nouveau_mem.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /*
  2. * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
  3. * Copyright 2005 Stephane Marchesin
  4. *
  5. * The Weather Channel (TM) funded Tungsten Graphics to develop the
  6. * initial release of the Radeon 8500 driver under the XFree86 license.
  7. * This notice must be preserved.
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a
  10. * copy of this software and associated documentation files (the "Software"),
  11. * to deal in the Software without restriction, including without limitation
  12. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  13. * and/or sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice (including the next
  17. * paragraph) shall be included in all copies or substantial portions of the
  18. * Software.
  19. *
  20. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23. * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  24. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  25. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  26. * DEALINGS IN THE SOFTWARE.
  27. *
  28. * Authors:
  29. * Keith Whitwell <keith@tungstengraphics.com>
  30. */
  31. #include "drmP.h"
  32. #include "drm.h"
  33. #include "drm_sarea.h"
  34. #include "nouveau_drv.h"
  35. #include "nouveau_pm.h"
  36. #include "nouveau_mm.h"
  37. #include "nouveau_vm.h"
  38. /*
  39. * NV10-NV40 tiling helpers
  40. */
  41. static void
  42. nv10_mem_update_tile_region(struct drm_device *dev,
  43. struct nouveau_tile_reg *tile, uint32_t addr,
  44. uint32_t size, uint32_t pitch, uint32_t flags)
  45. {
  46. struct drm_nouveau_private *dev_priv = dev->dev_private;
  47. struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo;
  48. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  49. struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
  50. int i = tile - dev_priv->tile.reg;
  51. unsigned long save;
  52. nouveau_fence_unref(&tile->fence);
  53. if (tile->pitch)
  54. pfb->free_tile_region(dev, i);
  55. if (pitch)
  56. pfb->init_tile_region(dev, i, addr, size, pitch, flags);
  57. spin_lock_irqsave(&dev_priv->context_switch_lock, save);
  58. pfifo->reassign(dev, false);
  59. pfifo->cache_pull(dev, false);
  60. nouveau_wait_for_idle(dev);
  61. pfb->set_tile_region(dev, i);
  62. pgraph->set_tile_region(dev, i);
  63. pfifo->cache_pull(dev, true);
  64. pfifo->reassign(dev, true);
  65. spin_unlock_irqrestore(&dev_priv->context_switch_lock, save);
  66. }
  67. static struct nouveau_tile_reg *
  68. nv10_mem_get_tile_region(struct drm_device *dev, int i)
  69. {
  70. struct drm_nouveau_private *dev_priv = dev->dev_private;
  71. struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
  72. spin_lock(&dev_priv->tile.lock);
  73. if (!tile->used &&
  74. (!tile->fence || nouveau_fence_signalled(tile->fence)))
  75. tile->used = true;
  76. else
  77. tile = NULL;
  78. spin_unlock(&dev_priv->tile.lock);
  79. return tile;
  80. }
  81. void
  82. nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile,
  83. struct nouveau_fence *fence)
  84. {
  85. struct drm_nouveau_private *dev_priv = dev->dev_private;
  86. if (tile) {
  87. spin_lock(&dev_priv->tile.lock);
  88. if (fence) {
  89. /* Mark it as pending. */
  90. tile->fence = fence;
  91. nouveau_fence_ref(fence);
  92. }
  93. tile->used = false;
  94. spin_unlock(&dev_priv->tile.lock);
  95. }
  96. }
  97. struct nouveau_tile_reg *
  98. nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
  99. uint32_t pitch, uint32_t flags)
  100. {
  101. struct drm_nouveau_private *dev_priv = dev->dev_private;
  102. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  103. struct nouveau_tile_reg *tile, *found = NULL;
  104. int i;
  105. for (i = 0; i < pfb->num_tiles; i++) {
  106. tile = nv10_mem_get_tile_region(dev, i);
  107. if (pitch && !found) {
  108. found = tile;
  109. continue;
  110. } else if (tile && tile->pitch) {
  111. /* Kill an unused tile region. */
  112. nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0);
  113. }
  114. nv10_mem_put_tile_region(dev, tile, NULL);
  115. }
  116. if (found)
  117. nv10_mem_update_tile_region(dev, found, addr, size,
  118. pitch, flags);
  119. return found;
  120. }
  121. /*
  122. * Cleanup everything
  123. */
  124. void
  125. nouveau_mem_vram_fini(struct drm_device *dev)
  126. {
  127. struct drm_nouveau_private *dev_priv = dev->dev_private;
  128. ttm_bo_device_release(&dev_priv->ttm.bdev);
  129. nouveau_ttm_global_release(dev_priv);
  130. if (dev_priv->fb_mtrr >= 0) {
  131. drm_mtrr_del(dev_priv->fb_mtrr,
  132. pci_resource_start(dev->pdev, 1),
  133. pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
  134. dev_priv->fb_mtrr = -1;
  135. }
  136. }
  137. void
  138. nouveau_mem_gart_fini(struct drm_device *dev)
  139. {
  140. nouveau_sgdma_takedown(dev);
  141. if (drm_core_has_AGP(dev) && dev->agp) {
  142. struct drm_agp_mem *entry, *tempe;
  143. /* Remove AGP resources, but leave dev->agp
  144. intact until drv_cleanup is called. */
  145. list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
  146. if (entry->bound)
  147. drm_unbind_agp(entry->memory);
  148. drm_free_agp(entry->memory, entry->pages);
  149. kfree(entry);
  150. }
  151. INIT_LIST_HEAD(&dev->agp->memory);
  152. if (dev->agp->acquired)
  153. drm_agp_release(dev);
  154. dev->agp->acquired = 0;
  155. dev->agp->enabled = 0;
  156. }
  157. }
  158. static uint32_t
  159. nouveau_mem_detect_nv04(struct drm_device *dev)
  160. {
  161. uint32_t boot0 = nv_rd32(dev, NV04_PFB_BOOT_0);
  162. if (boot0 & 0x00000100)
  163. return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024;
  164. switch (boot0 & NV04_PFB_BOOT_0_RAM_AMOUNT) {
  165. case NV04_PFB_BOOT_0_RAM_AMOUNT_32MB:
  166. return 32 * 1024 * 1024;
  167. case NV04_PFB_BOOT_0_RAM_AMOUNT_16MB:
  168. return 16 * 1024 * 1024;
  169. case NV04_PFB_BOOT_0_RAM_AMOUNT_8MB:
  170. return 8 * 1024 * 1024;
  171. case NV04_PFB_BOOT_0_RAM_AMOUNT_4MB:
  172. return 4 * 1024 * 1024;
  173. }
  174. return 0;
  175. }
  176. static uint32_t
  177. nouveau_mem_detect_nforce(struct drm_device *dev)
  178. {
  179. struct drm_nouveau_private *dev_priv = dev->dev_private;
  180. struct pci_dev *bridge;
  181. uint32_t mem;
  182. bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1));
  183. if (!bridge) {
  184. NV_ERROR(dev, "no bridge device\n");
  185. return 0;
  186. }
  187. if (dev_priv->flags & NV_NFORCE) {
  188. pci_read_config_dword(bridge, 0x7C, &mem);
  189. return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
  190. } else
  191. if (dev_priv->flags & NV_NFORCE2) {
  192. pci_read_config_dword(bridge, 0x84, &mem);
  193. return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
  194. }
  195. NV_ERROR(dev, "impossible!\n");
  196. return 0;
  197. }
  198. int
  199. nouveau_mem_detect(struct drm_device *dev)
  200. {
  201. struct drm_nouveau_private *dev_priv = dev->dev_private;
  202. if (dev_priv->card_type == NV_04) {
  203. dev_priv->vram_size = nouveau_mem_detect_nv04(dev);
  204. } else
  205. if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) {
  206. dev_priv->vram_size = nouveau_mem_detect_nforce(dev);
  207. } else
  208. if (dev_priv->card_type < NV_50) {
  209. dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
  210. dev_priv->vram_size &= NV10_PFB_FIFO_DATA_RAM_AMOUNT_MB_MASK;
  211. }
  212. if (dev_priv->vram_size)
  213. return 0;
  214. return -ENOMEM;
  215. }
  216. bool
  217. nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags)
  218. {
  219. if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK))
  220. return true;
  221. return false;
  222. }
  223. #if __OS_HAS_AGP
  224. static unsigned long
  225. get_agp_mode(struct drm_device *dev, unsigned long mode)
  226. {
  227. struct drm_nouveau_private *dev_priv = dev->dev_private;
  228. /*
  229. * FW seems to be broken on nv18, it makes the card lock up
  230. * randomly.
  231. */
  232. if (dev_priv->chipset == 0x18)
  233. mode &= ~PCI_AGP_COMMAND_FW;
  234. /*
  235. * AGP mode set in the command line.
  236. */
  237. if (nouveau_agpmode > 0) {
  238. bool agpv3 = mode & 0x8;
  239. int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
  240. mode = (mode & ~0x7) | (rate & 0x7);
  241. }
  242. return mode;
  243. }
  244. #endif
  245. int
  246. nouveau_mem_reset_agp(struct drm_device *dev)
  247. {
  248. #if __OS_HAS_AGP
  249. uint32_t saved_pci_nv_1, pmc_enable;
  250. int ret;
  251. /* First of all, disable fast writes, otherwise if it's
  252. * already enabled in the AGP bridge and we disable the card's
  253. * AGP controller we might be locking ourselves out of it. */
  254. if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
  255. dev->agp->mode) & PCI_AGP_COMMAND_FW) {
  256. struct drm_agp_info info;
  257. struct drm_agp_mode mode;
  258. ret = drm_agp_info(dev, &info);
  259. if (ret)
  260. return ret;
  261. mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
  262. ret = drm_agp_enable(dev, mode);
  263. if (ret)
  264. return ret;
  265. }
  266. saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
  267. /* clear busmaster bit */
  268. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
  269. /* disable AGP */
  270. nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
  271. /* power cycle pgraph, if enabled */
  272. pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
  273. if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
  274. nv_wr32(dev, NV03_PMC_ENABLE,
  275. pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
  276. nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
  277. NV_PMC_ENABLE_PGRAPH);
  278. }
  279. /* and restore (gives effect of resetting AGP) */
  280. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
  281. #endif
  282. return 0;
  283. }
  284. int
  285. nouveau_mem_init_agp(struct drm_device *dev)
  286. {
  287. #if __OS_HAS_AGP
  288. struct drm_nouveau_private *dev_priv = dev->dev_private;
  289. struct drm_agp_info info;
  290. struct drm_agp_mode mode;
  291. int ret;
  292. if (!dev->agp->acquired) {
  293. ret = drm_agp_acquire(dev);
  294. if (ret) {
  295. NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
  296. return ret;
  297. }
  298. }
  299. nouveau_mem_reset_agp(dev);
  300. ret = drm_agp_info(dev, &info);
  301. if (ret) {
  302. NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
  303. return ret;
  304. }
  305. /* see agp.h for the AGPSTAT_* modes available */
  306. mode.mode = get_agp_mode(dev, info.mode);
  307. ret = drm_agp_enable(dev, mode);
  308. if (ret) {
  309. NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
  310. return ret;
  311. }
  312. dev_priv->gart_info.type = NOUVEAU_GART_AGP;
  313. dev_priv->gart_info.aper_base = info.aperture_base;
  314. dev_priv->gart_info.aper_size = info.aperture_size;
  315. #endif
  316. return 0;
  317. }
  318. int
  319. nouveau_mem_vram_init(struct drm_device *dev)
  320. {
  321. struct drm_nouveau_private *dev_priv = dev->dev_private;
  322. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  323. int ret, dma_bits;
  324. dma_bits = 32;
  325. if (dev_priv->card_type >= NV_50) {
  326. if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
  327. dma_bits = 40;
  328. } else
  329. if (drm_pci_device_is_pcie(dev) &&
  330. dev_priv->chipset > 0x40 &&
  331. dev_priv->chipset != 0x45) {
  332. if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39)))
  333. dma_bits = 39;
  334. }
  335. ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
  336. if (ret)
  337. return ret;
  338. dev_priv->fb_phys = pci_resource_start(dev->pdev, 1);
  339. ret = nouveau_ttm_global_init(dev_priv);
  340. if (ret)
  341. return ret;
  342. ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
  343. dev_priv->ttm.bo_global_ref.ref.object,
  344. &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
  345. dma_bits <= 32 ? true : false);
  346. if (ret) {
  347. NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
  348. return ret;
  349. }
  350. /* reserve space at end of VRAM for PRAMIN */
  351. if (dev_priv->card_type >= NV_50) {
  352. dev_priv->ramin_rsvd_vram = 1 * 1024 * 1024;
  353. } else
  354. if (dev_priv->card_type >= NV_40) {
  355. u32 vs = hweight8((nv_rd32(dev, 0x001540) & 0x0000ff00) >> 8);
  356. u32 rsvd;
  357. /* estimate grctx size, the magics come from nv40_grctx.c */
  358. if (dev_priv->chipset == 0x40) rsvd = 0x6aa0 * vs;
  359. else if (dev_priv->chipset < 0x43) rsvd = 0x4f00 * vs;
  360. else if (nv44_graph_class(dev)) rsvd = 0x4980 * vs;
  361. else rsvd = 0x4a40 * vs;
  362. rsvd += 16 * 1024;
  363. rsvd *= dev_priv->engine.fifo.channels;
  364. /* pciegart table */
  365. if (drm_pci_device_is_pcie(dev))
  366. rsvd += 512 * 1024;
  367. /* object storage */
  368. rsvd += 512 * 1024;
  369. dev_priv->ramin_rsvd_vram = round_up(rsvd, 4096);
  370. } else {
  371. dev_priv->ramin_rsvd_vram = 512 * 1024;
  372. }
  373. ret = dev_priv->engine.vram.init(dev);
  374. if (ret)
  375. return ret;
  376. NV_INFO(dev, "Detected %dMiB VRAM\n", (int)(dev_priv->vram_size >> 20));
  377. if (dev_priv->vram_sys_base) {
  378. NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
  379. dev_priv->vram_sys_base);
  380. }
  381. dev_priv->fb_available_size = dev_priv->vram_size;
  382. dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
  383. if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
  384. dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1);
  385. dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
  386. dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
  387. dev_priv->fb_aper_free = dev_priv->fb_available_size;
  388. /* mappable vram */
  389. ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
  390. dev_priv->fb_available_size >> PAGE_SHIFT);
  391. if (ret) {
  392. NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
  393. return ret;
  394. }
  395. if (dev_priv->card_type < NV_50) {
  396. ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM,
  397. 0, 0, &dev_priv->vga_ram);
  398. if (ret == 0)
  399. ret = nouveau_bo_pin(dev_priv->vga_ram,
  400. TTM_PL_FLAG_VRAM);
  401. if (ret) {
  402. NV_WARN(dev, "failed to reserve VGA memory\n");
  403. nouveau_bo_ref(NULL, &dev_priv->vga_ram);
  404. }
  405. }
  406. dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
  407. pci_resource_len(dev->pdev, 1),
  408. DRM_MTRR_WC);
  409. return 0;
  410. }
  411. int
  412. nouveau_mem_gart_init(struct drm_device *dev)
  413. {
  414. struct drm_nouveau_private *dev_priv = dev->dev_private;
  415. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  416. int ret;
  417. dev_priv->gart_info.type = NOUVEAU_GART_NONE;
  418. #if !defined(__powerpc__) && !defined(__ia64__)
  419. if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
  420. ret = nouveau_mem_init_agp(dev);
  421. if (ret)
  422. NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
  423. }
  424. #endif
  425. if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
  426. ret = nouveau_sgdma_init(dev);
  427. if (ret) {
  428. NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
  429. return ret;
  430. }
  431. }
  432. NV_INFO(dev, "%d MiB GART (aperture)\n",
  433. (int)(dev_priv->gart_info.aper_size >> 20));
  434. dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
  435. ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
  436. dev_priv->gart_info.aper_size >> PAGE_SHIFT);
  437. if (ret) {
  438. NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
  439. return ret;
  440. }
  441. return 0;
  442. }
  443. void
  444. nouveau_mem_timing_init(struct drm_device *dev)
  445. {
  446. /* cards < NVC0 only */
  447. struct drm_nouveau_private *dev_priv = dev->dev_private;
  448. struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
  449. struct nouveau_pm_memtimings *memtimings = &pm->memtimings;
  450. struct nvbios *bios = &dev_priv->vbios;
  451. struct bit_entry P;
  452. u8 tUNK_0, tUNK_1, tUNK_2;
  453. u8 tRP; /* Byte 3 */
  454. u8 tRAS; /* Byte 5 */
  455. u8 tRFC; /* Byte 7 */
  456. u8 tRC; /* Byte 9 */
  457. u8 tUNK_10, tUNK_11, tUNK_12, tUNK_13, tUNK_14;
  458. u8 tUNK_18, tUNK_19, tUNK_20, tUNK_21;
  459. u8 magic_number = 0; /* Yeah... sorry*/
  460. u8 *mem = NULL, *entry;
  461. int i, recordlen, entries;
  462. if (bios->type == NVBIOS_BIT) {
  463. if (bit_table(dev, 'P', &P))
  464. return;
  465. if (P.version == 1)
  466. mem = ROMPTR(bios, P.data[4]);
  467. else
  468. if (P.version == 2)
  469. mem = ROMPTR(bios, P.data[8]);
  470. else {
  471. NV_WARN(dev, "unknown mem for BIT P %d\n", P.version);
  472. }
  473. } else {
  474. NV_DEBUG(dev, "BMP version too old for memory\n");
  475. return;
  476. }
  477. if (!mem) {
  478. NV_DEBUG(dev, "memory timing table pointer invalid\n");
  479. return;
  480. }
  481. if (mem[0] != 0x10) {
  482. NV_WARN(dev, "memory timing table 0x%02x unknown\n", mem[0]);
  483. return;
  484. }
  485. /* validate record length */
  486. entries = mem[2];
  487. recordlen = mem[3];
  488. if (recordlen < 15) {
  489. NV_ERROR(dev, "mem timing table length unknown: %d\n", mem[3]);
  490. return;
  491. }
  492. /* parse vbios entries into common format */
  493. memtimings->timing =
  494. kcalloc(entries, sizeof(*memtimings->timing), GFP_KERNEL);
  495. if (!memtimings->timing)
  496. return;
  497. /* Get "some number" from the timing reg for NV_40
  498. * Used in calculations later */
  499. if(dev_priv->card_type == NV_40) {
  500. magic_number = (nv_rd32(dev,0x100228) & 0x0f000000) >> 24;
  501. }
  502. entry = mem + mem[1];
  503. for (i = 0; i < entries; i++, entry += recordlen) {
  504. struct nouveau_pm_memtiming *timing = &pm->memtimings.timing[i];
  505. if (entry[0] == 0)
  506. continue;
  507. tUNK_18 = 1;
  508. tUNK_19 = 1;
  509. tUNK_20 = 0;
  510. tUNK_21 = 0;
  511. switch (min(recordlen, 22)) {
  512. case 22:
  513. tUNK_21 = entry[21];
  514. case 21:
  515. tUNK_20 = entry[20];
  516. case 20:
  517. tUNK_19 = entry[19];
  518. case 19:
  519. tUNK_18 = entry[18];
  520. default:
  521. tUNK_0 = entry[0];
  522. tUNK_1 = entry[1];
  523. tUNK_2 = entry[2];
  524. tRP = entry[3];
  525. tRAS = entry[5];
  526. tRFC = entry[7];
  527. tRC = entry[9];
  528. tUNK_10 = entry[10];
  529. tUNK_11 = entry[11];
  530. tUNK_12 = entry[12];
  531. tUNK_13 = entry[13];
  532. tUNK_14 = entry[14];
  533. break;
  534. }
  535. timing->reg_100220 = (tRC << 24 | tRFC << 16 | tRAS << 8 | tRP);
  536. /* XXX: I don't trust the -1's and +1's... they must come
  537. * from somewhere! */
  538. timing->reg_100224 = (tUNK_0 + tUNK_19 + 1 + magic_number) << 24 |
  539. tUNK_18 << 16 |
  540. (tUNK_1 + tUNK_19 + 1 + magic_number) << 8;
  541. if(dev_priv->chipset == 0xa8) {
  542. timing->reg_100224 |= (tUNK_2 - 1);
  543. } else {
  544. timing->reg_100224 |= (tUNK_2 + 2 - magic_number);
  545. }
  546. timing->reg_100228 = (tUNK_12 << 16 | tUNK_11 << 8 | tUNK_10);
  547. if(dev_priv->chipset >= 0xa3 && dev_priv->chipset < 0xaa) {
  548. timing->reg_100228 |= (tUNK_19 - 1) << 24;
  549. }
  550. if(dev_priv->card_type == NV_40) {
  551. /* NV40: don't know what the rest of the regs are..
  552. * And don't need to know either */
  553. timing->reg_100228 |= 0x20200000 | magic_number << 24;
  554. } else if(dev_priv->card_type >= NV_50) {
  555. /* XXX: reg_10022c */
  556. timing->reg_10022c = tUNK_2 - 1;
  557. timing->reg_100230 = (tUNK_20 << 24 | tUNK_21 << 16 |
  558. tUNK_13 << 8 | tUNK_13);
  559. timing->reg_100234 = (tRAS << 24 | tRC);
  560. timing->reg_100234 += max(tUNK_10,tUNK_11) << 16;
  561. if(dev_priv->chipset < 0xa3) {
  562. timing->reg_100234 |= (tUNK_2 + 2) << 8;
  563. } else {
  564. /* XXX: +6? */
  565. timing->reg_100234 |= (tUNK_19 + 6) << 8;
  566. }
  567. /* XXX; reg_100238, reg_10023c
  568. * reg_100238: 0x00??????
  569. * reg_10023c: 0x!!??0202 for NV50+ cards (empirical evidence) */
  570. timing->reg_10023c = 0x202;
  571. if(dev_priv->chipset < 0xa3) {
  572. timing->reg_10023c |= 0x4000000 | (tUNK_2 - 1) << 16;
  573. } else {
  574. /* currently unknown
  575. * 10023c seen as 06xxxxxx, 0bxxxxxx or 0fxxxxxx */
  576. }
  577. }
  578. NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", i,
  579. timing->reg_100220, timing->reg_100224,
  580. timing->reg_100228, timing->reg_10022c);
  581. NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
  582. timing->reg_100230, timing->reg_100234,
  583. timing->reg_100238, timing->reg_10023c);
  584. }
  585. memtimings->nr_timing = entries;
  586. memtimings->supported = true;
  587. }
  588. void
  589. nouveau_mem_timing_fini(struct drm_device *dev)
  590. {
  591. struct drm_nouveau_private *dev_priv = dev->dev_private;
  592. struct nouveau_pm_memtimings *mem = &dev_priv->engine.pm.memtimings;
  593. kfree(mem->timing);
  594. }
  595. static int
  596. nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long p_size)
  597. {
  598. struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
  599. struct nouveau_mm *mm;
  600. u64 size, block, rsvd;
  601. int ret;
  602. rsvd = (256 * 1024); /* vga memory */
  603. size = (p_size << PAGE_SHIFT) - rsvd;
  604. block = dev_priv->vram_rblock_size;
  605. ret = nouveau_mm_init(&mm, rsvd >> 12, size >> 12, block >> 12);
  606. if (ret)
  607. return ret;
  608. man->priv = mm;
  609. return 0;
  610. }
  611. static int
  612. nouveau_vram_manager_fini(struct ttm_mem_type_manager *man)
  613. {
  614. struct nouveau_mm *mm = man->priv;
  615. int ret;
  616. ret = nouveau_mm_fini(&mm);
  617. if (ret)
  618. return ret;
  619. man->priv = NULL;
  620. return 0;
  621. }
  622. static void
  623. nouveau_vram_manager_del(struct ttm_mem_type_manager *man,
  624. struct ttm_mem_reg *mem)
  625. {
  626. struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
  627. struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
  628. struct nouveau_mem *node = mem->mm_node;
  629. struct drm_device *dev = dev_priv->dev;
  630. if (node->tmp_vma.node) {
  631. nouveau_vm_unmap(&node->tmp_vma);
  632. nouveau_vm_put(&node->tmp_vma);
  633. }
  634. vram->put(dev, (struct nouveau_mem **)&mem->mm_node);
  635. }
  636. static int
  637. nouveau_vram_manager_new(struct ttm_mem_type_manager *man,
  638. struct ttm_buffer_object *bo,
  639. struct ttm_placement *placement,
  640. struct ttm_mem_reg *mem)
  641. {
  642. struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
  643. struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
  644. struct drm_device *dev = dev_priv->dev;
  645. struct nouveau_bo *nvbo = nouveau_bo(bo);
  646. struct nouveau_mem *node;
  647. u32 size_nc = 0;
  648. int ret;
  649. if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG)
  650. size_nc = 1 << nvbo->vma.node->type;
  651. ret = vram->get(dev, mem->num_pages << PAGE_SHIFT,
  652. mem->page_alignment << PAGE_SHIFT, size_nc,
  653. (nvbo->tile_flags >> 8) & 0x3ff, &node);
  654. if (ret) {
  655. mem->mm_node = NULL;
  656. return (ret == -ENOSPC) ? 0 : ret;
  657. }
  658. node->page_shift = 12;
  659. if (nvbo->vma.node)
  660. node->page_shift = nvbo->vma.node->type;
  661. mem->mm_node = node;
  662. mem->start = node->offset >> PAGE_SHIFT;
  663. return 0;
  664. }
  665. void
  666. nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
  667. {
  668. struct nouveau_mm *mm = man->priv;
  669. struct nouveau_mm_node *r;
  670. u32 total = 0, free = 0;
  671. mutex_lock(&mm->mutex);
  672. list_for_each_entry(r, &mm->nodes, nl_entry) {
  673. printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n",
  674. prefix, r->type, ((u64)r->offset << 12),
  675. (((u64)r->offset + r->length) << 12));
  676. total += r->length;
  677. if (!r->type)
  678. free += r->length;
  679. }
  680. mutex_unlock(&mm->mutex);
  681. printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n",
  682. prefix, (u64)total << 12, (u64)free << 12);
  683. printk(KERN_DEBUG "%s block: 0x%08x\n",
  684. prefix, mm->block_size << 12);
  685. }
  686. const struct ttm_mem_type_manager_func nouveau_vram_manager = {
  687. nouveau_vram_manager_init,
  688. nouveau_vram_manager_fini,
  689. nouveau_vram_manager_new,
  690. nouveau_vram_manager_del,
  691. nouveau_vram_manager_debug
  692. };
  693. static int
  694. nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
  695. {
  696. return 0;
  697. }
  698. static int
  699. nouveau_gart_manager_fini(struct ttm_mem_type_manager *man)
  700. {
  701. return 0;
  702. }
  703. static void
  704. nouveau_gart_manager_del(struct ttm_mem_type_manager *man,
  705. struct ttm_mem_reg *mem)
  706. {
  707. struct nouveau_mem *node = mem->mm_node;
  708. if (node->tmp_vma.node) {
  709. nouveau_vm_unmap(&node->tmp_vma);
  710. nouveau_vm_put(&node->tmp_vma);
  711. }
  712. mem->mm_node = NULL;
  713. }
  714. static int
  715. nouveau_gart_manager_new(struct ttm_mem_type_manager *man,
  716. struct ttm_buffer_object *bo,
  717. struct ttm_placement *placement,
  718. struct ttm_mem_reg *mem)
  719. {
  720. struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
  721. struct nouveau_bo *nvbo = nouveau_bo(bo);
  722. struct nouveau_vma *vma = &nvbo->vma;
  723. struct nouveau_vm *vm = vma->vm;
  724. struct nouveau_mem *node;
  725. int ret;
  726. if (unlikely((mem->num_pages << PAGE_SHIFT) >=
  727. dev_priv->gart_info.aper_size))
  728. return -ENOMEM;
  729. node = kzalloc(sizeof(*node), GFP_KERNEL);
  730. if (!node)
  731. return -ENOMEM;
  732. /* This node must be for evicting large-paged VRAM
  733. * to system memory. Due to a nv50 limitation of
  734. * not being able to mix large/small pages within
  735. * the same PDE, we need to create a temporary
  736. * small-paged VMA for the eviction.
  737. */
  738. if (vma->node->type != vm->spg_shift) {
  739. ret = nouveau_vm_get(vm, (u64)vma->node->length << 12,
  740. vm->spg_shift, NV_MEM_ACCESS_RW,
  741. &node->tmp_vma);
  742. if (ret) {
  743. kfree(node);
  744. return ret;
  745. }
  746. }
  747. node->page_shift = nvbo->vma.node->type;
  748. mem->mm_node = node;
  749. mem->start = 0;
  750. return 0;
  751. }
  752. void
  753. nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
  754. {
  755. }
  756. const struct ttm_mem_type_manager_func nouveau_gart_manager = {
  757. nouveau_gart_manager_init,
  758. nouveau_gart_manager_fini,
  759. nouveau_gart_manager_new,
  760. nouveau_gart_manager_del,
  761. nouveau_gart_manager_debug
  762. };