perf_event.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /*
  2. * Performance event support framework for SuperH hardware counters.
  3. *
  4. * Copyright (C) 2009 Paul Mundt
  5. *
  6. * Heavily based on the x86 and PowerPC implementations.
  7. *
  8. * x86:
  9. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11. * Copyright (C) 2009 Jaswinder Singh Rajput
  12. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  14. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  15. *
  16. * ppc:
  17. * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  18. *
  19. * This file is subject to the terms and conditions of the GNU General Public
  20. * License. See the file "COPYING" in the main directory of this archive
  21. * for more details.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/perf_event.h>
  28. #include <asm/processor.h>
  29. struct cpu_hw_events {
  30. struct perf_event *events[MAX_HWEVENTS];
  31. unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  32. unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  33. };
  34. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  35. static struct sh_pmu *sh_pmu __read_mostly;
  36. /* Number of perf_events counting hardware events */
  37. static atomic_t num_events;
  38. /* Used to avoid races in calling reserve/release_pmc_hardware */
  39. static DEFINE_MUTEX(pmc_reserve_mutex);
  40. /*
  41. * Stub these out for now, do something more profound later.
  42. */
  43. int reserve_pmc_hardware(void)
  44. {
  45. return 0;
  46. }
  47. void release_pmc_hardware(void)
  48. {
  49. }
  50. static inline int sh_pmu_initialized(void)
  51. {
  52. return !!sh_pmu;
  53. }
  54. /*
  55. * Release the PMU if this is the last perf_event.
  56. */
  57. static void hw_perf_event_destroy(struct perf_event *event)
  58. {
  59. if (!atomic_add_unless(&num_events, -1, 1)) {
  60. mutex_lock(&pmc_reserve_mutex);
  61. if (atomic_dec_return(&num_events) == 0)
  62. release_pmc_hardware();
  63. mutex_unlock(&pmc_reserve_mutex);
  64. }
  65. }
  66. static int hw_perf_cache_event(int config, int *evp)
  67. {
  68. unsigned long type, op, result;
  69. int ev;
  70. if (!sh_pmu->cache_events)
  71. return -EINVAL;
  72. /* unpack config */
  73. type = config & 0xff;
  74. op = (config >> 8) & 0xff;
  75. result = (config >> 16) & 0xff;
  76. if (type >= PERF_COUNT_HW_CACHE_MAX ||
  77. op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  78. result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  79. return -EINVAL;
  80. ev = (*sh_pmu->cache_events)[type][op][result];
  81. if (ev == 0)
  82. return -EOPNOTSUPP;
  83. if (ev == -1)
  84. return -EINVAL;
  85. *evp = ev;
  86. return 0;
  87. }
  88. static int __hw_perf_event_init(struct perf_event *event)
  89. {
  90. struct perf_event_attr *attr = &event->attr;
  91. struct hw_perf_event *hwc = &event->hw;
  92. int config;
  93. int err;
  94. if (!sh_pmu_initialized())
  95. return -ENODEV;
  96. /*
  97. * All of the on-chip counters are "limited", in that they have
  98. * no interrupts, and are therefore unable to do sampling without
  99. * further work and timer assistance.
  100. */
  101. if (hwc->sample_period)
  102. return -EINVAL;
  103. /*
  104. * See if we need to reserve the counter.
  105. *
  106. * If no events are currently in use, then we have to take a
  107. * mutex to ensure that we don't race with another task doing
  108. * reserve_pmc_hardware or release_pmc_hardware.
  109. */
  110. err = 0;
  111. if (!atomic_inc_not_zero(&num_events)) {
  112. mutex_lock(&pmc_reserve_mutex);
  113. if (atomic_read(&num_events) == 0 &&
  114. reserve_pmc_hardware())
  115. err = -EBUSY;
  116. else
  117. atomic_inc(&num_events);
  118. mutex_unlock(&pmc_reserve_mutex);
  119. }
  120. if (err)
  121. return err;
  122. event->destroy = hw_perf_event_destroy;
  123. switch (attr->type) {
  124. case PERF_TYPE_RAW:
  125. config = attr->config & sh_pmu->raw_event_mask;
  126. break;
  127. case PERF_TYPE_HW_CACHE:
  128. err = hw_perf_cache_event(attr->config, &config);
  129. if (err)
  130. return err;
  131. break;
  132. case PERF_TYPE_HARDWARE:
  133. if (attr->config >= sh_pmu->max_events)
  134. return -EINVAL;
  135. config = sh_pmu->event_map(attr->config);
  136. break;
  137. default:
  138. return -EINVAL;
  139. }
  140. if (config == -1)
  141. return -EINVAL;
  142. hwc->config |= config;
  143. return 0;
  144. }
  145. static void sh_perf_event_update(struct perf_event *event,
  146. struct hw_perf_event *hwc, int idx)
  147. {
  148. u64 prev_raw_count, new_raw_count;
  149. s64 delta;
  150. int shift = 0;
  151. /*
  152. * Depending on the counter configuration, they may or may not
  153. * be chained, in which case the previous counter value can be
  154. * updated underneath us if the lower-half overflows.
  155. *
  156. * Our tactic to handle this is to first atomically read and
  157. * exchange a new raw count - then add that new-prev delta
  158. * count to the generic counter atomically.
  159. *
  160. * As there is no interrupt associated with the overflow events,
  161. * this is the simplest approach for maintaining consistency.
  162. */
  163. again:
  164. prev_raw_count = atomic64_read(&hwc->prev_count);
  165. new_raw_count = sh_pmu->read(idx);
  166. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  167. new_raw_count) != prev_raw_count)
  168. goto again;
  169. /*
  170. * Now we have the new raw value and have updated the prev
  171. * timestamp already. We can now calculate the elapsed delta
  172. * (counter-)time and add that to the generic counter.
  173. *
  174. * Careful, not all hw sign-extends above the physical width
  175. * of the count.
  176. */
  177. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  178. delta >>= shift;
  179. atomic64_add(delta, &event->count);
  180. }
  181. static void sh_pmu_disable(struct perf_event *event)
  182. {
  183. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  184. struct hw_perf_event *hwc = &event->hw;
  185. int idx = hwc->idx;
  186. clear_bit(idx, cpuc->active_mask);
  187. sh_pmu->disable(hwc, idx);
  188. barrier();
  189. sh_perf_event_update(event, &event->hw, idx);
  190. cpuc->events[idx] = NULL;
  191. clear_bit(idx, cpuc->used_mask);
  192. perf_event_update_userpage(event);
  193. }
  194. static int sh_pmu_enable(struct perf_event *event)
  195. {
  196. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  197. struct hw_perf_event *hwc = &event->hw;
  198. int idx = hwc->idx;
  199. if (test_and_set_bit(idx, cpuc->used_mask)) {
  200. idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
  201. if (idx == sh_pmu->num_events)
  202. return -EAGAIN;
  203. set_bit(idx, cpuc->used_mask);
  204. hwc->idx = idx;
  205. }
  206. sh_pmu->disable(hwc, idx);
  207. cpuc->events[idx] = event;
  208. set_bit(idx, cpuc->active_mask);
  209. sh_pmu->enable(hwc, idx);
  210. perf_event_update_userpage(event);
  211. return 0;
  212. }
  213. static void sh_pmu_read(struct perf_event *event)
  214. {
  215. sh_perf_event_update(event, &event->hw, event->hw.idx);
  216. }
  217. static const struct pmu pmu = {
  218. .enable = sh_pmu_enable,
  219. .disable = sh_pmu_disable,
  220. .read = sh_pmu_read,
  221. };
  222. const struct pmu *hw_perf_event_init(struct perf_event *event)
  223. {
  224. int err = __hw_perf_event_init(event);
  225. if (unlikely(err)) {
  226. if (event->destroy)
  227. event->destroy(event);
  228. return ERR_PTR(err);
  229. }
  230. return &pmu;
  231. }
  232. void hw_perf_event_setup(int cpu)
  233. {
  234. struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
  235. memset(cpuhw, 0, sizeof(struct cpu_hw_events));
  236. }
  237. void hw_perf_enable(void)
  238. {
  239. if (!sh_pmu_initialized())
  240. return;
  241. sh_pmu->enable_all();
  242. }
  243. void hw_perf_disable(void)
  244. {
  245. if (!sh_pmu_initialized())
  246. return;
  247. sh_pmu->disable_all();
  248. }
  249. int register_sh_pmu(struct sh_pmu *pmu)
  250. {
  251. if (sh_pmu)
  252. return -EBUSY;
  253. sh_pmu = pmu;
  254. pr_info("Performance Events: %s support registered\n", pmu->name);
  255. WARN_ON(pmu->num_events > MAX_HWEVENTS);
  256. return 0;
  257. }