setup_64.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. *
  3. * Common boot and setup code.
  4. *
  5. * Copyright (C) 2001 PPC64 Team, IBM Corp
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #undef DEBUG
  13. #include <linux/module.h>
  14. #include <linux/string.h>
  15. #include <linux/sched.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/reboot.h>
  19. #include <linux/delay.h>
  20. #include <linux/initrd.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/ioport.h>
  23. #include <linux/console.h>
  24. #include <linux/utsname.h>
  25. #include <linux/tty.h>
  26. #include <linux/root_dev.h>
  27. #include <linux/notifier.h>
  28. #include <linux/cpu.h>
  29. #include <linux/unistd.h>
  30. #include <linux/serial.h>
  31. #include <linux/serial_8250.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/pci.h>
  34. #include <linux/lockdep.h>
  35. #include <linux/memblock.h>
  36. #include <asm/io.h>
  37. #include <asm/kdump.h>
  38. #include <asm/prom.h>
  39. #include <asm/processor.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/smp.h>
  42. #include <asm/elf.h>
  43. #include <asm/machdep.h>
  44. #include <asm/paca.h>
  45. #include <asm/time.h>
  46. #include <asm/cputable.h>
  47. #include <asm/sections.h>
  48. #include <asm/btext.h>
  49. #include <asm/nvram.h>
  50. #include <asm/setup.h>
  51. #include <asm/system.h>
  52. #include <asm/rtas.h>
  53. #include <asm/iommu.h>
  54. #include <asm/serial.h>
  55. #include <asm/cache.h>
  56. #include <asm/page.h>
  57. #include <asm/mmu.h>
  58. #include <asm/firmware.h>
  59. #include <asm/xmon.h>
  60. #include <asm/udbg.h>
  61. #include <asm/kexec.h>
  62. #include <asm/mmu_context.h>
  63. #include <asm/code-patching.h>
  64. #include "setup.h"
  65. #ifdef DEBUG
  66. #define DBG(fmt...) udbg_printf(fmt)
  67. #else
  68. #define DBG(fmt...)
  69. #endif
  70. int boot_cpuid = 0;
  71. int __initdata boot_cpu_count;
  72. u64 ppc64_pft_size;
  73. /* Pick defaults since we might want to patch instructions
  74. * before we've read this from the device tree.
  75. */
  76. struct ppc64_caches ppc64_caches = {
  77. .dline_size = 0x40,
  78. .log_dline_size = 6,
  79. .iline_size = 0x40,
  80. .log_iline_size = 6
  81. };
  82. EXPORT_SYMBOL_GPL(ppc64_caches);
  83. /*
  84. * These are used in binfmt_elf.c to put aux entries on the stack
  85. * for each elf executable being started.
  86. */
  87. int dcache_bsize;
  88. int icache_bsize;
  89. int ucache_bsize;
  90. #ifdef CONFIG_SMP
  91. static char *smt_enabled_cmdline;
  92. /* Look for ibm,smt-enabled OF option */
  93. static void check_smt_enabled(void)
  94. {
  95. struct device_node *dn;
  96. const char *smt_option;
  97. /* Default to enabling all threads */
  98. smt_enabled_at_boot = threads_per_core;
  99. /* Allow the command line to overrule the OF option */
  100. if (smt_enabled_cmdline) {
  101. if (!strcmp(smt_enabled_cmdline, "on"))
  102. smt_enabled_at_boot = threads_per_core;
  103. else if (!strcmp(smt_enabled_cmdline, "off"))
  104. smt_enabled_at_boot = 0;
  105. else {
  106. long smt;
  107. int rc;
  108. rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
  109. if (!rc)
  110. smt_enabled_at_boot =
  111. min(threads_per_core, (int)smt);
  112. }
  113. } else {
  114. dn = of_find_node_by_path("/options");
  115. if (dn) {
  116. smt_option = of_get_property(dn, "ibm,smt-enabled",
  117. NULL);
  118. if (smt_option) {
  119. if (!strcmp(smt_option, "on"))
  120. smt_enabled_at_boot = threads_per_core;
  121. else if (!strcmp(smt_option, "off"))
  122. smt_enabled_at_boot = 0;
  123. }
  124. of_node_put(dn);
  125. }
  126. }
  127. }
  128. /* Look for smt-enabled= cmdline option */
  129. static int __init early_smt_enabled(char *p)
  130. {
  131. smt_enabled_cmdline = p;
  132. return 0;
  133. }
  134. early_param("smt-enabled", early_smt_enabled);
  135. #else
  136. #define check_smt_enabled()
  137. #endif /* CONFIG_SMP */
  138. /*
  139. * Early initialization entry point. This is called by head.S
  140. * with MMU translation disabled. We rely on the "feature" of
  141. * the CPU that ignores the top 2 bits of the address in real
  142. * mode so we can access kernel globals normally provided we
  143. * only toy with things in the RMO region. From here, we do
  144. * some early parsing of the device-tree to setup out MEMBLOCK
  145. * data structures, and allocate & initialize the hash table
  146. * and segment tables so we can start running with translation
  147. * enabled.
  148. *
  149. * It is this function which will call the probe() callback of
  150. * the various platform types and copy the matching one to the
  151. * global ppc_md structure. Your platform can eventually do
  152. * some very early initializations from the probe() routine, but
  153. * this is not recommended, be very careful as, for example, the
  154. * device-tree is not accessible via normal means at this point.
  155. */
  156. void __init early_setup(unsigned long dt_ptr)
  157. {
  158. /* -------- printk is _NOT_ safe to use here ! ------- */
  159. /* Identify CPU type */
  160. identify_cpu(0, mfspr(SPRN_PVR));
  161. /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
  162. initialise_paca(&boot_paca, 0);
  163. setup_paca(&boot_paca);
  164. /* Initialize lockdep early or else spinlocks will blow */
  165. lockdep_init();
  166. /* -------- printk is now safe to use ------- */
  167. /* Enable early debugging if any specified (see udbg.h) */
  168. udbg_early_init();
  169. DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
  170. /*
  171. * Do early initialization using the flattened device
  172. * tree, such as retrieving the physical memory map or
  173. * calculating/retrieving the hash table size.
  174. */
  175. early_init_devtree(__va(dt_ptr));
  176. /* Now we know the logical id of our boot cpu, setup the paca. */
  177. setup_paca(&paca[boot_cpuid]);
  178. /* Fix up paca fields required for the boot cpu */
  179. get_paca()->cpu_start = 1;
  180. /* Probe the machine type */
  181. probe_machine();
  182. setup_kdump_trampoline();
  183. DBG("Found, Initializing memory management...\n");
  184. /* Initialize the hash table or TLB handling */
  185. early_init_mmu();
  186. DBG(" <- early_setup()\n");
  187. }
  188. #ifdef CONFIG_SMP
  189. void early_setup_secondary(void)
  190. {
  191. /* Mark interrupts enabled in PACA */
  192. get_paca()->soft_enabled = 0;
  193. /* Initialize the hash table or TLB handling */
  194. early_init_mmu_secondary();
  195. }
  196. #endif /* CONFIG_SMP */
  197. #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
  198. void smp_release_cpus(void)
  199. {
  200. unsigned long *ptr;
  201. int i;
  202. DBG(" -> smp_release_cpus()\n");
  203. /* All secondary cpus are spinning on a common spinloop, release them
  204. * all now so they can start to spin on their individual paca
  205. * spinloops. For non SMP kernels, the secondary cpus never get out
  206. * of the common spinloop.
  207. */
  208. ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
  209. - PHYSICAL_START);
  210. *ptr = __pa(generic_secondary_smp_init);
  211. /* And wait a bit for them to catch up */
  212. for (i = 0; i < 100000; i++) {
  213. mb();
  214. HMT_low();
  215. if (boot_cpu_count == 0)
  216. break;
  217. udelay(1);
  218. }
  219. DBG("boot_cpu_count = %d\n", boot_cpu_count);
  220. DBG(" <- smp_release_cpus()\n");
  221. }
  222. #endif /* CONFIG_SMP || CONFIG_KEXEC */
  223. /*
  224. * Initialize some remaining members of the ppc64_caches and systemcfg
  225. * structures
  226. * (at least until we get rid of them completely). This is mostly some
  227. * cache informations about the CPU that will be used by cache flush
  228. * routines and/or provided to userland
  229. */
  230. static void __init initialize_cache_info(void)
  231. {
  232. struct device_node *np;
  233. unsigned long num_cpus = 0;
  234. DBG(" -> initialize_cache_info()\n");
  235. for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
  236. num_cpus += 1;
  237. /* We're assuming *all* of the CPUs have the same
  238. * d-cache and i-cache sizes... -Peter
  239. */
  240. if ( num_cpus == 1 ) {
  241. const u32 *sizep, *lsizep;
  242. u32 size, lsize;
  243. size = 0;
  244. lsize = cur_cpu_spec->dcache_bsize;
  245. sizep = of_get_property(np, "d-cache-size", NULL);
  246. if (sizep != NULL)
  247. size = *sizep;
  248. lsizep = of_get_property(np, "d-cache-block-size", NULL);
  249. /* fallback if block size missing */
  250. if (lsizep == NULL)
  251. lsizep = of_get_property(np, "d-cache-line-size", NULL);
  252. if (lsizep != NULL)
  253. lsize = *lsizep;
  254. if (sizep == 0 || lsizep == 0)
  255. DBG("Argh, can't find dcache properties ! "
  256. "sizep: %p, lsizep: %p\n", sizep, lsizep);
  257. ppc64_caches.dsize = size;
  258. ppc64_caches.dline_size = lsize;
  259. ppc64_caches.log_dline_size = __ilog2(lsize);
  260. ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
  261. size = 0;
  262. lsize = cur_cpu_spec->icache_bsize;
  263. sizep = of_get_property(np, "i-cache-size", NULL);
  264. if (sizep != NULL)
  265. size = *sizep;
  266. lsizep = of_get_property(np, "i-cache-block-size", NULL);
  267. if (lsizep == NULL)
  268. lsizep = of_get_property(np, "i-cache-line-size", NULL);
  269. if (lsizep != NULL)
  270. lsize = *lsizep;
  271. if (sizep == 0 || lsizep == 0)
  272. DBG("Argh, can't find icache properties ! "
  273. "sizep: %p, lsizep: %p\n", sizep, lsizep);
  274. ppc64_caches.isize = size;
  275. ppc64_caches.iline_size = lsize;
  276. ppc64_caches.log_iline_size = __ilog2(lsize);
  277. ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
  278. }
  279. }
  280. DBG(" <- initialize_cache_info()\n");
  281. }
  282. /*
  283. * Do some initial setup of the system. The parameters are those which
  284. * were passed in from the bootloader.
  285. */
  286. void __init setup_system(void)
  287. {
  288. DBG(" -> setup_system()\n");
  289. /* Apply the CPUs-specific and firmware specific fixups to kernel
  290. * text (nop out sections not relevant to this CPU or this firmware)
  291. */
  292. do_feature_fixups(cur_cpu_spec->cpu_features,
  293. &__start___ftr_fixup, &__stop___ftr_fixup);
  294. do_feature_fixups(cur_cpu_spec->mmu_features,
  295. &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
  296. do_feature_fixups(powerpc_firmware_features,
  297. &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
  298. do_lwsync_fixups(cur_cpu_spec->cpu_features,
  299. &__start___lwsync_fixup, &__stop___lwsync_fixup);
  300. /*
  301. * Unflatten the device-tree passed by prom_init or kexec
  302. */
  303. unflatten_device_tree();
  304. /*
  305. * Fill the ppc64_caches & systemcfg structures with informations
  306. * retrieved from the device-tree.
  307. */
  308. initialize_cache_info();
  309. #ifdef CONFIG_PPC_RTAS
  310. /*
  311. * Initialize RTAS if available
  312. */
  313. rtas_initialize();
  314. #endif /* CONFIG_PPC_RTAS */
  315. /*
  316. * Check if we have an initrd provided via the device-tree
  317. */
  318. check_for_initrd();
  319. /*
  320. * Do some platform specific early initializations, that includes
  321. * setting up the hash table pointers. It also sets up some interrupt-mapping
  322. * related options that will be used by finish_device_tree()
  323. */
  324. if (ppc_md.init_early)
  325. ppc_md.init_early();
  326. /*
  327. * We can discover serial ports now since the above did setup the
  328. * hash table management for us, thus ioremap works. We do that early
  329. * so that further code can be debugged
  330. */
  331. find_legacy_serial_ports();
  332. /*
  333. * Register early console
  334. */
  335. register_early_udbg_console();
  336. /*
  337. * Initialize xmon
  338. */
  339. xmon_setup();
  340. smp_setup_cpu_maps();
  341. check_smt_enabled();
  342. #ifdef CONFIG_SMP
  343. /* Release secondary cpus out of their spinloops at 0x60 now that
  344. * we can map physical -> logical CPU ids
  345. */
  346. smp_release_cpus();
  347. #endif
  348. printk("Starting Linux PPC64 %s\n", init_utsname()->version);
  349. printk("-----------------------------------------------------\n");
  350. printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
  351. printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size());
  352. if (ppc64_caches.dline_size != 0x80)
  353. printk("ppc64_caches.dcache_line_size = 0x%x\n",
  354. ppc64_caches.dline_size);
  355. if (ppc64_caches.iline_size != 0x80)
  356. printk("ppc64_caches.icache_line_size = 0x%x\n",
  357. ppc64_caches.iline_size);
  358. #ifdef CONFIG_PPC_STD_MMU_64
  359. if (htab_address)
  360. printk("htab_address = 0x%p\n", htab_address);
  361. printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
  362. #endif /* CONFIG_PPC_STD_MMU_64 */
  363. if (PHYSICAL_START > 0)
  364. printk("physical_start = 0x%llx\n",
  365. (unsigned long long)PHYSICAL_START);
  366. printk("-----------------------------------------------------\n");
  367. DBG(" <- setup_system()\n");
  368. }
  369. /* This returns the limit below which memory accesses to the linear
  370. * mapping are guarnateed not to cause a TLB or SLB miss. This is
  371. * used to allocate interrupt or emergency stacks for which our
  372. * exception entry path doesn't deal with being interrupted.
  373. */
  374. static u64 safe_stack_limit(void)
  375. {
  376. #ifdef CONFIG_PPC_BOOK3E
  377. /* Freescale BookE bolts the entire linear mapping */
  378. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
  379. return linear_map_top;
  380. /* Other BookE, we assume the first GB is bolted */
  381. return 1ul << 30;
  382. #else
  383. /* BookS, the first segment is bolted */
  384. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  385. return 1UL << SID_SHIFT_1T;
  386. return 1UL << SID_SHIFT;
  387. #endif
  388. }
  389. static void __init irqstack_early_init(void)
  390. {
  391. u64 limit = safe_stack_limit();
  392. unsigned int i;
  393. /*
  394. * Interrupt stacks must be in the first segment since we
  395. * cannot afford to take SLB misses on them.
  396. */
  397. for_each_possible_cpu(i) {
  398. softirq_ctx[i] = (struct thread_info *)
  399. __va(memblock_alloc_base(THREAD_SIZE,
  400. THREAD_SIZE, limit));
  401. hardirq_ctx[i] = (struct thread_info *)
  402. __va(memblock_alloc_base(THREAD_SIZE,
  403. THREAD_SIZE, limit));
  404. }
  405. }
  406. #ifdef CONFIG_PPC_BOOK3E
  407. static void __init exc_lvl_early_init(void)
  408. {
  409. extern unsigned int interrupt_base_book3e;
  410. extern unsigned int exc_debug_debug_book3e;
  411. unsigned int i;
  412. for_each_possible_cpu(i) {
  413. critirq_ctx[i] = (struct thread_info *)
  414. __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
  415. dbgirq_ctx[i] = (struct thread_info *)
  416. __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
  417. mcheckirq_ctx[i] = (struct thread_info *)
  418. __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
  419. }
  420. if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
  421. patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
  422. (unsigned long)&exc_debug_debug_book3e, 0);
  423. }
  424. #else
  425. #define exc_lvl_early_init()
  426. #endif
  427. /*
  428. * Stack space used when we detect a bad kernel stack pointer, and
  429. * early in SMP boots before relocation is enabled.
  430. */
  431. static void __init emergency_stack_init(void)
  432. {
  433. u64 limit;
  434. unsigned int i;
  435. /*
  436. * Emergency stacks must be under 256MB, we cannot afford to take
  437. * SLB misses on them. The ABI also requires them to be 128-byte
  438. * aligned.
  439. *
  440. * Since we use these as temporary stacks during secondary CPU
  441. * bringup, we need to get at them in real mode. This means they
  442. * must also be within the RMO region.
  443. */
  444. limit = min(safe_stack_limit(), ppc64_rma_size);
  445. for_each_possible_cpu(i) {
  446. unsigned long sp;
  447. sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
  448. sp += THREAD_SIZE;
  449. paca[i].emergency_sp = __va(sp);
  450. }
  451. }
  452. /*
  453. * Called into from start_kernel this initializes bootmem, which is used
  454. * to manage page allocation until mem_init is called.
  455. */
  456. void __init setup_arch(char **cmdline_p)
  457. {
  458. ppc64_boot_msg(0x12, "Setup Arch");
  459. *cmdline_p = cmd_line;
  460. /*
  461. * Set cache line size based on type of cpu as a default.
  462. * Systems with OF can look in the properties on the cpu node(s)
  463. * for a possibly more accurate value.
  464. */
  465. dcache_bsize = ppc64_caches.dline_size;
  466. icache_bsize = ppc64_caches.iline_size;
  467. /* reboot on panic */
  468. panic_timeout = 180;
  469. if (ppc_md.panic)
  470. setup_panic();
  471. init_mm.start_code = (unsigned long)_stext;
  472. init_mm.end_code = (unsigned long) _etext;
  473. init_mm.end_data = (unsigned long) _edata;
  474. init_mm.brk = klimit;
  475. irqstack_early_init();
  476. exc_lvl_early_init();
  477. emergency_stack_init();
  478. #ifdef CONFIG_PPC_STD_MMU_64
  479. stabs_alloc();
  480. #endif
  481. /* set up the bootmem stuff with available memory */
  482. do_init_bootmem();
  483. sparse_init();
  484. #ifdef CONFIG_DUMMY_CONSOLE
  485. conswitchp = &dummy_con;
  486. #endif
  487. if (ppc_md.setup_arch)
  488. ppc_md.setup_arch();
  489. paging_init();
  490. /* Initialize the MMU context management stuff */
  491. mmu_context_init();
  492. ppc64_boot_msg(0x15, "Setup Done");
  493. }
  494. /* ToDo: do something useful if ppc_md is not yet setup. */
  495. #define PPC64_LINUX_FUNCTION 0x0f000000
  496. #define PPC64_IPL_MESSAGE 0xc0000000
  497. #define PPC64_TERM_MESSAGE 0xb0000000
  498. static void ppc64_do_msg(unsigned int src, const char *msg)
  499. {
  500. if (ppc_md.progress) {
  501. char buf[128];
  502. sprintf(buf, "%08X\n", src);
  503. ppc_md.progress(buf, 0);
  504. snprintf(buf, 128, "%s", msg);
  505. ppc_md.progress(buf, 0);
  506. }
  507. }
  508. /* Print a boot progress message. */
  509. void ppc64_boot_msg(unsigned int src, const char *msg)
  510. {
  511. ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
  512. printk("[boot]%04x %s\n", src, msg);
  513. }
  514. #ifdef CONFIG_SMP
  515. #define PCPU_DYN_SIZE ()
  516. static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
  517. {
  518. return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
  519. __pa(MAX_DMA_ADDRESS));
  520. }
  521. static void __init pcpu_fc_free(void *ptr, size_t size)
  522. {
  523. free_bootmem(__pa(ptr), size);
  524. }
  525. static int pcpu_cpu_distance(unsigned int from, unsigned int to)
  526. {
  527. if (cpu_to_node(from) == cpu_to_node(to))
  528. return LOCAL_DISTANCE;
  529. else
  530. return REMOTE_DISTANCE;
  531. }
  532. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  533. EXPORT_SYMBOL(__per_cpu_offset);
  534. void __init setup_per_cpu_areas(void)
  535. {
  536. const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
  537. size_t atom_size;
  538. unsigned long delta;
  539. unsigned int cpu;
  540. int rc;
  541. /*
  542. * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
  543. * to group units. For larger mappings, use 1M atom which
  544. * should be large enough to contain a number of units.
  545. */
  546. if (mmu_linear_psize == MMU_PAGE_4K)
  547. atom_size = PAGE_SIZE;
  548. else
  549. atom_size = 1 << 20;
  550. rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
  551. pcpu_fc_alloc, pcpu_fc_free);
  552. if (rc < 0)
  553. panic("cannot initialize percpu area (err=%d)", rc);
  554. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  555. for_each_possible_cpu(cpu) {
  556. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  557. paca[cpu].data_offset = __per_cpu_offset[cpu];
  558. }
  559. }
  560. #endif
  561. #ifdef CONFIG_PPC_INDIRECT_IO
  562. struct ppc_pci_io ppc_pci_io;
  563. EXPORT_SYMBOL(ppc_pci_io);
  564. #endif /* CONFIG_PPC_INDIRECT_IO */