUPER_RI_ERP_PROT_S);
  788. else if (carl9170_tx_cts_check(ar, txrate))
  789. txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
  790. CARL9170_TX_SUPER_RI_ERP_PROT_S);
  791. txc->s.rr[i - 1] = carl9170_tx_physet(ar, info, txrate);
  792. }
  793. txrate = &info->control.rates[0];
  794. SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[0], txrate->count);
  795. if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
  796. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
  797. else if (carl9170_tx_cts_check(ar, txrate))
  798. mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
  799. txc->s.len = cpu_to_le16(skb->len);
  800. txc->f.length = cpu_to_le16(len + FCS_LEN);
  801. txc->f.mac_control = mac_tmp;
  802. txc->f.phy_control = carl9170_tx_physet(ar, info, txrate);
  803. arinfo = (void *)info->rate_driver_data;
  804. arinfo->timeout = jiffies;
  805. arinfo->ar = ar;
  806. kref_init(&arinfo->ref);
  807. return 0;
  808. err_out:
  809. skb_pull(skb, sizeof(*txc));
  810. return -EINVAL;
  811. }
  812. static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
  813. {
  814. struct _carl9170_tx_superframe *super;
  815. super = (void *) skb->data;
  816. super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
  817. }
  818. static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
  819. {
  820. struct _carl9170_tx_superframe *super;
  821. int tmp;
  822. super = (void *) skb->data;
  823. tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
  824. CARL9170_TX_SUPER_AMPDU_DENSITY_S;
  825. /*
  826. * If you haven't noticed carl9170_tx_prepare has already filled
  827. * in all ampdu spacing & factor parameters.
  828. * Now it's the time to check whenever the settings have to be
  829. * updated by the firmware, or if everything is still the same.
  830. *
  831. * There's no sane way to handle different density values with
  832. * this hardware, so we may as well just do the compare in the
  833. * driver.
  834. */
  835. if (tmp != ar->current_density) {
  836. ar->current_density = tmp;
  837. super->s.ampdu_settings |=
  838. CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
  839. }
  840. tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
  841. CARL9170_TX_SUPER_AMPDU_FACTOR_S;
  842. if (tmp != ar->current_factor) {
  843. ar->current_factor = tmp;
  844. super->s.ampdu_settings |=
  845. CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
  846. }
  847. }
  848. static bool carl9170_tx_rate_check(struct ar9170 *ar, struct sk_buff *_dest,
  849. struct sk_buff *_src)
  850. {
  851. struct _carl9170_tx_superframe *dest, *src;
  852. dest = (void *) _dest->data;
  853. src = (void *) _src->data;
  854. /*
  855. * The mac80211 rate control algorithm expects that all MPDUs in
  856. * an AMPDU share the same tx vectors.
  857. * This is not really obvious right now, because the hardware
  858. * does the AMPDU setup according to its own rulebook.
  859. * Our nicely assembled, strictly monotonic increasing mpdu
  860. * chains will be broken up, mashed back together...
  861. */
  862. return (dest->f.phy_control == src->f.phy_control);
  863. }
  864. static void carl9170_tx_ampdu(struct ar9170 *ar)
  865. {
  866. struct sk_buff_head agg;
  867. struct carl9170_sta_tid *tid_info;
  868. struct sk_buff *skb, *first;
  869. unsigned int i = 0, done_ampdus = 0;
  870. u16 seq, queue, tmpssn;
  871. atomic_inc(&ar->tx_ampdu_scheduler);
  872. ar->tx_ampdu_schedule = false;
  873. if (atomic_read(&ar->tx_ampdu_upload))
  874. return;
  875. if (!ar->tx_ampdu_list_len)
  876. return;
  877. __skb_queue_head_init(&agg);
  878. rcu_read_lock();
  879. tid_info = rcu_dereference(ar->tx_ampdu_iter);
  880. if (WARN_ON_ONCE(!tid_info)) {
  881. rcu_read_unlock();
  882. return;
  883. }
  884. retry:
  885. list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
  886. i++;
  887. if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
  888. continue;
  889. queue = TID_TO_WME_AC(tid_info->tid);
  890. spin_lock_bh(&tid_info->lock);
  891. if (tid_info->state != CARL9170_TID_STATE_XMIT)
  892. goto processed;
  893. tid_info->counter++;
  894. first = skb_peek(&tid_info->queue);
  895. tmpssn = carl9170_get_seq(first);
  896. seq = tid_info->snx;
  897. if (unlikely(tmpssn != seq)) {
  898. tid_info->state = CARL9170_TID_STATE_IDLE;
  899. goto processed;
  900. }
  901. while ((skb = skb_peek(&tid_info->queue))) {
  902. /* strict 0, 1, ..., n - 1, n frame sequence order */
  903. if (unlikely(carl9170_get_seq(skb) != seq))
  904. break;
  905. /* don't upload more than AMPDU FACTOR allows. */
  906. if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
  907. (tid_info->max - 1)))
  908. break;
  909. if (!carl9170_tx_rate_check(ar, skb, first))
  910. break;
  911. atomic_inc(&ar->tx_ampdu_upload);
  912. tid_info->snx = seq = SEQ_NEXT(seq);
  913. __skb_unlink(skb, &tid_info->queue);
  914. __skb_queue_tail(&agg, skb);
  915. if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
  916. break;
  917. }
  918. if (skb_queue_empty(&tid_info->queue) ||
  919. carl9170_get_seq(skb_peek(&tid_info->queue)) !=
  920. tid_info->snx) {
  921. /*
  922. * stop TID, if A-MPDU frames are still missing,
  923. * or whenever the queue is empty.
  924. */
  925. tid_info->state = CARL9170_TID_STATE_IDLE;
  926. }
  927. done_ampdus++;
  928. processed:
  929. spin_unlock_bh(&tid_info->lock);
  930. if (skb_queue_empty(&agg))
  931. continue;
  932. /* apply ampdu spacing & factor settings */
  933. carl9170_set_ampdu_params(ar, skb_peek(&agg));
  934. /* set aggregation push bit */
  935. carl9170_set_immba(ar, skb_peek_tail(&agg));
  936. spin_lock_bh(&ar->tx_pending[queue].lock);
  937. skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
  938. spin_unlock_bh(&ar->tx_pending[queue].lock);
  939. ar->tx_schedule = true;
  940. }
  941. if ((done_ampdus++ == 0) && (i++ == 0))
  942. goto retry;
  943. rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
  944. rcu_read_unlock();
  945. }
  946. static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
  947. struct sk_buff_head *queue)
  948. {
  949. struct sk_buff *skb;
  950. struct ieee80211_tx_info *info;
  951. struct carl9170_tx_info *arinfo;
  952. BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
  953. spin_lock_bh(&queue->lock);
  954. skb = skb_peek(queue);
  955. if (unlikely(!skb))
  956. goto err_unlock;
  957. if (carl9170_alloc_dev_space(ar, skb))
  958. goto err_unlock;
  959. __skb_unlink(skb, queue);
  960. spin_unlock_bh(&queue->lock);
  961. info = IEEE80211_SKB_CB(skb);
  962. arinfo = (void *) info->rate_driver_data;
  963. arinfo->timeout = jiffies;
  964. return skb;
  965. err_unlock:
  966. spin_unlock_bh(&queue->lock);
  967. return NULL;
  968. }
  969. void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
  970. {
  971. struct _carl9170_tx_superframe *super;
  972. uint8_t q = 0;
  973. ar->tx_dropped++;
  974. super = (void *)skb->data;
  975. SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
  976. ar9170_qmap[carl9170_get_queue(ar, skb)]);
  977. __carl9170_tx_process_status(ar, super->s.cookie, q);
  978. }
  979. static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
  980. {
  981. struct ieee80211_sta *sta;
  982. struct carl9170_sta_info *sta_info;
  983. rcu_read_lock();
  984. sta = __carl9170_get_tx_sta(ar, skb);
  985. if (!sta)
  986. goto out_rcu;
  987. sta_info = (void *) sta->drv_priv;
  988. if (unlikely(sta_info->sleeping)) {
  989. struct ieee80211_tx_info *tx_info;
  990. rcu_read_unlock();
  991. tx_info = IEEE80211_SKB_CB(skb);
  992. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  993. atomic_dec(&ar->tx_ampdu_upload);
  994. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  995. carl9170_tx_status(ar, skb, false);
  996. return true;
  997. }
  998. out_rcu:
  999. rcu_read_unlock();
  1000. return false;
  1001. }
  1002. static void carl9170_tx(struct ar9170 *ar)
  1003. {
  1004. struct sk_buff *skb;
  1005. unsigned int i, q;
  1006. bool schedule_garbagecollector = false;
  1007. ar->tx_schedule = false;
  1008. if (unlikely(!IS_STARTED(ar)))
  1009. return;
  1010. carl9170_usb_handle_tx_err(ar);
  1011. for (i = 0; i < ar->hw->queues; i++) {
  1012. while (!skb_queue_empty(&ar->tx_pending[i])) {
  1013. skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
  1014. if (unlikely(!skb))
  1015. break;
  1016. if (unlikely(carl9170_tx_ps_drop(ar, skb)))
  1017. continue;
  1018. atomic_inc(&ar->tx_total_pending);
  1019. q = __carl9170_get_queue(ar, i);
  1020. /*
  1021. * NB: tx_status[i] vs. tx_status[q],
  1022. * TODO: Move into pick_skb or alloc_dev_space.
  1023. */
  1024. skb_queue_tail(&ar->tx_status[q], skb);
  1025. /*
  1026. * increase ref count to "2".
  1027. * Ref counting is the easiest way to solve the
  1028. * race between the urb's completion routine:
  1029. * carl9170_tx_callback
  1030. * and wlan tx status functions:
  1031. * carl9170_tx_status/janitor.
  1032. */
  1033. carl9170_tx_get_skb(skb);
  1034. carl9170_usb_tx(ar, skb);
  1035. schedule_garbagecollector = true;
  1036. }
  1037. }
  1038. if (!schedule_garbagecollector)
  1039. return;
  1040. ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
  1041. msecs_to_jiffies(CARL9170_TX_TIMEOUT));
  1042. }
  1043. static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
  1044. struct ieee80211_sta *sta, struct sk_buff *skb)
  1045. {
  1046. struct _carl9170_tx_superframe *super = (void *) skb->data;
  1047. struct carl9170_sta_info *sta_info;
  1048. struct carl9170_sta_tid *agg;
  1049. struct sk_buff *iter;
  1050. u16 tid, seq, qseq, off;
  1051. bool run = false;
  1052. tid = carl9170_get_tid(skb);
  1053. seq = carl9170_get_seq(skb);
  1054. sta_info = (void *) sta->drv_priv;
  1055. rcu_read_lock();
  1056. agg = rcu_dereference(sta_info->agg[tid]);
  1057. if (!agg)
  1058. goto err_unlock_rcu;
  1059. spin_lock_bh(&agg->lock);
  1060. if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
  1061. goto err_unlock;
  1062. /* check if sequence is within the BA window */
  1063. if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
  1064. goto err_unlock;
  1065. if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
  1066. goto err_unlock;
  1067. off = SEQ_DIFF(seq, agg->bsn);
  1068. if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
  1069. goto err_unlock;
  1070. if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
  1071. __skb_queue_tail(&agg->queue, skb);
  1072. agg->hsn = seq;
  1073. goto queued;
  1074. }
  1075. skb_queue_reverse_walk(&agg->queue, iter) {
  1076. qseq = carl9170_get_seq(iter);
  1077. if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
  1078. __skb_queue_after(&agg->queue, iter, skb);
  1079. goto queued;
  1080. }
  1081. }
  1082. __skb_queue_head(&agg->queue, skb);
  1083. queued:
  1084. if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
  1085. if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
  1086. agg->state = CARL9170_TID_STATE_XMIT;
  1087. run = true;
  1088. }
  1089. }
  1090. spin_unlock_bh(&agg->lock);
  1091. rcu_read_unlock();
  1092. return run;
  1093. err_unlock:
  1094. spin_unlock_bh(&agg->lock);
  1095. err_unlock_rcu:
  1096. rcu_read_unlock();
  1097. super->f.mac_control &= ~cpu_to_le16(AR9170_TX_MAC_AGGR);
  1098. carl9170_tx_status(ar, skb, false);
  1099. ar->tx_dropped++;
  1100. return false;
  1101. }
  1102. void carl9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
  1103. {
  1104. struct ar9170 *ar = hw->priv;
  1105. struct ieee80211_tx_info *info;
  1106. struct ieee80211_sta *sta;
  1107. bool run;
  1108. if (unlikely(!IS_STARTED(ar)))
  1109. goto err_free;
  1110. info = IEEE80211_SKB_CB(skb);
  1111. sta = info->control.sta;
  1112. if (unlikely(carl9170_tx_prepare(ar, skb)))
  1113. goto err_free;
  1114. carl9170_tx_accounting(ar, skb);
  1115. /*
  1116. * from now on, one has to use carl9170_tx_status to free
  1117. * all ressouces which are associated with the frame.
  1118. */
  1119. if (sta) {
  1120. struct carl9170_sta_info *stai = (void *) sta->drv_priv;
  1121. atomic_inc(&stai->pending_frames);
  1122. }
  1123. if (info->flags & IEEE80211_TX_CTL_AMPDU) {
  1124. run = carl9170_tx_ampdu_queue(ar, sta, skb);
  1125. if (run)
  1126. carl9170_tx_ampdu(ar);
  1127. } else {
  1128. unsigned int queue = skb_get_queue_mapping(skb);
  1129. skb_queue_tail(&ar->tx_pending[queue], skb);
  1130. }
  1131. carl9170_tx(ar);
  1132. return;
  1133. err_free:
  1134. ar->tx_dropped++;
  1135. dev_kfree_skb_any(skb);
  1136. }
  1137. void carl9170_tx_scheduler(struct ar9170 *ar)
  1138. {
  1139. if (ar->tx_ampdu_schedule)
  1140. carl9170_tx_ampdu(ar);
  1141. if (ar->tx_schedule)
  1142. carl9170_tx(ar);
  1143. }