caamalg.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /*
  2. * caam - Freescale FSL CAAM support for crypto API
  3. *
  4. * Copyright 2008-2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on talitos crypto API driver.
  7. *
  8. * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
  9. *
  10. * --------------- ---------------
  11. * | JobDesc #1 |-------------------->| ShareDesc |
  12. * | *(packet 1) | | (PDB) |
  13. * --------------- |------------->| (hashKey) |
  14. * . | | (cipherKey) |
  15. * . | |-------->| (operation) |
  16. * --------------- | | ---------------
  17. * | JobDesc #2 |------| |
  18. * | *(packet 2) | |
  19. * --------------- |
  20. * . |
  21. * . |
  22. * --------------- |
  23. * | JobDesc #3 |------------
  24. * | *(packet 3) |
  25. * ---------------
  26. *
  27. * The SharedDesc never changes for a connection unless rekeyed, but
  28. * each packet will likely be in a different place. So all we need
  29. * to know to process the packet is where the input is, where the
  30. * output goes, and what context we want to process with. Context is
  31. * in the SharedDesc, packet references in the JobDesc.
  32. *
  33. * So, a job desc looks like:
  34. *
  35. * ---------------------
  36. * | Header |
  37. * | ShareDesc Pointer |
  38. * | SEQ_OUT_PTR |
  39. * | (output buffer) |
  40. * | SEQ_IN_PTR |
  41. * | (input buffer) |
  42. * | LOAD (to DECO) |
  43. * ---------------------
  44. */
  45. #include "compat.h"
  46. #include "regs.h"
  47. #include "intern.h"
  48. #include "desc_constr.h"
  49. #include "jr.h"
  50. #include "error.h"
  51. /*
  52. * crypto alg
  53. */
  54. #define CAAM_CRA_PRIORITY 3000
  55. /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
  56. #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
  57. SHA512_DIGEST_SIZE * 2)
  58. /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
  59. #define CAAM_MAX_IV_LENGTH 16
  60. /* length of descriptors text */
  61. #define DESC_AEAD_SHARED_TEXT_LEN 4
  62. #define DESC_AEAD_ENCRYPT_TEXT_LEN 21
  63. #define DESC_AEAD_DECRYPT_TEXT_LEN 24
  64. #define DESC_AEAD_GIVENCRYPT_TEXT_LEN 27
  65. #ifdef DEBUG
  66. /* for print_hex_dumps with line references */
  67. #define xstr(s) str(s)
  68. #define str(s) #s
  69. #define debug(format, arg...) printk(format, arg)
  70. #else
  71. #define debug(format, arg...)
  72. #endif
  73. /*
  74. * per-session context
  75. */
  76. struct caam_ctx {
  77. struct device *jrdev;
  78. u32 *sh_desc;
  79. dma_addr_t shared_desc_phys;
  80. u32 class1_alg_type;
  81. u32 class2_alg_type;
  82. u32 alg_op;
  83. u8 *key;
  84. dma_addr_t key_phys;
  85. unsigned int enckeylen;
  86. unsigned int split_key_len;
  87. unsigned int split_key_pad_len;
  88. unsigned int authsize;
  89. };
  90. static int aead_authenc_setauthsize(struct crypto_aead *authenc,
  91. unsigned int authsize)
  92. {
  93. struct caam_ctx *ctx = crypto_aead_ctx(authenc);
  94. ctx->authsize = authsize;
  95. return 0;
  96. }
  97. struct split_key_result {
  98. struct completion completion;
  99. int err;
  100. };
  101. static void split_key_done(struct device *dev, u32 *desc, u32 err,
  102. void *context)
  103. {
  104. struct split_key_result *res = context;
  105. #ifdef DEBUG
  106. dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  107. #endif
  108. if (err) {
  109. char tmp[CAAM_ERROR_STR_MAX];
  110. dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  111. }
  112. res->err = err;
  113. complete(&res->completion);
  114. }
  115. /*
  116. get a split ipad/opad key
  117. Split key generation-----------------------------------------------
  118. [00] 0xb0810008 jobdesc: stidx=1 share=never len=8
  119. [01] 0x04000014 key: class2->keyreg len=20
  120. @0xffe01000
  121. [03] 0x84410014 operation: cls2-op sha1 hmac init dec
  122. [04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
  123. [05] 0xa4000001 jump: class2 local all ->1 [06]
  124. [06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
  125. @0xffe04000
  126. */
  127. static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
  128. {
  129. struct device *jrdev = ctx->jrdev;
  130. u32 *desc;
  131. struct split_key_result result;
  132. dma_addr_t dma_addr_in, dma_addr_out;
  133. int ret = 0;
  134. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  135. init_job_desc(desc, 0);
  136. dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
  137. DMA_TO_DEVICE);
  138. if (dma_mapping_error(jrdev, dma_addr_in)) {
  139. dev_err(jrdev, "unable to map key input memory\n");
  140. kfree(desc);
  141. return -ENOMEM;
  142. }
  143. append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
  144. KEY_DEST_CLASS_REG);
  145. /* Sets MDHA up into an HMAC-INIT */
  146. append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
  147. OP_ALG_AS_INIT);
  148. /*
  149. * do a FIFO_LOAD of zero, this will trigger the internal key expansion
  150. into both pads inside MDHA
  151. */
  152. append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
  153. FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
  154. /*
  155. * FIFO_STORE with the explicit split-key content store
  156. * (0x26 output type)
  157. */
  158. dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  159. DMA_FROM_DEVICE);
  160. if (dma_mapping_error(jrdev, dma_addr_out)) {
  161. dev_err(jrdev, "unable to map key output memory\n");
  162. kfree(desc);
  163. return -ENOMEM;
  164. }
  165. append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
  166. LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
  167. #ifdef DEBUG
  168. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  169. DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
  170. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  171. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  172. #endif
  173. result.err = 0;
  174. init_completion(&result.completion);
  175. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  176. if (!ret) {
  177. /* in progress */
  178. wait_for_completion_interruptible(&result.completion);
  179. ret = result.err;
  180. #ifdef DEBUG
  181. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  182. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  183. ctx->split_key_pad_len, 1);
  184. #endif
  185. }
  186. dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
  187. DMA_FROM_DEVICE);
  188. dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
  189. kfree(desc);
  190. return ret;
  191. }
  192. static int build_sh_desc_ipsec(struct caam_ctx *ctx)
  193. {
  194. struct device *jrdev = ctx->jrdev;
  195. u32 *sh_desc;
  196. u32 *jump_cmd;
  197. bool keys_fit_inline = 0;
  198. /*
  199. * largest Job Descriptor and its Shared Descriptor
  200. * must both fit into the 64-word Descriptor h/w Buffer
  201. */
  202. if ((DESC_AEAD_GIVENCRYPT_TEXT_LEN +
  203. DESC_AEAD_SHARED_TEXT_LEN) * CAAM_CMD_SZ +
  204. ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
  205. keys_fit_inline = 1;
  206. /* build shared descriptor for this session */
  207. sh_desc = kmalloc(CAAM_CMD_SZ * DESC_AEAD_SHARED_TEXT_LEN +
  208. keys_fit_inline ?
  209. ctx->split_key_pad_len + ctx->enckeylen :
  210. CAAM_PTR_SZ * 2, GFP_DMA | GFP_KERNEL);
  211. if (!sh_desc) {
  212. dev_err(jrdev, "could not allocate shared descriptor\n");
  213. return -ENOMEM;
  214. }
  215. init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
  216. jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
  217. JUMP_COND_SHRD | JUMP_COND_SELF);
  218. /*
  219. * process keys, starting with class 2/authentication.
  220. */
  221. if (keys_fit_inline) {
  222. append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
  223. ctx->split_key_len,
  224. CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
  225. append_key_as_imm(sh_desc, (void *)ctx->key +
  226. ctx->split_key_pad_len, ctx->enckeylen,
  227. ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
  228. } else {
  229. append_key(sh_desc, ctx->key_phys, ctx->split_key_len, CLASS_2 |
  230. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  231. append_key(sh_desc, ctx->key_phys + ctx->split_key_pad_len,
  232. ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
  233. }
  234. /* update jump cmd now that we are at the jump target */
  235. set_jump_tgt_here(sh_desc, jump_cmd);
  236. ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
  237. desc_bytes(sh_desc),
  238. DMA_TO_DEVICE);
  239. if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
  240. dev_err(jrdev, "unable to map shared descriptor\n");
  241. kfree(sh_desc);
  242. return -ENOMEM;
  243. }
  244. ctx->sh_desc = sh_desc;
  245. return 0;
  246. }
  247. static int aead_authenc_setkey(struct crypto_aead *aead,
  248. const u8 *key, unsigned int keylen)
  249. {
  250. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  251. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  252. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  253. struct device *jrdev = ctx->jrdev;
  254. struct rtattr *rta = (void *)key;
  255. struct crypto_authenc_key_param *param;
  256. unsigned int authkeylen;
  257. unsigned int enckeylen;
  258. int ret = 0;
  259. param = RTA_DATA(rta);
  260. enckeylen = be32_to_cpu(param->enckeylen);
  261. key += RTA_ALIGN(rta->rta_len);
  262. keylen -= RTA_ALIGN(rta->rta_len);
  263. if (keylen < enckeylen)
  264. goto badkey;
  265. authkeylen = keylen - enckeylen;
  266. if (keylen > CAAM_MAX_KEY_SIZE)
  267. goto badkey;
  268. /* Pick class 2 key length from algorithm submask */
  269. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  270. OP_ALG_ALGSEL_SHIFT] * 2;
  271. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  272. #ifdef DEBUG
  273. printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
  274. keylen, enckeylen, authkeylen);
  275. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  276. ctx->split_key_len, ctx->split_key_pad_len);
  277. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  278. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  279. #endif
  280. ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
  281. GFP_KERNEL | GFP_DMA);
  282. if (!ctx->key) {
  283. dev_err(jrdev, "could not allocate key output memory\n");
  284. return -ENOMEM;
  285. }
  286. ret = gen_split_key(ctx, key, authkeylen);
  287. if (ret) {
  288. kfree(ctx->key);
  289. goto badkey;
  290. }
  291. /* postpend encryption key to auth split key */
  292. memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
  293. ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
  294. enckeylen, DMA_TO_DEVICE);
  295. if (dma_mapping_error(jrdev, ctx->key_phys)) {
  296. dev_err(jrdev, "unable to map key i/o memory\n");
  297. kfree(ctx->key);
  298. return -ENOMEM;
  299. }
  300. #ifdef DEBUG
  301. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  302. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  303. ctx->split_key_pad_len + enckeylen, 1);
  304. #endif
  305. ctx->enckeylen = enckeylen;
  306. ret = build_sh_desc_ipsec(ctx);
  307. if (ret) {
  308. dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
  309. enckeylen, DMA_TO_DEVICE);
  310. kfree(ctx->key);
  311. }
  312. return ret;
  313. badkey:
  314. crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
  315. return -EINVAL;
  316. }
  317. struct link_tbl_entry {
  318. u64 ptr;
  319. u32 len;
  320. u8 reserved;
  321. u8 buf_pool_id;
  322. u16 offset;
  323. };
  324. /*
  325. * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
  326. * @src_nents: number of segments in input scatterlist
  327. * @dst_nents: number of segments in output scatterlist
  328. * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
  329. * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
  330. * @link_tbl_bytes: length of dma mapped link_tbl space
  331. * @link_tbl_dma: bus physical mapped address of h/w link table
  332. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  333. */
  334. struct ipsec_esp_edesc {
  335. int assoc_nents;
  336. int src_nents;
  337. int dst_nents;
  338. int link_tbl_bytes;
  339. dma_addr_t link_tbl_dma;
  340. struct link_tbl_entry *link_tbl;
  341. u32 hw_desc[0];
  342. };
  343. static void ipsec_esp_unmap(struct device *dev,
  344. struct ipsec_esp_edesc *edesc,
  345. struct aead_request *areq)
  346. {
  347. dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
  348. if (unlikely(areq->dst != areq->src)) {
  349. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  350. DMA_TO_DEVICE);
  351. dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
  352. DMA_FROM_DEVICE);
  353. } else {
  354. dma_unmap_sg(dev, areq->src, edesc->src_nents,
  355. DMA_BIDIRECTIONAL);
  356. }
  357. if (edesc->link_tbl_bytes)
  358. dma_unmap_single(dev, edesc->link_tbl_dma,
  359. edesc->link_tbl_bytes,
  360. DMA_TO_DEVICE);
  361. }
  362. /*
  363. * ipsec_esp descriptor callbacks
  364. */
  365. static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
  366. void *context)
  367. {
  368. struct aead_request *areq = context;
  369. struct ipsec_esp_edesc *edesc;
  370. #ifdef DEBUG
  371. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  372. int ivsize = crypto_aead_ivsize(aead);
  373. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  374. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  375. #endif
  376. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  377. offsetof(struct ipsec_esp_edesc, hw_desc));
  378. if (err) {
  379. char tmp[CAAM_ERROR_STR_MAX];
  380. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  381. }
  382. ipsec_esp_unmap(jrdev, edesc, areq);
  383. #ifdef DEBUG
  384. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  385. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  386. areq->assoclen , 1);
  387. print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
  388. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  389. edesc->src_nents ? 100 : ivsize, 1);
  390. print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
  391. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  392. edesc->src_nents ? 100 : areq->cryptlen +
  393. ctx->authsize + 4, 1);
  394. #endif
  395. kfree(edesc);
  396. aead_request_complete(areq, err);
  397. }
  398. static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
  399. void *context)
  400. {
  401. struct aead_request *areq = context;
  402. struct ipsec_esp_edesc *edesc;
  403. #ifdef DEBUG
  404. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  405. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  406. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  407. #endif
  408. edesc = (struct ipsec_esp_edesc *)((char *)desc -
  409. offsetof(struct ipsec_esp_edesc, hw_desc));
  410. if (err) {
  411. char tmp[CAAM_ERROR_STR_MAX];
  412. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  413. }
  414. ipsec_esp_unmap(jrdev, edesc, areq);
  415. /*
  416. * verify hw auth check passed else return -EBADMSG
  417. */
  418. if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
  419. err = -EBADMSG;
  420. #ifdef DEBUG
  421. print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
  422. DUMP_PREFIX_ADDRESS, 16, 4,
  423. ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
  424. sizeof(struct iphdr) + areq->assoclen +
  425. ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
  426. ctx->authsize + 36, 1);
  427. if (!err && edesc->link_tbl_bytes) {
  428. struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
  429. print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
  430. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
  431. sg->length + ctx->authsize + 16, 1);
  432. }
  433. #endif
  434. kfree(edesc);
  435. aead_request_complete(areq, err);
  436. }
  437. /*
  438. * convert scatterlist to h/w link table format
  439. * scatterlist must have been previously dma mapped
  440. */
  441. static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
  442. struct link_tbl_entry *link_tbl_ptr, u32 offset)
  443. {
  444. while (sg_count) {
  445. link_tbl_ptr->ptr = sg_dma_address(sg);
  446. link_tbl_ptr->len = sg_dma_len(sg);
  447. link_tbl_ptr->reserved = 0;
  448. link_tbl_ptr->buf_pool_id = 0;
  449. link_tbl_ptr->offset = offset;
  450. link_tbl_ptr++;
  451. sg = sg_next(sg);
  452. sg_count--;
  453. }
  454. /* set Final bit (marks end of link table) */
  455. link_tbl_ptr--;
  456. link_tbl_ptr->len |= 0x40000000;
  457. }
  458. /*
  459. * fill in and submit ipsec_esp job descriptor
  460. */
  461. static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
  462. u32 encrypt,
  463. void (*callback) (struct device *dev, u32 *desc,
  464. u32 err, void *context))
  465. {
  466. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  467. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  468. struct device *jrdev = ctx->jrdev;
  469. u32 *desc = edesc->hw_desc, options;
  470. int ret, sg_count, assoc_sg_count;
  471. int ivsize = crypto_aead_ivsize(aead);
  472. int authsize = ctx->authsize;
  473. dma_addr_t ptr, dst_dma, src_dma;
  474. #ifdef DEBUG
  475. u32 *sh_desc = ctx->sh_desc;
  476. debug("assoclen %d cryptlen %d authsize %d\n",
  477. areq->assoclen, areq->cryptlen, authsize);
  478. print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
  479. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
  480. areq->assoclen , 1);
  481. print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
  482. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
  483. edesc->src_nents ? 100 : ivsize, 1);
  484. print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
  485. DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
  486. edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
  487. print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
  488. DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
  489. desc_bytes(sh_desc), 1);
  490. #endif
  491. assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
  492. DMA_TO_DEVICE);
  493. if (areq->src == areq->dst)
  494. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  495. DMA_BIDIRECTIONAL);
  496. else
  497. sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
  498. DMA_TO_DEVICE);
  499. /* start auth operation */
  500. append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
  501. (encrypt ? : OP_ALG_ICV_ON));
  502. /* Load FIFO with data for Class 2 CHA */
  503. options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
  504. if (!edesc->assoc_nents) {
  505. ptr = sg_dma_address(areq->assoc);
  506. } else {
  507. sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
  508. edesc->link_tbl, 0);
  509. ptr = edesc->link_tbl_dma;
  510. options |= LDST_SGF;
  511. }
  512. append_fifo_load(desc, ptr, areq->assoclen, options);
  513. /* copy iv from cipher/class1 input context to class2 infifo */
  514. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
  515. if (!encrypt) {
  516. u32 *jump_cmd, *uncond_jump_cmd;
  517. /* JUMP if shared */
  518. jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
  519. /* start class 1 (cipher) operation, non-shared version */
  520. append_operation(desc, ctx->class1_alg_type |
  521. OP_ALG_AS_INITFINAL);
  522. uncond_jump_cmd = append_jump(desc, 0);
  523. set_jump_tgt_here(desc, jump_cmd);
  524. /* start class 1 (cipher) operation, shared version */
  525. append_operation(desc, ctx->class1_alg_type |
  526. OP_ALG_AS_INITFINAL | OP_ALG_AAI_DK);
  527. set_jump_tgt_here(desc, uncond_jump_cmd);
  528. } else
  529. append_operation(desc, ctx->class1_alg_type |
  530. OP_ALG_AS_INITFINAL | encrypt);
  531. /* load payload & instruct to class2 to snoop class 1 if encrypting */
  532. options = 0;
  533. if (!edesc->src_nents) {
  534. src_dma = sg_dma_address(areq->src);
  535. } else {
  536. sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
  537. edesc->assoc_nents, 0);
  538. src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
  539. sizeof(struct link_tbl_entry);
  540. options |= LDST_SGF;
  541. }
  542. append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
  543. append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
  544. FIFOLD_TYPE_LASTBOTH |
  545. (encrypt ? FIFOLD_TYPE_MSG1OUT2
  546. : FIFOLD_TYPE_MSG));
  547. /* specify destination */
  548. if (areq->src == areq->dst) {
  549. dst_dma = src_dma;
  550. } else {
  551. sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
  552. DMA_FROM_DEVICE);
  553. if (!edesc->dst_nents) {
  554. dst_dma = sg_dma_address(areq->dst);
  555. options = 0;
  556. } else {
  557. sg_to_link_tbl(areq->dst, edesc->dst_nents,
  558. edesc->link_tbl + edesc->assoc_nents +
  559. edesc->src_nents, 0);
  560. dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
  561. edesc->src_nents) *
  562. sizeof(struct link_tbl_entry);
  563. options = LDST_SGF;
  564. }
  565. }
  566. append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
  567. append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
  568. /* ICV */
  569. if (encrypt)
  570. append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
  571. LDST_SRCDST_BYTE_CONTEXT);
  572. else
  573. append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
  574. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
  575. #ifdef DEBUG
  576. debug("job_desc_len %d\n", desc_len(desc));
  577. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  578. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
  579. print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
  580. DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
  581. edesc->link_tbl_bytes, 1);
  582. #endif
  583. ret = caam_jr_enqueue(jrdev, desc, callback, areq);
  584. if (!ret)
  585. ret = -EINPROGRESS;
  586. else {
  587. ipsec_esp_unmap(jrdev, edesc, areq);
  588. kfree(edesc);
  589. }
  590. return ret;
  591. }
  592. /*
  593. * derive number of elements in scatterlist
  594. */
  595. static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
  596. {
  597. struct scatterlist *sg = sg_list;
  598. int sg_nents = 0;
  599. *chained = 0;
  600. while (nbytes > 0) {
  601. sg_nents++;
  602. nbytes -= sg->length;
  603. if (!sg_is_last(sg) && (sg + 1)->length == 0)
  604. *chained = 1;
  605. sg = scatterwalk_sg_next(sg);
  606. }
  607. return sg_nents;
  608. }
  609. /*
  610. * allocate and map the ipsec_esp extended descriptor
  611. */
  612. static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
  613. int desc_bytes)
  614. {
  615. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  616. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  617. struct device *jrdev = ctx->jrdev;
  618. gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
  619. GFP_ATOMIC;
  620. int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
  621. struct ipsec_esp_edesc *edesc;
  622. assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
  623. BUG_ON(chained);
  624. if (likely(assoc_nents == 1))
  625. assoc_nents = 0;
  626. src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
  627. &chained);
  628. BUG_ON(chained);
  629. if (src_nents == 1)
  630. src_nents = 0;
  631. if (unlikely(areq->dst != areq->src)) {
  632. dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
  633. &chained);
  634. BUG_ON(chained);
  635. if (dst_nents == 1)
  636. dst_nents = 0;
  637. }
  638. link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
  639. sizeof(struct link_tbl_entry);
  640. debug("link_tbl_bytes %d\n", link_tbl_bytes);
  641. /* allocate space for base edesc and hw desc commands, link tables */
  642. edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
  643. link_tbl_bytes, GFP_DMA | flags);
  644. if (!edesc) {
  645. dev_err(jrdev, "could not allocate extended descriptor\n");
  646. return ERR_PTR(-ENOMEM);
  647. }
  648. edesc->assoc_nents = assoc_nents;
  649. edesc->src_nents = src_nents;
  650. edesc->dst_nents = dst_nents;
  651. edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
  652. desc_bytes;
  653. edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
  654. link_tbl_bytes, DMA_TO_DEVICE);
  655. edesc->link_tbl_bytes = link_tbl_bytes;
  656. return edesc;
  657. }
  658. static int aead_authenc_encrypt(struct aead_request *areq)
  659. {
  660. struct ipsec_esp_edesc *edesc;
  661. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  662. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  663. struct device *jrdev = ctx->jrdev;
  664. int ivsize = crypto_aead_ivsize(aead);
  665. u32 *desc;
  666. dma_addr_t iv_dma;
  667. /* allocate extended descriptor */
  668. edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_ENCRYPT_TEXT_LEN *
  669. CAAM_CMD_SZ);
  670. if (IS_ERR(edesc))
  671. return PTR_ERR(edesc);
  672. desc = edesc->hw_desc;
  673. /* insert shared descriptor pointer */
  674. init_job_desc_shared(desc, ctx->shared_desc_phys,
  675. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  676. iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
  677. /* check dma error */
  678. append_load(desc, iv_dma, ivsize,
  679. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  680. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  681. }
  682. static int aead_authenc_decrypt(struct aead_request *req)
  683. {
  684. struct crypto_aead *aead = crypto_aead_reqtfm(req);
  685. int ivsize = crypto_aead_ivsize(aead);
  686. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  687. struct device *jrdev = ctx->jrdev;
  688. struct ipsec_esp_edesc *edesc;
  689. u32 *desc;
  690. dma_addr_t iv_dma;
  691. req->cryptlen -= ctx->authsize;
  692. /* allocate extended descriptor */
  693. edesc = ipsec_esp_edesc_alloc(req, DESC_AEAD_DECRYPT_TEXT_LEN *
  694. CAAM_CMD_SZ);
  695. if (IS_ERR(edesc))
  696. return PTR_ERR(edesc);
  697. desc = edesc->hw_desc;
  698. /* insert shared descriptor pointer */
  699. init_job_desc_shared(desc, ctx->shared_desc_phys,
  700. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  701. iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
  702. /* check dma error */
  703. append_load(desc, iv_dma, ivsize,
  704. LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
  705. return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
  706. }
  707. static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
  708. {
  709. struct aead_request *areq = &req->areq;
  710. struct ipsec_esp_edesc *edesc;
  711. struct crypto_aead *aead = crypto_aead_reqtfm(areq);
  712. struct caam_ctx *ctx = crypto_aead_ctx(aead);
  713. struct device *jrdev = ctx->jrdev;
  714. int ivsize = crypto_aead_ivsize(aead);
  715. dma_addr_t iv_dma;
  716. u32 *desc;
  717. iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
  718. debug("%s: giv %p\n", __func__, req->giv);
  719. /* allocate extended descriptor */
  720. edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_GIVENCRYPT_TEXT_LEN *
  721. CAAM_CMD_SZ);
  722. if (IS_ERR(edesc))
  723. return PTR_ERR(edesc);
  724. desc = edesc->hw_desc;
  725. /* insert shared descriptor pointer */
  726. init_job_desc_shared(desc, ctx->shared_desc_phys,
  727. desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
  728. /*
  729. * LOAD IMM Info FIFO
  730. * to DECO, Last, Padding, Random, Message, 16 bytes
  731. */
  732. append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
  733. NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
  734. NFIFOENTRY_PTYPE_RND | ivsize,
  735. LDST_SRCDST_WORD_INFO_FIFO);
  736. /*
  737. * disable info fifo entries since the above serves as the entry
  738. * this way, the MOVE command won't generate an entry.
  739. * Note that this isn't required in more recent versions of
  740. * SEC as a MOVE that doesn't do info FIFO entries is available.
  741. */
  742. append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
  743. /* MOVE DECO Alignment -> C1 Context 16 bytes */
  744. append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);
  745. /* re-enable info fifo entries */
  746. append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
  747. /* MOVE C1 Context -> OFIFO 16 bytes */
  748. append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);
  749. append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
  750. return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
  751. }
  752. struct caam_alg_template {
  753. char name[CRYPTO_MAX_ALG_NAME];
  754. char driver_name[CRYPTO_MAX_ALG_NAME];
  755. unsigned int blocksize;
  756. struct aead_alg aead;
  757. u32 class1_alg_type;
  758. u32 class2_alg_type;
  759. u32 alg_op;
  760. };
  761. static struct caam_alg_template driver_algs[] = {
  762. /* single-pass ipsec_esp descriptor */
  763. {
  764. .name = "authenc(hmac(sha1),cbc(aes))",
  765. .driver_name = "authenc-hmac-sha1-cbc-aes-caam",
  766. .blocksize = AES_BLOCK_SIZE,
  767. .aead = {
  768. .setkey = aead_authenc_setkey,
  769. .setauthsize = aead_authenc_setauthsize,
  770. .encrypt = aead_authenc_encrypt,
  771. .decrypt = aead_authenc_decrypt,
  772. .givencrypt = aead_authenc_givencrypt,
  773. .geniv = "<built-in>",
  774. .ivsize = AES_BLOCK_SIZE,
  775. .maxauthsize = SHA1_DIGEST_SIZE,
  776. },
  777. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  778. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  779. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  780. },
  781. {
  782. .name = "authenc(hmac(sha256),cbc(aes))",
  783. .driver_name = "authenc-hmac-sha256-cbc-aes-caam",
  784. .blocksize = AES_BLOCK_SIZE,
  785. .aead = {
  786. .setkey = aead_authenc_setkey,
  787. .setauthsize = aead_authenc_setauthsize,
  788. .encrypt = aead_authenc_encrypt,
  789. .decrypt = aead_authenc_decrypt,
  790. .givencrypt = aead_authenc_givencrypt,
  791. .geniv = "<built-in>",
  792. .ivsize = AES_BLOCK_SIZE,
  793. .maxauthsize = SHA256_DIGEST_SIZE,
  794. },
  795. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  796. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  797. OP_ALG_AAI_HMAC_PRECOMP,
  798. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  799. },
  800. {
  801. .name = "authenc(hmac(sha512),cbc(aes))",
  802. .driver_name = "authenc-hmac-sha512-cbc-aes-caam",
  803. .blocksize = AES_BLOCK_SIZE,
  804. .aead = {
  805. .setkey = aead_authenc_setkey,
  806. .setauthsize = aead_authenc_setauthsize,
  807. .encrypt = aead_authenc_encrypt,
  808. .decrypt = aead_authenc_decrypt,
  809. .givencrypt = aead_authenc_givencrypt,
  810. .geniv = "<built-in>",
  811. .ivsize = AES_BLOCK_SIZE,
  812. .maxauthsize = SHA512_DIGEST_SIZE,
  813. },
  814. .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
  815. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  816. OP_ALG_AAI_HMAC_PRECOMP,
  817. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  818. },
  819. {
  820. .name = "authenc(hmac(sha1),cbc(des3_ede))",
  821. .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
  822. .blocksize = DES3_EDE_BLOCK_SIZE,
  823. .aead = {
  824. .setkey = aead_authenc_setkey,
  825. .setauthsize = aead_authenc_setauthsize,
  826. .encrypt = aead_authenc_encrypt,
  827. .decrypt = aead_authenc_decrypt,
  828. .givencrypt = aead_authenc_givencrypt,
  829. .geniv = "<built-in>",
  830. .ivsize = DES3_EDE_BLOCK_SIZE,
  831. .maxauthsize = SHA1_DIGEST_SIZE,
  832. },
  833. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  834. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  835. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  836. },
  837. {
  838. .name = "authenc(hmac(sha256),cbc(des3_ede))",
  839. .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
  840. .blocksize = DES3_EDE_BLOCK_SIZE,
  841. .aead = {
  842. .setkey = aead_authenc_setkey,
  843. .setauthsize = aead_authenc_setauthsize,
  844. .encrypt = aead_authenc_encrypt,
  845. .decrypt = aead_authenc_decrypt,
  846. .givencrypt = aead_authenc_givencrypt,
  847. .geniv = "<built-in>",
  848. .ivsize = DES3_EDE_BLOCK_SIZE,
  849. .maxauthsize = SHA256_DIGEST_SIZE,
  850. },
  851. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  852. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  853. OP_ALG_AAI_HMAC_PRECOMP,
  854. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  855. },
  856. {
  857. .name = "authenc(hmac(sha512),cbc(des3_ede))",
  858. .driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
  859. .blocksize = DES3_EDE_BLOCK_SIZE,
  860. .aead = {
  861. .setkey = aead_authenc_setkey,
  862. .setauthsize = aead_authenc_setauthsize,
  863. .encrypt = aead_authenc_encrypt,
  864. .decrypt = aead_authenc_decrypt,
  865. .givencrypt = aead_authenc_givencrypt,
  866. .geniv = "<built-in>",
  867. .ivsize = DES3_EDE_BLOCK_SIZE,
  868. .maxauthsize = SHA512_DIGEST_SIZE,
  869. },
  870. .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
  871. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  872. OP_ALG_AAI_HMAC_PRECOMP,
  873. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  874. },
  875. {
  876. .name = "authenc(hmac(sha1),cbc(des))",
  877. .driver_name = "authenc-hmac-sha1-cbc-des-caam",
  878. .blocksize = DES_BLOCK_SIZE,
  879. .aead = {
  880. .setkey = aead_authenc_setkey,
  881. .setauthsize = aead_authenc_setauthsize,
  882. .encrypt = aead_authenc_encrypt,
  883. .decrypt = aead_authenc_decrypt,
  884. .givencrypt = aead_authenc_givencrypt,
  885. .geniv = "<built-in>",
  886. .ivsize = DES_BLOCK_SIZE,
  887. .maxauthsize = SHA1_DIGEST_SIZE,
  888. },
  889. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  890. .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
  891. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  892. },
  893. {
  894. .name = "authenc(hmac(sha256),cbc(des))",
  895. .driver_name = "authenc-hmac-sha256-cbc-des-caam",
  896. .blocksize = DES_BLOCK_SIZE,
  897. .aead = {
  898. .setkey = aead_authenc_setkey,
  899. .setauthsize = aead_authenc_setauthsize,
  900. .encrypt = aead_authenc_encrypt,
  901. .decrypt = aead_authenc_decrypt,
  902. .givencrypt = aead_authenc_givencrypt,
  903. .geniv = "<built-in>",
  904. .ivsize = DES_BLOCK_SIZE,
  905. .maxauthsize = SHA256_DIGEST_SIZE,
  906. },
  907. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  908. .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
  909. OP_ALG_AAI_HMAC_PRECOMP,
  910. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  911. },
  912. {
  913. .name = "authenc(hmac(sha512),cbc(des))",
  914. .driver_name = "authenc-hmac-sha512-cbc-des-caam",
  915. .blocksize = DES_BLOCK_SIZE,
  916. .aead = {
  917. .setkey = aead_authenc_setkey,
  918. .setauthsize = aead_authenc_setauthsize,
  919. .encrypt = aead_authenc_encrypt,
  920. .decrypt = aead_authenc_decrypt,
  921. .givencrypt = aead_authenc_givencrypt,
  922. .geniv = "<built-in>",
  923. .ivsize = DES_BLOCK_SIZE,
  924. .maxauthsize = SHA512_DIGEST_SIZE,
  925. },
  926. .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
  927. .class2_alg_type = OP_ALG_ALGSEL_SHA512 |
  928. OP_ALG_AAI_HMAC_PRECOMP,
  929. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  930. },
  931. };
  932. struct caam_crypto_alg {
  933. struct list_head entry;
  934. struct device *ctrldev;
  935. int class1_alg_type;
  936. int class2_alg_type;
  937. int alg_op;
  938. struct crypto_alg crypto_alg;
  939. };
  940. static int caam_cra_init(struct crypto_tfm *tfm)
  941. {
  942. struct crypto_alg *alg = tfm->__crt_alg;
  943. struct caam_crypto_alg *caam_alg =
  944. container_of(alg, struct caam_crypto_alg, crypto_alg);
  945. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  946. struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
  947. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  948. /*
  949. * distribute tfms across job rings to ensure in-order
  950. * crypto request processing per tfm
  951. */
  952. ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
  953. /* copy descriptor header template value */
  954. ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
  955. ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
  956. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
  957. return 0;
  958. }
  959. static void caam_cra_exit(struct crypto_tfm *tfm)
  960. {
  961. struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
  962. if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
  963. dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
  964. desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
  965. kfree(ctx->sh_desc);
  966. if (!dma_mapping_error(ctx->jrdev, ctx->key_phys))
  967. dma_unmap_single(ctx->jrdev, ctx->key_phys,
  968. ctx->split_key_pad_len + ctx->enckeylen,
  969. DMA_TO_DEVICE);
  970. kfree(ctx->key);
  971. }
  972. static void __exit caam_algapi_exit(void)
  973. {
  974. struct device_node *dev_node;
  975. struct platform_device *pdev;
  976. struct device *ctrldev;
  977. struct caam_drv_private *priv;
  978. struct caam_crypto_alg *t_alg, *n;
  979. int i, err;
  980. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  981. if (!dev_node)
  982. return;
  983. pdev = of_find_device_by_node(dev_node);
  984. if (!pdev)
  985. return;
  986. ctrldev = &pdev->dev;
  987. of_node_put(dev_node);
  988. priv = dev_get_drvdata(ctrldev);
  989. if (!priv->alg_list.next)
  990. return;
  991. list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
  992. crypto_unregister_alg(&t_alg->crypto_alg);
  993. list_del(&t_alg->entry);
  994. kfree(t_alg);
  995. }
  996. for (i = 0; i < priv->total_jobrs; i++) {
  997. err = caam_jr_deregister(priv->algapi_jr[i]);
  998. if (err < 0)
  999. break;
  1000. }
  1001. kfree(priv->algapi_jr);
  1002. }
  1003. static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
  1004. struct caam_alg_template
  1005. *template)
  1006. {
  1007. struct caam_crypto_alg *t_alg;
  1008. struct crypto_alg *alg;
  1009. t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
  1010. if (!t_alg) {
  1011. dev_err(ctrldev, "failed to allocate t_alg\n");
  1012. return ERR_PTR(-ENOMEM);
  1013. }
  1014. alg = &t_alg->crypto_alg;
  1015. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
  1016. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1017. template->driver_name);
  1018. alg->cra_module = THIS_MODULE;
  1019. alg->cra_init = caam_cra_init;
  1020. alg->cra_exit = caam_cra_exit;
  1021. alg->cra_priority = CAAM_CRA_PRIORITY;
  1022. alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
  1023. alg->cra_blocksize = template->blocksize;
  1024. alg->cra_alignmask = 0;
  1025. alg->cra_type = &crypto_aead_type;
  1026. alg->cra_ctxsize = sizeof(struct caam_ctx);
  1027. alg->cra_u.aead = template->aead;
  1028. t_alg->class1_alg_type = template->class1_alg_type;
  1029. t_alg->class2_alg_type = template->class2_alg_type;
  1030. t_alg->alg_op = template->alg_op;
  1031. t_alg->ctrldev = ctrldev;
  1032. return t_alg;
  1033. }
  1034. static int __init caam_algapi_init(void)
  1035. {
  1036. struct device_node *dev_node;
  1037. struct platform_device *pdev;
  1038. struct device *ctrldev, **jrdev;
  1039. struct caam_drv_private *priv;
  1040. int i = 0, err = 0;
  1041. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1042. if (!dev_node)
  1043. return -ENODEV;
  1044. pdev = of_find_device_by_node(dev_node);
  1045. if (!pdev)
  1046. return -ENODEV;
  1047. ctrldev = &pdev->dev;
  1048. priv = dev_get_drvdata(ctrldev);
  1049. of_node_put(dev_node);
  1050. INIT_LIST_HEAD(&priv->alg_list);
  1051. jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
  1052. if (!jrdev)
  1053. return -ENOMEM;
  1054. for (i = 0; i < priv->total_jobrs; i++) {
  1055. err = caam_jr_register(ctrldev, &jrdev[i]);
  1056. if (err < 0)
  1057. break;
  1058. }
  1059. if (err < 0 && i == 0) {
  1060. dev_err(ctrldev, "algapi error in job ring registration: %d\n",
  1061. err);
  1062. kfree(jrdev);
  1063. return err;
  1064. }
  1065. priv->num_jrs_for_algapi = i;
  1066. priv->algapi_jr = jrdev;
  1067. atomic_set(&priv->tfm_count, -1);
  1068. /* register crypto algorithms the device supports */
  1069. for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
  1070. /* TODO: check if h/w supports alg */
  1071. struct caam_crypto_alg *t_alg;
  1072. t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
  1073. if (IS_ERR(t_alg)) {
  1074. err = PTR_ERR(t_alg);
  1075. dev_warn(ctrldev, "%s alg allocation failed\n",
  1076. driver_algs[i].driver_name);
  1077. continue;
  1078. }
  1079. err = crypto_register_alg(&t_alg->crypto_alg);
  1080. if (err) {
  1081. dev_warn(ctrldev, "%s alg registration failed\n",
  1082. t_alg->crypto_alg.cra_driver_name);
  1083. kfree(t_alg);
  1084. } else {
  1085. list_add_tail(&t_alg->entry, &priv->alg_list);
  1086. dev_info(ctrldev, "%s\n",
  1087. t_alg->crypto_alg.cra_driver_name);
  1088. }
  1089. }
  1090. return err;
  1091. }
  1092. module_init(caam_algapi_init);
  1093. module_exit(caam_algapi_exit);
  1094. MODULE_LICENSE("GPL");
  1095. MODULE_DESCRIPTION("FSL CAAM support for crypto API");
  1096. MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");