pagemap.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. #ifndef _LINUX_PAGEMAP_H
  2. #define _LINUX_PAGEMAP_H
  3. /*
  4. * Copyright 1995 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/fs.h>
  8. #include <linux/list.h>
  9. #include <linux/highmem.h>
  10. #include <linux/compiler.h>
  11. #include <asm/uaccess.h>
  12. #include <linux/gfp.h>
  13. #include <linux/bitops.h>
  14. #include <linux/hardirq.h> /* for in_interrupt() */
  15. #include <linux/hugetlb_inline.h>
  16. /*
  17. * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
  18. * allocation mode flags.
  19. */
  20. enum mapping_flags {
  21. AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
  22. AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
  23. AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
  24. AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
  25. AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
  26. };
  27. static inline void mapping_set_error(struct address_space *mapping, int error)
  28. {
  29. if (unlikely(error)) {
  30. if (error == -ENOSPC)
  31. set_bit(AS_ENOSPC, &mapping->flags);
  32. else
  33. set_bit(AS_EIO, &mapping->flags);
  34. }
  35. }
  36. static inline void mapping_set_unevictable(struct address_space *mapping)
  37. {
  38. set_bit(AS_UNEVICTABLE, &mapping->flags);
  39. }
  40. static inline void mapping_clear_unevictable(struct address_space *mapping)
  41. {
  42. clear_bit(AS_UNEVICTABLE, &mapping->flags);
  43. }
  44. static inline int mapping_unevictable(struct address_space *mapping)
  45. {
  46. if (mapping)
  47. return test_bit(AS_UNEVICTABLE, &mapping->flags);
  48. return !!mapping;
  49. }
  50. static inline void mapping_set_balloon(struct address_space *mapping)
  51. {
  52. set_bit(AS_BALLOON_MAP, &mapping->flags);
  53. }
  54. static inline void mapping_clear_balloon(struct address_space *mapping)
  55. {
  56. clear_bit(AS_BALLOON_MAP, &mapping->flags);
  57. }
  58. static inline int mapping_balloon(struct address_space *mapping)
  59. {
  60. return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
  61. }
  62. static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  63. {
  64. return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  65. }
  66. /*
  67. * This is non-atomic. Only to be used before the mapping is activated.
  68. * Probably needs a barrier...
  69. */
  70. static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  71. {
  72. m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  73. (__force unsigned long)mask;
  74. }
  75. /*
  76. * The page cache can done in larger chunks than
  77. * one page, because it allows for more efficient
  78. * throughput (it can then be mapped into user
  79. * space in smaller chunks for same flexibility).
  80. *
  81. * Or rather, it _will_ be done in larger chunks.
  82. */
  83. #define PAGE_CACHE_SHIFT PAGE_SHIFT
  84. #define PAGE_CACHE_SIZE PAGE_SIZE
  85. #define PAGE_CACHE_MASK PAGE_MASK
  86. #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  87. #define page_cache_get(page) get_page(page)
  88. #define page_cache_release(page) put_page(page)
  89. void release_pages(struct page **pages, int nr, int cold);
  90. /*
  91. * speculatively take a reference to a page.
  92. * If the page is free (_count == 0), then _count is untouched, and 0
  93. * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  94. *
  95. * This function must be called inside the same rcu_read_lock() section as has
  96. * been used to lookup the page in the pagecache radix-tree (or page table):
  97. * this allows allocators to use a synchronize_rcu() to stabilize _count.
  98. *
  99. * Unless an RCU grace period has passed, the count of all pages coming out
  100. * of the allocator must be considered unstable. page_count may return higher
  101. * than expected, and put_page must be able to do the right thing when the
  102. * page has been finished with, no matter what it is subsequently allocated
  103. * for (because put_page is what is used here to drop an invalid speculative
  104. * reference).
  105. *
  106. * This is the interesting part of the lockless pagecache (and lockless
  107. * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
  108. * has the following pattern:
  109. * 1. find page in radix tree
  110. * 2. conditionally increment refcount
  111. * 3. check the page is still in pagecache (if no, goto 1)
  112. *
  113. * Remove-side that cares about stability of _count (eg. reclaim) has the
  114. * following (with tree_lock held for write):
  115. * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
  116. * B. remove page from pagecache
  117. * C. free the page
  118. *
  119. * There are 2 critical interleavings that matter:
  120. * - 2 runs before A: in this case, A sees elevated refcount and bails out
  121. * - A runs before 2: in this case, 2 sees zero refcount and retries;
  122. * subsequently, B will complete and 1 will find no page, causing the
  123. * lookup to return NULL.
  124. *
  125. * It is possible that between 1 and 2, the page is removed then the exact same
  126. * page is inserted into the same position in pagecache. That's OK: the
  127. * old find_get_page using tree_lock could equally have run before or after
  128. * such a re-insertion, depending on order that locks are granted.
  129. *
  130. * Lookups racing against pagecache insertion isn't a big problem: either 1
  131. * will find the page or it will not. Likewise, the old find_get_page could run
  132. * either before the insertion or afterwards, depending on timing.
  133. */
  134. static inline int page_cache_get_speculative(struct page *page)
  135. {
  136. VM_BUG_ON(in_interrupt());
  137. #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
  138. # ifdef CONFIG_PREEMPT_COUNT
  139. VM_BUG_ON(!in_atomic());
  140. # endif
  141. /*
  142. * Preempt must be disabled here - we rely on rcu_read_lock doing
  143. * this for us.
  144. *
  145. * Pagecache won't be truncated from interrupt context, so if we have
  146. * found a page in the radix tree here, we have pinned its refcount by
  147. * disabling preempt, and hence no need for the "speculative get" that
  148. * SMP requires.
  149. */
  150. VM_BUG_ON(page_count(page) == 0);
  151. atomic_inc(&page->_count);
  152. #else
  153. if (unlikely(!get_page_unless_zero(page))) {
  154. /*
  155. * Either the page has been freed, or will be freed.
  156. * In either case, retry here and the caller should
  157. * do the right thing (see comments above).
  158. */
  159. return 0;
  160. }
  161. #endif
  162. VM_BUG_ON(PageTail(page));
  163. return 1;
  164. }
  165. /*
  166. * Same as above, but add instead of inc (could just be merged)
  167. */
  168. static inline int page_cache_add_speculative(struct page *page, int count)
  169. {
  170. VM_BUG_ON(in_interrupt());
  171. #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
  172. # ifdef CONFIG_PREEMPT_COUNT
  173. VM_BUG_ON(!in_atomic());
  174. # endif
  175. VM_BUG_ON(page_count(page) == 0);
  176. atomic_add(count, &page->_count);
  177. #else
  178. if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
  179. return 0;
  180. #endif
  181. VM_BUG_ON(PageCompound(page) && page != compound_head(page));
  182. return 1;
  183. }
  184. static inline int page_freeze_refs(struct page *page, int count)
  185. {
  186. return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
  187. }
  188. static inline void page_unfreeze_refs(struct page *page, int count)
  189. {
  190. VM_BUG_ON(page_count(page) != 0);
  191. VM_BUG_ON(count == 0);
  192. atomic_set(&page->_count, count);
  193. }
  194. #ifdef CONFIG_NUMA
  195. extern struct page *__page_cache_alloc(gfp_t gfp);
  196. #else
  197. static inline struct page *__page_cache_alloc(gfp_t gfp)
  198. {
  199. return alloc_pages(gfp, 0);
  200. }
  201. #endif
  202. static inline struct page *page_cache_alloc(struct address_space *x)
  203. {
  204. return __page_cache_alloc(mapping_gfp_mask(x));
  205. }
  206. static inline struct page *page_cache_alloc_cold(struct address_space *x)
  207. {
  208. return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
  209. }
  210. static inline struct page *page_cache_alloc_readahead(struct address_space *x)
  211. {
  212. return __page_cache_alloc(mapping_gfp_mask(x) |
  213. __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
  214. }
  215. typedef int filler_t(void *, struct page *);
  216. extern struct page * find_get_page(struct address_space *mapping,
  217. pgoff_t index);
  218. extern struct page * find_lock_page(struct address_space *mapping,
  219. pgoff_t index);
  220. extern struct page * find_or_create_page(struct address_space *mapping,
  221. pgoff_t index, gfp_t gfp_mask);
  222. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  223. unsigned int nr_pages, struct page **pages);
  224. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
  225. unsigned int nr_pages, struct page **pages);
  226. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  227. int tag, unsigned int nr_pages, struct page **pages);
  228. struct page *grab_cache_page_write_begin(struct address_space *mapping,
  229. pgoff_t index, unsigned flags);
  230. /*
  231. * Returns locked page at given index in given cache, creating it if needed.
  232. */
  233. static inline struct page *grab_cache_page(struct address_space *mapping,
  234. pgoff_t index)
  235. {
  236. return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
  237. }
  238. extern struct page * grab_cache_page_nowait(struct address_space *mapping,
  239. pgoff_t index);
  240. extern struct page * read_cache_page_async(struct address_space *mapping,
  241. pgoff_t index, filler_t *filler, void *data);
  242. extern struct page * read_cache_page(struct address_space *mapping,
  243. pgoff_t index, filler_t *filler, void *data);
  244. extern struct page * read_cache_page_gfp(struct address_space *mapping,
  245. pgoff_t index, gfp_t gfp_mask);
  246. extern int read_cache_pages(struct address_space *mapping,
  247. struct list_head *pages, filler_t *filler, void *data);
  248. static inline struct page *read_mapping_page_async(
  249. struct address_space *mapping,
  250. pgoff_t index, void *data)
  251. {
  252. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  253. return read_cache_page_async(mapping, index, filler, data);
  254. }
  255. static inline struct page *read_mapping_page(struct address_space *mapping,
  256. pgoff_t index, void *data)
  257. {
  258. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  259. return read_cache_page(mapping, index, filler, data);
  260. }
  261. /*
  262. * Return byte-offset into filesystem object for page.
  263. */
  264. static inline loff_t page_offset(struct page *page)
  265. {
  266. return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
  267. }
  268. static inline loff_t page_file_offset(struct page *page)
  269. {
  270. return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
  271. }
  272. extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  273. unsigned long address);
  274. static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
  275. unsigned long address)
  276. {
  277. pgoff_t pgoff;
  278. if (unlikely(is_vm_hugetlb_page(vma)))
  279. return linear_hugepage_index(vma, address);
  280. pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
  281. pgoff += vma->vm_pgoff;
  282. return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  283. }
  284. extern void __lock_page(struct page *page);
  285. extern int __lock_page_killable(struct page *page);
  286. extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
  287. unsigned int flags);
  288. extern void unlock_page(struct page *page);
  289. static inline void __set_page_locked(struct page *page)
  290. {
  291. __set_bit(PG_locked, &page->flags);
  292. }
  293. static inline void __clear_page_locked(struct page *page)
  294. {
  295. __clear_bit(PG_locked, &page->flags);
  296. }
  297. static inline int trylock_page(struct page *page)
  298. {
  299. return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
  300. }
  301. /*
  302. * lock_page may only be called if we have the page's inode pinned.
  303. */
  304. static inline void lock_page(struct page *page)
  305. {
  306. might_sleep();
  307. if (!trylock_page(page))
  308. __lock_page(page);
  309. }
  310. /*
  311. * lock_page_killable is like lock_page but can be interrupted by fatal
  312. * signals. It returns 0 if it locked the page and -EINTR if it was
  313. * killed while waiting.
  314. */
  315. static inline int lock_page_killable(struct page *page)
  316. {
  317. might_sleep();
  318. if (!trylock_page(page))
  319. return __lock_page_killable(page);
  320. return 0;
  321. }
  322. /*
  323. * lock_page_or_retry - Lock the page, unless this would block and the
  324. * caller indicated that it can handle a retry.
  325. */
  326. static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
  327. unsigned int flags)
  328. {
  329. might_sleep();
  330. return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
  331. }
  332. /*
  333. * This is exported only for wait_on_page_locked/wait_on_page_writeback.
  334. * Never use this directly!
  335. */
  336. extern void wait_on_page_bit(struct page *page, int bit_nr);
  337. extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
  338. static inline int wait_on_page_locked_killable(struct page *page)
  339. {
  340. if (PageLocked(page))
  341. return wait_on_page_bit_killable(page, PG_locked);
  342. return 0;
  343. }
  344. /*
  345. * Wait for a page to be unlocked.
  346. *
  347. * This must be called with the caller "holding" the page,
  348. * ie with increased "page->count" so that the page won't
  349. * go away during the wait..
  350. */
  351. static inline void wait_on_page_locked(struct page *page)
  352. {
  353. if (PageLocked(page))
  354. wait_on_page_bit(page, PG_locked);
  355. }
  356. /*
  357. * Wait for a page to complete writeback
  358. */
  359. static inline void wait_on_page_writeback(struct page *page)
  360. {
  361. if (PageWriteback(page))
  362. wait_on_page_bit(page, PG_writeback);
  363. }
  364. extern void end_page_writeback(struct page *page);
  365. void wait_for_stable_page(struct page *page);
  366. /*
  367. * Add an arbitrary waiter to a page's wait queue
  368. */
  369. extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
  370. /*
  371. * Fault a userspace page into pagetables. Return non-zero on a fault.
  372. *
  373. * This assumes that two userspace pages are always sufficient. That's
  374. * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
  375. */
  376. static inline int fault_in_pages_writeable(char __user *uaddr, int size)
  377. {
  378. int ret;
  379. if (unlikely(size == 0))
  380. return 0;
  381. /*
  382. * Writing zeroes into userspace here is OK, because we know that if
  383. * the zero gets there, we'll be overwriting it.
  384. */
  385. ret = __put_user(0, uaddr);
  386. if (ret == 0) {
  387. char __user *end = uaddr + size - 1;
  388. /*
  389. * If the page was already mapped, this will get a cache miss
  390. * for sure, so try to avoid doing it.
  391. */
  392. if (((unsigned long)uaddr & PAGE_MASK) !=
  393. ((unsigned long)end & PAGE_MASK))
  394. ret = __put_user(0, end);
  395. }
  396. return ret;
  397. }
  398. static inline int fault_in_pages_readable(const char __user *uaddr, int size)
  399. {
  400. volatile char c;
  401. int ret;
  402. if (unlikely(size == 0))
  403. return 0;
  404. ret = __get_user(c, uaddr);
  405. if (ret == 0) {
  406. const char __user *end = uaddr + size - 1;
  407. if (((unsigned long)uaddr & PAGE_MASK) !=
  408. ((unsigned long)end & PAGE_MASK)) {
  409. ret = __get_user(c, end);
  410. (void)c;
  411. }
  412. }
  413. return ret;
  414. }
  415. /*
  416. * Multipage variants of the above prefault helpers, useful if more than
  417. * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
  418. * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
  419. * filemap.c hotpaths.
  420. */
  421. static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
  422. {
  423. int ret = 0;
  424. char __user *end = uaddr + size - 1;
  425. if (unlikely(size == 0))
  426. return ret;
  427. /*
  428. * Writing zeroes into userspace here is OK, because we know that if
  429. * the zero gets there, we'll be overwriting it.
  430. */
  431. while (uaddr <= end) {
  432. ret = __put_user(0, uaddr);
  433. if (ret != 0)
  434. return ret;
  435. uaddr += PAGE_SIZE;
  436. }
  437. /* Check whether the range spilled into the next page. */
  438. if (((unsigned long)uaddr & PAGE_MASK) ==
  439. ((unsigned long)end & PAGE_MASK))
  440. ret = __put_user(0, end);
  441. return ret;
  442. }
  443. static inline int fault_in_multipages_readable(const char __user *uaddr,
  444. int size)
  445. {
  446. volatile char c;
  447. int ret = 0;
  448. const char __user *end = uaddr + size - 1;
  449. if (unlikely(size == 0))
  450. return ret;
  451. while (uaddr <= end) {
  452. ret = __get_user(c, uaddr);
  453. if (ret != 0)
  454. return ret;
  455. uaddr += PAGE_SIZE;
  456. }
  457. /* Check whether the range spilled into the next page. */
  458. if (((unsigned long)uaddr & PAGE_MASK) ==
  459. ((unsigned long)end & PAGE_MASK)) {
  460. ret = __get_user(c, end);
  461. (void)c;
  462. }
  463. return ret;
  464. }
  465. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  466. pgoff_t index, gfp_t gfp_mask);
  467. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  468. pgoff_t index, gfp_t gfp_mask);
  469. extern void delete_from_page_cache(struct page *page);
  470. extern void __delete_from_page_cache(struct page *page);
  471. int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
  472. /*
  473. * Like add_to_page_cache_locked, but used to add newly allocated pages:
  474. * the page is new, so we can just run __set_page_locked() against it.
  475. */
  476. static inline int add_to_page_cache(struct page *page,
  477. struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
  478. {
  479. int error;
  480. __set_page_locked(page);
  481. error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
  482. if (unlikely(error))
  483. __clear_page_locked(page);
  484. return error;
  485. }
  486. #endif /* _LINUX_PAGEMAP_H */