hw.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. switch (ah->hw_version.devid) {
  209. case AR5416_AR9100_DEVID:
  210. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  211. break;
  212. case AR9300_DEVID_AR9330:
  213. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  214. if (ah->get_mac_revision) {
  215. ah->hw_version.macRev = ah->get_mac_revision();
  216. } else {
  217. val = REG_READ(ah, AR_SREV);
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. }
  220. return;
  221. case AR9300_DEVID_AR9340:
  222. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  223. val = REG_READ(ah, AR_SREV);
  224. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  225. return;
  226. }
  227. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  228. if (val == 0xFF) {
  229. val = REG_READ(ah, AR_SREV);
  230. ah->hw_version.macVersion =
  231. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  232. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  233. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  234. } else {
  235. if (!AR_SREV_9100(ah))
  236. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  237. ah->hw_version.macRev = val & AR_SREV_REVISION;
  238. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  239. ah->is_pciexpress = true;
  240. }
  241. }
  242. /************************************/
  243. /* HW Attach, Detach, Init Routines */
  244. /************************************/
  245. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  246. {
  247. if (!AR_SREV_5416(ah))
  248. return;
  249. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  250. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  251. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  252. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  253. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  254. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  255. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  256. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  257. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  258. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  259. }
  260. /* This should work for all families including legacy */
  261. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  262. {
  263. struct ath_common *common = ath9k_hw_common(ah);
  264. u32 regAddr[2] = { AR_STA_ID0 };
  265. u32 regHold[2];
  266. static const u32 patternData[4] = {
  267. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  268. };
  269. int i, j, loop_max;
  270. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  271. loop_max = 2;
  272. regAddr[1] = AR_PHY_BASE + (8 << 2);
  273. } else
  274. loop_max = 1;
  275. for (i = 0; i < loop_max; i++) {
  276. u32 addr = regAddr[i];
  277. u32 wrData, rdData;
  278. regHold[i] = REG_READ(ah, addr);
  279. for (j = 0; j < 0x100; j++) {
  280. wrData = (j << 16) | j;
  281. REG_WRITE(ah, addr, wrData);
  282. rdData = REG_READ(ah, addr);
  283. if (rdData != wrData) {
  284. ath_err(common,
  285. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  286. addr, wrData, rdData);
  287. return false;
  288. }
  289. }
  290. for (j = 0; j < 4; j++) {
  291. wrData = patternData[j];
  292. REG_WRITE(ah, addr, wrData);
  293. rdData = REG_READ(ah, addr);
  294. if (wrData != rdData) {
  295. ath_err(common,
  296. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  297. addr, wrData, rdData);
  298. return false;
  299. }
  300. }
  301. REG_WRITE(ah, regAddr[i], regHold[i]);
  302. }
  303. udelay(100);
  304. return true;
  305. }
  306. static void ath9k_hw_init_config(struct ath_hw *ah)
  307. {
  308. int i;
  309. ah->config.dma_beacon_response_time = 2;
  310. ah->config.sw_beacon_response_time = 10;
  311. ah->config.additional_swba_backoff = 0;
  312. ah->config.ack_6mb = 0x0;
  313. ah->config.cwm_ignore_extcca = 0;
  314. ah->config.pcie_powersave_enable = 0;
  315. ah->config.pcie_clock_req = 0;
  316. ah->config.pcie_waen = 0;
  317. ah->config.analog_shiftreg = 1;
  318. ah->config.enable_ani = true;
  319. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  320. ah->config.spurchans[i][0] = AR_NO_SPUR;
  321. ah->config.spurchans[i][1] = AR_NO_SPUR;
  322. }
  323. /* PAPRD needs some more work to be enabled */
  324. ah->config.paprd_disable = 1;
  325. ah->config.rx_intr_mitigation = true;
  326. ah->config.pcieSerDesWrite = true;
  327. /*
  328. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  329. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  330. * This means we use it for all AR5416 devices, and the few
  331. * minor PCI AR9280 devices out there.
  332. *
  333. * Serialization is required because these devices do not handle
  334. * well the case of two concurrent reads/writes due to the latency
  335. * involved. During one read/write another read/write can be issued
  336. * on another CPU while the previous read/write may still be working
  337. * on our hardware, if we hit this case the hardware poops in a loop.
  338. * We prevent this by serializing reads and writes.
  339. *
  340. * This issue is not present on PCI-Express devices or pre-AR5416
  341. * devices (legacy, 802.11abg).
  342. */
  343. if (num_possible_cpus() > 1)
  344. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  345. }
  346. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  347. {
  348. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  349. regulatory->country_code = CTRY_DEFAULT;
  350. regulatory->power_limit = MAX_RATE_POWER;
  351. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  352. ah->hw_version.magic = AR5416_MAGIC;
  353. ah->hw_version.subvendorid = 0;
  354. ah->atim_window = 0;
  355. ah->sta_id1_defaults =
  356. AR_STA_ID1_CRPT_MIC_ENABLE |
  357. AR_STA_ID1_MCAST_KSRCH;
  358. if (AR_SREV_9100(ah))
  359. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  360. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  361. ah->slottime = 20;
  362. ah->globaltxtimeout = (u32) -1;
  363. ah->power_mode = ATH9K_PM_UNDEFINED;
  364. }
  365. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  366. {
  367. struct ath_common *common = ath9k_hw_common(ah);
  368. u32 sum;
  369. int i;
  370. u16 eeval;
  371. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  372. sum = 0;
  373. for (i = 0; i < 3; i++) {
  374. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  375. sum += eeval;
  376. common->macaddr[2 * i] = eeval >> 8;
  377. common->macaddr[2 * i + 1] = eeval & 0xff;
  378. }
  379. if (sum == 0 || sum == 0xffff * 3)
  380. return -EADDRNOTAVAIL;
  381. return 0;
  382. }
  383. static int ath9k_hw_post_init(struct ath_hw *ah)
  384. {
  385. struct ath_common *common = ath9k_hw_common(ah);
  386. int ecode;
  387. if (common->bus_ops->ath_bus_type != ATH_USB) {
  388. if (!ath9k_hw_chip_test(ah))
  389. return -ENODEV;
  390. }
  391. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  392. ecode = ar9002_hw_rf_claim(ah);
  393. if (ecode != 0)
  394. return ecode;
  395. }
  396. ecode = ath9k_hw_eeprom_init(ah);
  397. if (ecode != 0)
  398. return ecode;
  399. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  400. "Eeprom VER: %d, REV: %d\n",
  401. ah->eep_ops->get_eeprom_ver(ah),
  402. ah->eep_ops->get_eeprom_rev(ah));
  403. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  404. if (ecode) {
  405. ath_err(ath9k_hw_common(ah),
  406. "Failed allocating banks for external radio\n");
  407. ath9k_hw_rf_free_ext_banks(ah);
  408. return ecode;
  409. }
  410. if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
  411. ath9k_hw_ani_setup(ah);
  412. ath9k_hw_ani_init(ah);
  413. }
  414. return 0;
  415. }
  416. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  417. {
  418. if (AR_SREV_9300_20_OR_LATER(ah))
  419. ar9003_hw_attach_ops(ah);
  420. else
  421. ar9002_hw_attach_ops(ah);
  422. }
  423. /* Called for all hardware families */
  424. static int __ath9k_hw_init(struct ath_hw *ah)
  425. {
  426. struct ath_common *common = ath9k_hw_common(ah);
  427. int r = 0;
  428. ath9k_hw_read_revisions(ah);
  429. /*
  430. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  431. * We need to do this to avoid RMW of this register. We cannot
  432. * read the reg when chip is asleep.
  433. */
  434. ah->WARegVal = REG_READ(ah, AR_WA);
  435. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  436. AR_WA_ASPM_TIMER_BASED_DISABLE);
  437. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  438. ath_err(common, "Couldn't reset chip\n");
  439. return -EIO;
  440. }
  441. ath9k_hw_init_defaults(ah);
  442. ath9k_hw_init_config(ah);
  443. ath9k_hw_attach_ops(ah);
  444. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  445. ath_err(common, "Couldn't wakeup chip\n");
  446. return -EIO;
  447. }
  448. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  449. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  450. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  451. !ah->is_pciexpress)) {
  452. ah->config.serialize_regmode =
  453. SER_REG_MODE_ON;
  454. } else {
  455. ah->config.serialize_regmode =
  456. SER_REG_MODE_OFF;
  457. }
  458. }
  459. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  460. ah->config.serialize_regmode);
  461. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  462. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  463. else
  464. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  465. switch (ah->hw_version.macVersion) {
  466. case AR_SREV_VERSION_5416_PCI:
  467. case AR_SREV_VERSION_5416_PCIE:
  468. case AR_SREV_VERSION_9160:
  469. case AR_SREV_VERSION_9100:
  470. case AR_SREV_VERSION_9280:
  471. case AR_SREV_VERSION_9285:
  472. case AR_SREV_VERSION_9287:
  473. case AR_SREV_VERSION_9271:
  474. case AR_SREV_VERSION_9300:
  475. case AR_SREV_VERSION_9330:
  476. case AR_SREV_VERSION_9485:
  477. case AR_SREV_VERSION_9340:
  478. break;
  479. default:
  480. ath_err(common,
  481. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  482. ah->hw_version.macVersion, ah->hw_version.macRev);
  483. return -EOPNOTSUPP;
  484. }
  485. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  486. AR_SREV_9330(ah))
  487. ah->is_pciexpress = false;
  488. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  489. ath9k_hw_init_cal_settings(ah);
  490. ah->ani_function = ATH9K_ANI_ALL;
  491. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  492. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  493. if (!AR_SREV_9300_20_OR_LATER(ah))
  494. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  495. ath9k_hw_init_mode_regs(ah);
  496. if (ah->is_pciexpress)
  497. ath9k_hw_configpcipowersave(ah, 0, 0);
  498. else
  499. ath9k_hw_disablepcie(ah);
  500. if (!AR_SREV_9300_20_OR_LATER(ah))
  501. ar9002_hw_cck_chan14_spread(ah);
  502. r = ath9k_hw_post_init(ah);
  503. if (r)
  504. return r;
  505. ath9k_hw_init_mode_gain_regs(ah);
  506. r = ath9k_hw_fill_cap_info(ah);
  507. if (r)
  508. return r;
  509. r = ath9k_hw_init_macaddr(ah);
  510. if (r) {
  511. ath_err(common, "Failed to initialize MAC address\n");
  512. return r;
  513. }
  514. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  515. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  516. else
  517. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  518. if (AR_SREV_9330(ah))
  519. ah->bb_watchdog_timeout_ms = 85;
  520. else
  521. ah->bb_watchdog_timeout_ms = 25;
  522. common->state = ATH_HW_INITIALIZED;
  523. return 0;
  524. }
  525. int ath9k_hw_init(struct ath_hw *ah)
  526. {
  527. int ret;
  528. struct ath_common *common = ath9k_hw_common(ah);
  529. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  530. switch (ah->hw_version.devid) {
  531. case AR5416_DEVID_PCI:
  532. case AR5416_DEVID_PCIE:
  533. case AR5416_AR9100_DEVID:
  534. case AR9160_DEVID_PCI:
  535. case AR9280_DEVID_PCI:
  536. case AR9280_DEVID_PCIE:
  537. case AR9285_DEVID_PCIE:
  538. case AR9287_DEVID_PCI:
  539. case AR9287_DEVID_PCIE:
  540. case AR2427_DEVID_PCIE:
  541. case AR9300_DEVID_PCIE:
  542. case AR9300_DEVID_AR9485_PCIE:
  543. case AR9300_DEVID_AR9330:
  544. case AR9300_DEVID_AR9340:
  545. break;
  546. default:
  547. if (common->bus_ops->ath_bus_type == ATH_USB)
  548. break;
  549. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  550. ah->hw_version.devid);
  551. return -EOPNOTSUPP;
  552. }
  553. ret = __ath9k_hw_init(ah);
  554. if (ret) {
  555. ath_err(common,
  556. "Unable to initialize hardware; initialization status: %d\n",
  557. ret);
  558. return ret;
  559. }
  560. return 0;
  561. }
  562. EXPORT_SYMBOL(ath9k_hw_init);
  563. static void ath9k_hw_init_qos(struct ath_hw *ah)
  564. {
  565. ENABLE_REGWRITE_BUFFER(ah);
  566. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  567. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  568. REG_WRITE(ah, AR_QOS_NO_ACK,
  569. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  570. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  571. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  572. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  573. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  574. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  575. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  576. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  577. REGWRITE_BUFFER_FLUSH(ah);
  578. }
  579. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  580. {
  581. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  582. udelay(100);
  583. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  584. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  585. udelay(100);
  586. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  587. }
  588. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  589. static void ath9k_hw_init_pll(struct ath_hw *ah,
  590. struct ath9k_channel *chan)
  591. {
  592. u32 pll;
  593. if (AR_SREV_9485(ah)) {
  594. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  595. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  596. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  597. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  598. AR_CH0_DPLL2_KD, 0x40);
  599. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  600. AR_CH0_DPLL2_KI, 0x4);
  601. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  602. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  603. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  604. AR_CH0_BB_DPLL1_NINI, 0x58);
  605. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  606. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  607. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  608. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  609. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  610. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  611. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  612. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  613. /* program BB PLL phase_shift to 0x6 */
  614. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  615. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  616. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  617. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  618. udelay(1000);
  619. } else if (AR_SREV_9330(ah)) {
  620. u32 ddr_dpll2, pll_control2, kd;
  621. if (ah->is_clk_25mhz) {
  622. ddr_dpll2 = 0x18e82f01;
  623. pll_control2 = 0xe04a3d;
  624. kd = 0x1d;
  625. } else {
  626. ddr_dpll2 = 0x19e82f01;
  627. pll_control2 = 0x886666;
  628. kd = 0x3d;
  629. }
  630. /* program DDR PLL ki and kd value */
  631. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  632. /* program DDR PLL phase_shift */
  633. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  634. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  635. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  636. udelay(1000);
  637. /* program refdiv, nint, frac to RTC register */
  638. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  639. /* program BB PLL kd and ki value */
  640. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  641. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  642. /* program BB PLL phase_shift */
  643. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  644. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  645. } else if (AR_SREV_9340(ah)) {
  646. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  647. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  648. udelay(1000);
  649. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  650. udelay(100);
  651. if (ah->is_clk_25mhz) {
  652. pll2_divint = 0x54;
  653. pll2_divfrac = 0x1eb85;
  654. refdiv = 3;
  655. } else {
  656. pll2_divint = 88;
  657. pll2_divfrac = 0;
  658. refdiv = 5;
  659. }
  660. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  661. regval |= (0x1 << 16);
  662. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  663. udelay(100);
  664. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  665. (pll2_divint << 18) | pll2_divfrac);
  666. udelay(100);
  667. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  668. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  669. (0x4 << 26) | (0x18 << 19);
  670. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  671. REG_WRITE(ah, AR_PHY_PLL_MODE,
  672. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  673. udelay(1000);
  674. }
  675. pll = ath9k_hw_compute_pll_control(ah, chan);
  676. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  677. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  678. udelay(1000);
  679. /* Switch the core clock for ar9271 to 117Mhz */
  680. if (AR_SREV_9271(ah)) {
  681. udelay(500);
  682. REG_WRITE(ah, 0x50040, 0x304);
  683. }
  684. udelay(RTC_PLL_SETTLE_DELAY);
  685. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  686. if (AR_SREV_9340(ah)) {
  687. if (ah->is_clk_25mhz) {
  688. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  689. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  690. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  691. } else {
  692. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  693. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  694. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  695. }
  696. udelay(100);
  697. }
  698. }
  699. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  700. enum nl80211_iftype opmode)
  701. {
  702. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  703. u32 imr_reg = AR_IMR_TXERR |
  704. AR_IMR_TXURN |
  705. AR_IMR_RXERR |
  706. AR_IMR_RXORN |
  707. AR_IMR_BCNMISC;
  708. if (AR_SREV_9340(ah))
  709. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  710. if (AR_SREV_9300_20_OR_LATER(ah)) {
  711. imr_reg |= AR_IMR_RXOK_HP;
  712. if (ah->config.rx_intr_mitigation)
  713. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  714. else
  715. imr_reg |= AR_IMR_RXOK_LP;
  716. } else {
  717. if (ah->config.rx_intr_mitigation)
  718. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  719. else
  720. imr_reg |= AR_IMR_RXOK;
  721. }
  722. if (ah->config.tx_intr_mitigation)
  723. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  724. else
  725. imr_reg |= AR_IMR_TXOK;
  726. if (opmode == NL80211_IFTYPE_AP)
  727. imr_reg |= AR_IMR_MIB;
  728. ENABLE_REGWRITE_BUFFER(ah);
  729. REG_WRITE(ah, AR_IMR, imr_reg);
  730. ah->imrs2_reg |= AR_IMR_S2_GTT;
  731. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  732. if (!AR_SREV_9100(ah)) {
  733. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  734. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  735. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  736. }
  737. REGWRITE_BUFFER_FLUSH(ah);
  738. if (AR_SREV_9300_20_OR_LATER(ah)) {
  739. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  740. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  741. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  742. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  743. }
  744. }
  745. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  746. {
  747. u32 val = ath9k_hw_mac_to_clks(ah, us);
  748. val = min(val, (u32) 0xFFFF);
  749. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  750. }
  751. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  752. {
  753. u32 val = ath9k_hw_mac_to_clks(ah, us);
  754. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  755. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  756. }
  757. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  758. {
  759. u32 val = ath9k_hw_mac_to_clks(ah, us);
  760. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  761. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  762. }
  763. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  764. {
  765. if (tu > 0xFFFF) {
  766. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  767. "bad global tx timeout %u\n", tu);
  768. ah->globaltxtimeout = (u32) -1;
  769. return false;
  770. } else {
  771. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  772. ah->globaltxtimeout = tu;
  773. return true;
  774. }
  775. }
  776. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  777. {
  778. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  779. int acktimeout;
  780. int slottime;
  781. int sifstime;
  782. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  783. ah->misc_mode);
  784. if (ah->misc_mode != 0)
  785. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  786. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  787. sifstime = 16;
  788. else
  789. sifstime = 10;
  790. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  791. slottime = ah->slottime + 3 * ah->coverage_class;
  792. acktimeout = slottime + sifstime;
  793. /*
  794. * Workaround for early ACK timeouts, add an offset to match the
  795. * initval's 64us ack timeout value.
  796. * This was initially only meant to work around an issue with delayed
  797. * BA frames in some implementations, but it has been found to fix ACK
  798. * timeout issues in other cases as well.
  799. */
  800. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  801. acktimeout += 64 - sifstime - ah->slottime;
  802. ath9k_hw_setslottime(ah, ah->slottime);
  803. ath9k_hw_set_ack_timeout(ah, acktimeout);
  804. ath9k_hw_set_cts_timeout(ah, acktimeout);
  805. if (ah->globaltxtimeout != (u32) -1)
  806. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  807. }
  808. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  809. void ath9k_hw_deinit(struct ath_hw *ah)
  810. {
  811. struct ath_common *common = ath9k_hw_common(ah);
  812. if (common->state < ATH_HW_INITIALIZED)
  813. goto free_hw;
  814. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  815. free_hw:
  816. ath9k_hw_rf_free_ext_banks(ah);
  817. }
  818. EXPORT_SYMBOL(ath9k_hw_deinit);
  819. /*******/
  820. /* INI */
  821. /*******/
  822. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  823. {
  824. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  825. if (IS_CHAN_B(chan))
  826. ctl |= CTL_11B;
  827. else if (IS_CHAN_G(chan))
  828. ctl |= CTL_11G;
  829. else
  830. ctl |= CTL_11A;
  831. return ctl;
  832. }
  833. /****************************************/
  834. /* Reset and Channel Switching Routines */
  835. /****************************************/
  836. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  837. {
  838. struct ath_common *common = ath9k_hw_common(ah);
  839. ENABLE_REGWRITE_BUFFER(ah);
  840. /*
  841. * set AHB_MODE not to do cacheline prefetches
  842. */
  843. if (!AR_SREV_9300_20_OR_LATER(ah))
  844. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  845. /*
  846. * let mac dma reads be in 128 byte chunks
  847. */
  848. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  849. REGWRITE_BUFFER_FLUSH(ah);
  850. /*
  851. * Restore TX Trigger Level to its pre-reset value.
  852. * The initial value depends on whether aggregation is enabled, and is
  853. * adjusted whenever underruns are detected.
  854. */
  855. if (!AR_SREV_9300_20_OR_LATER(ah))
  856. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  857. ENABLE_REGWRITE_BUFFER(ah);
  858. /*
  859. * let mac dma writes be in 128 byte chunks
  860. */
  861. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  862. /*
  863. * Setup receive FIFO threshold to hold off TX activities
  864. */
  865. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  866. if (AR_SREV_9300_20_OR_LATER(ah)) {
  867. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  868. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  869. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  870. ah->caps.rx_status_len);
  871. }
  872. /*
  873. * reduce the number of usable entries in PCU TXBUF to avoid
  874. * wrap around issues.
  875. */
  876. if (AR_SREV_9285(ah)) {
  877. /* For AR9285 the number of Fifos are reduced to half.
  878. * So set the usable tx buf size also to half to
  879. * avoid data/delimiter underruns
  880. */
  881. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  882. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  883. } else if (!AR_SREV_9271(ah)) {
  884. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  885. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  886. }
  887. REGWRITE_BUFFER_FLUSH(ah);
  888. if (AR_SREV_9300_20_OR_LATER(ah))
  889. ath9k_hw_reset_txstatus_ring(ah);
  890. }
  891. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  892. {
  893. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  894. u32 set = AR_STA_ID1_KSRCH_MODE;
  895. switch (opmode) {
  896. case NL80211_IFTYPE_ADHOC:
  897. case NL80211_IFTYPE_MESH_POINT:
  898. set |= AR_STA_ID1_ADHOC;
  899. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  900. break;
  901. case NL80211_IFTYPE_AP:
  902. set |= AR_STA_ID1_STA_AP;
  903. /* fall through */
  904. case NL80211_IFTYPE_STATION:
  905. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  906. break;
  907. default:
  908. if (!ah->is_monitoring)
  909. set = 0;
  910. break;
  911. }
  912. REG_RMW(ah, AR_STA_ID1, set, mask);
  913. }
  914. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  915. u32 *coef_mantissa, u32 *coef_exponent)
  916. {
  917. u32 coef_exp, coef_man;
  918. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  919. if ((coef_scaled >> coef_exp) & 0x1)
  920. break;
  921. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  922. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  923. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  924. *coef_exponent = coef_exp - 16;
  925. }
  926. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  927. {
  928. u32 rst_flags;
  929. u32 tmpReg;
  930. if (AR_SREV_9100(ah)) {
  931. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  932. AR_RTC_DERIVED_CLK_PERIOD, 1);
  933. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  934. }
  935. ENABLE_REGWRITE_BUFFER(ah);
  936. if (AR_SREV_9300_20_OR_LATER(ah)) {
  937. REG_WRITE(ah, AR_WA, ah->WARegVal);
  938. udelay(10);
  939. }
  940. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  941. AR_RTC_FORCE_WAKE_ON_INT);
  942. if (AR_SREV_9100(ah)) {
  943. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  944. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  945. } else {
  946. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  947. if (tmpReg &
  948. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  949. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  950. u32 val;
  951. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  952. val = AR_RC_HOSTIF;
  953. if (!AR_SREV_9300_20_OR_LATER(ah))
  954. val |= AR_RC_AHB;
  955. REG_WRITE(ah, AR_RC, val);
  956. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  957. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  958. rst_flags = AR_RTC_RC_MAC_WARM;
  959. if (type == ATH9K_RESET_COLD)
  960. rst_flags |= AR_RTC_RC_MAC_COLD;
  961. }
  962. if (AR_SREV_9330(ah)) {
  963. int npend = 0;
  964. int i;
  965. /* AR9330 WAR:
  966. * call external reset function to reset WMAC if:
  967. * - doing a cold reset
  968. * - we have pending frames in the TX queues
  969. */
  970. for (i = 0; i < AR_NUM_QCU; i++) {
  971. npend = ath9k_hw_numtxpending(ah, i);
  972. if (npend)
  973. break;
  974. }
  975. if (ah->external_reset &&
  976. (npend || type == ATH9K_RESET_COLD)) {
  977. int reset_err = 0;
  978. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  979. "reset MAC via external reset\n");
  980. reset_err = ah->external_reset();
  981. if (reset_err) {
  982. ath_err(ath9k_hw_common(ah),
  983. "External reset failed, err=%d\n",
  984. reset_err);
  985. return false;
  986. }
  987. REG_WRITE(ah, AR_RTC_RESET, 1);
  988. }
  989. }
  990. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  991. REGWRITE_BUFFER_FLUSH(ah);
  992. udelay(50);
  993. REG_WRITE(ah, AR_RTC_RC, 0);
  994. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  995. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  996. "RTC stuck in MAC reset\n");
  997. return false;
  998. }
  999. if (!AR_SREV_9100(ah))
  1000. REG_WRITE(ah, AR_RC, 0);
  1001. if (AR_SREV_9100(ah))
  1002. udelay(50);
  1003. return true;
  1004. }
  1005. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1006. {
  1007. ENABLE_REGWRITE_BUFFER(ah);
  1008. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1009. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1010. udelay(10);
  1011. }
  1012. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1013. AR_RTC_FORCE_WAKE_ON_INT);
  1014. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1015. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1016. REG_WRITE(ah, AR_RTC_RESET, 0);
  1017. REGWRITE_BUFFER_FLUSH(ah);
  1018. if (!AR_SREV_9300_20_OR_LATER(ah))
  1019. udelay(2);
  1020. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1021. REG_WRITE(ah, AR_RC, 0);
  1022. REG_WRITE(ah, AR_RTC_RESET, 1);
  1023. if (!ath9k_hw_wait(ah,
  1024. AR_RTC_STATUS,
  1025. AR_RTC_STATUS_M,
  1026. AR_RTC_STATUS_ON,
  1027. AH_WAIT_TIMEOUT)) {
  1028. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1029. "RTC not waking up\n");
  1030. return false;
  1031. }
  1032. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1033. }
  1034. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1035. {
  1036. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1037. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1038. udelay(10);
  1039. }
  1040. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1041. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1042. switch (type) {
  1043. case ATH9K_RESET_POWER_ON:
  1044. return ath9k_hw_set_reset_power_on(ah);
  1045. case ATH9K_RESET_WARM:
  1046. case ATH9K_RESET_COLD:
  1047. return ath9k_hw_set_reset(ah, type);
  1048. default:
  1049. return false;
  1050. }
  1051. }
  1052. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1053. struct ath9k_channel *chan)
  1054. {
  1055. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  1056. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1057. return false;
  1058. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1059. return false;
  1060. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1061. return false;
  1062. ah->chip_fullsleep = false;
  1063. ath9k_hw_init_pll(ah, chan);
  1064. ath9k_hw_set_rfmode(ah, chan);
  1065. return true;
  1066. }
  1067. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1068. struct ath9k_channel *chan)
  1069. {
  1070. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1071. struct ath_common *common = ath9k_hw_common(ah);
  1072. struct ieee80211_channel *channel = chan->chan;
  1073. u32 qnum;
  1074. int r;
  1075. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1076. if (ath9k_hw_numtxpending(ah, qnum)) {
  1077. ath_dbg(common, ATH_DBG_QUEUE,
  1078. "Transmit frames pending on queue %d\n", qnum);
  1079. return false;
  1080. }
  1081. }
  1082. if (!ath9k_hw_rfbus_req(ah)) {
  1083. ath_err(common, "Could not kill baseband RX\n");
  1084. return false;
  1085. }
  1086. ath9k_hw_set_channel_regs(ah, chan);
  1087. r = ath9k_hw_rf_set_freq(ah, chan);
  1088. if (r) {
  1089. ath_err(common, "Failed to set channel\n");
  1090. return false;
  1091. }
  1092. ath9k_hw_set_clockrate(ah);
  1093. ah->eep_ops->set_txpower(ah, chan,
  1094. ath9k_regd_get_ctl(regulatory, chan),
  1095. channel->max_antenna_gain * 2,
  1096. channel->max_power * 2,
  1097. min((u32) MAX_RATE_POWER,
  1098. (u32) regulatory->power_limit), false);
  1099. ath9k_hw_rfbus_done(ah);
  1100. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1101. ath9k_hw_set_delta_slope(ah, chan);
  1102. ath9k_hw_spur_mitigate_freq(ah, chan);
  1103. return true;
  1104. }
  1105. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1106. {
  1107. u32 gpio_mask = ah->gpio_mask;
  1108. int i;
  1109. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1110. if (!(gpio_mask & 1))
  1111. continue;
  1112. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1113. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1114. }
  1115. }
  1116. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1117. {
  1118. int count = 50;
  1119. u32 reg;
  1120. if (AR_SREV_9285_12_OR_LATER(ah))
  1121. return true;
  1122. do {
  1123. reg = REG_READ(ah, AR_OBS_BUS_1);
  1124. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1125. continue;
  1126. switch (reg & 0x7E000B00) {
  1127. case 0x1E000000:
  1128. case 0x52000B00:
  1129. case 0x18000B00:
  1130. continue;
  1131. default:
  1132. return true;
  1133. }
  1134. } while (count-- > 0);
  1135. return false;
  1136. }
  1137. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1138. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1139. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1140. {
  1141. struct ath_common *common = ath9k_hw_common(ah);
  1142. u32 saveLedState;
  1143. struct ath9k_channel *curchan = ah->curchan;
  1144. u32 saveDefAntenna;
  1145. u32 macStaId1;
  1146. u64 tsf = 0;
  1147. int i, r;
  1148. ah->txchainmask = common->tx_chainmask;
  1149. ah->rxchainmask = common->rx_chainmask;
  1150. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1151. return -EIO;
  1152. if (curchan && !ah->chip_fullsleep)
  1153. ath9k_hw_getnf(ah, curchan);
  1154. ah->caldata = caldata;
  1155. if (caldata &&
  1156. (chan->channel != caldata->channel ||
  1157. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1158. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1159. /* Operating channel changed, reset channel calibration data */
  1160. memset(caldata, 0, sizeof(*caldata));
  1161. ath9k_init_nfcal_hist_buffer(ah, chan);
  1162. }
  1163. if (bChannelChange &&
  1164. (ah->chip_fullsleep != true) &&
  1165. (ah->curchan != NULL) &&
  1166. (chan->channel != ah->curchan->channel) &&
  1167. ((chan->channelFlags & CHANNEL_ALL) ==
  1168. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1169. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1170. if (ath9k_hw_channel_change(ah, chan)) {
  1171. ath9k_hw_loadnf(ah, ah->curchan);
  1172. ath9k_hw_start_nfcal(ah, true);
  1173. if (AR_SREV_9271(ah))
  1174. ar9002_hw_load_ani_reg(ah, chan);
  1175. return 0;
  1176. }
  1177. }
  1178. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1179. if (saveDefAntenna == 0)
  1180. saveDefAntenna = 1;
  1181. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1182. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1183. if (AR_SREV_9100(ah) ||
  1184. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1185. tsf = ath9k_hw_gettsf64(ah);
  1186. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1187. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1188. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1189. ath9k_hw_mark_phy_inactive(ah);
  1190. ah->paprd_table_write_done = false;
  1191. /* Only required on the first reset */
  1192. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1193. REG_WRITE(ah,
  1194. AR9271_RESET_POWER_DOWN_CONTROL,
  1195. AR9271_RADIO_RF_RST);
  1196. udelay(50);
  1197. }
  1198. if (!ath9k_hw_chip_reset(ah, chan)) {
  1199. ath_err(common, "Chip reset failed\n");
  1200. return -EINVAL;
  1201. }
  1202. /* Only required on the first reset */
  1203. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1204. ah->htc_reset_init = false;
  1205. REG_WRITE(ah,
  1206. AR9271_RESET_POWER_DOWN_CONTROL,
  1207. AR9271_GATE_MAC_CTL);
  1208. udelay(50);
  1209. }
  1210. /* Restore TSF */
  1211. if (tsf)
  1212. ath9k_hw_settsf64(ah, tsf);
  1213. if (AR_SREV_9280_20_OR_LATER(ah))
  1214. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1215. if (!AR_SREV_9300_20_OR_LATER(ah))
  1216. ar9002_hw_enable_async_fifo(ah);
  1217. r = ath9k_hw_process_ini(ah, chan);
  1218. if (r)
  1219. return r;
  1220. /*
  1221. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1222. * right after the chip reset. When that happens, write a new
  1223. * value after the initvals have been applied, with an offset
  1224. * based on measured time difference
  1225. */
  1226. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1227. tsf += 1500;
  1228. ath9k_hw_settsf64(ah, tsf);
  1229. }
  1230. /* Setup MFP options for CCMP */
  1231. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1232. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1233. * frames when constructing CCMP AAD. */
  1234. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1235. 0xc7ff);
  1236. ah->sw_mgmt_crypto = false;
  1237. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1238. /* Disable hardware crypto for management frames */
  1239. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1240. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1241. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1242. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1243. ah->sw_mgmt_crypto = true;
  1244. } else
  1245. ah->sw_mgmt_crypto = true;
  1246. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1247. ath9k_hw_set_delta_slope(ah, chan);
  1248. ath9k_hw_spur_mitigate_freq(ah, chan);
  1249. ah->eep_ops->set_board_values(ah, chan);
  1250. ENABLE_REGWRITE_BUFFER(ah);
  1251. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1252. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1253. | macStaId1
  1254. | AR_STA_ID1_RTS_USE_DEF
  1255. | (ah->config.
  1256. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1257. | ah->sta_id1_defaults);
  1258. ath_hw_setbssidmask(common);
  1259. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1260. ath9k_hw_write_associd(ah);
  1261. REG_WRITE(ah, AR_ISR, ~0);
  1262. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1263. REGWRITE_BUFFER_FLUSH(ah);
  1264. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1265. r = ath9k_hw_rf_set_freq(ah, chan);
  1266. if (r)
  1267. return r;
  1268. ath9k_hw_set_clockrate(ah);
  1269. ENABLE_REGWRITE_BUFFER(ah);
  1270. for (i = 0; i < AR_NUM_DCU; i++)
  1271. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1272. REGWRITE_BUFFER_FLUSH(ah);
  1273. ah->intr_txqs = 0;
  1274. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1275. ath9k_hw_resettxqueue(ah, i);
  1276. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1277. ath9k_hw_ani_cache_ini_regs(ah);
  1278. ath9k_hw_init_qos(ah);
  1279. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1280. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1281. ath9k_hw_init_global_settings(ah);
  1282. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1283. ar9002_hw_update_async_fifo(ah);
  1284. ar9002_hw_enable_wep_aggregation(ah);
  1285. }
  1286. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1287. ath9k_hw_set_dma(ah);
  1288. REG_WRITE(ah, AR_OBS, 8);
  1289. if (ah->config.rx_intr_mitigation) {
  1290. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1291. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1292. }
  1293. if (ah->config.tx_intr_mitigation) {
  1294. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1295. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1296. }
  1297. ath9k_hw_init_bb(ah, chan);
  1298. if (!ath9k_hw_init_cal(ah, chan))
  1299. return -EIO;
  1300. ENABLE_REGWRITE_BUFFER(ah);
  1301. ath9k_hw_restore_chainmask(ah);
  1302. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1303. REGWRITE_BUFFER_FLUSH(ah);
  1304. /*
  1305. * For big endian systems turn on swapping for descriptors
  1306. */
  1307. if (AR_SREV_9100(ah)) {
  1308. u32 mask;
  1309. mask = REG_READ(ah, AR_CFG);
  1310. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1311. ath_dbg(common, ATH_DBG_RESET,
  1312. "CFG Byte Swap Set 0x%x\n", mask);
  1313. } else {
  1314. mask =
  1315. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1316. REG_WRITE(ah, AR_CFG, mask);
  1317. ath_dbg(common, ATH_DBG_RESET,
  1318. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1319. }
  1320. } else {
  1321. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1322. /* Configure AR9271 target WLAN */
  1323. if (AR_SREV_9271(ah))
  1324. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1325. else
  1326. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1327. }
  1328. #ifdef __BIG_ENDIAN
  1329. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1330. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1331. else
  1332. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1333. #endif
  1334. }
  1335. if (ah->btcoex_hw.enabled)
  1336. ath9k_hw_btcoex_enable(ah);
  1337. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1338. ar9003_hw_bb_watchdog_config(ah);
  1339. ar9003_hw_disable_phy_restart(ah);
  1340. }
  1341. ath9k_hw_apply_gpio_override(ah);
  1342. return 0;
  1343. }
  1344. EXPORT_SYMBOL(ath9k_hw_reset);
  1345. /******************************/
  1346. /* Power Management (Chipset) */
  1347. /******************************/
  1348. /*
  1349. * Notify Power Mgt is disabled in self-generated frames.
  1350. * If requested, force chip to sleep.
  1351. */
  1352. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1353. {
  1354. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1355. if (setChip) {
  1356. /*
  1357. * Clear the RTC force wake bit to allow the
  1358. * mac to go to sleep.
  1359. */
  1360. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1361. AR_RTC_FORCE_WAKE_EN);
  1362. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1363. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1364. /* Shutdown chip. Active low */
  1365. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1366. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1367. AR_RTC_RESET_EN);
  1368. }
  1369. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1370. if (AR_SREV_9300_20_OR_LATER(ah))
  1371. REG_WRITE(ah, AR_WA,
  1372. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1373. }
  1374. /*
  1375. * Notify Power Management is enabled in self-generating
  1376. * frames. If request, set power mode of chip to
  1377. * auto/normal. Duration in units of 128us (1/8 TU).
  1378. */
  1379. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1380. {
  1381. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1382. if (setChip) {
  1383. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1384. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1385. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1386. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1387. AR_RTC_FORCE_WAKE_ON_INT);
  1388. } else {
  1389. /*
  1390. * Clear the RTC force wake bit to allow the
  1391. * mac to go to sleep.
  1392. */
  1393. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1394. AR_RTC_FORCE_WAKE_EN);
  1395. }
  1396. }
  1397. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1398. if (AR_SREV_9300_20_OR_LATER(ah))
  1399. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1400. }
  1401. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1402. {
  1403. u32 val;
  1404. int i;
  1405. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1406. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1407. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1408. udelay(10);
  1409. }
  1410. if (setChip) {
  1411. if ((REG_READ(ah, AR_RTC_STATUS) &
  1412. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1413. if (ath9k_hw_set_reset_reg(ah,
  1414. ATH9K_RESET_POWER_ON) != true) {
  1415. return false;
  1416. }
  1417. if (!AR_SREV_9300_20_OR_LATER(ah))
  1418. ath9k_hw_init_pll(ah, NULL);
  1419. }
  1420. if (AR_SREV_9100(ah))
  1421. REG_SET_BIT(ah, AR_RTC_RESET,
  1422. AR_RTC_RESET_EN);
  1423. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1424. AR_RTC_FORCE_WAKE_EN);
  1425. udelay(50);
  1426. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1427. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1428. if (val == AR_RTC_STATUS_ON)
  1429. break;
  1430. udelay(50);
  1431. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1432. AR_RTC_FORCE_WAKE_EN);
  1433. }
  1434. if (i == 0) {
  1435. ath_err(ath9k_hw_common(ah),
  1436. "Failed to wakeup in %uus\n",
  1437. POWER_UP_TIME / 20);
  1438. return false;
  1439. }
  1440. }
  1441. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1442. return true;
  1443. }
  1444. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1445. {
  1446. struct ath_common *common = ath9k_hw_common(ah);
  1447. int status = true, setChip = true;
  1448. static const char *modes[] = {
  1449. "AWAKE",
  1450. "FULL-SLEEP",
  1451. "NETWORK SLEEP",
  1452. "UNDEFINED"
  1453. };
  1454. if (ah->power_mode == mode)
  1455. return status;
  1456. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1457. modes[ah->power_mode], modes[mode]);
  1458. switch (mode) {
  1459. case ATH9K_PM_AWAKE:
  1460. status = ath9k_hw_set_power_awake(ah, setChip);
  1461. break;
  1462. case ATH9K_PM_FULL_SLEEP:
  1463. ath9k_set_power_sleep(ah, setChip);
  1464. ah->chip_fullsleep = true;
  1465. break;
  1466. case ATH9K_PM_NETWORK_SLEEP:
  1467. ath9k_set_power_network_sleep(ah, setChip);
  1468. break;
  1469. default:
  1470. ath_err(common, "Unknown power mode %u\n", mode);
  1471. return false;
  1472. }
  1473. ah->power_mode = mode;
  1474. /*
  1475. * XXX: If this warning never comes up after a while then
  1476. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1477. * ath9k_hw_setpower() return type void.
  1478. */
  1479. if (!(ah->ah_flags & AH_UNPLUGGED))
  1480. ATH_DBG_WARN_ON_ONCE(!status);
  1481. return status;
  1482. }
  1483. EXPORT_SYMBOL(ath9k_hw_setpower);
  1484. /*******************/
  1485. /* Beacon Handling */
  1486. /*******************/
  1487. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1488. {
  1489. int flags = 0;
  1490. ENABLE_REGWRITE_BUFFER(ah);
  1491. switch (ah->opmode) {
  1492. case NL80211_IFTYPE_ADHOC:
  1493. case NL80211_IFTYPE_MESH_POINT:
  1494. REG_SET_BIT(ah, AR_TXCFG,
  1495. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1496. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1497. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1498. flags |= AR_NDP_TIMER_EN;
  1499. case NL80211_IFTYPE_AP:
  1500. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1501. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1502. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1503. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1504. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1505. flags |=
  1506. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1507. break;
  1508. default:
  1509. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1510. "%s: unsupported opmode: %d\n",
  1511. __func__, ah->opmode);
  1512. return;
  1513. break;
  1514. }
  1515. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1516. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1517. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1518. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1519. REGWRITE_BUFFER_FLUSH(ah);
  1520. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1521. }
  1522. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1523. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1524. const struct ath9k_beacon_state *bs)
  1525. {
  1526. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1527. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1528. struct ath_common *common = ath9k_hw_common(ah);
  1529. ENABLE_REGWRITE_BUFFER(ah);
  1530. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1531. REG_WRITE(ah, AR_BEACON_PERIOD,
  1532. TU_TO_USEC(bs->bs_intval));
  1533. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1534. TU_TO_USEC(bs->bs_intval));
  1535. REGWRITE_BUFFER_FLUSH(ah);
  1536. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1537. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1538. beaconintval = bs->bs_intval;
  1539. if (bs->bs_sleepduration > beaconintval)
  1540. beaconintval = bs->bs_sleepduration;
  1541. dtimperiod = bs->bs_dtimperiod;
  1542. if (bs->bs_sleepduration > dtimperiod)
  1543. dtimperiod = bs->bs_sleepduration;
  1544. if (beaconintval == dtimperiod)
  1545. nextTbtt = bs->bs_nextdtim;
  1546. else
  1547. nextTbtt = bs->bs_nexttbtt;
  1548. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1549. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1550. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1551. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1552. ENABLE_REGWRITE_BUFFER(ah);
  1553. REG_WRITE(ah, AR_NEXT_DTIM,
  1554. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1555. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1556. REG_WRITE(ah, AR_SLEEP1,
  1557. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1558. | AR_SLEEP1_ASSUME_DTIM);
  1559. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1560. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1561. else
  1562. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1563. REG_WRITE(ah, AR_SLEEP2,
  1564. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1565. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1566. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1567. REGWRITE_BUFFER_FLUSH(ah);
  1568. REG_SET_BIT(ah, AR_TIMER_MODE,
  1569. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1570. AR_DTIM_TIMER_EN);
  1571. /* TSF Out of Range Threshold */
  1572. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1573. }
  1574. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1575. /*******************/
  1576. /* HW Capabilities */
  1577. /*******************/
  1578. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1579. {
  1580. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1581. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1582. struct ath_common *common = ath9k_hw_common(ah);
  1583. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1584. u16 eeval;
  1585. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1586. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1587. regulatory->current_rd = eeval;
  1588. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1589. if (AR_SREV_9285_12_OR_LATER(ah))
  1590. eeval |= AR9285_RDEXT_DEFAULT;
  1591. regulatory->current_rd_ext = eeval;
  1592. if (ah->opmode != NL80211_IFTYPE_AP &&
  1593. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1594. if (regulatory->current_rd == 0x64 ||
  1595. regulatory->current_rd == 0x65)
  1596. regulatory->current_rd += 5;
  1597. else if (regulatory->current_rd == 0x41)
  1598. regulatory->current_rd = 0x43;
  1599. ath_dbg(common, ATH_DBG_REGULATORY,
  1600. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1601. }
  1602. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1603. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1604. ath_err(common,
  1605. "no band has been marked as supported in EEPROM\n");
  1606. return -EINVAL;
  1607. }
  1608. if (eeval & AR5416_OPFLAGS_11A)
  1609. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1610. if (eeval & AR5416_OPFLAGS_11G)
  1611. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1612. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1613. /*
  1614. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1615. * the EEPROM.
  1616. */
  1617. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1618. !(eeval & AR5416_OPFLAGS_11A) &&
  1619. !(AR_SREV_9271(ah)))
  1620. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1621. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1622. else if (AR_SREV_9100(ah))
  1623. pCap->rx_chainmask = 0x7;
  1624. else
  1625. /* Use rx_chainmask from EEPROM. */
  1626. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1627. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1628. /* enable key search for every frame in an aggregate */
  1629. if (AR_SREV_9300_20_OR_LATER(ah))
  1630. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1631. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1632. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1633. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1634. else
  1635. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1636. if (AR_SREV_9271(ah))
  1637. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1638. else if (AR_DEVID_7010(ah))
  1639. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1640. else if (AR_SREV_9285_12_OR_LATER(ah))
  1641. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1642. else if (AR_SREV_9280_20_OR_LATER(ah))
  1643. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1644. else
  1645. pCap->num_gpio_pins = AR_NUM_GPIO;
  1646. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1647. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1648. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1649. } else {
  1650. pCap->rts_aggr_limit = (8 * 1024);
  1651. }
  1652. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1653. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1654. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1655. ah->rfkill_gpio =
  1656. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1657. ah->rfkill_polarity =
  1658. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1659. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1660. }
  1661. #endif
  1662. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1663. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1664. else
  1665. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1666. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1667. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1668. else
  1669. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1670. if (common->btcoex_enabled) {
  1671. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1672. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1673. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
  1674. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
  1675. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
  1676. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  1677. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
  1678. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
  1679. if (AR_SREV_9285(ah)) {
  1680. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1681. btcoex_hw->btpriority_gpio =
  1682. ATH_BTPRIORITY_GPIO_9285;
  1683. } else {
  1684. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1685. }
  1686. }
  1687. } else {
  1688. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1689. }
  1690. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1691. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1692. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  1693. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1694. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1695. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1696. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1697. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1698. pCap->txs_len = sizeof(struct ar9003_txs);
  1699. if (!ah->config.paprd_disable &&
  1700. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1701. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1702. } else {
  1703. pCap->tx_desc_len = sizeof(struct ath_desc);
  1704. if (AR_SREV_9280_20(ah) &&
  1705. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1706. AR5416_EEP_MINOR_VER_16) ||
  1707. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1708. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1709. }
  1710. if (AR_SREV_9300_20_OR_LATER(ah))
  1711. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1712. if (AR_SREV_9300_20_OR_LATER(ah))
  1713. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1714. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1715. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1716. if (AR_SREV_9285(ah))
  1717. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1718. ant_div_ctl1 =
  1719. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1720. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1721. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1722. }
  1723. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1724. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1725. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1726. }
  1727. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  1728. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1729. /*
  1730. * enable the diversity-combining algorithm only when
  1731. * both enable_lna_div and enable_fast_div are set
  1732. * Table for Diversity
  1733. * ant_div_alt_lnaconf bit 0-1
  1734. * ant_div_main_lnaconf bit 2-3
  1735. * ant_div_alt_gaintb bit 4
  1736. * ant_div_main_gaintb bit 5
  1737. * enable_ant_div_lnadiv bit 6
  1738. * enable_ant_fast_div bit 7
  1739. */
  1740. if ((ant_div_ctl1 >> 0x6) == 0x3)
  1741. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1742. }
  1743. if (AR_SREV_9485_10(ah)) {
  1744. pCap->pcie_lcr_extsync_en = true;
  1745. pCap->pcie_lcr_offset = 0x80;
  1746. }
  1747. tx_chainmask = pCap->tx_chainmask;
  1748. rx_chainmask = pCap->rx_chainmask;
  1749. while (tx_chainmask || rx_chainmask) {
  1750. if (tx_chainmask & BIT(0))
  1751. pCap->max_txchains++;
  1752. if (rx_chainmask & BIT(0))
  1753. pCap->max_rxchains++;
  1754. tx_chainmask >>= 1;
  1755. rx_chainmask >>= 1;
  1756. }
  1757. return 0;
  1758. }
  1759. /****************************/
  1760. /* GPIO / RFKILL / Antennae */
  1761. /****************************/
  1762. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1763. u32 gpio, u32 type)
  1764. {
  1765. int addr;
  1766. u32 gpio_shift, tmp;
  1767. if (gpio > 11)
  1768. addr = AR_GPIO_OUTPUT_MUX3;
  1769. else if (gpio > 5)
  1770. addr = AR_GPIO_OUTPUT_MUX2;
  1771. else
  1772. addr = AR_GPIO_OUTPUT_MUX1;
  1773. gpio_shift = (gpio % 6) * 5;
  1774. if (AR_SREV_9280_20_OR_LATER(ah)
  1775. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1776. REG_RMW(ah, addr, (type << gpio_shift),
  1777. (0x1f << gpio_shift));
  1778. } else {
  1779. tmp = REG_READ(ah, addr);
  1780. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1781. tmp &= ~(0x1f << gpio_shift);
  1782. tmp |= (type << gpio_shift);
  1783. REG_WRITE(ah, addr, tmp);
  1784. }
  1785. }
  1786. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1787. {
  1788. u32 gpio_shift;
  1789. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1790. if (AR_DEVID_7010(ah)) {
  1791. gpio_shift = gpio;
  1792. REG_RMW(ah, AR7010_GPIO_OE,
  1793. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1794. (AR7010_GPIO_OE_MASK << gpio_shift));
  1795. return;
  1796. }
  1797. gpio_shift = gpio << 1;
  1798. REG_RMW(ah,
  1799. AR_GPIO_OE_OUT,
  1800. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1801. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1802. }
  1803. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1804. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1805. {
  1806. #define MS_REG_READ(x, y) \
  1807. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1808. if (gpio >= ah->caps.num_gpio_pins)
  1809. return 0xffffffff;
  1810. if (AR_DEVID_7010(ah)) {
  1811. u32 val;
  1812. val = REG_READ(ah, AR7010_GPIO_IN);
  1813. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1814. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1815. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1816. AR_GPIO_BIT(gpio)) != 0;
  1817. else if (AR_SREV_9271(ah))
  1818. return MS_REG_READ(AR9271, gpio) != 0;
  1819. else if (AR_SREV_9287_11_OR_LATER(ah))
  1820. return MS_REG_READ(AR9287, gpio) != 0;
  1821. else if (AR_SREV_9285_12_OR_LATER(ah))
  1822. return MS_REG_READ(AR9285, gpio) != 0;
  1823. else if (AR_SREV_9280_20_OR_LATER(ah))
  1824. return MS_REG_READ(AR928X, gpio) != 0;
  1825. else
  1826. return MS_REG_READ(AR, gpio) != 0;
  1827. }
  1828. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1829. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1830. u32 ah_signal_type)
  1831. {
  1832. u32 gpio_shift;
  1833. if (AR_DEVID_7010(ah)) {
  1834. gpio_shift = gpio;
  1835. REG_RMW(ah, AR7010_GPIO_OE,
  1836. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1837. (AR7010_GPIO_OE_MASK << gpio_shift));
  1838. return;
  1839. }
  1840. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1841. gpio_shift = 2 * gpio;
  1842. REG_RMW(ah,
  1843. AR_GPIO_OE_OUT,
  1844. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1845. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1846. }
  1847. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1848. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1849. {
  1850. if (AR_DEVID_7010(ah)) {
  1851. val = val ? 0 : 1;
  1852. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1853. AR_GPIO_BIT(gpio));
  1854. return;
  1855. }
  1856. if (AR_SREV_9271(ah))
  1857. val = ~val;
  1858. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1859. AR_GPIO_BIT(gpio));
  1860. }
  1861. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1862. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1863. {
  1864. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1865. }
  1866. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1867. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1868. {
  1869. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1870. }
  1871. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1872. /*********************/
  1873. /* General Operation */
  1874. /*********************/
  1875. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1876. {
  1877. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1878. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1879. if (phybits & AR_PHY_ERR_RADAR)
  1880. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1881. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1882. bits |= ATH9K_RX_FILTER_PHYERR;
  1883. return bits;
  1884. }
  1885. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1886. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1887. {
  1888. u32 phybits;
  1889. ENABLE_REGWRITE_BUFFER(ah);
  1890. REG_WRITE(ah, AR_RX_FILTER, bits);
  1891. phybits = 0;
  1892. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1893. phybits |= AR_PHY_ERR_RADAR;
  1894. if (bits & ATH9K_RX_FILTER_PHYERR)
  1895. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1896. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1897. if (phybits)
  1898. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1899. else
  1900. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1901. REGWRITE_BUFFER_FLUSH(ah);
  1902. }
  1903. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1904. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1905. {
  1906. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1907. return false;
  1908. ath9k_hw_init_pll(ah, NULL);
  1909. return true;
  1910. }
  1911. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1912. bool ath9k_hw_disable(struct ath_hw *ah)
  1913. {
  1914. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1915. return false;
  1916. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1917. return false;
  1918. ath9k_hw_init_pll(ah, NULL);
  1919. return true;
  1920. }
  1921. EXPORT_SYMBOL(ath9k_hw_disable);
  1922. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1923. {
  1924. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1925. struct ath9k_channel *chan = ah->curchan;
  1926. struct ieee80211_channel *channel = chan->chan;
  1927. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1928. ah->eep_ops->set_txpower(ah, chan,
  1929. ath9k_regd_get_ctl(regulatory, chan),
  1930. channel->max_antenna_gain * 2,
  1931. channel->max_power * 2,
  1932. min((u32) MAX_RATE_POWER,
  1933. (u32) regulatory->power_limit), test);
  1934. }
  1935. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1936. void ath9k_hw_setopmode(struct ath_hw *ah)
  1937. {
  1938. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1939. }
  1940. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1941. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1942. {
  1943. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1944. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1945. }
  1946. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1947. void ath9k_hw_write_associd(struct ath_hw *ah)
  1948. {
  1949. struct ath_common *common = ath9k_hw_common(ah);
  1950. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1951. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1952. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1953. }
  1954. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1955. #define ATH9K_MAX_TSF_READ 10
  1956. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1957. {
  1958. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1959. int i;
  1960. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1961. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1962. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1963. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1964. if (tsf_upper2 == tsf_upper1)
  1965. break;
  1966. tsf_upper1 = tsf_upper2;
  1967. }
  1968. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1969. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1970. }
  1971. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1972. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1973. {
  1974. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1975. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1976. }
  1977. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1978. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1979. {
  1980. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1981. AH_TSF_WRITE_TIMEOUT))
  1982. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1983. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1984. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1985. }
  1986. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1987. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1988. {
  1989. if (setting)
  1990. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1991. else
  1992. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1993. }
  1994. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1995. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1996. {
  1997. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1998. u32 macmode;
  1999. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2000. macmode = AR_2040_JOINED_RX_CLEAR;
  2001. else
  2002. macmode = 0;
  2003. REG_WRITE(ah, AR_2040_MODE, macmode);
  2004. }
  2005. /* HW Generic timers configuration */
  2006. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2007. {
  2008. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2009. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2010. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2011. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2012. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2013. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2014. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2015. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2016. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2017. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2018. AR_NDP2_TIMER_MODE, 0x0002},
  2019. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2020. AR_NDP2_TIMER_MODE, 0x0004},
  2021. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2022. AR_NDP2_TIMER_MODE, 0x0008},
  2023. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2024. AR_NDP2_TIMER_MODE, 0x0010},
  2025. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2026. AR_NDP2_TIMER_MODE, 0x0020},
  2027. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2028. AR_NDP2_TIMER_MODE, 0x0040},
  2029. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2030. AR_NDP2_TIMER_MODE, 0x0080}
  2031. };
  2032. /* HW generic timer primitives */
  2033. /* compute and clear index of rightmost 1 */
  2034. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2035. {
  2036. u32 b;
  2037. b = *mask;
  2038. b &= (0-b);
  2039. *mask &= ~b;
  2040. b *= debruijn32;
  2041. b >>= 27;
  2042. return timer_table->gen_timer_index[b];
  2043. }
  2044. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2045. {
  2046. return REG_READ(ah, AR_TSF_L32);
  2047. }
  2048. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2049. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2050. void (*trigger)(void *),
  2051. void (*overflow)(void *),
  2052. void *arg,
  2053. u8 timer_index)
  2054. {
  2055. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2056. struct ath_gen_timer *timer;
  2057. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2058. if (timer == NULL) {
  2059. ath_err(ath9k_hw_common(ah),
  2060. "Failed to allocate memory for hw timer[%d]\n",
  2061. timer_index);
  2062. return NULL;
  2063. }
  2064. /* allocate a hardware generic timer slot */
  2065. timer_table->timers[timer_index] = timer;
  2066. timer->index = timer_index;
  2067. timer->trigger = trigger;
  2068. timer->overflow = overflow;
  2069. timer->arg = arg;
  2070. return timer;
  2071. }
  2072. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2073. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2074. struct ath_gen_timer *timer,
  2075. u32 trig_timeout,
  2076. u32 timer_period)
  2077. {
  2078. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2079. u32 tsf, timer_next;
  2080. BUG_ON(!timer_period);
  2081. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2082. tsf = ath9k_hw_gettsf32(ah);
  2083. timer_next = tsf + trig_timeout;
  2084. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  2085. "current tsf %x period %x timer_next %x\n",
  2086. tsf, timer_period, timer_next);
  2087. /*
  2088. * Program generic timer registers
  2089. */
  2090. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2091. timer_next);
  2092. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2093. timer_period);
  2094. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2095. gen_tmr_configuration[timer->index].mode_mask);
  2096. /* Enable both trigger and thresh interrupt masks */
  2097. REG_SET_BIT(ah, AR_IMR_S5,
  2098. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2099. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2100. }
  2101. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2102. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2103. {
  2104. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2105. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2106. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2107. return;
  2108. }
  2109. /* Clear generic timer enable bits. */
  2110. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2111. gen_tmr_configuration[timer->index].mode_mask);
  2112. /* Disable both trigger and thresh interrupt masks */
  2113. REG_CLR_BIT(ah, AR_IMR_S5,
  2114. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2115. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2116. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2117. }
  2118. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2119. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2120. {
  2121. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2122. /* free the hardware generic timer slot */
  2123. timer_table->timers[timer->index] = NULL;
  2124. kfree(timer);
  2125. }
  2126. EXPORT_SYMBOL(ath_gen_timer_free);
  2127. /*
  2128. * Generic Timer Interrupts handling
  2129. */
  2130. void ath_gen_timer_isr(struct ath_hw *ah)
  2131. {
  2132. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2133. struct ath_gen_timer *timer;
  2134. struct ath_common *common = ath9k_hw_common(ah);
  2135. u32 trigger_mask, thresh_mask, index;
  2136. /* get hardware generic timer interrupt status */
  2137. trigger_mask = ah->intr_gen_timer_trigger;
  2138. thresh_mask = ah->intr_gen_timer_thresh;
  2139. trigger_mask &= timer_table->timer_mask.val;
  2140. thresh_mask &= timer_table->timer_mask.val;
  2141. trigger_mask &= ~thresh_mask;
  2142. while (thresh_mask) {
  2143. index = rightmost_index(timer_table, &thresh_mask);
  2144. timer = timer_table->timers[index];
  2145. BUG_ON(!timer);
  2146. ath_dbg(common, ATH_DBG_HWTIMER,
  2147. "TSF overflow for Gen timer %d\n", index);
  2148. timer->overflow(timer->arg);
  2149. }
  2150. while (trigger_mask) {
  2151. index = rightmost_index(timer_table, &trigger_mask);
  2152. timer = timer_table->timers[index];
  2153. BUG_ON(!timer);
  2154. ath_dbg(common, ATH_DBG_HWTIMER,
  2155. "Gen timer[%d] trigger\n", index);
  2156. timer->trigger(timer->arg);
  2157. }
  2158. }
  2159. EXPORT_SYMBOL(ath_gen_timer_isr);
  2160. /********/
  2161. /* HTC */
  2162. /********/
  2163. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2164. {
  2165. ah->htc_reset_init = true;
  2166. }
  2167. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2168. static struct {
  2169. u32 version;
  2170. const char * name;
  2171. } ath_mac_bb_names[] = {
  2172. /* Devices with external radios */
  2173. { AR_SREV_VERSION_5416_PCI, "5416" },
  2174. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2175. { AR_SREV_VERSION_9100, "9100" },
  2176. { AR_SREV_VERSION_9160, "9160" },
  2177. /* Single-chip solutions */
  2178. { AR_SREV_VERSION_9280, "9280" },
  2179. { AR_SREV_VERSION_9285, "9285" },
  2180. { AR_SREV_VERSION_9287, "9287" },
  2181. { AR_SREV_VERSION_9271, "9271" },
  2182. { AR_SREV_VERSION_9300, "9300" },
  2183. { AR_SREV_VERSION_9330, "9330" },
  2184. { AR_SREV_VERSION_9485, "9485" },
  2185. };
  2186. /* For devices with external radios */
  2187. static struct {
  2188. u16 version;
  2189. const char * name;
  2190. } ath_rf_names[] = {
  2191. { 0, "5133" },
  2192. { AR_RAD5133_SREV_MAJOR, "5133" },
  2193. { AR_RAD5122_SREV_MAJOR, "5122" },
  2194. { AR_RAD2133_SREV_MAJOR, "2133" },
  2195. { AR_RAD2122_SREV_MAJOR, "2122" }
  2196. };
  2197. /*
  2198. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2199. */
  2200. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2201. {
  2202. int i;
  2203. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2204. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2205. return ath_mac_bb_names[i].name;
  2206. }
  2207. }
  2208. return "????";
  2209. }
  2210. /*
  2211. * Return the RF name. "????" is returned if the RF is unknown.
  2212. * Used for devices with external radios.
  2213. */
  2214. static const char *ath9k_hw_rf_name(u16 rf_version)
  2215. {
  2216. int i;
  2217. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2218. if (ath_rf_names[i].version == rf_version) {
  2219. return ath_rf_names[i].name;
  2220. }
  2221. }
  2222. return "????";
  2223. }
  2224. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2225. {
  2226. int used;
  2227. /* chipsets >= AR9280 are single-chip */
  2228. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2229. used = snprintf(hw_name, len,
  2230. "Atheros AR%s Rev:%x",
  2231. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2232. ah->hw_version.macRev);
  2233. }
  2234. else {
  2235. used = snprintf(hw_name, len,
  2236. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2237. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2238. ah->hw_version.macRev,
  2239. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2240. AR_RADIO_SREV_MAJOR)),
  2241. ah->hw_version.phyRev);
  2242. }
  2243. hw_name[used] = '\0';
  2244. }
  2245. EXPORT_SYMBOL(ath9k_hw_name);