x86.c 143 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #include <asm/pvclock.h>
  55. #define MAX_IO_MSRS 256
  56. #define CR0_RESERVED_BITS \
  57. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  58. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  59. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  60. #define CR4_RESERVED_BITS \
  61. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  62. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  63. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  64. | X86_CR4_OSXSAVE \
  65. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  66. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  67. #define KVM_MAX_MCE_BANKS 32
  68. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  69. /* EFER defaults:
  70. * - enable syscall per default because its emulated by KVM
  71. * - enable LME and LMA per default on 64 bit KVM
  72. */
  73. #ifdef CONFIG_X86_64
  74. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  75. #else
  76. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  77. #endif
  78. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  79. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  80. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  81. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  82. struct kvm_cpuid_entry2 __user *entries);
  83. struct kvm_x86_ops *kvm_x86_ops;
  84. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  85. int ignore_msrs = 0;
  86. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  87. #define KVM_NR_SHARED_MSRS 16
  88. struct kvm_shared_msrs_global {
  89. int nr;
  90. u32 msrs[KVM_NR_SHARED_MSRS];
  91. };
  92. struct kvm_shared_msrs {
  93. struct user_return_notifier urn;
  94. bool registered;
  95. struct kvm_shared_msr_values {
  96. u64 host;
  97. u64 curr;
  98. } values[KVM_NR_SHARED_MSRS];
  99. };
  100. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  101. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  102. struct kvm_stats_debugfs_item debugfs_entries[] = {
  103. { "pf_fixed", VCPU_STAT(pf_fixed) },
  104. { "pf_guest", VCPU_STAT(pf_guest) },
  105. { "tlb_flush", VCPU_STAT(tlb_flush) },
  106. { "invlpg", VCPU_STAT(invlpg) },
  107. { "exits", VCPU_STAT(exits) },
  108. { "io_exits", VCPU_STAT(io_exits) },
  109. { "mmio_exits", VCPU_STAT(mmio_exits) },
  110. { "signal_exits", VCPU_STAT(signal_exits) },
  111. { "irq_window", VCPU_STAT(irq_window_exits) },
  112. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  113. { "halt_exits", VCPU_STAT(halt_exits) },
  114. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  115. { "hypercalls", VCPU_STAT(hypercalls) },
  116. { "request_irq", VCPU_STAT(request_irq_exits) },
  117. { "irq_exits", VCPU_STAT(irq_exits) },
  118. { "host_state_reload", VCPU_STAT(host_state_reload) },
  119. { "efer_reload", VCPU_STAT(efer_reload) },
  120. { "fpu_reload", VCPU_STAT(fpu_reload) },
  121. { "insn_emulation", VCPU_STAT(insn_emulation) },
  122. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  123. { "irq_injections", VCPU_STAT(irq_injections) },
  124. { "nmi_injections", VCPU_STAT(nmi_injections) },
  125. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  126. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  127. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  128. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  129. { "mmu_flooded", VM_STAT(mmu_flooded) },
  130. { "mmu_recycled", VM_STAT(mmu_recycled) },
  131. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  132. { "mmu_unsync", VM_STAT(mmu_unsync) },
  133. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  134. { "largepages", VM_STAT(lpages) },
  135. { NULL }
  136. };
  137. u64 __read_mostly host_xcr0;
  138. static inline u32 bit(int bitno)
  139. {
  140. return 1 << (bitno & 31);
  141. }
  142. static void kvm_on_user_return(struct user_return_notifier *urn)
  143. {
  144. unsigned slot;
  145. struct kvm_shared_msrs *locals
  146. = container_of(urn, struct kvm_shared_msrs, urn);
  147. struct kvm_shared_msr_values *values;
  148. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  149. values = &locals->values[slot];
  150. if (values->host != values->curr) {
  151. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  152. values->curr = values->host;
  153. }
  154. }
  155. locals->registered = false;
  156. user_return_notifier_unregister(urn);
  157. }
  158. static void shared_msr_update(unsigned slot, u32 msr)
  159. {
  160. struct kvm_shared_msrs *smsr;
  161. u64 value;
  162. smsr = &__get_cpu_var(shared_msrs);
  163. /* only read, and nobody should modify it at this time,
  164. * so don't need lock */
  165. if (slot >= shared_msrs_global.nr) {
  166. printk(KERN_ERR "kvm: invalid MSR slot!");
  167. return;
  168. }
  169. rdmsrl_safe(msr, &value);
  170. smsr->values[slot].host = value;
  171. smsr->values[slot].curr = value;
  172. }
  173. void kvm_define_shared_msr(unsigned slot, u32 msr)
  174. {
  175. if (slot >= shared_msrs_global.nr)
  176. shared_msrs_global.nr = slot + 1;
  177. shared_msrs_global.msrs[slot] = msr;
  178. /* we need ensured the shared_msr_global have been updated */
  179. smp_wmb();
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  182. static void kvm_shared_msr_cpu_online(void)
  183. {
  184. unsigned i;
  185. for (i = 0; i < shared_msrs_global.nr; ++i)
  186. shared_msr_update(i, shared_msrs_global.msrs[i]);
  187. }
  188. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  189. {
  190. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  191. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  192. return;
  193. smsr->values[slot].curr = value;
  194. wrmsrl(shared_msrs_global.msrs[slot], value);
  195. if (!smsr->registered) {
  196. smsr->urn.on_user_return = kvm_on_user_return;
  197. user_return_notifier_register(&smsr->urn);
  198. smsr->registered = true;
  199. }
  200. }
  201. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  202. static void drop_user_return_notifiers(void *ignore)
  203. {
  204. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  205. if (smsr->registered)
  206. kvm_on_user_return(&smsr->urn);
  207. }
  208. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  209. {
  210. if (irqchip_in_kernel(vcpu->kvm))
  211. return vcpu->arch.apic_base;
  212. else
  213. return vcpu->arch.apic_base;
  214. }
  215. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  216. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  217. {
  218. /* TODO: reserve bits check */
  219. if (irqchip_in_kernel(vcpu->kvm))
  220. kvm_lapic_set_base(vcpu, data);
  221. else
  222. vcpu->arch.apic_base = data;
  223. }
  224. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  225. #define EXCPT_BENIGN 0
  226. #define EXCPT_CONTRIBUTORY 1
  227. #define EXCPT_PF 2
  228. static int exception_class(int vector)
  229. {
  230. switch (vector) {
  231. case PF_VECTOR:
  232. return EXCPT_PF;
  233. case DE_VECTOR:
  234. case TS_VECTOR:
  235. case NP_VECTOR:
  236. case SS_VECTOR:
  237. case GP_VECTOR:
  238. return EXCPT_CONTRIBUTORY;
  239. default:
  240. break;
  241. }
  242. return EXCPT_BENIGN;
  243. }
  244. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  245. unsigned nr, bool has_error, u32 error_code,
  246. bool reinject)
  247. {
  248. u32 prev_nr;
  249. int class1, class2;
  250. if (!vcpu->arch.exception.pending) {
  251. queue:
  252. vcpu->arch.exception.pending = true;
  253. vcpu->arch.exception.has_error_code = has_error;
  254. vcpu->arch.exception.nr = nr;
  255. vcpu->arch.exception.error_code = error_code;
  256. vcpu->arch.exception.reinject = reinject;
  257. return;
  258. }
  259. /* to check exception */
  260. prev_nr = vcpu->arch.exception.nr;
  261. if (prev_nr == DF_VECTOR) {
  262. /* triple fault -> shutdown */
  263. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  264. return;
  265. }
  266. class1 = exception_class(prev_nr);
  267. class2 = exception_class(nr);
  268. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  269. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  270. /* generate double fault per SDM Table 5-5 */
  271. vcpu->arch.exception.pending = true;
  272. vcpu->arch.exception.has_error_code = true;
  273. vcpu->arch.exception.nr = DF_VECTOR;
  274. vcpu->arch.exception.error_code = 0;
  275. } else
  276. /* replace previous exception with a new one in a hope
  277. that instruction re-execution will regenerate lost
  278. exception */
  279. goto queue;
  280. }
  281. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  282. {
  283. kvm_multiple_exception(vcpu, nr, false, 0, false);
  284. }
  285. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  286. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  287. {
  288. kvm_multiple_exception(vcpu, nr, false, 0, true);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  291. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  292. u32 error_code)
  293. {
  294. ++vcpu->stat.pf_guest;
  295. vcpu->arch.cr2 = addr;
  296. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  297. }
  298. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  299. {
  300. vcpu->arch.nmi_pending = 1;
  301. }
  302. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  303. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  304. {
  305. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  308. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  309. {
  310. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  313. /*
  314. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  315. * a #GP and return false.
  316. */
  317. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  318. {
  319. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  320. return true;
  321. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  322. return false;
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  325. /*
  326. * Load the pae pdptrs. Return true is they are all valid.
  327. */
  328. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  329. {
  330. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  331. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  332. int i;
  333. int ret;
  334. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  335. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  336. offset * sizeof(u64), sizeof(pdpte));
  337. if (ret < 0) {
  338. ret = 0;
  339. goto out;
  340. }
  341. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  342. if (is_present_gpte(pdpte[i]) &&
  343. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  344. ret = 0;
  345. goto out;
  346. }
  347. }
  348. ret = 1;
  349. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  350. __set_bit(VCPU_EXREG_PDPTR,
  351. (unsigned long *)&vcpu->arch.regs_avail);
  352. __set_bit(VCPU_EXREG_PDPTR,
  353. (unsigned long *)&vcpu->arch.regs_dirty);
  354. out:
  355. return ret;
  356. }
  357. EXPORT_SYMBOL_GPL(load_pdptrs);
  358. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  359. {
  360. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  361. bool changed = true;
  362. int r;
  363. if (is_long_mode(vcpu) || !is_pae(vcpu))
  364. return false;
  365. if (!test_bit(VCPU_EXREG_PDPTR,
  366. (unsigned long *)&vcpu->arch.regs_avail))
  367. return true;
  368. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  369. if (r < 0)
  370. goto out;
  371. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  372. out:
  373. return changed;
  374. }
  375. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  378. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  379. X86_CR0_CD | X86_CR0_NW;
  380. cr0 |= X86_CR0_ET;
  381. #ifdef CONFIG_X86_64
  382. if (cr0 & 0xffffffff00000000UL)
  383. return 1;
  384. #endif
  385. cr0 &= ~CR0_RESERVED_BITS;
  386. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  387. return 1;
  388. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  389. return 1;
  390. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  391. #ifdef CONFIG_X86_64
  392. if ((vcpu->arch.efer & EFER_LME)) {
  393. int cs_db, cs_l;
  394. if (!is_pae(vcpu))
  395. return 1;
  396. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  397. if (cs_l)
  398. return 1;
  399. } else
  400. #endif
  401. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
  402. return 1;
  403. }
  404. kvm_x86_ops->set_cr0(vcpu, cr0);
  405. if ((cr0 ^ old_cr0) & update_bits)
  406. kvm_mmu_reset_context(vcpu);
  407. return 0;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  410. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  411. {
  412. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_lmsw);
  415. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  416. {
  417. u64 xcr0;
  418. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  419. if (index != XCR_XFEATURE_ENABLED_MASK)
  420. return 1;
  421. xcr0 = xcr;
  422. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  423. return 1;
  424. if (!(xcr0 & XSTATE_FP))
  425. return 1;
  426. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  427. return 1;
  428. if (xcr0 & ~host_xcr0)
  429. return 1;
  430. vcpu->arch.xcr0 = xcr0;
  431. vcpu->guest_xcr0_loaded = 0;
  432. return 0;
  433. }
  434. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  435. {
  436. if (__kvm_set_xcr(vcpu, index, xcr)) {
  437. kvm_inject_gp(vcpu, 0);
  438. return 1;
  439. }
  440. return 0;
  441. }
  442. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  443. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  444. {
  445. struct kvm_cpuid_entry2 *best;
  446. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  447. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  448. }
  449. static void update_cpuid(struct kvm_vcpu *vcpu)
  450. {
  451. struct kvm_cpuid_entry2 *best;
  452. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  453. if (!best)
  454. return;
  455. /* Update OSXSAVE bit */
  456. if (cpu_has_xsave && best->function == 0x1) {
  457. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  458. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  459. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  460. }
  461. }
  462. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  463. {
  464. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  465. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  466. if (cr4 & CR4_RESERVED_BITS)
  467. return 1;
  468. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  469. return 1;
  470. if (is_long_mode(vcpu)) {
  471. if (!(cr4 & X86_CR4_PAE))
  472. return 1;
  473. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  474. && ((cr4 ^ old_cr4) & pdptr_bits)
  475. && !load_pdptrs(vcpu, vcpu->arch.cr3))
  476. return 1;
  477. if (cr4 & X86_CR4_VMXE)
  478. return 1;
  479. kvm_x86_ops->set_cr4(vcpu, cr4);
  480. if ((cr4 ^ old_cr4) & pdptr_bits)
  481. kvm_mmu_reset_context(vcpu);
  482. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  483. update_cpuid(vcpu);
  484. return 0;
  485. }
  486. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  487. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  488. {
  489. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  490. kvm_mmu_sync_roots(vcpu);
  491. kvm_mmu_flush_tlb(vcpu);
  492. return 0;
  493. }
  494. if (is_long_mode(vcpu)) {
  495. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  496. return 1;
  497. } else {
  498. if (is_pae(vcpu)) {
  499. if (cr3 & CR3_PAE_RESERVED_BITS)
  500. return 1;
  501. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
  502. return 1;
  503. }
  504. /*
  505. * We don't check reserved bits in nonpae mode, because
  506. * this isn't enforced, and VMware depends on this.
  507. */
  508. }
  509. /*
  510. * Does the new cr3 value map to physical memory? (Note, we
  511. * catch an invalid cr3 even in real-mode, because it would
  512. * cause trouble later on when we turn on paging anyway.)
  513. *
  514. * A real CPU would silently accept an invalid cr3 and would
  515. * attempt to use it - with largely undefined (and often hard
  516. * to debug) behavior on the guest side.
  517. */
  518. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  519. return 1;
  520. vcpu->arch.cr3 = cr3;
  521. vcpu->arch.mmu.new_cr3(vcpu);
  522. return 0;
  523. }
  524. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  525. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  526. {
  527. if (cr8 & CR8_RESERVED_BITS)
  528. return 1;
  529. if (irqchip_in_kernel(vcpu->kvm))
  530. kvm_lapic_set_tpr(vcpu, cr8);
  531. else
  532. vcpu->arch.cr8 = cr8;
  533. return 0;
  534. }
  535. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  536. {
  537. if (__kvm_set_cr8(vcpu, cr8))
  538. kvm_inject_gp(vcpu, 0);
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  541. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  542. {
  543. if (irqchip_in_kernel(vcpu->kvm))
  544. return kvm_lapic_get_cr8(vcpu);
  545. else
  546. return vcpu->arch.cr8;
  547. }
  548. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  549. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  550. {
  551. switch (dr) {
  552. case 0 ... 3:
  553. vcpu->arch.db[dr] = val;
  554. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  555. vcpu->arch.eff_db[dr] = val;
  556. break;
  557. case 4:
  558. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  559. return 1; /* #UD */
  560. /* fall through */
  561. case 6:
  562. if (val & 0xffffffff00000000ULL)
  563. return -1; /* #GP */
  564. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  565. break;
  566. case 5:
  567. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  568. return 1; /* #UD */
  569. /* fall through */
  570. default: /* 7 */
  571. if (val & 0xffffffff00000000ULL)
  572. return -1; /* #GP */
  573. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  574. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  575. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  576. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  577. }
  578. break;
  579. }
  580. return 0;
  581. }
  582. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  583. {
  584. int res;
  585. res = __kvm_set_dr(vcpu, dr, val);
  586. if (res > 0)
  587. kvm_queue_exception(vcpu, UD_VECTOR);
  588. else if (res < 0)
  589. kvm_inject_gp(vcpu, 0);
  590. return res;
  591. }
  592. EXPORT_SYMBOL_GPL(kvm_set_dr);
  593. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  594. {
  595. switch (dr) {
  596. case 0 ... 3:
  597. *val = vcpu->arch.db[dr];
  598. break;
  599. case 4:
  600. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  601. return 1;
  602. /* fall through */
  603. case 6:
  604. *val = vcpu->arch.dr6;
  605. break;
  606. case 5:
  607. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  608. return 1;
  609. /* fall through */
  610. default: /* 7 */
  611. *val = vcpu->arch.dr7;
  612. break;
  613. }
  614. return 0;
  615. }
  616. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  617. {
  618. if (_kvm_get_dr(vcpu, dr, val)) {
  619. kvm_queue_exception(vcpu, UD_VECTOR);
  620. return 1;
  621. }
  622. return 0;
  623. }
  624. EXPORT_SYMBOL_GPL(kvm_get_dr);
  625. /*
  626. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  627. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  628. *
  629. * This list is modified at module load time to reflect the
  630. * capabilities of the host cpu. This capabilities test skips MSRs that are
  631. * kvm-specific. Those are put in the beginning of the list.
  632. */
  633. #define KVM_SAVE_MSRS_BEGIN 7
  634. static u32 msrs_to_save[] = {
  635. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  636. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  637. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  638. HV_X64_MSR_APIC_ASSIST_PAGE,
  639. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  640. MSR_STAR,
  641. #ifdef CONFIG_X86_64
  642. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  643. #endif
  644. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  645. };
  646. static unsigned num_msrs_to_save;
  647. static u32 emulated_msrs[] = {
  648. MSR_IA32_MISC_ENABLE,
  649. MSR_IA32_MCG_STATUS,
  650. MSR_IA32_MCG_CTL,
  651. };
  652. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  653. {
  654. u64 old_efer = vcpu->arch.efer;
  655. if (efer & efer_reserved_bits)
  656. return 1;
  657. if (is_paging(vcpu)
  658. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  659. return 1;
  660. if (efer & EFER_FFXSR) {
  661. struct kvm_cpuid_entry2 *feat;
  662. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  663. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  664. return 1;
  665. }
  666. if (efer & EFER_SVME) {
  667. struct kvm_cpuid_entry2 *feat;
  668. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  669. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  670. return 1;
  671. }
  672. efer &= ~EFER_LMA;
  673. efer |= vcpu->arch.efer & EFER_LMA;
  674. kvm_x86_ops->set_efer(vcpu, efer);
  675. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  676. kvm_mmu_reset_context(vcpu);
  677. /* Update reserved bits */
  678. if ((efer ^ old_efer) & EFER_NX)
  679. kvm_mmu_reset_context(vcpu);
  680. return 0;
  681. }
  682. void kvm_enable_efer_bits(u64 mask)
  683. {
  684. efer_reserved_bits &= ~mask;
  685. }
  686. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  687. /*
  688. * Writes msr value into into the appropriate "register".
  689. * Returns 0 on success, non-0 otherwise.
  690. * Assumes vcpu_load() was already called.
  691. */
  692. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  693. {
  694. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  695. }
  696. /*
  697. * Adapt set_msr() to msr_io()'s calling convention
  698. */
  699. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  700. {
  701. return kvm_set_msr(vcpu, index, *data);
  702. }
  703. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  704. {
  705. int version;
  706. int r;
  707. struct pvclock_wall_clock wc;
  708. struct timespec boot;
  709. if (!wall_clock)
  710. return;
  711. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  712. if (r)
  713. return;
  714. if (version & 1)
  715. ++version; /* first time write, random junk */
  716. ++version;
  717. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  718. /*
  719. * The guest calculates current wall clock time by adding
  720. * system time (updated by kvm_write_guest_time below) to the
  721. * wall clock specified here. guest system time equals host
  722. * system time for us, thus we must fill in host boot time here.
  723. */
  724. getboottime(&boot);
  725. wc.sec = boot.tv_sec;
  726. wc.nsec = boot.tv_nsec;
  727. wc.version = version;
  728. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  729. version++;
  730. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  731. }
  732. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  733. {
  734. uint32_t quotient, remainder;
  735. /* Don't try to replace with do_div(), this one calculates
  736. * "(dividend << 32) / divisor" */
  737. __asm__ ( "divl %4"
  738. : "=a" (quotient), "=d" (remainder)
  739. : "0" (0), "1" (dividend), "r" (divisor) );
  740. return quotient;
  741. }
  742. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  743. {
  744. uint64_t nsecs = 1000000000LL;
  745. int32_t shift = 0;
  746. uint64_t tps64;
  747. uint32_t tps32;
  748. tps64 = tsc_khz * 1000LL;
  749. while (tps64 > nsecs*2) {
  750. tps64 >>= 1;
  751. shift--;
  752. }
  753. tps32 = (uint32_t)tps64;
  754. while (tps32 <= (uint32_t)nsecs) {
  755. tps32 <<= 1;
  756. shift++;
  757. }
  758. hv_clock->tsc_shift = shift;
  759. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  760. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  761. __func__, tsc_khz, hv_clock->tsc_shift,
  762. hv_clock->tsc_to_system_mul);
  763. }
  764. static inline u64 get_kernel_ns(void)
  765. {
  766. struct timespec ts;
  767. WARN_ON(preemptible());
  768. ktime_get_ts(&ts);
  769. monotonic_to_bootbased(&ts);
  770. return timespec_to_ns(&ts);
  771. }
  772. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  773. static inline int kvm_tsc_changes_freq(void)
  774. {
  775. int cpu = get_cpu();
  776. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  777. cpufreq_quick_get(cpu) != 0;
  778. put_cpu();
  779. return ret;
  780. }
  781. static inline u64 nsec_to_cycles(u64 nsec)
  782. {
  783. WARN_ON(preemptible());
  784. if (kvm_tsc_changes_freq())
  785. printk_once(KERN_WARNING
  786. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  787. return (nsec * __get_cpu_var(cpu_tsc_khz)) / USEC_PER_SEC;
  788. }
  789. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  790. {
  791. struct kvm *kvm = vcpu->kvm;
  792. u64 offset, ns, elapsed;
  793. unsigned long flags;
  794. s64 sdiff;
  795. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  796. offset = data - native_read_tsc();
  797. ns = get_kernel_ns();
  798. elapsed = ns - kvm->arch.last_tsc_nsec;
  799. sdiff = data - kvm->arch.last_tsc_write;
  800. if (sdiff < 0)
  801. sdiff = -sdiff;
  802. /*
  803. * Special case: close write to TSC within 5 seconds of
  804. * another CPU is interpreted as an attempt to synchronize
  805. * The 5 seconds is to accomodate host load / swapping as
  806. * well as any reset of TSC during the boot process.
  807. *
  808. * In that case, for a reliable TSC, we can match TSC offsets,
  809. * or make a best guest using elapsed value.
  810. */
  811. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  812. elapsed < 5ULL * NSEC_PER_SEC) {
  813. if (!check_tsc_unstable()) {
  814. offset = kvm->arch.last_tsc_offset;
  815. pr_debug("kvm: matched tsc offset for %llu\n", data);
  816. } else {
  817. u64 delta = nsec_to_cycles(elapsed);
  818. offset += delta;
  819. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  820. }
  821. ns = kvm->arch.last_tsc_nsec;
  822. }
  823. kvm->arch.last_tsc_nsec = ns;
  824. kvm->arch.last_tsc_write = data;
  825. kvm->arch.last_tsc_offset = offset;
  826. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  827. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  828. /* Reset of TSC must disable overshoot protection below */
  829. vcpu->arch.hv_clock.tsc_timestamp = 0;
  830. }
  831. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  832. static int kvm_write_guest_time(struct kvm_vcpu *v)
  833. {
  834. unsigned long flags;
  835. struct kvm_vcpu_arch *vcpu = &v->arch;
  836. void *shared_kaddr;
  837. unsigned long this_tsc_khz;
  838. s64 kernel_ns, max_kernel_ns;
  839. u64 tsc_timestamp;
  840. if ((!vcpu->time_page))
  841. return 0;
  842. /* Keep irq disabled to prevent changes to the clock */
  843. local_irq_save(flags);
  844. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  845. kernel_ns = get_kernel_ns();
  846. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  847. local_irq_restore(flags);
  848. if (unlikely(this_tsc_khz == 0)) {
  849. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  850. return 1;
  851. }
  852. /*
  853. * Time as measured by the TSC may go backwards when resetting the base
  854. * tsc_timestamp. The reason for this is that the TSC resolution is
  855. * higher than the resolution of the other clock scales. Thus, many
  856. * possible measurments of the TSC correspond to one measurement of any
  857. * other clock, and so a spread of values is possible. This is not a
  858. * problem for the computation of the nanosecond clock; with TSC rates
  859. * around 1GHZ, there can only be a few cycles which correspond to one
  860. * nanosecond value, and any path through this code will inevitably
  861. * take longer than that. However, with the kernel_ns value itself,
  862. * the precision may be much lower, down to HZ granularity. If the
  863. * first sampling of TSC against kernel_ns ends in the low part of the
  864. * range, and the second in the high end of the range, we can get:
  865. *
  866. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  867. *
  868. * As the sampling errors potentially range in the thousands of cycles,
  869. * it is possible such a time value has already been observed by the
  870. * guest. To protect against this, we must compute the system time as
  871. * observed by the guest and ensure the new system time is greater.
  872. */
  873. max_kernel_ns = 0;
  874. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  875. max_kernel_ns = vcpu->last_guest_tsc -
  876. vcpu->hv_clock.tsc_timestamp;
  877. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  878. vcpu->hv_clock.tsc_to_system_mul,
  879. vcpu->hv_clock.tsc_shift);
  880. max_kernel_ns += vcpu->last_kernel_ns;
  881. }
  882. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  883. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  884. vcpu->hw_tsc_khz = this_tsc_khz;
  885. }
  886. if (max_kernel_ns > kernel_ns)
  887. kernel_ns = max_kernel_ns;
  888. /* With all the info we got, fill in the values */
  889. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  890. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  891. vcpu->last_kernel_ns = kernel_ns;
  892. vcpu->hv_clock.flags = 0;
  893. /*
  894. * The interface expects us to write an even number signaling that the
  895. * update is finished. Since the guest won't see the intermediate
  896. * state, we just increase by 2 at the end.
  897. */
  898. vcpu->hv_clock.version += 2;
  899. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  900. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  901. sizeof(vcpu->hv_clock));
  902. kunmap_atomic(shared_kaddr, KM_USER0);
  903. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  904. return 0;
  905. }
  906. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  907. {
  908. struct kvm_vcpu_arch *vcpu = &v->arch;
  909. if (!vcpu->time_page)
  910. return 0;
  911. kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
  912. return 1;
  913. }
  914. static bool msr_mtrr_valid(unsigned msr)
  915. {
  916. switch (msr) {
  917. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  918. case MSR_MTRRfix64K_00000:
  919. case MSR_MTRRfix16K_80000:
  920. case MSR_MTRRfix16K_A0000:
  921. case MSR_MTRRfix4K_C0000:
  922. case MSR_MTRRfix4K_C8000:
  923. case MSR_MTRRfix4K_D0000:
  924. case MSR_MTRRfix4K_D8000:
  925. case MSR_MTRRfix4K_E0000:
  926. case MSR_MTRRfix4K_E8000:
  927. case MSR_MTRRfix4K_F0000:
  928. case MSR_MTRRfix4K_F8000:
  929. case MSR_MTRRdefType:
  930. case MSR_IA32_CR_PAT:
  931. return true;
  932. case 0x2f8:
  933. return true;
  934. }
  935. return false;
  936. }
  937. static bool valid_pat_type(unsigned t)
  938. {
  939. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  940. }
  941. static bool valid_mtrr_type(unsigned t)
  942. {
  943. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  944. }
  945. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  946. {
  947. int i;
  948. if (!msr_mtrr_valid(msr))
  949. return false;
  950. if (msr == MSR_IA32_CR_PAT) {
  951. for (i = 0; i < 8; i++)
  952. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  953. return false;
  954. return true;
  955. } else if (msr == MSR_MTRRdefType) {
  956. if (data & ~0xcff)
  957. return false;
  958. return valid_mtrr_type(data & 0xff);
  959. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  960. for (i = 0; i < 8 ; i++)
  961. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  962. return false;
  963. return true;
  964. }
  965. /* variable MTRRs */
  966. return valid_mtrr_type(data & 0xff);
  967. }
  968. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  969. {
  970. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  971. if (!mtrr_valid(vcpu, msr, data))
  972. return 1;
  973. if (msr == MSR_MTRRdefType) {
  974. vcpu->arch.mtrr_state.def_type = data;
  975. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  976. } else if (msr == MSR_MTRRfix64K_00000)
  977. p[0] = data;
  978. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  979. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  980. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  981. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  982. else if (msr == MSR_IA32_CR_PAT)
  983. vcpu->arch.pat = data;
  984. else { /* Variable MTRRs */
  985. int idx, is_mtrr_mask;
  986. u64 *pt;
  987. idx = (msr - 0x200) / 2;
  988. is_mtrr_mask = msr - 0x200 - 2 * idx;
  989. if (!is_mtrr_mask)
  990. pt =
  991. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  992. else
  993. pt =
  994. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  995. *pt = data;
  996. }
  997. kvm_mmu_reset_context(vcpu);
  998. return 0;
  999. }
  1000. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1001. {
  1002. u64 mcg_cap = vcpu->arch.mcg_cap;
  1003. unsigned bank_num = mcg_cap & 0xff;
  1004. switch (msr) {
  1005. case MSR_IA32_MCG_STATUS:
  1006. vcpu->arch.mcg_status = data;
  1007. break;
  1008. case MSR_IA32_MCG_CTL:
  1009. if (!(mcg_cap & MCG_CTL_P))
  1010. return 1;
  1011. if (data != 0 && data != ~(u64)0)
  1012. return -1;
  1013. vcpu->arch.mcg_ctl = data;
  1014. break;
  1015. default:
  1016. if (msr >= MSR_IA32_MC0_CTL &&
  1017. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1018. u32 offset = msr - MSR_IA32_MC0_CTL;
  1019. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1020. * some Linux kernels though clear bit 10 in bank 4 to
  1021. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1022. * this to avoid an uncatched #GP in the guest
  1023. */
  1024. if ((offset & 0x3) == 0 &&
  1025. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1026. return -1;
  1027. vcpu->arch.mce_banks[offset] = data;
  1028. break;
  1029. }
  1030. return 1;
  1031. }
  1032. return 0;
  1033. }
  1034. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1035. {
  1036. struct kvm *kvm = vcpu->kvm;
  1037. int lm = is_long_mode(vcpu);
  1038. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1039. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1040. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1041. : kvm->arch.xen_hvm_config.blob_size_32;
  1042. u32 page_num = data & ~PAGE_MASK;
  1043. u64 page_addr = data & PAGE_MASK;
  1044. u8 *page;
  1045. int r;
  1046. r = -E2BIG;
  1047. if (page_num >= blob_size)
  1048. goto out;
  1049. r = -ENOMEM;
  1050. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1051. if (!page)
  1052. goto out;
  1053. r = -EFAULT;
  1054. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1055. goto out_free;
  1056. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1057. goto out_free;
  1058. r = 0;
  1059. out_free:
  1060. kfree(page);
  1061. out:
  1062. return r;
  1063. }
  1064. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1065. {
  1066. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1067. }
  1068. static bool kvm_hv_msr_partition_wide(u32 msr)
  1069. {
  1070. bool r = false;
  1071. switch (msr) {
  1072. case HV_X64_MSR_GUEST_OS_ID:
  1073. case HV_X64_MSR_HYPERCALL:
  1074. r = true;
  1075. break;
  1076. }
  1077. return r;
  1078. }
  1079. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1080. {
  1081. struct kvm *kvm = vcpu->kvm;
  1082. switch (msr) {
  1083. case HV_X64_MSR_GUEST_OS_ID:
  1084. kvm->arch.hv_guest_os_id = data;
  1085. /* setting guest os id to zero disables hypercall page */
  1086. if (!kvm->arch.hv_guest_os_id)
  1087. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1088. break;
  1089. case HV_X64_MSR_HYPERCALL: {
  1090. u64 gfn;
  1091. unsigned long addr;
  1092. u8 instructions[4];
  1093. /* if guest os id is not set hypercall should remain disabled */
  1094. if (!kvm->arch.hv_guest_os_id)
  1095. break;
  1096. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1097. kvm->arch.hv_hypercall = data;
  1098. break;
  1099. }
  1100. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1101. addr = gfn_to_hva(kvm, gfn);
  1102. if (kvm_is_error_hva(addr))
  1103. return 1;
  1104. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1105. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1106. if (copy_to_user((void __user *)addr, instructions, 4))
  1107. return 1;
  1108. kvm->arch.hv_hypercall = data;
  1109. break;
  1110. }
  1111. default:
  1112. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1113. "data 0x%llx\n", msr, data);
  1114. return 1;
  1115. }
  1116. return 0;
  1117. }
  1118. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1119. {
  1120. switch (msr) {
  1121. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1122. unsigned long addr;
  1123. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1124. vcpu->arch.hv_vapic = data;
  1125. break;
  1126. }
  1127. addr = gfn_to_hva(vcpu->kvm, data >>
  1128. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1129. if (kvm_is_error_hva(addr))
  1130. return 1;
  1131. if (clear_user((void __user *)addr, PAGE_SIZE))
  1132. return 1;
  1133. vcpu->arch.hv_vapic = data;
  1134. break;
  1135. }
  1136. case HV_X64_MSR_EOI:
  1137. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1138. case HV_X64_MSR_ICR:
  1139. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1140. case HV_X64_MSR_TPR:
  1141. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1142. default:
  1143. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1144. "data 0x%llx\n", msr, data);
  1145. return 1;
  1146. }
  1147. return 0;
  1148. }
  1149. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1150. {
  1151. switch (msr) {
  1152. case MSR_EFER:
  1153. return set_efer(vcpu, data);
  1154. case MSR_K7_HWCR:
  1155. data &= ~(u64)0x40; /* ignore flush filter disable */
  1156. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1157. if (data != 0) {
  1158. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1159. data);
  1160. return 1;
  1161. }
  1162. break;
  1163. case MSR_FAM10H_MMIO_CONF_BASE:
  1164. if (data != 0) {
  1165. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1166. "0x%llx\n", data);
  1167. return 1;
  1168. }
  1169. break;
  1170. case MSR_AMD64_NB_CFG:
  1171. break;
  1172. case MSR_IA32_DEBUGCTLMSR:
  1173. if (!data) {
  1174. /* We support the non-activated case already */
  1175. break;
  1176. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1177. /* Values other than LBR and BTF are vendor-specific,
  1178. thus reserved and should throw a #GP */
  1179. return 1;
  1180. }
  1181. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1182. __func__, data);
  1183. break;
  1184. case MSR_IA32_UCODE_REV:
  1185. case MSR_IA32_UCODE_WRITE:
  1186. case MSR_VM_HSAVE_PA:
  1187. case MSR_AMD64_PATCH_LOADER:
  1188. break;
  1189. case 0x200 ... 0x2ff:
  1190. return set_msr_mtrr(vcpu, msr, data);
  1191. case MSR_IA32_APICBASE:
  1192. kvm_set_apic_base(vcpu, data);
  1193. break;
  1194. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1195. return kvm_x2apic_msr_write(vcpu, msr, data);
  1196. case MSR_IA32_MISC_ENABLE:
  1197. vcpu->arch.ia32_misc_enable_msr = data;
  1198. break;
  1199. case MSR_KVM_WALL_CLOCK_NEW:
  1200. case MSR_KVM_WALL_CLOCK:
  1201. vcpu->kvm->arch.wall_clock = data;
  1202. kvm_write_wall_clock(vcpu->kvm, data);
  1203. break;
  1204. case MSR_KVM_SYSTEM_TIME_NEW:
  1205. case MSR_KVM_SYSTEM_TIME: {
  1206. if (vcpu->arch.time_page) {
  1207. kvm_release_page_dirty(vcpu->arch.time_page);
  1208. vcpu->arch.time_page = NULL;
  1209. }
  1210. vcpu->arch.time = data;
  1211. /* we verify if the enable bit is set... */
  1212. if (!(data & 1))
  1213. break;
  1214. /* ...but clean it before doing the actual write */
  1215. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1216. vcpu->arch.time_page =
  1217. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1218. if (is_error_page(vcpu->arch.time_page)) {
  1219. kvm_release_page_clean(vcpu->arch.time_page);
  1220. vcpu->arch.time_page = NULL;
  1221. }
  1222. kvm_request_guest_time_update(vcpu);
  1223. break;
  1224. }
  1225. case MSR_IA32_MCG_CTL:
  1226. case MSR_IA32_MCG_STATUS:
  1227. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1228. return set_msr_mce(vcpu, msr, data);
  1229. /* Performance counters are not protected by a CPUID bit,
  1230. * so we should check all of them in the generic path for the sake of
  1231. * cross vendor migration.
  1232. * Writing a zero into the event select MSRs disables them,
  1233. * which we perfectly emulate ;-). Any other value should be at least
  1234. * reported, some guests depend on them.
  1235. */
  1236. case MSR_P6_EVNTSEL0:
  1237. case MSR_P6_EVNTSEL1:
  1238. case MSR_K7_EVNTSEL0:
  1239. case MSR_K7_EVNTSEL1:
  1240. case MSR_K7_EVNTSEL2:
  1241. case MSR_K7_EVNTSEL3:
  1242. if (data != 0)
  1243. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1244. "0x%x data 0x%llx\n", msr, data);
  1245. break;
  1246. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1247. * so we ignore writes to make it happy.
  1248. */
  1249. case MSR_P6_PERFCTR0:
  1250. case MSR_P6_PERFCTR1:
  1251. case MSR_K7_PERFCTR0:
  1252. case MSR_K7_PERFCTR1:
  1253. case MSR_K7_PERFCTR2:
  1254. case MSR_K7_PERFCTR3:
  1255. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1256. "0x%x data 0x%llx\n", msr, data);
  1257. break;
  1258. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1259. if (kvm_hv_msr_partition_wide(msr)) {
  1260. int r;
  1261. mutex_lock(&vcpu->kvm->lock);
  1262. r = set_msr_hyperv_pw(vcpu, msr, data);
  1263. mutex_unlock(&vcpu->kvm->lock);
  1264. return r;
  1265. } else
  1266. return set_msr_hyperv(vcpu, msr, data);
  1267. break;
  1268. default:
  1269. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1270. return xen_hvm_config(vcpu, data);
  1271. if (!ignore_msrs) {
  1272. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1273. msr, data);
  1274. return 1;
  1275. } else {
  1276. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1277. msr, data);
  1278. break;
  1279. }
  1280. }
  1281. return 0;
  1282. }
  1283. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1284. /*
  1285. * Reads an msr value (of 'msr_index') into 'pdata'.
  1286. * Returns 0 on success, non-0 otherwise.
  1287. * Assumes vcpu_load() was already called.
  1288. */
  1289. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1290. {
  1291. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1292. }
  1293. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1294. {
  1295. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1296. if (!msr_mtrr_valid(msr))
  1297. return 1;
  1298. if (msr == MSR_MTRRdefType)
  1299. *pdata = vcpu->arch.mtrr_state.def_type +
  1300. (vcpu->arch.mtrr_state.enabled << 10);
  1301. else if (msr == MSR_MTRRfix64K_00000)
  1302. *pdata = p[0];
  1303. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1304. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1305. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1306. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1307. else if (msr == MSR_IA32_CR_PAT)
  1308. *pdata = vcpu->arch.pat;
  1309. else { /* Variable MTRRs */
  1310. int idx, is_mtrr_mask;
  1311. u64 *pt;
  1312. idx = (msr - 0x200) / 2;
  1313. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1314. if (!is_mtrr_mask)
  1315. pt =
  1316. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1317. else
  1318. pt =
  1319. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1320. *pdata = *pt;
  1321. }
  1322. return 0;
  1323. }
  1324. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1325. {
  1326. u64 data;
  1327. u64 mcg_cap = vcpu->arch.mcg_cap;
  1328. unsigned bank_num = mcg_cap & 0xff;
  1329. switch (msr) {
  1330. case MSR_IA32_P5_MC_ADDR:
  1331. case MSR_IA32_P5_MC_TYPE:
  1332. data = 0;
  1333. break;
  1334. case MSR_IA32_MCG_CAP:
  1335. data = vcpu->arch.mcg_cap;
  1336. break;
  1337. case MSR_IA32_MCG_CTL:
  1338. if (!(mcg_cap & MCG_CTL_P))
  1339. return 1;
  1340. data = vcpu->arch.mcg_ctl;
  1341. break;
  1342. case MSR_IA32_MCG_STATUS:
  1343. data = vcpu->arch.mcg_status;
  1344. break;
  1345. default:
  1346. if (msr >= MSR_IA32_MC0_CTL &&
  1347. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1348. u32 offset = msr - MSR_IA32_MC0_CTL;
  1349. data = vcpu->arch.mce_banks[offset];
  1350. break;
  1351. }
  1352. return 1;
  1353. }
  1354. *pdata = data;
  1355. return 0;
  1356. }
  1357. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1358. {
  1359. u64 data = 0;
  1360. struct kvm *kvm = vcpu->kvm;
  1361. switch (msr) {
  1362. case HV_X64_MSR_GUEST_OS_ID:
  1363. data = kvm->arch.hv_guest_os_id;
  1364. break;
  1365. case HV_X64_MSR_HYPERCALL:
  1366. data = kvm->arch.hv_hypercall;
  1367. break;
  1368. default:
  1369. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1370. return 1;
  1371. }
  1372. *pdata = data;
  1373. return 0;
  1374. }
  1375. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1376. {
  1377. u64 data = 0;
  1378. switch (msr) {
  1379. case HV_X64_MSR_VP_INDEX: {
  1380. int r;
  1381. struct kvm_vcpu *v;
  1382. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1383. if (v == vcpu)
  1384. data = r;
  1385. break;
  1386. }
  1387. case HV_X64_MSR_EOI:
  1388. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1389. case HV_X64_MSR_ICR:
  1390. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1391. case HV_X64_MSR_TPR:
  1392. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1393. default:
  1394. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1395. return 1;
  1396. }
  1397. *pdata = data;
  1398. return 0;
  1399. }
  1400. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1401. {
  1402. u64 data;
  1403. switch (msr) {
  1404. case MSR_IA32_PLATFORM_ID:
  1405. case MSR_IA32_UCODE_REV:
  1406. case MSR_IA32_EBL_CR_POWERON:
  1407. case MSR_IA32_DEBUGCTLMSR:
  1408. case MSR_IA32_LASTBRANCHFROMIP:
  1409. case MSR_IA32_LASTBRANCHTOIP:
  1410. case MSR_IA32_LASTINTFROMIP:
  1411. case MSR_IA32_LASTINTTOIP:
  1412. case MSR_K8_SYSCFG:
  1413. case MSR_K7_HWCR:
  1414. case MSR_VM_HSAVE_PA:
  1415. case MSR_P6_PERFCTR0:
  1416. case MSR_P6_PERFCTR1:
  1417. case MSR_P6_EVNTSEL0:
  1418. case MSR_P6_EVNTSEL1:
  1419. case MSR_K7_EVNTSEL0:
  1420. case MSR_K7_PERFCTR0:
  1421. case MSR_K8_INT_PENDING_MSG:
  1422. case MSR_AMD64_NB_CFG:
  1423. case MSR_FAM10H_MMIO_CONF_BASE:
  1424. data = 0;
  1425. break;
  1426. case MSR_MTRRcap:
  1427. data = 0x500 | KVM_NR_VAR_MTRR;
  1428. break;
  1429. case 0x200 ... 0x2ff:
  1430. return get_msr_mtrr(vcpu, msr, pdata);
  1431. case 0xcd: /* fsb frequency */
  1432. data = 3;
  1433. break;
  1434. case MSR_IA32_APICBASE:
  1435. data = kvm_get_apic_base(vcpu);
  1436. break;
  1437. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1438. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1439. break;
  1440. case MSR_IA32_MISC_ENABLE:
  1441. data = vcpu->arch.ia32_misc_enable_msr;
  1442. break;
  1443. case MSR_IA32_PERF_STATUS:
  1444. /* TSC increment by tick */
  1445. data = 1000ULL;
  1446. /* CPU multiplier */
  1447. data |= (((uint64_t)4ULL) << 40);
  1448. break;
  1449. case MSR_EFER:
  1450. data = vcpu->arch.efer;
  1451. break;
  1452. case MSR_KVM_WALL_CLOCK:
  1453. case MSR_KVM_WALL_CLOCK_NEW:
  1454. data = vcpu->kvm->arch.wall_clock;
  1455. break;
  1456. case MSR_KVM_SYSTEM_TIME:
  1457. case MSR_KVM_SYSTEM_TIME_NEW:
  1458. data = vcpu->arch.time;
  1459. break;
  1460. case MSR_IA32_P5_MC_ADDR:
  1461. case MSR_IA32_P5_MC_TYPE:
  1462. case MSR_IA32_MCG_CAP:
  1463. case MSR_IA32_MCG_CTL:
  1464. case MSR_IA32_MCG_STATUS:
  1465. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1466. return get_msr_mce(vcpu, msr, pdata);
  1467. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1468. if (kvm_hv_msr_partition_wide(msr)) {
  1469. int r;
  1470. mutex_lock(&vcpu->kvm->lock);
  1471. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1472. mutex_unlock(&vcpu->kvm->lock);
  1473. return r;
  1474. } else
  1475. return get_msr_hyperv(vcpu, msr, pdata);
  1476. break;
  1477. default:
  1478. if (!ignore_msrs) {
  1479. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1480. return 1;
  1481. } else {
  1482. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1483. data = 0;
  1484. }
  1485. break;
  1486. }
  1487. *pdata = data;
  1488. return 0;
  1489. }
  1490. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1491. /*
  1492. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1493. *
  1494. * @return number of msrs set successfully.
  1495. */
  1496. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1497. struct kvm_msr_entry *entries,
  1498. int (*do_msr)(struct kvm_vcpu *vcpu,
  1499. unsigned index, u64 *data))
  1500. {
  1501. int i, idx;
  1502. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1503. for (i = 0; i < msrs->nmsrs; ++i)
  1504. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1505. break;
  1506. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1507. return i;
  1508. }
  1509. /*
  1510. * Read or write a bunch of msrs. Parameters are user addresses.
  1511. *
  1512. * @return number of msrs set successfully.
  1513. */
  1514. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1515. int (*do_msr)(struct kvm_vcpu *vcpu,
  1516. unsigned index, u64 *data),
  1517. int writeback)
  1518. {
  1519. struct kvm_msrs msrs;
  1520. struct kvm_msr_entry *entries;
  1521. int r, n;
  1522. unsigned size;
  1523. r = -EFAULT;
  1524. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1525. goto out;
  1526. r = -E2BIG;
  1527. if (msrs.nmsrs >= MAX_IO_MSRS)
  1528. goto out;
  1529. r = -ENOMEM;
  1530. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1531. entries = kmalloc(size, GFP_KERNEL);
  1532. if (!entries)
  1533. goto out;
  1534. r = -EFAULT;
  1535. if (copy_from_user(entries, user_msrs->entries, size))
  1536. goto out_free;
  1537. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1538. if (r < 0)
  1539. goto out_free;
  1540. r = -EFAULT;
  1541. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1542. goto out_free;
  1543. r = n;
  1544. out_free:
  1545. kfree(entries);
  1546. out:
  1547. return r;
  1548. }
  1549. int kvm_dev_ioctl_check_extension(long ext)
  1550. {
  1551. int r;
  1552. switch (ext) {
  1553. case KVM_CAP_IRQCHIP:
  1554. case KVM_CAP_HLT:
  1555. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1556. case KVM_CAP_SET_TSS_ADDR:
  1557. case KVM_CAP_EXT_CPUID:
  1558. case KVM_CAP_CLOCKSOURCE:
  1559. case KVM_CAP_PIT:
  1560. case KVM_CAP_NOP_IO_DELAY:
  1561. case KVM_CAP_MP_STATE:
  1562. case KVM_CAP_SYNC_MMU:
  1563. case KVM_CAP_REINJECT_CONTROL:
  1564. case KVM_CAP_IRQ_INJECT_STATUS:
  1565. case KVM_CAP_ASSIGN_DEV_IRQ:
  1566. case KVM_CAP_IRQFD:
  1567. case KVM_CAP_IOEVENTFD:
  1568. case KVM_CAP_PIT2:
  1569. case KVM_CAP_PIT_STATE2:
  1570. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1571. case KVM_CAP_XEN_HVM:
  1572. case KVM_CAP_ADJUST_CLOCK:
  1573. case KVM_CAP_VCPU_EVENTS:
  1574. case KVM_CAP_HYPERV:
  1575. case KVM_CAP_HYPERV_VAPIC:
  1576. case KVM_CAP_HYPERV_SPIN:
  1577. case KVM_CAP_PCI_SEGMENT:
  1578. case KVM_CAP_DEBUGREGS:
  1579. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1580. case KVM_CAP_XSAVE:
  1581. r = 1;
  1582. break;
  1583. case KVM_CAP_COALESCED_MMIO:
  1584. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1585. break;
  1586. case KVM_CAP_VAPIC:
  1587. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1588. break;
  1589. case KVM_CAP_NR_VCPUS:
  1590. r = KVM_MAX_VCPUS;
  1591. break;
  1592. case KVM_CAP_NR_MEMSLOTS:
  1593. r = KVM_MEMORY_SLOTS;
  1594. break;
  1595. case KVM_CAP_PV_MMU: /* obsolete */
  1596. r = 0;
  1597. break;
  1598. case KVM_CAP_IOMMU:
  1599. r = iommu_found();
  1600. break;
  1601. case KVM_CAP_MCE:
  1602. r = KVM_MAX_MCE_BANKS;
  1603. break;
  1604. case KVM_CAP_XCRS:
  1605. r = cpu_has_xsave;
  1606. break;
  1607. default:
  1608. r = 0;
  1609. break;
  1610. }
  1611. return r;
  1612. }
  1613. long kvm_arch_dev_ioctl(struct file *filp,
  1614. unsigned int ioctl, unsigned long arg)
  1615. {
  1616. void __user *argp = (void __user *)arg;
  1617. long r;
  1618. switch (ioctl) {
  1619. case KVM_GET_MSR_INDEX_LIST: {
  1620. struct kvm_msr_list __user *user_msr_list = argp;
  1621. struct kvm_msr_list msr_list;
  1622. unsigned n;
  1623. r = -EFAULT;
  1624. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1625. goto out;
  1626. n = msr_list.nmsrs;
  1627. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1628. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1629. goto out;
  1630. r = -E2BIG;
  1631. if (n < msr_list.nmsrs)
  1632. goto out;
  1633. r = -EFAULT;
  1634. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1635. num_msrs_to_save * sizeof(u32)))
  1636. goto out;
  1637. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1638. &emulated_msrs,
  1639. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1640. goto out;
  1641. r = 0;
  1642. break;
  1643. }
  1644. case KVM_GET_SUPPORTED_CPUID: {
  1645. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1646. struct kvm_cpuid2 cpuid;
  1647. r = -EFAULT;
  1648. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1649. goto out;
  1650. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1651. cpuid_arg->entries);
  1652. if (r)
  1653. goto out;
  1654. r = -EFAULT;
  1655. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1656. goto out;
  1657. r = 0;
  1658. break;
  1659. }
  1660. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1661. u64 mce_cap;
  1662. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1663. r = -EFAULT;
  1664. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1665. goto out;
  1666. r = 0;
  1667. break;
  1668. }
  1669. default:
  1670. r = -EINVAL;
  1671. }
  1672. out:
  1673. return r;
  1674. }
  1675. static void wbinvd_ipi(void *garbage)
  1676. {
  1677. wbinvd();
  1678. }
  1679. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1680. {
  1681. return vcpu->kvm->arch.iommu_domain &&
  1682. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1683. }
  1684. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1685. {
  1686. /* Address WBINVD may be executed by guest */
  1687. if (need_emulate_wbinvd(vcpu)) {
  1688. if (kvm_x86_ops->has_wbinvd_exit())
  1689. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1690. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1691. smp_call_function_single(vcpu->cpu,
  1692. wbinvd_ipi, NULL, 1);
  1693. }
  1694. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1695. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1696. /* Make sure TSC doesn't go backwards */
  1697. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1698. native_read_tsc() - vcpu->arch.last_host_tsc;
  1699. if (tsc_delta < 0)
  1700. mark_tsc_unstable("KVM discovered backwards TSC");
  1701. if (check_tsc_unstable())
  1702. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1703. kvm_migrate_timers(vcpu);
  1704. vcpu->cpu = cpu;
  1705. }
  1706. }
  1707. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1708. {
  1709. kvm_x86_ops->vcpu_put(vcpu);
  1710. kvm_put_guest_fpu(vcpu);
  1711. vcpu->arch.last_host_tsc = native_read_tsc();
  1712. }
  1713. static int is_efer_nx(void)
  1714. {
  1715. unsigned long long efer = 0;
  1716. rdmsrl_safe(MSR_EFER, &efer);
  1717. return efer & EFER_NX;
  1718. }
  1719. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1720. {
  1721. int i;
  1722. struct kvm_cpuid_entry2 *e, *entry;
  1723. entry = NULL;
  1724. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1725. e = &vcpu->arch.cpuid_entries[i];
  1726. if (e->function == 0x80000001) {
  1727. entry = e;
  1728. break;
  1729. }
  1730. }
  1731. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1732. entry->edx &= ~(1 << 20);
  1733. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1734. }
  1735. }
  1736. /* when an old userspace process fills a new kernel module */
  1737. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1738. struct kvm_cpuid *cpuid,
  1739. struct kvm_cpuid_entry __user *entries)
  1740. {
  1741. int r, i;
  1742. struct kvm_cpuid_entry *cpuid_entries;
  1743. r = -E2BIG;
  1744. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1745. goto out;
  1746. r = -ENOMEM;
  1747. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1748. if (!cpuid_entries)
  1749. goto out;
  1750. r = -EFAULT;
  1751. if (copy_from_user(cpuid_entries, entries,
  1752. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1753. goto out_free;
  1754. for (i = 0; i < cpuid->nent; i++) {
  1755. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1756. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1757. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1758. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1759. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1760. vcpu->arch.cpuid_entries[i].index = 0;
  1761. vcpu->arch.cpuid_entries[i].flags = 0;
  1762. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1763. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1764. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1765. }
  1766. vcpu->arch.cpuid_nent = cpuid->nent;
  1767. cpuid_fix_nx_cap(vcpu);
  1768. r = 0;
  1769. kvm_apic_set_version(vcpu);
  1770. kvm_x86_ops->cpuid_update(vcpu);
  1771. update_cpuid(vcpu);
  1772. out_free:
  1773. vfree(cpuid_entries);
  1774. out:
  1775. return r;
  1776. }
  1777. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1778. struct kvm_cpuid2 *cpuid,
  1779. struct kvm_cpuid_entry2 __user *entries)
  1780. {
  1781. int r;
  1782. r = -E2BIG;
  1783. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1784. goto out;
  1785. r = -EFAULT;
  1786. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1787. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1788. goto out;
  1789. vcpu->arch.cpuid_nent = cpuid->nent;
  1790. kvm_apic_set_version(vcpu);
  1791. kvm_x86_ops->cpuid_update(vcpu);
  1792. update_cpuid(vcpu);
  1793. return 0;
  1794. out:
  1795. return r;
  1796. }
  1797. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1798. struct kvm_cpuid2 *cpuid,
  1799. struct kvm_cpuid_entry2 __user *entries)
  1800. {
  1801. int r;
  1802. r = -E2BIG;
  1803. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1804. goto out;
  1805. r = -EFAULT;
  1806. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1807. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1808. goto out;
  1809. return 0;
  1810. out:
  1811. cpuid->nent = vcpu->arch.cpuid_nent;
  1812. return r;
  1813. }
  1814. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1815. u32 index)
  1816. {
  1817. entry->function = function;
  1818. entry->index = index;
  1819. cpuid_count(entry->function, entry->index,
  1820. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1821. entry->flags = 0;
  1822. }
  1823. #define F(x) bit(X86_FEATURE_##x)
  1824. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1825. u32 index, int *nent, int maxnent)
  1826. {
  1827. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1828. #ifdef CONFIG_X86_64
  1829. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1830. ? F(GBPAGES) : 0;
  1831. unsigned f_lm = F(LM);
  1832. #else
  1833. unsigned f_gbpages = 0;
  1834. unsigned f_lm = 0;
  1835. #endif
  1836. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1837. /* cpuid 1.edx */
  1838. const u32 kvm_supported_word0_x86_features =
  1839. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1840. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1841. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1842. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1843. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1844. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1845. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1846. 0 /* HTT, TM, Reserved, PBE */;
  1847. /* cpuid 0x80000001.edx */
  1848. const u32 kvm_supported_word1_x86_features =
  1849. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1850. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1851. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1852. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1853. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1854. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1855. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1856. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1857. /* cpuid 1.ecx */
  1858. const u32 kvm_supported_word4_x86_features =
  1859. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1860. 0 /* DS-CPL, VMX, SMX, EST */ |
  1861. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1862. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1863. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1864. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1865. 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
  1866. /* cpuid 0x80000001.ecx */
  1867. const u32 kvm_supported_word6_x86_features =
  1868. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1869. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1870. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1871. 0 /* SKINIT */ | 0 /* WDT */;
  1872. /* all calls to cpuid_count() should be made on the same cpu */
  1873. get_cpu();
  1874. do_cpuid_1_ent(entry, function, index);
  1875. ++*nent;
  1876. switch (function) {
  1877. case 0:
  1878. entry->eax = min(entry->eax, (u32)0xd);
  1879. break;
  1880. case 1:
  1881. entry->edx &= kvm_supported_word0_x86_features;
  1882. entry->ecx &= kvm_supported_word4_x86_features;
  1883. /* we support x2apic emulation even if host does not support
  1884. * it since we emulate x2apic in software */
  1885. entry->ecx |= F(X2APIC);
  1886. break;
  1887. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1888. * may return different values. This forces us to get_cpu() before
  1889. * issuing the first command, and also to emulate this annoying behavior
  1890. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1891. case 2: {
  1892. int t, times = entry->eax & 0xff;
  1893. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1894. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1895. for (t = 1; t < times && *nent < maxnent; ++t) {
  1896. do_cpuid_1_ent(&entry[t], function, 0);
  1897. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1898. ++*nent;
  1899. }
  1900. break;
  1901. }
  1902. /* function 4 and 0xb have additional index. */
  1903. case 4: {
  1904. int i, cache_type;
  1905. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1906. /* read more entries until cache_type is zero */
  1907. for (i = 1; *nent < maxnent; ++i) {
  1908. cache_type = entry[i - 1].eax & 0x1f;
  1909. if (!cache_type)
  1910. break;
  1911. do_cpuid_1_ent(&entry[i], function, i);
  1912. entry[i].flags |=
  1913. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1914. ++*nent;
  1915. }
  1916. break;
  1917. }
  1918. case 0xb: {
  1919. int i, level_type;
  1920. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1921. /* read more entries until level_type is zero */
  1922. for (i = 1; *nent < maxnent; ++i) {
  1923. level_type = entry[i - 1].ecx & 0xff00;
  1924. if (!level_type)
  1925. break;
  1926. do_cpuid_1_ent(&entry[i], function, i);
  1927. entry[i].flags |=
  1928. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1929. ++*nent;
  1930. }
  1931. break;
  1932. }
  1933. case 0xd: {
  1934. int i;
  1935. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1936. for (i = 1; *nent < maxnent; ++i) {
  1937. if (entry[i - 1].eax == 0 && i != 2)
  1938. break;
  1939. do_cpuid_1_ent(&entry[i], function, i);
  1940. entry[i].flags |=
  1941. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1942. ++*nent;
  1943. }
  1944. break;
  1945. }
  1946. case KVM_CPUID_SIGNATURE: {
  1947. char signature[12] = "KVMKVMKVM\0\0";
  1948. u32 *sigptr = (u32 *)signature;
  1949. entry->eax = 0;
  1950. entry->ebx = sigptr[0];
  1951. entry->ecx = sigptr[1];
  1952. entry->edx = sigptr[2];
  1953. break;
  1954. }
  1955. case KVM_CPUID_FEATURES:
  1956. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  1957. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  1958. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  1959. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  1960. entry->ebx = 0;
  1961. entry->ecx = 0;
  1962. entry->edx = 0;
  1963. break;
  1964. case 0x80000000:
  1965. entry->eax = min(entry->eax, 0x8000001a);
  1966. break;
  1967. case 0x80000001:
  1968. entry->edx &= kvm_supported_word1_x86_features;
  1969. entry->ecx &= kvm_supported_word6_x86_features;
  1970. break;
  1971. }
  1972. kvm_x86_ops->set_supported_cpuid(function, entry);
  1973. put_cpu();
  1974. }
  1975. #undef F
  1976. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1977. struct kvm_cpuid_entry2 __user *entries)
  1978. {
  1979. struct kvm_cpuid_entry2 *cpuid_entries;
  1980. int limit, nent = 0, r = -E2BIG;
  1981. u32 func;
  1982. if (cpuid->nent < 1)
  1983. goto out;
  1984. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1985. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1986. r = -ENOMEM;
  1987. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1988. if (!cpuid_entries)
  1989. goto out;
  1990. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1991. limit = cpuid_entries[0].eax;
  1992. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1993. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1994. &nent, cpuid->nent);
  1995. r = -E2BIG;
  1996. if (nent >= cpuid->nent)
  1997. goto out_free;
  1998. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1999. limit = cpuid_entries[nent - 1].eax;
  2000. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2001. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2002. &nent, cpuid->nent);
  2003. r = -E2BIG;
  2004. if (nent >= cpuid->nent)
  2005. goto out_free;
  2006. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2007. cpuid->nent);
  2008. r = -E2BIG;
  2009. if (nent >= cpuid->nent)
  2010. goto out_free;
  2011. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2012. cpuid->nent);
  2013. r = -E2BIG;
  2014. if (nent >= cpuid->nent)
  2015. goto out_free;
  2016. r = -EFAULT;
  2017. if (copy_to_user(entries, cpuid_entries,
  2018. nent * sizeof(struct kvm_cpuid_entry2)))
  2019. goto out_free;
  2020. cpuid->nent = nent;
  2021. r = 0;
  2022. out_free:
  2023. vfree(cpuid_entries);
  2024. out:
  2025. return r;
  2026. }
  2027. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2028. struct kvm_lapic_state *s)
  2029. {
  2030. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2031. return 0;
  2032. }
  2033. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2034. struct kvm_lapic_state *s)
  2035. {
  2036. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2037. kvm_apic_post_state_restore(vcpu);
  2038. update_cr8_intercept(vcpu);
  2039. return 0;
  2040. }
  2041. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2042. struct kvm_interrupt *irq)
  2043. {
  2044. if (irq->irq < 0 || irq->irq >= 256)
  2045. return -EINVAL;
  2046. if (irqchip_in_kernel(vcpu->kvm))
  2047. return -ENXIO;
  2048. kvm_queue_interrupt(vcpu, irq->irq, false);
  2049. return 0;
  2050. }
  2051. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2052. {
  2053. kvm_inject_nmi(vcpu);
  2054. return 0;
  2055. }
  2056. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2057. struct kvm_tpr_access_ctl *tac)
  2058. {
  2059. if (tac->flags)
  2060. return -EINVAL;
  2061. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2062. return 0;
  2063. }
  2064. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2065. u64 mcg_cap)
  2066. {
  2067. int r;
  2068. unsigned bank_num = mcg_cap & 0xff, bank;
  2069. r = -EINVAL;
  2070. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2071. goto out;
  2072. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2073. goto out;
  2074. r = 0;
  2075. vcpu->arch.mcg_cap = mcg_cap;
  2076. /* Init IA32_MCG_CTL to all 1s */
  2077. if (mcg_cap & MCG_CTL_P)
  2078. vcpu->arch.mcg_ctl = ~(u64)0;
  2079. /* Init IA32_MCi_CTL to all 1s */
  2080. for (bank = 0; bank < bank_num; bank++)
  2081. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2082. out:
  2083. return r;
  2084. }
  2085. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2086. struct kvm_x86_mce *mce)
  2087. {
  2088. u64 mcg_cap = vcpu->arch.mcg_cap;
  2089. unsigned bank_num = mcg_cap & 0xff;
  2090. u64 *banks = vcpu->arch.mce_banks;
  2091. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2092. return -EINVAL;
  2093. /*
  2094. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2095. * reporting is disabled
  2096. */
  2097. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2098. vcpu->arch.mcg_ctl != ~(u64)0)
  2099. return 0;
  2100. banks += 4 * mce->bank;
  2101. /*
  2102. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2103. * reporting is disabled for the bank
  2104. */
  2105. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2106. return 0;
  2107. if (mce->status & MCI_STATUS_UC) {
  2108. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2109. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2110. printk(KERN_DEBUG "kvm: set_mce: "
  2111. "injects mce exception while "
  2112. "previous one is in progress!\n");
  2113. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2114. return 0;
  2115. }
  2116. if (banks[1] & MCI_STATUS_VAL)
  2117. mce->status |= MCI_STATUS_OVER;
  2118. banks[2] = mce->addr;
  2119. banks[3] = mce->misc;
  2120. vcpu->arch.mcg_status = mce->mcg_status;
  2121. banks[1] = mce->status;
  2122. kvm_queue_exception(vcpu, MC_VECTOR);
  2123. } else if (!(banks[1] & MCI_STATUS_VAL)
  2124. || !(banks[1] & MCI_STATUS_UC)) {
  2125. if (banks[1] & MCI_STATUS_VAL)
  2126. mce->status |= MCI_STATUS_OVER;
  2127. banks[2] = mce->addr;
  2128. banks[3] = mce->misc;
  2129. banks[1] = mce->status;
  2130. } else
  2131. banks[1] |= MCI_STATUS_OVER;
  2132. return 0;
  2133. }
  2134. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2135. struct kvm_vcpu_events *events)
  2136. {
  2137. events->exception.injected =
  2138. vcpu->arch.exception.pending &&
  2139. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2140. events->exception.nr = vcpu->arch.exception.nr;
  2141. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2142. events->exception.error_code = vcpu->arch.exception.error_code;
  2143. events->interrupt.injected =
  2144. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2145. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2146. events->interrupt.soft = 0;
  2147. events->interrupt.shadow =
  2148. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2149. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2150. events->nmi.injected = vcpu->arch.nmi_injected;
  2151. events->nmi.pending = vcpu->arch.nmi_pending;
  2152. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2153. events->sipi_vector = vcpu->arch.sipi_vector;
  2154. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2155. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2156. | KVM_VCPUEVENT_VALID_SHADOW);
  2157. }
  2158. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2159. struct kvm_vcpu_events *events)
  2160. {
  2161. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2162. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2163. | KVM_VCPUEVENT_VALID_SHADOW))
  2164. return -EINVAL;
  2165. vcpu->arch.exception.pending = events->exception.injected;
  2166. vcpu->arch.exception.nr = events->exception.nr;
  2167. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2168. vcpu->arch.exception.error_code = events->exception.error_code;
  2169. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2170. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2171. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2172. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2173. kvm_pic_clear_isr_ack(vcpu->kvm);
  2174. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2175. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2176. events->interrupt.shadow);
  2177. vcpu->arch.nmi_injected = events->nmi.injected;
  2178. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2179. vcpu->arch.nmi_pending = events->nmi.pending;
  2180. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2181. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2182. vcpu->arch.sipi_vector = events->sipi_vector;
  2183. return 0;
  2184. }
  2185. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2186. struct kvm_debugregs *dbgregs)
  2187. {
  2188. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2189. dbgregs->dr6 = vcpu->arch.dr6;
  2190. dbgregs->dr7 = vcpu->arch.dr7;
  2191. dbgregs->flags = 0;
  2192. }
  2193. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2194. struct kvm_debugregs *dbgregs)
  2195. {
  2196. if (dbgregs->flags)
  2197. return -EINVAL;
  2198. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2199. vcpu->arch.dr6 = dbgregs->dr6;
  2200. vcpu->arch.dr7 = dbgregs->dr7;
  2201. return 0;
  2202. }
  2203. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2204. struct kvm_xsave *guest_xsave)
  2205. {
  2206. if (cpu_has_xsave)
  2207. memcpy(guest_xsave->region,
  2208. &vcpu->arch.guest_fpu.state->xsave,
  2209. xstate_size);
  2210. else {
  2211. memcpy(guest_xsave->region,
  2212. &vcpu->arch.guest_fpu.state->fxsave,
  2213. sizeof(struct i387_fxsave_struct));
  2214. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2215. XSTATE_FPSSE;
  2216. }
  2217. }
  2218. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2219. struct kvm_xsave *guest_xsave)
  2220. {
  2221. u64 xstate_bv =
  2222. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2223. if (cpu_has_xsave)
  2224. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2225. guest_xsave->region, xstate_size);
  2226. else {
  2227. if (xstate_bv & ~XSTATE_FPSSE)
  2228. return -EINVAL;
  2229. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2230. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2231. }
  2232. return 0;
  2233. }
  2234. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2235. struct kvm_xcrs *guest_xcrs)
  2236. {
  2237. if (!cpu_has_xsave) {
  2238. guest_xcrs->nr_xcrs = 0;
  2239. return;
  2240. }
  2241. guest_xcrs->nr_xcrs = 1;
  2242. guest_xcrs->flags = 0;
  2243. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2244. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2245. }
  2246. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2247. struct kvm_xcrs *guest_xcrs)
  2248. {
  2249. int i, r = 0;
  2250. if (!cpu_has_xsave)
  2251. return -EINVAL;
  2252. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2253. return -EINVAL;
  2254. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2255. /* Only support XCR0 currently */
  2256. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2257. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2258. guest_xcrs->xcrs[0].value);
  2259. break;
  2260. }
  2261. if (r)
  2262. r = -EINVAL;
  2263. return r;
  2264. }
  2265. long kvm_arch_vcpu_ioctl(struct file *filp,
  2266. unsigned int ioctl, unsigned long arg)
  2267. {
  2268. struct kvm_vcpu *vcpu = filp->private_data;
  2269. void __user *argp = (void __user *)arg;
  2270. int r;
  2271. union {
  2272. struct kvm_lapic_state *lapic;
  2273. struct kvm_xsave *xsave;
  2274. struct kvm_xcrs *xcrs;
  2275. void *buffer;
  2276. } u;
  2277. u.buffer = NULL;
  2278. switch (ioctl) {
  2279. case KVM_GET_LAPIC: {
  2280. r = -EINVAL;
  2281. if (!vcpu->arch.apic)
  2282. goto out;
  2283. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2284. r = -ENOMEM;
  2285. if (!u.lapic)
  2286. goto out;
  2287. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2288. if (r)
  2289. goto out;
  2290. r = -EFAULT;
  2291. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2292. goto out;
  2293. r = 0;
  2294. break;
  2295. }
  2296. case KVM_SET_LAPIC: {
  2297. r = -EINVAL;
  2298. if (!vcpu->arch.apic)
  2299. goto out;
  2300. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2301. r = -ENOMEM;
  2302. if (!u.lapic)
  2303. goto out;
  2304. r = -EFAULT;
  2305. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2306. goto out;
  2307. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2308. if (r)
  2309. goto out;
  2310. r = 0;
  2311. break;
  2312. }
  2313. case KVM_INTERRUPT: {
  2314. struct kvm_interrupt irq;
  2315. r = -EFAULT;
  2316. if (copy_from_user(&irq, argp, sizeof irq))
  2317. goto out;
  2318. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2319. if (r)
  2320. goto out;
  2321. r = 0;
  2322. break;
  2323. }
  2324. case KVM_NMI: {
  2325. r = kvm_vcpu_ioctl_nmi(vcpu);
  2326. if (r)
  2327. goto out;
  2328. r = 0;
  2329. break;
  2330. }
  2331. case KVM_SET_CPUID: {
  2332. struct kvm_cpuid __user *cpuid_arg = argp;
  2333. struct kvm_cpuid cpuid;
  2334. r = -EFAULT;
  2335. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2336. goto out;
  2337. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2338. if (r)
  2339. goto out;
  2340. break;
  2341. }
  2342. case KVM_SET_CPUID2: {
  2343. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2344. struct kvm_cpuid2 cpuid;
  2345. r = -EFAULT;
  2346. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2347. goto out;
  2348. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2349. cpuid_arg->entries);
  2350. if (r)
  2351. goto out;
  2352. break;
  2353. }
  2354. case KVM_GET_CPUID2: {
  2355. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2356. struct kvm_cpuid2 cpuid;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2359. goto out;
  2360. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2361. cpuid_arg->entries);
  2362. if (r)
  2363. goto out;
  2364. r = -EFAULT;
  2365. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2366. goto out;
  2367. r = 0;
  2368. break;
  2369. }
  2370. case KVM_GET_MSRS:
  2371. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2372. break;
  2373. case KVM_SET_MSRS:
  2374. r = msr_io(vcpu, argp, do_set_msr, 0);
  2375. break;
  2376. case KVM_TPR_ACCESS_REPORTING: {
  2377. struct kvm_tpr_access_ctl tac;
  2378. r = -EFAULT;
  2379. if (copy_from_user(&tac, argp, sizeof tac))
  2380. goto out;
  2381. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2382. if (r)
  2383. goto out;
  2384. r = -EFAULT;
  2385. if (copy_to_user(argp, &tac, sizeof tac))
  2386. goto out;
  2387. r = 0;
  2388. break;
  2389. };
  2390. case KVM_SET_VAPIC_ADDR: {
  2391. struct kvm_vapic_addr va;
  2392. r = -EINVAL;
  2393. if (!irqchip_in_kernel(vcpu->kvm))
  2394. goto out;
  2395. r = -EFAULT;
  2396. if (copy_from_user(&va, argp, sizeof va))
  2397. goto out;
  2398. r = 0;
  2399. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2400. break;
  2401. }
  2402. case KVM_X86_SETUP_MCE: {
  2403. u64 mcg_cap;
  2404. r = -EFAULT;
  2405. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2406. goto out;
  2407. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2408. break;
  2409. }
  2410. case KVM_X86_SET_MCE: {
  2411. struct kvm_x86_mce mce;
  2412. r = -EFAULT;
  2413. if (copy_from_user(&mce, argp, sizeof mce))
  2414. goto out;
  2415. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2416. break;
  2417. }
  2418. case KVM_GET_VCPU_EVENTS: {
  2419. struct kvm_vcpu_events events;
  2420. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2421. r = -EFAULT;
  2422. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2423. break;
  2424. r = 0;
  2425. break;
  2426. }
  2427. case KVM_SET_VCPU_EVENTS: {
  2428. struct kvm_vcpu_events events;
  2429. r = -EFAULT;
  2430. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2431. break;
  2432. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2433. break;
  2434. }
  2435. case KVM_GET_DEBUGREGS: {
  2436. struct kvm_debugregs dbgregs;
  2437. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2438. r = -EFAULT;
  2439. if (copy_to_user(argp, &dbgregs,
  2440. sizeof(struct kvm_debugregs)))
  2441. break;
  2442. r = 0;
  2443. break;
  2444. }
  2445. case KVM_SET_DEBUGREGS: {
  2446. struct kvm_debugregs dbgregs;
  2447. r = -EFAULT;
  2448. if (copy_from_user(&dbgregs, argp,
  2449. sizeof(struct kvm_debugregs)))
  2450. break;
  2451. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2452. break;
  2453. }
  2454. case KVM_GET_XSAVE: {
  2455. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2456. r = -ENOMEM;
  2457. if (!u.xsave)
  2458. break;
  2459. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2460. r = -EFAULT;
  2461. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2462. break;
  2463. r = 0;
  2464. break;
  2465. }
  2466. case KVM_SET_XSAVE: {
  2467. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2468. r = -ENOMEM;
  2469. if (!u.xsave)
  2470. break;
  2471. r = -EFAULT;
  2472. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2473. break;
  2474. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2475. break;
  2476. }
  2477. case KVM_GET_XCRS: {
  2478. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2479. r = -ENOMEM;
  2480. if (!u.xcrs)
  2481. break;
  2482. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2483. r = -EFAULT;
  2484. if (copy_to_user(argp, u.xcrs,
  2485. sizeof(struct kvm_xcrs)))
  2486. break;
  2487. r = 0;
  2488. break;
  2489. }
  2490. case KVM_SET_XCRS: {
  2491. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2492. r = -ENOMEM;
  2493. if (!u.xcrs)
  2494. break;
  2495. r = -EFAULT;
  2496. if (copy_from_user(u.xcrs, argp,
  2497. sizeof(struct kvm_xcrs)))
  2498. break;
  2499. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2500. break;
  2501. }
  2502. default:
  2503. r = -EINVAL;
  2504. }
  2505. out:
  2506. kfree(u.buffer);
  2507. return r;
  2508. }
  2509. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2510. {
  2511. int ret;
  2512. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2513. return -1;
  2514. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2515. return ret;
  2516. }
  2517. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2518. u64 ident_addr)
  2519. {
  2520. kvm->arch.ept_identity_map_addr = ident_addr;
  2521. return 0;
  2522. }
  2523. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2524. u32 kvm_nr_mmu_pages)
  2525. {
  2526. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2527. return -EINVAL;
  2528. mutex_lock(&kvm->slots_lock);
  2529. spin_lock(&kvm->mmu_lock);
  2530. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2531. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2532. spin_unlock(&kvm->mmu_lock);
  2533. mutex_unlock(&kvm->slots_lock);
  2534. return 0;
  2535. }
  2536. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2537. {
  2538. return kvm->arch.n_max_mmu_pages;
  2539. }
  2540. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2541. {
  2542. int r;
  2543. r = 0;
  2544. switch (chip->chip_id) {
  2545. case KVM_IRQCHIP_PIC_MASTER:
  2546. memcpy(&chip->chip.pic,
  2547. &pic_irqchip(kvm)->pics[0],
  2548. sizeof(struct kvm_pic_state));
  2549. break;
  2550. case KVM_IRQCHIP_PIC_SLAVE:
  2551. memcpy(&chip->chip.pic,
  2552. &pic_irqchip(kvm)->pics[1],
  2553. sizeof(struct kvm_pic_state));
  2554. break;
  2555. case KVM_IRQCHIP_IOAPIC:
  2556. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2557. break;
  2558. default:
  2559. r = -EINVAL;
  2560. break;
  2561. }
  2562. return r;
  2563. }
  2564. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2565. {
  2566. int r;
  2567. r = 0;
  2568. switch (chip->chip_id) {
  2569. case KVM_IRQCHIP_PIC_MASTER:
  2570. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2571. memcpy(&pic_irqchip(kvm)->pics[0],
  2572. &chip->chip.pic,
  2573. sizeof(struct kvm_pic_state));
  2574. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2575. break;
  2576. case KVM_IRQCHIP_PIC_SLAVE:
  2577. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2578. memcpy(&pic_irqchip(kvm)->pics[1],
  2579. &chip->chip.pic,
  2580. sizeof(struct kvm_pic_state));
  2581. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2582. break;
  2583. case KVM_IRQCHIP_IOAPIC:
  2584. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2585. break;
  2586. default:
  2587. r = -EINVAL;
  2588. break;
  2589. }
  2590. kvm_pic_update_irq(pic_irqchip(kvm));
  2591. return r;
  2592. }
  2593. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2594. {
  2595. int r = 0;
  2596. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2597. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2598. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2599. return r;
  2600. }
  2601. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2602. {
  2603. int r = 0;
  2604. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2605. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2606. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2607. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2608. return r;
  2609. }
  2610. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2611. {
  2612. int r = 0;
  2613. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2614. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2615. sizeof(ps->channels));
  2616. ps->flags = kvm->arch.vpit->pit_state.flags;
  2617. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2618. return r;
  2619. }
  2620. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2621. {
  2622. int r = 0, start = 0;
  2623. u32 prev_legacy, cur_legacy;
  2624. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2625. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2626. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2627. if (!prev_legacy && cur_legacy)
  2628. start = 1;
  2629. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2630. sizeof(kvm->arch.vpit->pit_state.channels));
  2631. kvm->arch.vpit->pit_state.flags = ps->flags;
  2632. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2633. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2634. return r;
  2635. }
  2636. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2637. struct kvm_reinject_control *control)
  2638. {
  2639. if (!kvm->arch.vpit)
  2640. return -ENXIO;
  2641. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2642. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2643. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2644. return 0;
  2645. }
  2646. /*
  2647. * Get (and clear) the dirty memory log for a memory slot.
  2648. */
  2649. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2650. struct kvm_dirty_log *log)
  2651. {
  2652. int r, i;
  2653. struct kvm_memory_slot *memslot;
  2654. unsigned long n;
  2655. unsigned long is_dirty = 0;
  2656. mutex_lock(&kvm->slots_lock);
  2657. r = -EINVAL;
  2658. if (log->slot >= KVM_MEMORY_SLOTS)
  2659. goto out;
  2660. memslot = &kvm->memslots->memslots[log->slot];
  2661. r = -ENOENT;
  2662. if (!memslot->dirty_bitmap)
  2663. goto out;
  2664. n = kvm_dirty_bitmap_bytes(memslot);
  2665. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2666. is_dirty = memslot->dirty_bitmap[i];
  2667. /* If nothing is dirty, don't bother messing with page tables. */
  2668. if (is_dirty) {
  2669. struct kvm_memslots *slots, *old_slots;
  2670. unsigned long *dirty_bitmap;
  2671. spin_lock(&kvm->mmu_lock);
  2672. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2673. spin_unlock(&kvm->mmu_lock);
  2674. r = -ENOMEM;
  2675. dirty_bitmap = vmalloc(n);
  2676. if (!dirty_bitmap)
  2677. goto out;
  2678. memset(dirty_bitmap, 0, n);
  2679. r = -ENOMEM;
  2680. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2681. if (!slots) {
  2682. vfree(dirty_bitmap);
  2683. goto out;
  2684. }
  2685. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2686. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2687. old_slots = kvm->memslots;
  2688. rcu_assign_pointer(kvm->memslots, slots);
  2689. synchronize_srcu_expedited(&kvm->srcu);
  2690. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2691. kfree(old_slots);
  2692. r = -EFAULT;
  2693. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2694. vfree(dirty_bitmap);
  2695. goto out;
  2696. }
  2697. vfree(dirty_bitmap);
  2698. } else {
  2699. r = -EFAULT;
  2700. if (clear_user(log->dirty_bitmap, n))
  2701. goto out;
  2702. }
  2703. r = 0;
  2704. out:
  2705. mutex_unlock(&kvm->slots_lock);
  2706. return r;
  2707. }
  2708. long kvm_arch_vm_ioctl(struct file *filp,
  2709. unsigned int ioctl, unsigned long arg)
  2710. {
  2711. struct kvm *kvm = filp->private_data;
  2712. void __user *argp = (void __user *)arg;
  2713. int r = -ENOTTY;
  2714. /*
  2715. * This union makes it completely explicit to gcc-3.x
  2716. * that these two variables' stack usage should be
  2717. * combined, not added together.
  2718. */
  2719. union {
  2720. struct kvm_pit_state ps;
  2721. struct kvm_pit_state2 ps2;
  2722. struct kvm_pit_config pit_config;
  2723. } u;
  2724. switch (ioctl) {
  2725. case KVM_SET_TSS_ADDR:
  2726. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2727. if (r < 0)
  2728. goto out;
  2729. break;
  2730. case KVM_SET_IDENTITY_MAP_ADDR: {
  2731. u64 ident_addr;
  2732. r = -EFAULT;
  2733. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2734. goto out;
  2735. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2736. if (r < 0)
  2737. goto out;
  2738. break;
  2739. }
  2740. case KVM_SET_NR_MMU_PAGES:
  2741. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2742. if (r)
  2743. goto out;
  2744. break;
  2745. case KVM_GET_NR_MMU_PAGES:
  2746. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2747. break;
  2748. case KVM_CREATE_IRQCHIP: {
  2749. struct kvm_pic *vpic;
  2750. mutex_lock(&kvm->lock);
  2751. r = -EEXIST;
  2752. if (kvm->arch.vpic)
  2753. goto create_irqchip_unlock;
  2754. r = -ENOMEM;
  2755. vpic = kvm_create_pic(kvm);
  2756. if (vpic) {
  2757. r = kvm_ioapic_init(kvm);
  2758. if (r) {
  2759. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2760. &vpic->dev);
  2761. kfree(vpic);
  2762. goto create_irqchip_unlock;
  2763. }
  2764. } else
  2765. goto create_irqchip_unlock;
  2766. smp_wmb();
  2767. kvm->arch.vpic = vpic;
  2768. smp_wmb();
  2769. r = kvm_setup_default_irq_routing(kvm);
  2770. if (r) {
  2771. mutex_lock(&kvm->irq_lock);
  2772. kvm_ioapic_destroy(kvm);
  2773. kvm_destroy_pic(kvm);
  2774. mutex_unlock(&kvm->irq_lock);
  2775. }
  2776. create_irqchip_unlock:
  2777. mutex_unlock(&kvm->lock);
  2778. break;
  2779. }
  2780. case KVM_CREATE_PIT:
  2781. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2782. goto create_pit;
  2783. case KVM_CREATE_PIT2:
  2784. r = -EFAULT;
  2785. if (copy_from_user(&u.pit_config, argp,
  2786. sizeof(struct kvm_pit_config)))
  2787. goto out;
  2788. create_pit:
  2789. mutex_lock(&kvm->slots_lock);
  2790. r = -EEXIST;
  2791. if (kvm->arch.vpit)
  2792. goto create_pit_unlock;
  2793. r = -ENOMEM;
  2794. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2795. if (kvm->arch.vpit)
  2796. r = 0;
  2797. create_pit_unlock:
  2798. mutex_unlock(&kvm->slots_lock);
  2799. break;
  2800. case KVM_IRQ_LINE_STATUS:
  2801. case KVM_IRQ_LINE: {
  2802. struct kvm_irq_level irq_event;
  2803. r = -EFAULT;
  2804. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2805. goto out;
  2806. r = -ENXIO;
  2807. if (irqchip_in_kernel(kvm)) {
  2808. __s32 status;
  2809. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2810. irq_event.irq, irq_event.level);
  2811. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2812. r = -EFAULT;
  2813. irq_event.status = status;
  2814. if (copy_to_user(argp, &irq_event,
  2815. sizeof irq_event))
  2816. goto out;
  2817. }
  2818. r = 0;
  2819. }
  2820. break;
  2821. }
  2822. case KVM_GET_IRQCHIP: {
  2823. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2824. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2825. r = -ENOMEM;
  2826. if (!chip)
  2827. goto out;
  2828. r = -EFAULT;
  2829. if (copy_from_user(chip, argp, sizeof *chip))
  2830. goto get_irqchip_out;
  2831. r = -ENXIO;
  2832. if (!irqchip_in_kernel(kvm))
  2833. goto get_irqchip_out;
  2834. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2835. if (r)
  2836. goto get_irqchip_out;
  2837. r = -EFAULT;
  2838. if (copy_to_user(argp, chip, sizeof *chip))
  2839. goto get_irqchip_out;
  2840. r = 0;
  2841. get_irqchip_out:
  2842. kfree(chip);
  2843. if (r)
  2844. goto out;
  2845. break;
  2846. }
  2847. case KVM_SET_IRQCHIP: {
  2848. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2849. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2850. r = -ENOMEM;
  2851. if (!chip)
  2852. goto out;
  2853. r = -EFAULT;
  2854. if (copy_from_user(chip, argp, sizeof *chip))
  2855. goto set_irqchip_out;
  2856. r = -ENXIO;
  2857. if (!irqchip_in_kernel(kvm))
  2858. goto set_irqchip_out;
  2859. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2860. if (r)
  2861. goto set_irqchip_out;
  2862. r = 0;
  2863. set_irqchip_out:
  2864. kfree(chip);
  2865. if (r)
  2866. goto out;
  2867. break;
  2868. }
  2869. case KVM_GET_PIT: {
  2870. r = -EFAULT;
  2871. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2872. goto out;
  2873. r = -ENXIO;
  2874. if (!kvm->arch.vpit)
  2875. goto out;
  2876. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2877. if (r)
  2878. goto out;
  2879. r = -EFAULT;
  2880. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2881. goto out;
  2882. r = 0;
  2883. break;
  2884. }
  2885. case KVM_SET_PIT: {
  2886. r = -EFAULT;
  2887. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2888. goto out;
  2889. r = -ENXIO;
  2890. if (!kvm->arch.vpit)
  2891. goto out;
  2892. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2893. if (r)
  2894. goto out;
  2895. r = 0;
  2896. break;
  2897. }
  2898. case KVM_GET_PIT2: {
  2899. r = -ENXIO;
  2900. if (!kvm->arch.vpit)
  2901. goto out;
  2902. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2903. if (r)
  2904. goto out;
  2905. r = -EFAULT;
  2906. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2907. goto out;
  2908. r = 0;
  2909. break;
  2910. }
  2911. case KVM_SET_PIT2: {
  2912. r = -EFAULT;
  2913. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2914. goto out;
  2915. r = -ENXIO;
  2916. if (!kvm->arch.vpit)
  2917. goto out;
  2918. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2919. if (r)
  2920. goto out;
  2921. r = 0;
  2922. break;
  2923. }
  2924. case KVM_REINJECT_CONTROL: {
  2925. struct kvm_reinject_control control;
  2926. r = -EFAULT;
  2927. if (copy_from_user(&control, argp, sizeof(control)))
  2928. goto out;
  2929. r = kvm_vm_ioctl_reinject(kvm, &control);
  2930. if (r)
  2931. goto out;
  2932. r = 0;
  2933. break;
  2934. }
  2935. case KVM_XEN_HVM_CONFIG: {
  2936. r = -EFAULT;
  2937. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2938. sizeof(struct kvm_xen_hvm_config)))
  2939. goto out;
  2940. r = -EINVAL;
  2941. if (kvm->arch.xen_hvm_config.flags)
  2942. goto out;
  2943. r = 0;
  2944. break;
  2945. }
  2946. case KVM_SET_CLOCK: {
  2947. struct kvm_clock_data user_ns;
  2948. u64 now_ns;
  2949. s64 delta;
  2950. r = -EFAULT;
  2951. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2952. goto out;
  2953. r = -EINVAL;
  2954. if (user_ns.flags)
  2955. goto out;
  2956. r = 0;
  2957. now_ns = get_kernel_ns();
  2958. delta = user_ns.clock - now_ns;
  2959. kvm->arch.kvmclock_offset = delta;
  2960. break;
  2961. }
  2962. case KVM_GET_CLOCK: {
  2963. struct kvm_clock_data user_ns;
  2964. u64 now_ns;
  2965. now_ns = get_kernel_ns();
  2966. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2967. user_ns.flags = 0;
  2968. r = -EFAULT;
  2969. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2970. goto out;
  2971. r = 0;
  2972. break;
  2973. }
  2974. default:
  2975. ;
  2976. }
  2977. out:
  2978. return r;
  2979. }
  2980. static void kvm_init_msr_list(void)
  2981. {
  2982. u32 dummy[2];
  2983. unsigned i, j;
  2984. /* skip the first msrs in the list. KVM-specific */
  2985. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2986. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2987. continue;
  2988. if (j < i)
  2989. msrs_to_save[j] = msrs_to_save[i];
  2990. j++;
  2991. }
  2992. num_msrs_to_save = j;
  2993. }
  2994. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2995. const void *v)
  2996. {
  2997. if (vcpu->arch.apic &&
  2998. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2999. return 0;
  3000. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3001. }
  3002. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3003. {
  3004. if (vcpu->arch.apic &&
  3005. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3006. return 0;
  3007. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3008. }
  3009. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3010. struct kvm_segment *var, int seg)
  3011. {
  3012. kvm_x86_ops->set_segment(vcpu, var, seg);
  3013. }
  3014. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3015. struct kvm_segment *var, int seg)
  3016. {
  3017. kvm_x86_ops->get_segment(vcpu, var, seg);
  3018. }
  3019. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3020. {
  3021. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3022. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3023. }
  3024. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3025. {
  3026. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3027. access |= PFERR_FETCH_MASK;
  3028. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3029. }
  3030. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3031. {
  3032. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3033. access |= PFERR_WRITE_MASK;
  3034. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  3035. }
  3036. /* uses this to access any guest's mapped memory without checking CPL */
  3037. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3038. {
  3039. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  3040. }
  3041. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3042. struct kvm_vcpu *vcpu, u32 access,
  3043. u32 *error)
  3044. {
  3045. void *data = val;
  3046. int r = X86EMUL_CONTINUE;
  3047. while (bytes) {
  3048. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  3049. unsigned offset = addr & (PAGE_SIZE-1);
  3050. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3051. int ret;
  3052. if (gpa == UNMAPPED_GVA) {
  3053. r = X86EMUL_PROPAGATE_FAULT;
  3054. goto out;
  3055. }
  3056. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3057. if (ret < 0) {
  3058. r = X86EMUL_IO_NEEDED;
  3059. goto out;
  3060. }
  3061. bytes -= toread;
  3062. data += toread;
  3063. addr += toread;
  3064. }
  3065. out:
  3066. return r;
  3067. }
  3068. /* used for instruction fetching */
  3069. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3070. struct kvm_vcpu *vcpu, u32 *error)
  3071. {
  3072. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3073. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3074. access | PFERR_FETCH_MASK, error);
  3075. }
  3076. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3077. struct kvm_vcpu *vcpu, u32 *error)
  3078. {
  3079. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3080. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3081. error);
  3082. }
  3083. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3084. struct kvm_vcpu *vcpu, u32 *error)
  3085. {
  3086. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3087. }
  3088. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3089. unsigned int bytes,
  3090. struct kvm_vcpu *vcpu,
  3091. u32 *error)
  3092. {
  3093. void *data = val;
  3094. int r = X86EMUL_CONTINUE;
  3095. while (bytes) {
  3096. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  3097. PFERR_WRITE_MASK, error);
  3098. unsigned offset = addr & (PAGE_SIZE-1);
  3099. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3100. int ret;
  3101. if (gpa == UNMAPPED_GVA) {
  3102. r = X86EMUL_PROPAGATE_FAULT;
  3103. goto out;
  3104. }
  3105. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3106. if (ret < 0) {
  3107. r = X86EMUL_IO_NEEDED;
  3108. goto out;
  3109. }
  3110. bytes -= towrite;
  3111. data += towrite;
  3112. addr += towrite;
  3113. }
  3114. out:
  3115. return r;
  3116. }
  3117. static int emulator_read_emulated(unsigned long addr,
  3118. void *val,
  3119. unsigned int bytes,
  3120. unsigned int *error_code,
  3121. struct kvm_vcpu *vcpu)
  3122. {
  3123. gpa_t gpa;
  3124. if (vcpu->mmio_read_completed) {
  3125. memcpy(val, vcpu->mmio_data, bytes);
  3126. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3127. vcpu->mmio_phys_addr, *(u64 *)val);
  3128. vcpu->mmio_read_completed = 0;
  3129. return X86EMUL_CONTINUE;
  3130. }
  3131. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3132. if (gpa == UNMAPPED_GVA)
  3133. return X86EMUL_PROPAGATE_FAULT;
  3134. /* For APIC access vmexit */
  3135. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3136. goto mmio;
  3137. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3138. == X86EMUL_CONTINUE)
  3139. return X86EMUL_CONTINUE;
  3140. mmio:
  3141. /*
  3142. * Is this MMIO handled locally?
  3143. */
  3144. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3145. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3146. return X86EMUL_CONTINUE;
  3147. }
  3148. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3149. vcpu->mmio_needed = 1;
  3150. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3151. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3152. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3153. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3154. return X86EMUL_IO_NEEDED;
  3155. }
  3156. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3157. const void *val, int bytes)
  3158. {
  3159. int ret;
  3160. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3161. if (ret < 0)
  3162. return 0;
  3163. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3164. return 1;
  3165. }
  3166. static int emulator_write_emulated_onepage(unsigned long addr,
  3167. const void *val,
  3168. unsigned int bytes,
  3169. unsigned int *error_code,
  3170. struct kvm_vcpu *vcpu)
  3171. {
  3172. gpa_t gpa;
  3173. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3174. if (gpa == UNMAPPED_GVA)
  3175. return X86EMUL_PROPAGATE_FAULT;
  3176. /* For APIC access vmexit */
  3177. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3178. goto mmio;
  3179. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3180. return X86EMUL_CONTINUE;
  3181. mmio:
  3182. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3183. /*
  3184. * Is this MMIO handled locally?
  3185. */
  3186. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3187. return X86EMUL_CONTINUE;
  3188. vcpu->mmio_needed = 1;
  3189. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3190. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3191. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3192. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3193. memcpy(vcpu->run->mmio.data, val, bytes);
  3194. return X86EMUL_CONTINUE;
  3195. }
  3196. int emulator_write_emulated(unsigned long addr,
  3197. const void *val,
  3198. unsigned int bytes,
  3199. unsigned int *error_code,
  3200. struct kvm_vcpu *vcpu)
  3201. {
  3202. /* Crossing a page boundary? */
  3203. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3204. int rc, now;
  3205. now = -addr & ~PAGE_MASK;
  3206. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3207. vcpu);
  3208. if (rc != X86EMUL_CONTINUE)
  3209. return rc;
  3210. addr += now;
  3211. val += now;
  3212. bytes -= now;
  3213. }
  3214. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3215. vcpu);
  3216. }
  3217. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3218. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3219. #ifdef CONFIG_X86_64
  3220. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3221. #else
  3222. # define CMPXCHG64(ptr, old, new) \
  3223. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3224. #endif
  3225. static int emulator_cmpxchg_emulated(unsigned long addr,
  3226. const void *old,
  3227. const void *new,
  3228. unsigned int bytes,
  3229. unsigned int *error_code,
  3230. struct kvm_vcpu *vcpu)
  3231. {
  3232. gpa_t gpa;
  3233. struct page *page;
  3234. char *kaddr;
  3235. bool exchanged;
  3236. /* guests cmpxchg8b have to be emulated atomically */
  3237. if (bytes > 8 || (bytes & (bytes - 1)))
  3238. goto emul_write;
  3239. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3240. if (gpa == UNMAPPED_GVA ||
  3241. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3242. goto emul_write;
  3243. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3244. goto emul_write;
  3245. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3246. if (is_error_page(page)) {
  3247. kvm_release_page_clean(page);
  3248. goto emul_write;
  3249. }
  3250. kaddr = kmap_atomic(page, KM_USER0);
  3251. kaddr += offset_in_page(gpa);
  3252. switch (bytes) {
  3253. case 1:
  3254. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3255. break;
  3256. case 2:
  3257. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3258. break;
  3259. case 4:
  3260. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3261. break;
  3262. case 8:
  3263. exchanged = CMPXCHG64(kaddr, old, new);
  3264. break;
  3265. default:
  3266. BUG();
  3267. }
  3268. kunmap_atomic(kaddr, KM_USER0);
  3269. kvm_release_page_dirty(page);
  3270. if (!exchanged)
  3271. return X86EMUL_CMPXCHG_FAILED;
  3272. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3273. return X86EMUL_CONTINUE;
  3274. emul_write:
  3275. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3276. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3277. }
  3278. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3279. {
  3280. /* TODO: String I/O for in kernel device */
  3281. int r;
  3282. if (vcpu->arch.pio.in)
  3283. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3284. vcpu->arch.pio.size, pd);
  3285. else
  3286. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3287. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3288. pd);
  3289. return r;
  3290. }
  3291. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3292. unsigned int count, struct kvm_vcpu *vcpu)
  3293. {
  3294. if (vcpu->arch.pio.count)
  3295. goto data_avail;
  3296. trace_kvm_pio(1, port, size, 1);
  3297. vcpu->arch.pio.port = port;
  3298. vcpu->arch.pio.in = 1;
  3299. vcpu->arch.pio.count = count;
  3300. vcpu->arch.pio.size = size;
  3301. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3302. data_avail:
  3303. memcpy(val, vcpu->arch.pio_data, size * count);
  3304. vcpu->arch.pio.count = 0;
  3305. return 1;
  3306. }
  3307. vcpu->run->exit_reason = KVM_EXIT_IO;
  3308. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3309. vcpu->run->io.size = size;
  3310. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3311. vcpu->run->io.count = count;
  3312. vcpu->run->io.port = port;
  3313. return 0;
  3314. }
  3315. static int emulator_pio_out_emulated(int size, unsigned short port,
  3316. const void *val, unsigned int count,
  3317. struct kvm_vcpu *vcpu)
  3318. {
  3319. trace_kvm_pio(0, port, size, 1);
  3320. vcpu->arch.pio.port = port;
  3321. vcpu->arch.pio.in = 0;
  3322. vcpu->arch.pio.count = count;
  3323. vcpu->arch.pio.size = size;
  3324. memcpy(vcpu->arch.pio_data, val, size * count);
  3325. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3326. vcpu->arch.pio.count = 0;
  3327. return 1;
  3328. }
  3329. vcpu->run->exit_reason = KVM_EXIT_IO;
  3330. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3331. vcpu->run->io.size = size;
  3332. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3333. vcpu->run->io.count = count;
  3334. vcpu->run->io.port = port;
  3335. return 0;
  3336. }
  3337. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3338. {
  3339. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3340. }
  3341. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3342. {
  3343. kvm_mmu_invlpg(vcpu, address);
  3344. return X86EMUL_CONTINUE;
  3345. }
  3346. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3347. {
  3348. if (!need_emulate_wbinvd(vcpu))
  3349. return X86EMUL_CONTINUE;
  3350. if (kvm_x86_ops->has_wbinvd_exit()) {
  3351. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3352. wbinvd_ipi, NULL, 1);
  3353. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3354. }
  3355. wbinvd();
  3356. return X86EMUL_CONTINUE;
  3357. }
  3358. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3359. int emulate_clts(struct kvm_vcpu *vcpu)
  3360. {
  3361. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3362. kvm_x86_ops->fpu_activate(vcpu);
  3363. return X86EMUL_CONTINUE;
  3364. }
  3365. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3366. {
  3367. return _kvm_get_dr(vcpu, dr, dest);
  3368. }
  3369. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3370. {
  3371. return __kvm_set_dr(vcpu, dr, value);
  3372. }
  3373. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3374. {
  3375. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3376. }
  3377. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3378. {
  3379. unsigned long value;
  3380. switch (cr) {
  3381. case 0:
  3382. value = kvm_read_cr0(vcpu);
  3383. break;
  3384. case 2:
  3385. value = vcpu->arch.cr2;
  3386. break;
  3387. case 3:
  3388. value = vcpu->arch.cr3;
  3389. break;
  3390. case 4:
  3391. value = kvm_read_cr4(vcpu);
  3392. break;
  3393. case 8:
  3394. value = kvm_get_cr8(vcpu);
  3395. break;
  3396. default:
  3397. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3398. return 0;
  3399. }
  3400. return value;
  3401. }
  3402. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3403. {
  3404. int res = 0;
  3405. switch (cr) {
  3406. case 0:
  3407. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3408. break;
  3409. case 2:
  3410. vcpu->arch.cr2 = val;
  3411. break;
  3412. case 3:
  3413. res = kvm_set_cr3(vcpu, val);
  3414. break;
  3415. case 4:
  3416. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3417. break;
  3418. case 8:
  3419. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3420. break;
  3421. default:
  3422. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3423. res = -1;
  3424. }
  3425. return res;
  3426. }
  3427. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3428. {
  3429. return kvm_x86_ops->get_cpl(vcpu);
  3430. }
  3431. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3432. {
  3433. kvm_x86_ops->get_gdt(vcpu, dt);
  3434. }
  3435. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3436. {
  3437. kvm_x86_ops->get_idt(vcpu, dt);
  3438. }
  3439. static unsigned long emulator_get_cached_segment_base(int seg,
  3440. struct kvm_vcpu *vcpu)
  3441. {
  3442. return get_segment_base(vcpu, seg);
  3443. }
  3444. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3445. struct kvm_vcpu *vcpu)
  3446. {
  3447. struct kvm_segment var;
  3448. kvm_get_segment(vcpu, &var, seg);
  3449. if (var.unusable)
  3450. return false;
  3451. if (var.g)
  3452. var.limit >>= 12;
  3453. set_desc_limit(desc, var.limit);
  3454. set_desc_base(desc, (unsigned long)var.base);
  3455. desc->type = var.type;
  3456. desc->s = var.s;
  3457. desc->dpl = var.dpl;
  3458. desc->p = var.present;
  3459. desc->avl = var.avl;
  3460. desc->l = var.l;
  3461. desc->d = var.db;
  3462. desc->g = var.g;
  3463. return true;
  3464. }
  3465. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3466. struct kvm_vcpu *vcpu)
  3467. {
  3468. struct kvm_segment var;
  3469. /* needed to preserve selector */
  3470. kvm_get_segment(vcpu, &var, seg);
  3471. var.base = get_desc_base(desc);
  3472. var.limit = get_desc_limit(desc);
  3473. if (desc->g)
  3474. var.limit = (var.limit << 12) | 0xfff;
  3475. var.type = desc->type;
  3476. var.present = desc->p;
  3477. var.dpl = desc->dpl;
  3478. var.db = desc->d;
  3479. var.s = desc->s;
  3480. var.l = desc->l;
  3481. var.g = desc->g;
  3482. var.avl = desc->avl;
  3483. var.present = desc->p;
  3484. var.unusable = !var.present;
  3485. var.padding = 0;
  3486. kvm_set_segment(vcpu, &var, seg);
  3487. return;
  3488. }
  3489. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3490. {
  3491. struct kvm_segment kvm_seg;
  3492. kvm_get_segment(vcpu, &kvm_seg, seg);
  3493. return kvm_seg.selector;
  3494. }
  3495. static void emulator_set_segment_selector(u16 sel, int seg,
  3496. struct kvm_vcpu *vcpu)
  3497. {
  3498. struct kvm_segment kvm_seg;
  3499. kvm_get_segment(vcpu, &kvm_seg, seg);
  3500. kvm_seg.selector = sel;
  3501. kvm_set_segment(vcpu, &kvm_seg, seg);
  3502. }
  3503. static struct x86_emulate_ops emulate_ops = {
  3504. .read_std = kvm_read_guest_virt_system,
  3505. .write_std = kvm_write_guest_virt_system,
  3506. .fetch = kvm_fetch_guest_virt,
  3507. .read_emulated = emulator_read_emulated,
  3508. .write_emulated = emulator_write_emulated,
  3509. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3510. .pio_in_emulated = emulator_pio_in_emulated,
  3511. .pio_out_emulated = emulator_pio_out_emulated,
  3512. .get_cached_descriptor = emulator_get_cached_descriptor,
  3513. .set_cached_descriptor = emulator_set_cached_descriptor,
  3514. .get_segment_selector = emulator_get_segment_selector,
  3515. .set_segment_selector = emulator_set_segment_selector,
  3516. .get_cached_segment_base = emulator_get_cached_segment_base,
  3517. .get_gdt = emulator_get_gdt,
  3518. .get_idt = emulator_get_idt,
  3519. .get_cr = emulator_get_cr,
  3520. .set_cr = emulator_set_cr,
  3521. .cpl = emulator_get_cpl,
  3522. .get_dr = emulator_get_dr,
  3523. .set_dr = emulator_set_dr,
  3524. .set_msr = kvm_set_msr,
  3525. .get_msr = kvm_get_msr,
  3526. };
  3527. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3528. {
  3529. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3530. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3531. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3532. vcpu->arch.regs_dirty = ~0;
  3533. }
  3534. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3535. {
  3536. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3537. /*
  3538. * an sti; sti; sequence only disable interrupts for the first
  3539. * instruction. So, if the last instruction, be it emulated or
  3540. * not, left the system with the INT_STI flag enabled, it
  3541. * means that the last instruction is an sti. We should not
  3542. * leave the flag on in this case. The same goes for mov ss
  3543. */
  3544. if (!(int_shadow & mask))
  3545. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3546. }
  3547. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3548. {
  3549. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3550. if (ctxt->exception == PF_VECTOR)
  3551. kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
  3552. else if (ctxt->error_code_valid)
  3553. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3554. else
  3555. kvm_queue_exception(vcpu, ctxt->exception);
  3556. }
  3557. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3558. {
  3559. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3560. int cs_db, cs_l;
  3561. cache_all_regs(vcpu);
  3562. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3563. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3564. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3565. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3566. vcpu->arch.emulate_ctxt.mode =
  3567. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3568. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3569. ? X86EMUL_MODE_VM86 : cs_l
  3570. ? X86EMUL_MODE_PROT64 : cs_db
  3571. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3572. memset(c, 0, sizeof(struct decode_cache));
  3573. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3574. }
  3575. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3576. {
  3577. ++vcpu->stat.insn_emulation_fail;
  3578. trace_kvm_emulate_insn_failed(vcpu);
  3579. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3580. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3581. vcpu->run->internal.ndata = 0;
  3582. kvm_queue_exception(vcpu, UD_VECTOR);
  3583. return EMULATE_FAIL;
  3584. }
  3585. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3586. {
  3587. gpa_t gpa;
  3588. if (tdp_enabled)
  3589. return false;
  3590. /*
  3591. * if emulation was due to access to shadowed page table
  3592. * and it failed try to unshadow page and re-entetr the
  3593. * guest to let CPU execute the instruction.
  3594. */
  3595. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3596. return true;
  3597. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3598. if (gpa == UNMAPPED_GVA)
  3599. return true; /* let cpu generate fault */
  3600. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3601. return true;
  3602. return false;
  3603. }
  3604. int emulate_instruction(struct kvm_vcpu *vcpu,
  3605. unsigned long cr2,
  3606. u16 error_code,
  3607. int emulation_type)
  3608. {
  3609. int r;
  3610. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3611. kvm_clear_exception_queue(vcpu);
  3612. vcpu->arch.mmio_fault_cr2 = cr2;
  3613. /*
  3614. * TODO: fix emulate.c to use guest_read/write_register
  3615. * instead of direct ->regs accesses, can save hundred cycles
  3616. * on Intel for instructions that don't read/change RSP, for
  3617. * for example.
  3618. */
  3619. cache_all_regs(vcpu);
  3620. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3621. init_emulate_ctxt(vcpu);
  3622. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3623. vcpu->arch.emulate_ctxt.exception = -1;
  3624. vcpu->arch.emulate_ctxt.perm_ok = false;
  3625. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3626. trace_kvm_emulate_insn_start(vcpu);
  3627. /* Only allow emulation of specific instructions on #UD
  3628. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3629. if (emulation_type & EMULTYPE_TRAP_UD) {
  3630. if (!c->twobyte)
  3631. return EMULATE_FAIL;
  3632. switch (c->b) {
  3633. case 0x01: /* VMMCALL */
  3634. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3635. return EMULATE_FAIL;
  3636. break;
  3637. case 0x34: /* sysenter */
  3638. case 0x35: /* sysexit */
  3639. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3640. return EMULATE_FAIL;
  3641. break;
  3642. case 0x05: /* syscall */
  3643. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3644. return EMULATE_FAIL;
  3645. break;
  3646. default:
  3647. return EMULATE_FAIL;
  3648. }
  3649. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3650. return EMULATE_FAIL;
  3651. }
  3652. ++vcpu->stat.insn_emulation;
  3653. if (r) {
  3654. if (reexecute_instruction(vcpu, cr2))
  3655. return EMULATE_DONE;
  3656. if (emulation_type & EMULTYPE_SKIP)
  3657. return EMULATE_FAIL;
  3658. return handle_emulation_failure(vcpu);
  3659. }
  3660. }
  3661. if (emulation_type & EMULTYPE_SKIP) {
  3662. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3663. return EMULATE_DONE;
  3664. }
  3665. /* this is needed for vmware backdor interface to work since it
  3666. changes registers values during IO operation */
  3667. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3668. restart:
  3669. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3670. if (r) { /* emulation failed */
  3671. if (reexecute_instruction(vcpu, cr2))
  3672. return EMULATE_DONE;
  3673. return handle_emulation_failure(vcpu);
  3674. }
  3675. r = EMULATE_DONE;
  3676. if (vcpu->arch.emulate_ctxt.exception >= 0)
  3677. inject_emulated_exception(vcpu);
  3678. else if (vcpu->arch.pio.count) {
  3679. if (!vcpu->arch.pio.in)
  3680. vcpu->arch.pio.count = 0;
  3681. r = EMULATE_DO_MMIO;
  3682. } else if (vcpu->mmio_needed) {
  3683. if (vcpu->mmio_is_write)
  3684. vcpu->mmio_needed = 0;
  3685. r = EMULATE_DO_MMIO;
  3686. } else if (vcpu->arch.emulate_ctxt.restart)
  3687. goto restart;
  3688. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3689. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3690. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3691. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3692. return r;
  3693. }
  3694. EXPORT_SYMBOL_GPL(emulate_instruction);
  3695. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3696. {
  3697. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3698. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3699. /* do not return to emulator after return from userspace */
  3700. vcpu->arch.pio.count = 0;
  3701. return ret;
  3702. }
  3703. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3704. static void tsc_bad(void *info)
  3705. {
  3706. __get_cpu_var(cpu_tsc_khz) = 0;
  3707. }
  3708. static void tsc_khz_changed(void *data)
  3709. {
  3710. struct cpufreq_freqs *freq = data;
  3711. unsigned long khz = 0;
  3712. if (data)
  3713. khz = freq->new;
  3714. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3715. khz = cpufreq_quick_get(raw_smp_processor_id());
  3716. if (!khz)
  3717. khz = tsc_khz;
  3718. __get_cpu_var(cpu_tsc_khz) = khz;
  3719. }
  3720. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3721. void *data)
  3722. {
  3723. struct cpufreq_freqs *freq = data;
  3724. struct kvm *kvm;
  3725. struct kvm_vcpu *vcpu;
  3726. int i, send_ipi = 0;
  3727. /*
  3728. * We allow guests to temporarily run on slowing clocks,
  3729. * provided we notify them after, or to run on accelerating
  3730. * clocks, provided we notify them before. Thus time never
  3731. * goes backwards.
  3732. *
  3733. * However, we have a problem. We can't atomically update
  3734. * the frequency of a given CPU from this function; it is
  3735. * merely a notifier, which can be called from any CPU.
  3736. * Changing the TSC frequency at arbitrary points in time
  3737. * requires a recomputation of local variables related to
  3738. * the TSC for each VCPU. We must flag these local variables
  3739. * to be updated and be sure the update takes place with the
  3740. * new frequency before any guests proceed.
  3741. *
  3742. * Unfortunately, the combination of hotplug CPU and frequency
  3743. * change creates an intractable locking scenario; the order
  3744. * of when these callouts happen is undefined with respect to
  3745. * CPU hotplug, and they can race with each other. As such,
  3746. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3747. * undefined; you can actually have a CPU frequency change take
  3748. * place in between the computation of X and the setting of the
  3749. * variable. To protect against this problem, all updates of
  3750. * the per_cpu tsc_khz variable are done in an interrupt
  3751. * protected IPI, and all callers wishing to update the value
  3752. * must wait for a synchronous IPI to complete (which is trivial
  3753. * if the caller is on the CPU already). This establishes the
  3754. * necessary total order on variable updates.
  3755. *
  3756. * Note that because a guest time update may take place
  3757. * anytime after the setting of the VCPU's request bit, the
  3758. * correct TSC value must be set before the request. However,
  3759. * to ensure the update actually makes it to any guest which
  3760. * starts running in hardware virtualization between the set
  3761. * and the acquisition of the spinlock, we must also ping the
  3762. * CPU after setting the request bit.
  3763. *
  3764. */
  3765. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3766. return 0;
  3767. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3768. return 0;
  3769. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3770. spin_lock(&kvm_lock);
  3771. list_for_each_entry(kvm, &vm_list, vm_list) {
  3772. kvm_for_each_vcpu(i, vcpu, kvm) {
  3773. if (vcpu->cpu != freq->cpu)
  3774. continue;
  3775. if (!kvm_request_guest_time_update(vcpu))
  3776. continue;
  3777. if (vcpu->cpu != smp_processor_id())
  3778. send_ipi = 1;
  3779. }
  3780. }
  3781. spin_unlock(&kvm_lock);
  3782. if (freq->old < freq->new && send_ipi) {
  3783. /*
  3784. * We upscale the frequency. Must make the guest
  3785. * doesn't see old kvmclock values while running with
  3786. * the new frequency, otherwise we risk the guest sees
  3787. * time go backwards.
  3788. *
  3789. * In case we update the frequency for another cpu
  3790. * (which might be in guest context) send an interrupt
  3791. * to kick the cpu out of guest context. Next time
  3792. * guest context is entered kvmclock will be updated,
  3793. * so the guest will not see stale values.
  3794. */
  3795. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3796. }
  3797. return 0;
  3798. }
  3799. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3800. .notifier_call = kvmclock_cpufreq_notifier
  3801. };
  3802. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3803. unsigned long action, void *hcpu)
  3804. {
  3805. unsigned int cpu = (unsigned long)hcpu;
  3806. switch (action) {
  3807. case CPU_ONLINE:
  3808. case CPU_DOWN_FAILED:
  3809. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3810. break;
  3811. case CPU_DOWN_PREPARE:
  3812. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3813. break;
  3814. }
  3815. return NOTIFY_OK;
  3816. }
  3817. static struct notifier_block kvmclock_cpu_notifier_block = {
  3818. .notifier_call = kvmclock_cpu_notifier,
  3819. .priority = -INT_MAX
  3820. };
  3821. static void kvm_timer_init(void)
  3822. {
  3823. int cpu;
  3824. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3825. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3826. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3827. CPUFREQ_TRANSITION_NOTIFIER);
  3828. }
  3829. for_each_online_cpu(cpu)
  3830. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3831. }
  3832. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3833. static int kvm_is_in_guest(void)
  3834. {
  3835. return percpu_read(current_vcpu) != NULL;
  3836. }
  3837. static int kvm_is_user_mode(void)
  3838. {
  3839. int user_mode = 3;
  3840. if (percpu_read(current_vcpu))
  3841. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3842. return user_mode != 0;
  3843. }
  3844. static unsigned long kvm_get_guest_ip(void)
  3845. {
  3846. unsigned long ip = 0;
  3847. if (percpu_read(current_vcpu))
  3848. ip = kvm_rip_read(percpu_read(current_vcpu));
  3849. return ip;
  3850. }
  3851. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3852. .is_in_guest = kvm_is_in_guest,
  3853. .is_user_mode = kvm_is_user_mode,
  3854. .get_guest_ip = kvm_get_guest_ip,
  3855. };
  3856. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3857. {
  3858. percpu_write(current_vcpu, vcpu);
  3859. }
  3860. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3861. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3862. {
  3863. percpu_write(current_vcpu, NULL);
  3864. }
  3865. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3866. int kvm_arch_init(void *opaque)
  3867. {
  3868. int r;
  3869. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3870. if (kvm_x86_ops) {
  3871. printk(KERN_ERR "kvm: already loaded the other module\n");
  3872. r = -EEXIST;
  3873. goto out;
  3874. }
  3875. if (!ops->cpu_has_kvm_support()) {
  3876. printk(KERN_ERR "kvm: no hardware support\n");
  3877. r = -EOPNOTSUPP;
  3878. goto out;
  3879. }
  3880. if (ops->disabled_by_bios()) {
  3881. printk(KERN_ERR "kvm: disabled by bios\n");
  3882. r = -EOPNOTSUPP;
  3883. goto out;
  3884. }
  3885. r = kvm_mmu_module_init();
  3886. if (r)
  3887. goto out;
  3888. kvm_init_msr_list();
  3889. kvm_x86_ops = ops;
  3890. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3891. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3892. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3893. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3894. kvm_timer_init();
  3895. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3896. if (cpu_has_xsave)
  3897. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  3898. return 0;
  3899. out:
  3900. return r;
  3901. }
  3902. void kvm_arch_exit(void)
  3903. {
  3904. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3905. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3906. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3907. CPUFREQ_TRANSITION_NOTIFIER);
  3908. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  3909. kvm_x86_ops = NULL;
  3910. kvm_mmu_module_exit();
  3911. }
  3912. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3913. {
  3914. ++vcpu->stat.halt_exits;
  3915. if (irqchip_in_kernel(vcpu->kvm)) {
  3916. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3917. return 1;
  3918. } else {
  3919. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3920. return 0;
  3921. }
  3922. }
  3923. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3924. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3925. unsigned long a1)
  3926. {
  3927. if (is_long_mode(vcpu))
  3928. return a0;
  3929. else
  3930. return a0 | ((gpa_t)a1 << 32);
  3931. }
  3932. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3933. {
  3934. u64 param, ingpa, outgpa, ret;
  3935. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3936. bool fast, longmode;
  3937. int cs_db, cs_l;
  3938. /*
  3939. * hypercall generates UD from non zero cpl and real mode
  3940. * per HYPER-V spec
  3941. */
  3942. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3943. kvm_queue_exception(vcpu, UD_VECTOR);
  3944. return 0;
  3945. }
  3946. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3947. longmode = is_long_mode(vcpu) && cs_l == 1;
  3948. if (!longmode) {
  3949. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3950. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3951. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3952. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3953. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3954. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3955. }
  3956. #ifdef CONFIG_X86_64
  3957. else {
  3958. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3959. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3960. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3961. }
  3962. #endif
  3963. code = param & 0xffff;
  3964. fast = (param >> 16) & 0x1;
  3965. rep_cnt = (param >> 32) & 0xfff;
  3966. rep_idx = (param >> 48) & 0xfff;
  3967. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3968. switch (code) {
  3969. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3970. kvm_vcpu_on_spin(vcpu);
  3971. break;
  3972. default:
  3973. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3974. break;
  3975. }
  3976. ret = res | (((u64)rep_done & 0xfff) << 32);
  3977. if (longmode) {
  3978. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3979. } else {
  3980. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3981. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3982. }
  3983. return 1;
  3984. }
  3985. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3986. {
  3987. unsigned long nr, a0, a1, a2, a3, ret;
  3988. int r = 1;
  3989. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3990. return kvm_hv_hypercall(vcpu);
  3991. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3992. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3993. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3994. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3995. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3996. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3997. if (!is_long_mode(vcpu)) {
  3998. nr &= 0xFFFFFFFF;
  3999. a0 &= 0xFFFFFFFF;
  4000. a1 &= 0xFFFFFFFF;
  4001. a2 &= 0xFFFFFFFF;
  4002. a3 &= 0xFFFFFFFF;
  4003. }
  4004. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4005. ret = -KVM_EPERM;
  4006. goto out;
  4007. }
  4008. switch (nr) {
  4009. case KVM_HC_VAPIC_POLL_IRQ:
  4010. ret = 0;
  4011. break;
  4012. case KVM_HC_MMU_OP:
  4013. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4014. break;
  4015. default:
  4016. ret = -KVM_ENOSYS;
  4017. break;
  4018. }
  4019. out:
  4020. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4021. ++vcpu->stat.hypercalls;
  4022. return r;
  4023. }
  4024. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4025. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4026. {
  4027. char instruction[3];
  4028. unsigned long rip = kvm_rip_read(vcpu);
  4029. /*
  4030. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4031. * to ensure that the updated hypercall appears atomically across all
  4032. * VCPUs.
  4033. */
  4034. kvm_mmu_zap_all(vcpu->kvm);
  4035. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4036. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4037. }
  4038. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4039. {
  4040. struct desc_ptr dt = { limit, base };
  4041. kvm_x86_ops->set_gdt(vcpu, &dt);
  4042. }
  4043. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4044. {
  4045. struct desc_ptr dt = { limit, base };
  4046. kvm_x86_ops->set_idt(vcpu, &dt);
  4047. }
  4048. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4049. {
  4050. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4051. int j, nent = vcpu->arch.cpuid_nent;
  4052. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4053. /* when no next entry is found, the current entry[i] is reselected */
  4054. for (j = i + 1; ; j = (j + 1) % nent) {
  4055. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4056. if (ej->function == e->function) {
  4057. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4058. return j;
  4059. }
  4060. }
  4061. return 0; /* silence gcc, even though control never reaches here */
  4062. }
  4063. /* find an entry with matching function, matching index (if needed), and that
  4064. * should be read next (if it's stateful) */
  4065. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4066. u32 function, u32 index)
  4067. {
  4068. if (e->function != function)
  4069. return 0;
  4070. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4071. return 0;
  4072. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4073. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4074. return 0;
  4075. return 1;
  4076. }
  4077. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4078. u32 function, u32 index)
  4079. {
  4080. int i;
  4081. struct kvm_cpuid_entry2 *best = NULL;
  4082. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4083. struct kvm_cpuid_entry2 *e;
  4084. e = &vcpu->arch.cpuid_entries[i];
  4085. if (is_matching_cpuid_entry(e, function, index)) {
  4086. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4087. move_to_next_stateful_cpuid_entry(vcpu, i);
  4088. best = e;
  4089. break;
  4090. }
  4091. /*
  4092. * Both basic or both extended?
  4093. */
  4094. if (((e->function ^ function) & 0x80000000) == 0)
  4095. if (!best || e->function > best->function)
  4096. best = e;
  4097. }
  4098. return best;
  4099. }
  4100. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4101. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4102. {
  4103. struct kvm_cpuid_entry2 *best;
  4104. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4105. if (!best || best->eax < 0x80000008)
  4106. goto not_found;
  4107. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4108. if (best)
  4109. return best->eax & 0xff;
  4110. not_found:
  4111. return 36;
  4112. }
  4113. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4114. {
  4115. u32 function, index;
  4116. struct kvm_cpuid_entry2 *best;
  4117. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4118. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4119. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4120. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4121. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4122. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4123. best = kvm_find_cpuid_entry(vcpu, function, index);
  4124. if (best) {
  4125. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4126. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4127. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4128. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4129. }
  4130. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4131. trace_kvm_cpuid(function,
  4132. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4133. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4134. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4135. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4136. }
  4137. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4138. /*
  4139. * Check if userspace requested an interrupt window, and that the
  4140. * interrupt window is open.
  4141. *
  4142. * No need to exit to userspace if we already have an interrupt queued.
  4143. */
  4144. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4145. {
  4146. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4147. vcpu->run->request_interrupt_window &&
  4148. kvm_arch_interrupt_allowed(vcpu));
  4149. }
  4150. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4151. {
  4152. struct kvm_run *kvm_run = vcpu->run;
  4153. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4154. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4155. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4156. if (irqchip_in_kernel(vcpu->kvm))
  4157. kvm_run->ready_for_interrupt_injection = 1;
  4158. else
  4159. kvm_run->ready_for_interrupt_injection =
  4160. kvm_arch_interrupt_allowed(vcpu) &&
  4161. !kvm_cpu_has_interrupt(vcpu) &&
  4162. !kvm_event_needs_reinjection(vcpu);
  4163. }
  4164. static void vapic_enter(struct kvm_vcpu *vcpu)
  4165. {
  4166. struct kvm_lapic *apic = vcpu->arch.apic;
  4167. struct page *page;
  4168. if (!apic || !apic->vapic_addr)
  4169. return;
  4170. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4171. vcpu->arch.apic->vapic_page = page;
  4172. }
  4173. static void vapic_exit(struct kvm_vcpu *vcpu)
  4174. {
  4175. struct kvm_lapic *apic = vcpu->arch.apic;
  4176. int idx;
  4177. if (!apic || !apic->vapic_addr)
  4178. return;
  4179. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4180. kvm_release_page_dirty(apic->vapic_page);
  4181. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4182. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4183. }
  4184. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4185. {
  4186. int max_irr, tpr;
  4187. if (!kvm_x86_ops->update_cr8_intercept)
  4188. return;
  4189. if (!vcpu->arch.apic)
  4190. return;
  4191. if (!vcpu->arch.apic->vapic_addr)
  4192. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4193. else
  4194. max_irr = -1;
  4195. if (max_irr != -1)
  4196. max_irr >>= 4;
  4197. tpr = kvm_lapic_get_cr8(vcpu);
  4198. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4199. }
  4200. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4201. {
  4202. /* try to reinject previous events if any */
  4203. if (vcpu->arch.exception.pending) {
  4204. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4205. vcpu->arch.exception.has_error_code,
  4206. vcpu->arch.exception.error_code);
  4207. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4208. vcpu->arch.exception.has_error_code,
  4209. vcpu->arch.exception.error_code,
  4210. vcpu->arch.exception.reinject);
  4211. return;
  4212. }
  4213. if (vcpu->arch.nmi_injected) {
  4214. kvm_x86_ops->set_nmi(vcpu);
  4215. return;
  4216. }
  4217. if (vcpu->arch.interrupt.pending) {
  4218. kvm_x86_ops->set_irq(vcpu);
  4219. return;
  4220. }
  4221. /* try to inject new event if pending */
  4222. if (vcpu->arch.nmi_pending) {
  4223. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4224. vcpu->arch.nmi_pending = false;
  4225. vcpu->arch.nmi_injected = true;
  4226. kvm_x86_ops->set_nmi(vcpu);
  4227. }
  4228. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4229. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4230. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4231. false);
  4232. kvm_x86_ops->set_irq(vcpu);
  4233. }
  4234. }
  4235. }
  4236. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4237. {
  4238. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4239. !vcpu->guest_xcr0_loaded) {
  4240. /* kvm_set_xcr() also depends on this */
  4241. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4242. vcpu->guest_xcr0_loaded = 1;
  4243. }
  4244. }
  4245. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4246. {
  4247. if (vcpu->guest_xcr0_loaded) {
  4248. if (vcpu->arch.xcr0 != host_xcr0)
  4249. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4250. vcpu->guest_xcr0_loaded = 0;
  4251. }
  4252. }
  4253. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4254. {
  4255. int r;
  4256. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4257. vcpu->run->request_interrupt_window;
  4258. if (vcpu->requests) {
  4259. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4260. kvm_mmu_unload(vcpu);
  4261. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4262. __kvm_migrate_timers(vcpu);
  4263. if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
  4264. r = kvm_write_guest_time(vcpu);
  4265. if (unlikely(r))
  4266. goto out;
  4267. }
  4268. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4269. kvm_mmu_sync_roots(vcpu);
  4270. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4271. kvm_x86_ops->tlb_flush(vcpu);
  4272. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4273. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4274. r = 0;
  4275. goto out;
  4276. }
  4277. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4278. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4279. r = 0;
  4280. goto out;
  4281. }
  4282. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4283. vcpu->fpu_active = 0;
  4284. kvm_x86_ops->fpu_deactivate(vcpu);
  4285. }
  4286. }
  4287. r = kvm_mmu_reload(vcpu);
  4288. if (unlikely(r))
  4289. goto out;
  4290. preempt_disable();
  4291. kvm_x86_ops->prepare_guest_switch(vcpu);
  4292. if (vcpu->fpu_active)
  4293. kvm_load_guest_fpu(vcpu);
  4294. kvm_load_guest_xcr0(vcpu);
  4295. atomic_set(&vcpu->guest_mode, 1);
  4296. smp_wmb();
  4297. local_irq_disable();
  4298. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4299. || need_resched() || signal_pending(current)) {
  4300. atomic_set(&vcpu->guest_mode, 0);
  4301. smp_wmb();
  4302. local_irq_enable();
  4303. preempt_enable();
  4304. r = 1;
  4305. goto out;
  4306. }
  4307. inject_pending_event(vcpu);
  4308. /* enable NMI/IRQ window open exits if needed */
  4309. if (vcpu->arch.nmi_pending)
  4310. kvm_x86_ops->enable_nmi_window(vcpu);
  4311. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4312. kvm_x86_ops->enable_irq_window(vcpu);
  4313. if (kvm_lapic_enabled(vcpu)) {
  4314. update_cr8_intercept(vcpu);
  4315. kvm_lapic_sync_to_vapic(vcpu);
  4316. }
  4317. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4318. kvm_guest_enter();
  4319. if (unlikely(vcpu->arch.switch_db_regs)) {
  4320. set_debugreg(0, 7);
  4321. set_debugreg(vcpu->arch.eff_db[0], 0);
  4322. set_debugreg(vcpu->arch.eff_db[1], 1);
  4323. set_debugreg(vcpu->arch.eff_db[2], 2);
  4324. set_debugreg(vcpu->arch.eff_db[3], 3);
  4325. }
  4326. trace_kvm_entry(vcpu->vcpu_id);
  4327. kvm_x86_ops->run(vcpu);
  4328. /*
  4329. * If the guest has used debug registers, at least dr7
  4330. * will be disabled while returning to the host.
  4331. * If we don't have active breakpoints in the host, we don't
  4332. * care about the messed up debug address registers. But if
  4333. * we have some of them active, restore the old state.
  4334. */
  4335. if (hw_breakpoint_active())
  4336. hw_breakpoint_restore();
  4337. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4338. atomic_set(&vcpu->guest_mode, 0);
  4339. smp_wmb();
  4340. local_irq_enable();
  4341. ++vcpu->stat.exits;
  4342. /*
  4343. * We must have an instruction between local_irq_enable() and
  4344. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4345. * the interrupt shadow. The stat.exits increment will do nicely.
  4346. * But we need to prevent reordering, hence this barrier():
  4347. */
  4348. barrier();
  4349. kvm_guest_exit();
  4350. preempt_enable();
  4351. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4352. /*
  4353. * Profile KVM exit RIPs:
  4354. */
  4355. if (unlikely(prof_on == KVM_PROFILING)) {
  4356. unsigned long rip = kvm_rip_read(vcpu);
  4357. profile_hit(KVM_PROFILING, (void *)rip);
  4358. }
  4359. kvm_lapic_sync_from_vapic(vcpu);
  4360. r = kvm_x86_ops->handle_exit(vcpu);
  4361. out:
  4362. return r;
  4363. }
  4364. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4365. {
  4366. int r;
  4367. struct kvm *kvm = vcpu->kvm;
  4368. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4369. pr_debug("vcpu %d received sipi with vector # %x\n",
  4370. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4371. kvm_lapic_reset(vcpu);
  4372. r = kvm_arch_vcpu_reset(vcpu);
  4373. if (r)
  4374. return r;
  4375. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4376. }
  4377. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4378. vapic_enter(vcpu);
  4379. r = 1;
  4380. while (r > 0) {
  4381. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4382. r = vcpu_enter_guest(vcpu);
  4383. else {
  4384. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4385. kvm_vcpu_block(vcpu);
  4386. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4387. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4388. {
  4389. switch(vcpu->arch.mp_state) {
  4390. case KVM_MP_STATE_HALTED:
  4391. vcpu->arch.mp_state =
  4392. KVM_MP_STATE_RUNNABLE;
  4393. case KVM_MP_STATE_RUNNABLE:
  4394. break;
  4395. case KVM_MP_STATE_SIPI_RECEIVED:
  4396. default:
  4397. r = -EINTR;
  4398. break;
  4399. }
  4400. }
  4401. }
  4402. if (r <= 0)
  4403. break;
  4404. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4405. if (kvm_cpu_has_pending_timer(vcpu))
  4406. kvm_inject_pending_timer_irqs(vcpu);
  4407. if (dm_request_for_irq_injection(vcpu)) {
  4408. r = -EINTR;
  4409. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4410. ++vcpu->stat.request_irq_exits;
  4411. }
  4412. if (signal_pending(current)) {
  4413. r = -EINTR;
  4414. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4415. ++vcpu->stat.signal_exits;
  4416. }
  4417. if (need_resched()) {
  4418. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4419. kvm_resched(vcpu);
  4420. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4421. }
  4422. }
  4423. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4424. vapic_exit(vcpu);
  4425. return r;
  4426. }
  4427. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4428. {
  4429. int r;
  4430. sigset_t sigsaved;
  4431. if (vcpu->sigset_active)
  4432. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4433. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4434. kvm_vcpu_block(vcpu);
  4435. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4436. r = -EAGAIN;
  4437. goto out;
  4438. }
  4439. /* re-sync apic's tpr */
  4440. if (!irqchip_in_kernel(vcpu->kvm))
  4441. kvm_set_cr8(vcpu, kvm_run->cr8);
  4442. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4443. vcpu->arch.emulate_ctxt.restart) {
  4444. if (vcpu->mmio_needed) {
  4445. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4446. vcpu->mmio_read_completed = 1;
  4447. vcpu->mmio_needed = 0;
  4448. }
  4449. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4450. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4451. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4452. if (r != EMULATE_DONE) {
  4453. r = 0;
  4454. goto out;
  4455. }
  4456. }
  4457. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4458. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4459. kvm_run->hypercall.ret);
  4460. r = __vcpu_run(vcpu);
  4461. out:
  4462. post_kvm_run_save(vcpu);
  4463. if (vcpu->sigset_active)
  4464. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4465. return r;
  4466. }
  4467. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4468. {
  4469. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4470. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4471. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4472. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4473. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4474. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4475. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4476. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4477. #ifdef CONFIG_X86_64
  4478. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4479. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4480. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4481. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4482. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4483. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4484. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4485. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4486. #endif
  4487. regs->rip = kvm_rip_read(vcpu);
  4488. regs->rflags = kvm_get_rflags(vcpu);
  4489. return 0;
  4490. }
  4491. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4492. {
  4493. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4494. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4495. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4496. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4497. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4498. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4499. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4500. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4501. #ifdef CONFIG_X86_64
  4502. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4503. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4504. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4505. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4506. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4507. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4508. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4509. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4510. #endif
  4511. kvm_rip_write(vcpu, regs->rip);
  4512. kvm_set_rflags(vcpu, regs->rflags);
  4513. vcpu->arch.exception.pending = false;
  4514. return 0;
  4515. }
  4516. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4517. {
  4518. struct kvm_segment cs;
  4519. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4520. *db = cs.db;
  4521. *l = cs.l;
  4522. }
  4523. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4524. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4525. struct kvm_sregs *sregs)
  4526. {
  4527. struct desc_ptr dt;
  4528. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4529. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4530. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4531. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4532. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4533. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4534. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4535. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4536. kvm_x86_ops->get_idt(vcpu, &dt);
  4537. sregs->idt.limit = dt.size;
  4538. sregs->idt.base = dt.address;
  4539. kvm_x86_ops->get_gdt(vcpu, &dt);
  4540. sregs->gdt.limit = dt.size;
  4541. sregs->gdt.base = dt.address;
  4542. sregs->cr0 = kvm_read_cr0(vcpu);
  4543. sregs->cr2 = vcpu->arch.cr2;
  4544. sregs->cr3 = vcpu->arch.cr3;
  4545. sregs->cr4 = kvm_read_cr4(vcpu);
  4546. sregs->cr8 = kvm_get_cr8(vcpu);
  4547. sregs->efer = vcpu->arch.efer;
  4548. sregs->apic_base = kvm_get_apic_base(vcpu);
  4549. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4550. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4551. set_bit(vcpu->arch.interrupt.nr,
  4552. (unsigned long *)sregs->interrupt_bitmap);
  4553. return 0;
  4554. }
  4555. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4556. struct kvm_mp_state *mp_state)
  4557. {
  4558. mp_state->mp_state = vcpu->arch.mp_state;
  4559. return 0;
  4560. }
  4561. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4562. struct kvm_mp_state *mp_state)
  4563. {
  4564. vcpu->arch.mp_state = mp_state->mp_state;
  4565. return 0;
  4566. }
  4567. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4568. bool has_error_code, u32 error_code)
  4569. {
  4570. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4571. int ret;
  4572. init_emulate_ctxt(vcpu);
  4573. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4574. tss_selector, reason, has_error_code,
  4575. error_code);
  4576. if (ret)
  4577. return EMULATE_FAIL;
  4578. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4579. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4580. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4581. return EMULATE_DONE;
  4582. }
  4583. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4584. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4585. struct kvm_sregs *sregs)
  4586. {
  4587. int mmu_reset_needed = 0;
  4588. int pending_vec, max_bits;
  4589. struct desc_ptr dt;
  4590. dt.size = sregs->idt.limit;
  4591. dt.address = sregs->idt.base;
  4592. kvm_x86_ops->set_idt(vcpu, &dt);
  4593. dt.size = sregs->gdt.limit;
  4594. dt.address = sregs->gdt.base;
  4595. kvm_x86_ops->set_gdt(vcpu, &dt);
  4596. vcpu->arch.cr2 = sregs->cr2;
  4597. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4598. vcpu->arch.cr3 = sregs->cr3;
  4599. kvm_set_cr8(vcpu, sregs->cr8);
  4600. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4601. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4602. kvm_set_apic_base(vcpu, sregs->apic_base);
  4603. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4604. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4605. vcpu->arch.cr0 = sregs->cr0;
  4606. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4607. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4608. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4609. load_pdptrs(vcpu, vcpu->arch.cr3);
  4610. mmu_reset_needed = 1;
  4611. }
  4612. if (mmu_reset_needed)
  4613. kvm_mmu_reset_context(vcpu);
  4614. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4615. pending_vec = find_first_bit(
  4616. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4617. if (pending_vec < max_bits) {
  4618. kvm_queue_interrupt(vcpu, pending_vec, false);
  4619. pr_debug("Set back pending irq %d\n", pending_vec);
  4620. if (irqchip_in_kernel(vcpu->kvm))
  4621. kvm_pic_clear_isr_ack(vcpu->kvm);
  4622. }
  4623. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4624. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4625. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4626. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4627. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4628. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4629. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4630. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4631. update_cr8_intercept(vcpu);
  4632. /* Older userspace won't unhalt the vcpu on reset. */
  4633. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4634. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4635. !is_protmode(vcpu))
  4636. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4637. return 0;
  4638. }
  4639. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4640. struct kvm_guest_debug *dbg)
  4641. {
  4642. unsigned long rflags;
  4643. int i, r;
  4644. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4645. r = -EBUSY;
  4646. if (vcpu->arch.exception.pending)
  4647. goto out;
  4648. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4649. kvm_queue_exception(vcpu, DB_VECTOR);
  4650. else
  4651. kvm_queue_exception(vcpu, BP_VECTOR);
  4652. }
  4653. /*
  4654. * Read rflags as long as potentially injected trace flags are still
  4655. * filtered out.
  4656. */
  4657. rflags = kvm_get_rflags(vcpu);
  4658. vcpu->guest_debug = dbg->control;
  4659. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4660. vcpu->guest_debug = 0;
  4661. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4662. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4663. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4664. vcpu->arch.switch_db_regs =
  4665. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4666. } else {
  4667. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4668. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4669. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4670. }
  4671. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4672. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4673. get_segment_base(vcpu, VCPU_SREG_CS);
  4674. /*
  4675. * Trigger an rflags update that will inject or remove the trace
  4676. * flags.
  4677. */
  4678. kvm_set_rflags(vcpu, rflags);
  4679. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4680. r = 0;
  4681. out:
  4682. return r;
  4683. }
  4684. /*
  4685. * Translate a guest virtual address to a guest physical address.
  4686. */
  4687. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4688. struct kvm_translation *tr)
  4689. {
  4690. unsigned long vaddr = tr->linear_address;
  4691. gpa_t gpa;
  4692. int idx;
  4693. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4694. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4695. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4696. tr->physical_address = gpa;
  4697. tr->valid = gpa != UNMAPPED_GVA;
  4698. tr->writeable = 1;
  4699. tr->usermode = 0;
  4700. return 0;
  4701. }
  4702. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4703. {
  4704. struct i387_fxsave_struct *fxsave =
  4705. &vcpu->arch.guest_fpu.state->fxsave;
  4706. memcpy(fpu->fpr, fxsave->st_space, 128);
  4707. fpu->fcw = fxsave->cwd;
  4708. fpu->fsw = fxsave->swd;
  4709. fpu->ftwx = fxsave->twd;
  4710. fpu->last_opcode = fxsave->fop;
  4711. fpu->last_ip = fxsave->rip;
  4712. fpu->last_dp = fxsave->rdp;
  4713. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4714. return 0;
  4715. }
  4716. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4717. {
  4718. struct i387_fxsave_struct *fxsave =
  4719. &vcpu->arch.guest_fpu.state->fxsave;
  4720. memcpy(fxsave->st_space, fpu->fpr, 128);
  4721. fxsave->cwd = fpu->fcw;
  4722. fxsave->swd = fpu->fsw;
  4723. fxsave->twd = fpu->ftwx;
  4724. fxsave->fop = fpu->last_opcode;
  4725. fxsave->rip = fpu->last_ip;
  4726. fxsave->rdp = fpu->last_dp;
  4727. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4728. return 0;
  4729. }
  4730. int fx_init(struct kvm_vcpu *vcpu)
  4731. {
  4732. int err;
  4733. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4734. if (err)
  4735. return err;
  4736. fpu_finit(&vcpu->arch.guest_fpu);
  4737. /*
  4738. * Ensure guest xcr0 is valid for loading
  4739. */
  4740. vcpu->arch.xcr0 = XSTATE_FP;
  4741. vcpu->arch.cr0 |= X86_CR0_ET;
  4742. return 0;
  4743. }
  4744. EXPORT_SYMBOL_GPL(fx_init);
  4745. static void fx_free(struct kvm_vcpu *vcpu)
  4746. {
  4747. fpu_free(&vcpu->arch.guest_fpu);
  4748. }
  4749. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4750. {
  4751. if (vcpu->guest_fpu_loaded)
  4752. return;
  4753. /*
  4754. * Restore all possible states in the guest,
  4755. * and assume host would use all available bits.
  4756. * Guest xcr0 would be loaded later.
  4757. */
  4758. kvm_put_guest_xcr0(vcpu);
  4759. vcpu->guest_fpu_loaded = 1;
  4760. unlazy_fpu(current);
  4761. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4762. trace_kvm_fpu(1);
  4763. }
  4764. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4765. {
  4766. kvm_put_guest_xcr0(vcpu);
  4767. if (!vcpu->guest_fpu_loaded)
  4768. return;
  4769. vcpu->guest_fpu_loaded = 0;
  4770. fpu_save_init(&vcpu->arch.guest_fpu);
  4771. ++vcpu->stat.fpu_reload;
  4772. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4773. trace_kvm_fpu(0);
  4774. }
  4775. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4776. {
  4777. if (vcpu->arch.time_page) {
  4778. kvm_release_page_dirty(vcpu->arch.time_page);
  4779. vcpu->arch.time_page = NULL;
  4780. }
  4781. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4782. fx_free(vcpu);
  4783. kvm_x86_ops->vcpu_free(vcpu);
  4784. }
  4785. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4786. unsigned int id)
  4787. {
  4788. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4789. printk_once(KERN_WARNING
  4790. "kvm: SMP vm created on host with unstable TSC; "
  4791. "guest TSC will not be reliable\n");
  4792. return kvm_x86_ops->vcpu_create(kvm, id);
  4793. }
  4794. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4795. {
  4796. int r;
  4797. vcpu->arch.mtrr_state.have_fixed = 1;
  4798. vcpu_load(vcpu);
  4799. r = kvm_arch_vcpu_reset(vcpu);
  4800. if (r == 0)
  4801. r = kvm_mmu_setup(vcpu);
  4802. vcpu_put(vcpu);
  4803. if (r < 0)
  4804. goto free_vcpu;
  4805. return 0;
  4806. free_vcpu:
  4807. kvm_x86_ops->vcpu_free(vcpu);
  4808. return r;
  4809. }
  4810. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4811. {
  4812. vcpu_load(vcpu);
  4813. kvm_mmu_unload(vcpu);
  4814. vcpu_put(vcpu);
  4815. fx_free(vcpu);
  4816. kvm_x86_ops->vcpu_free(vcpu);
  4817. }
  4818. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4819. {
  4820. vcpu->arch.nmi_pending = false;
  4821. vcpu->arch.nmi_injected = false;
  4822. vcpu->arch.switch_db_regs = 0;
  4823. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4824. vcpu->arch.dr6 = DR6_FIXED_1;
  4825. vcpu->arch.dr7 = DR7_FIXED_1;
  4826. return kvm_x86_ops->vcpu_reset(vcpu);
  4827. }
  4828. int kvm_arch_hardware_enable(void *garbage)
  4829. {
  4830. struct kvm *kvm;
  4831. struct kvm_vcpu *vcpu;
  4832. int i;
  4833. kvm_shared_msr_cpu_online();
  4834. list_for_each_entry(kvm, &vm_list, vm_list)
  4835. kvm_for_each_vcpu(i, vcpu, kvm)
  4836. if (vcpu->cpu == smp_processor_id())
  4837. kvm_request_guest_time_update(vcpu);
  4838. return kvm_x86_ops->hardware_enable(garbage);
  4839. }
  4840. void kvm_arch_hardware_disable(void *garbage)
  4841. {
  4842. kvm_x86_ops->hardware_disable(garbage);
  4843. drop_user_return_notifiers(garbage);
  4844. }
  4845. int kvm_arch_hardware_setup(void)
  4846. {
  4847. return kvm_x86_ops->hardware_setup();
  4848. }
  4849. void kvm_arch_hardware_unsetup(void)
  4850. {
  4851. kvm_x86_ops->hardware_unsetup();
  4852. }
  4853. void kvm_arch_check_processor_compat(void *rtn)
  4854. {
  4855. kvm_x86_ops->check_processor_compatibility(rtn);
  4856. }
  4857. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4858. {
  4859. struct page *page;
  4860. struct kvm *kvm;
  4861. int r;
  4862. BUG_ON(vcpu->kvm == NULL);
  4863. kvm = vcpu->kvm;
  4864. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  4865. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4866. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4867. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4868. else
  4869. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4870. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4871. if (!page) {
  4872. r = -ENOMEM;
  4873. goto fail;
  4874. }
  4875. vcpu->arch.pio_data = page_address(page);
  4876. r = kvm_mmu_create(vcpu);
  4877. if (r < 0)
  4878. goto fail_free_pio_data;
  4879. if (irqchip_in_kernel(kvm)) {
  4880. r = kvm_create_lapic(vcpu);
  4881. if (r < 0)
  4882. goto fail_mmu_destroy;
  4883. }
  4884. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4885. GFP_KERNEL);
  4886. if (!vcpu->arch.mce_banks) {
  4887. r = -ENOMEM;
  4888. goto fail_free_lapic;
  4889. }
  4890. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4891. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  4892. goto fail_free_mce_banks;
  4893. return 0;
  4894. fail_free_mce_banks:
  4895. kfree(vcpu->arch.mce_banks);
  4896. fail_free_lapic:
  4897. kvm_free_lapic(vcpu);
  4898. fail_mmu_destroy:
  4899. kvm_mmu_destroy(vcpu);
  4900. fail_free_pio_data:
  4901. free_page((unsigned long)vcpu->arch.pio_data);
  4902. fail:
  4903. return r;
  4904. }
  4905. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4906. {
  4907. int idx;
  4908. kfree(vcpu->arch.mce_banks);
  4909. kvm_free_lapic(vcpu);
  4910. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4911. kvm_mmu_destroy(vcpu);
  4912. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4913. free_page((unsigned long)vcpu->arch.pio_data);
  4914. }
  4915. struct kvm *kvm_arch_create_vm(void)
  4916. {
  4917. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4918. if (!kvm)
  4919. return ERR_PTR(-ENOMEM);
  4920. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4921. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4922. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4923. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4924. spin_lock_init(&kvm->arch.tsc_write_lock);
  4925. return kvm;
  4926. }
  4927. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4928. {
  4929. vcpu_load(vcpu);
  4930. kvm_mmu_unload(vcpu);
  4931. vcpu_put(vcpu);
  4932. }
  4933. static void kvm_free_vcpus(struct kvm *kvm)
  4934. {
  4935. unsigned int i;
  4936. struct kvm_vcpu *vcpu;
  4937. /*
  4938. * Unpin any mmu pages first.
  4939. */
  4940. kvm_for_each_vcpu(i, vcpu, kvm)
  4941. kvm_unload_vcpu_mmu(vcpu);
  4942. kvm_for_each_vcpu(i, vcpu, kvm)
  4943. kvm_arch_vcpu_free(vcpu);
  4944. mutex_lock(&kvm->lock);
  4945. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4946. kvm->vcpus[i] = NULL;
  4947. atomic_set(&kvm->online_vcpus, 0);
  4948. mutex_unlock(&kvm->lock);
  4949. }
  4950. void kvm_arch_sync_events(struct kvm *kvm)
  4951. {
  4952. kvm_free_all_assigned_devices(kvm);
  4953. kvm_free_pit(kvm);
  4954. }
  4955. void kvm_arch_destroy_vm(struct kvm *kvm)
  4956. {
  4957. kvm_iommu_unmap_guest(kvm);
  4958. kfree(kvm->arch.vpic);
  4959. kfree(kvm->arch.vioapic);
  4960. kvm_free_vcpus(kvm);
  4961. kvm_free_physmem(kvm);
  4962. if (kvm->arch.apic_access_page)
  4963. put_page(kvm->arch.apic_access_page);
  4964. if (kvm->arch.ept_identity_pagetable)
  4965. put_page(kvm->arch.ept_identity_pagetable);
  4966. cleanup_srcu_struct(&kvm->srcu);
  4967. kfree(kvm);
  4968. }
  4969. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4970. struct kvm_memory_slot *memslot,
  4971. struct kvm_memory_slot old,
  4972. struct kvm_userspace_memory_region *mem,
  4973. int user_alloc)
  4974. {
  4975. int npages = memslot->npages;
  4976. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  4977. /* Prevent internal slot pages from being moved by fork()/COW. */
  4978. if (memslot->id >= KVM_MEMORY_SLOTS)
  4979. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  4980. /*To keep backward compatibility with older userspace,
  4981. *x86 needs to hanlde !user_alloc case.
  4982. */
  4983. if (!user_alloc) {
  4984. if (npages && !old.rmap) {
  4985. unsigned long userspace_addr;
  4986. down_write(&current->mm->mmap_sem);
  4987. userspace_addr = do_mmap(NULL, 0,
  4988. npages * PAGE_SIZE,
  4989. PROT_READ | PROT_WRITE,
  4990. map_flags,
  4991. 0);
  4992. up_write(&current->mm->mmap_sem);
  4993. if (IS_ERR((void *)userspace_addr))
  4994. return PTR_ERR((void *)userspace_addr);
  4995. memslot->userspace_addr = userspace_addr;
  4996. }
  4997. }
  4998. return 0;
  4999. }
  5000. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5001. struct kvm_userspace_memory_region *mem,
  5002. struct kvm_memory_slot old,
  5003. int user_alloc)
  5004. {
  5005. int npages = mem->memory_size >> PAGE_SHIFT;
  5006. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5007. int ret;
  5008. down_write(&current->mm->mmap_sem);
  5009. ret = do_munmap(current->mm, old.userspace_addr,
  5010. old.npages * PAGE_SIZE);
  5011. up_write(&current->mm->mmap_sem);
  5012. if (ret < 0)
  5013. printk(KERN_WARNING
  5014. "kvm_vm_ioctl_set_memory_region: "
  5015. "failed to munmap memory\n");
  5016. }
  5017. spin_lock(&kvm->mmu_lock);
  5018. if (!kvm->arch.n_requested_mmu_pages) {
  5019. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5020. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5021. }
  5022. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5023. spin_unlock(&kvm->mmu_lock);
  5024. }
  5025. void kvm_arch_flush_shadow(struct kvm *kvm)
  5026. {
  5027. kvm_mmu_zap_all(kvm);
  5028. kvm_reload_remote_mmus(kvm);
  5029. }
  5030. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5031. {
  5032. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5033. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5034. || vcpu->arch.nmi_pending ||
  5035. (kvm_arch_interrupt_allowed(vcpu) &&
  5036. kvm_cpu_has_interrupt(vcpu));
  5037. }
  5038. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5039. {
  5040. int me;
  5041. int cpu = vcpu->cpu;
  5042. if (waitqueue_active(&vcpu->wq)) {
  5043. wake_up_interruptible(&vcpu->wq);
  5044. ++vcpu->stat.halt_wakeup;
  5045. }
  5046. me = get_cpu();
  5047. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5048. if (atomic_xchg(&vcpu->guest_mode, 0))
  5049. smp_send_reschedule(cpu);
  5050. put_cpu();
  5051. }
  5052. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5053. {
  5054. return kvm_x86_ops->interrupt_allowed(vcpu);
  5055. }
  5056. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5057. {
  5058. unsigned long current_rip = kvm_rip_read(vcpu) +
  5059. get_segment_base(vcpu, VCPU_SREG_CS);
  5060. return current_rip == linear_rip;
  5061. }
  5062. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5063. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5064. {
  5065. unsigned long rflags;
  5066. rflags = kvm_x86_ops->get_rflags(vcpu);
  5067. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5068. rflags &= ~X86_EFLAGS_TF;
  5069. return rflags;
  5070. }
  5071. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5072. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5073. {
  5074. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5075. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5076. rflags |= X86_EFLAGS_TF;
  5077. kvm_x86_ops->set_rflags(vcpu, rflags);
  5078. }
  5079. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5080. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5081. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5082. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5083. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5084. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5085. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5086. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5087. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5088. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5089. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5090. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5091. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);