kvm_main.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. DEFINE_SPINLOCK(kvm_lock);
  49. LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kmem_cache *kvm_vcpu_cache;
  52. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  53. static __read_mostly struct preempt_ops kvm_preempt_ops;
  54. struct dentry *kvm_debugfs_dir;
  55. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  56. unsigned long arg);
  57. static inline int valid_vcpu(int n)
  58. {
  59. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  60. }
  61. /*
  62. * Switches to specified vcpu, until a matching vcpu_put()
  63. */
  64. void vcpu_load(struct kvm_vcpu *vcpu)
  65. {
  66. int cpu;
  67. mutex_lock(&vcpu->mutex);
  68. cpu = get_cpu();
  69. preempt_notifier_register(&vcpu->preempt_notifier);
  70. kvm_arch_vcpu_load(vcpu, cpu);
  71. put_cpu();
  72. }
  73. void vcpu_put(struct kvm_vcpu *vcpu)
  74. {
  75. preempt_disable();
  76. kvm_arch_vcpu_put(vcpu);
  77. preempt_notifier_unregister(&vcpu->preempt_notifier);
  78. preempt_enable();
  79. mutex_unlock(&vcpu->mutex);
  80. }
  81. static void ack_flush(void *_completed)
  82. {
  83. }
  84. void kvm_flush_remote_tlbs(struct kvm *kvm)
  85. {
  86. int i, cpu;
  87. cpumask_t cpus;
  88. struct kvm_vcpu *vcpu;
  89. cpus_clear(cpus);
  90. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  91. vcpu = kvm->vcpus[i];
  92. if (!vcpu)
  93. continue;
  94. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  95. continue;
  96. cpu = vcpu->cpu;
  97. if (cpu != -1 && cpu != raw_smp_processor_id())
  98. cpu_set(cpu, cpus);
  99. }
  100. if (cpus_empty(cpus))
  101. return;
  102. ++kvm->stat.remote_tlb_flush;
  103. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  104. }
  105. void kvm_reload_remote_mmus(struct kvm *kvm)
  106. {
  107. int i, cpu;
  108. cpumask_t cpus;
  109. struct kvm_vcpu *vcpu;
  110. cpus_clear(cpus);
  111. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  112. vcpu = kvm->vcpus[i];
  113. if (!vcpu)
  114. continue;
  115. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  116. continue;
  117. cpu = vcpu->cpu;
  118. if (cpu != -1 && cpu != raw_smp_processor_id())
  119. cpu_set(cpu, cpus);
  120. }
  121. if (cpus_empty(cpus))
  122. return;
  123. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  124. }
  125. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  126. {
  127. struct page *page;
  128. int r;
  129. mutex_init(&vcpu->mutex);
  130. vcpu->cpu = -1;
  131. vcpu->kvm = kvm;
  132. vcpu->vcpu_id = id;
  133. init_waitqueue_head(&vcpu->wq);
  134. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  135. if (!page) {
  136. r = -ENOMEM;
  137. goto fail;
  138. }
  139. vcpu->run = page_address(page);
  140. r = kvm_arch_vcpu_init(vcpu);
  141. if (r < 0)
  142. goto fail_free_run;
  143. return 0;
  144. fail_free_run:
  145. free_page((unsigned long)vcpu->run);
  146. fail:
  147. return r;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  150. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  151. {
  152. kvm_arch_vcpu_uninit(vcpu);
  153. free_page((unsigned long)vcpu->run);
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  156. static struct kvm *kvm_create_vm(void)
  157. {
  158. struct kvm *kvm = kvm_arch_create_vm();
  159. if (IS_ERR(kvm))
  160. goto out;
  161. kvm->mm = current->mm;
  162. atomic_inc(&kvm->mm->mm_count);
  163. spin_lock_init(&kvm->mmu_lock);
  164. kvm_io_bus_init(&kvm->pio_bus);
  165. mutex_init(&kvm->lock);
  166. kvm_io_bus_init(&kvm->mmio_bus);
  167. init_rwsem(&kvm->slots_lock);
  168. atomic_set(&kvm->users_count, 1);
  169. spin_lock(&kvm_lock);
  170. list_add(&kvm->vm_list, &vm_list);
  171. spin_unlock(&kvm_lock);
  172. out:
  173. return kvm;
  174. }
  175. /*
  176. * Free any memory in @free but not in @dont.
  177. */
  178. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  179. struct kvm_memory_slot *dont)
  180. {
  181. if (!dont || free->rmap != dont->rmap)
  182. vfree(free->rmap);
  183. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  184. vfree(free->dirty_bitmap);
  185. if (!dont || free->lpage_info != dont->lpage_info)
  186. vfree(free->lpage_info);
  187. free->npages = 0;
  188. free->dirty_bitmap = NULL;
  189. free->rmap = NULL;
  190. free->lpage_info = NULL;
  191. }
  192. void kvm_free_physmem(struct kvm *kvm)
  193. {
  194. int i;
  195. for (i = 0; i < kvm->nmemslots; ++i)
  196. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  197. }
  198. static void kvm_destroy_vm(struct kvm *kvm)
  199. {
  200. struct mm_struct *mm = kvm->mm;
  201. spin_lock(&kvm_lock);
  202. list_del(&kvm->vm_list);
  203. spin_unlock(&kvm_lock);
  204. kvm_io_bus_destroy(&kvm->pio_bus);
  205. kvm_io_bus_destroy(&kvm->mmio_bus);
  206. kvm_arch_destroy_vm(kvm);
  207. mmdrop(mm);
  208. }
  209. void kvm_get_kvm(struct kvm *kvm)
  210. {
  211. atomic_inc(&kvm->users_count);
  212. }
  213. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  214. void kvm_put_kvm(struct kvm *kvm)
  215. {
  216. if (atomic_dec_and_test(&kvm->users_count))
  217. kvm_destroy_vm(kvm);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  220. static int kvm_vm_release(struct inode *inode, struct file *filp)
  221. {
  222. struct kvm *kvm = filp->private_data;
  223. kvm_put_kvm(kvm);
  224. return 0;
  225. }
  226. /*
  227. * Allocate some memory and give it an address in the guest physical address
  228. * space.
  229. *
  230. * Discontiguous memory is allowed, mostly for framebuffers.
  231. *
  232. * Must be called holding mmap_sem for write.
  233. */
  234. int __kvm_set_memory_region(struct kvm *kvm,
  235. struct kvm_userspace_memory_region *mem,
  236. int user_alloc)
  237. {
  238. int r;
  239. gfn_t base_gfn;
  240. unsigned long npages;
  241. unsigned long i;
  242. struct kvm_memory_slot *memslot;
  243. struct kvm_memory_slot old, new;
  244. r = -EINVAL;
  245. /* General sanity checks */
  246. if (mem->memory_size & (PAGE_SIZE - 1))
  247. goto out;
  248. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  249. goto out;
  250. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  251. goto out;
  252. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  253. goto out;
  254. memslot = &kvm->memslots[mem->slot];
  255. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  256. npages = mem->memory_size >> PAGE_SHIFT;
  257. if (!npages)
  258. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  259. new = old = *memslot;
  260. new.base_gfn = base_gfn;
  261. new.npages = npages;
  262. new.flags = mem->flags;
  263. /* Disallow changing a memory slot's size. */
  264. r = -EINVAL;
  265. if (npages && old.npages && npages != old.npages)
  266. goto out_free;
  267. /* Check for overlaps */
  268. r = -EEXIST;
  269. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  270. struct kvm_memory_slot *s = &kvm->memslots[i];
  271. if (s == memslot)
  272. continue;
  273. if (!((base_gfn + npages <= s->base_gfn) ||
  274. (base_gfn >= s->base_gfn + s->npages)))
  275. goto out_free;
  276. }
  277. /* Free page dirty bitmap if unneeded */
  278. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  279. new.dirty_bitmap = NULL;
  280. r = -ENOMEM;
  281. /* Allocate if a slot is being created */
  282. if (npages && !new.rmap) {
  283. new.rmap = vmalloc(npages * sizeof(struct page *));
  284. if (!new.rmap)
  285. goto out_free;
  286. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  287. new.user_alloc = user_alloc;
  288. new.userspace_addr = mem->userspace_addr;
  289. }
  290. if (npages && !new.lpage_info) {
  291. int largepages = npages / KVM_PAGES_PER_HPAGE;
  292. if (npages % KVM_PAGES_PER_HPAGE)
  293. largepages++;
  294. if (base_gfn % KVM_PAGES_PER_HPAGE)
  295. largepages++;
  296. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  297. if (!new.lpage_info)
  298. goto out_free;
  299. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  300. if (base_gfn % KVM_PAGES_PER_HPAGE)
  301. new.lpage_info[0].write_count = 1;
  302. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  303. new.lpage_info[largepages-1].write_count = 1;
  304. }
  305. /* Allocate page dirty bitmap if needed */
  306. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  307. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  308. new.dirty_bitmap = vmalloc(dirty_bytes);
  309. if (!new.dirty_bitmap)
  310. goto out_free;
  311. memset(new.dirty_bitmap, 0, dirty_bytes);
  312. }
  313. if (mem->slot >= kvm->nmemslots)
  314. kvm->nmemslots = mem->slot + 1;
  315. *memslot = new;
  316. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  317. if (r) {
  318. *memslot = old;
  319. goto out_free;
  320. }
  321. kvm_free_physmem_slot(&old, &new);
  322. return 0;
  323. out_free:
  324. kvm_free_physmem_slot(&new, &old);
  325. out:
  326. return r;
  327. }
  328. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  329. int kvm_set_memory_region(struct kvm *kvm,
  330. struct kvm_userspace_memory_region *mem,
  331. int user_alloc)
  332. {
  333. int r;
  334. down_write(&kvm->slots_lock);
  335. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  336. up_write(&kvm->slots_lock);
  337. return r;
  338. }
  339. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  340. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  341. struct
  342. kvm_userspace_memory_region *mem,
  343. int user_alloc)
  344. {
  345. if (mem->slot >= KVM_MEMORY_SLOTS)
  346. return -EINVAL;
  347. return kvm_set_memory_region(kvm, mem, user_alloc);
  348. }
  349. int kvm_get_dirty_log(struct kvm *kvm,
  350. struct kvm_dirty_log *log, int *is_dirty)
  351. {
  352. struct kvm_memory_slot *memslot;
  353. int r, i;
  354. int n;
  355. unsigned long any = 0;
  356. r = -EINVAL;
  357. if (log->slot >= KVM_MEMORY_SLOTS)
  358. goto out;
  359. memslot = &kvm->memslots[log->slot];
  360. r = -ENOENT;
  361. if (!memslot->dirty_bitmap)
  362. goto out;
  363. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  364. for (i = 0; !any && i < n/sizeof(long); ++i)
  365. any = memslot->dirty_bitmap[i];
  366. r = -EFAULT;
  367. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  368. goto out;
  369. if (any)
  370. *is_dirty = 1;
  371. r = 0;
  372. out:
  373. return r;
  374. }
  375. int is_error_page(struct page *page)
  376. {
  377. return page == bad_page;
  378. }
  379. EXPORT_SYMBOL_GPL(is_error_page);
  380. int is_error_pfn(pfn_t pfn)
  381. {
  382. return pfn == bad_pfn;
  383. }
  384. EXPORT_SYMBOL_GPL(is_error_pfn);
  385. static inline unsigned long bad_hva(void)
  386. {
  387. return PAGE_OFFSET;
  388. }
  389. int kvm_is_error_hva(unsigned long addr)
  390. {
  391. return addr == bad_hva();
  392. }
  393. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  394. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  395. {
  396. int i;
  397. for (i = 0; i < kvm->nmemslots; ++i) {
  398. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  399. if (gfn >= memslot->base_gfn
  400. && gfn < memslot->base_gfn + memslot->npages)
  401. return memslot;
  402. }
  403. return NULL;
  404. }
  405. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  406. {
  407. gfn = unalias_gfn(kvm, gfn);
  408. return __gfn_to_memslot(kvm, gfn);
  409. }
  410. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  411. {
  412. int i;
  413. gfn = unalias_gfn(kvm, gfn);
  414. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  415. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  416. if (gfn >= memslot->base_gfn
  417. && gfn < memslot->base_gfn + memslot->npages)
  418. return 1;
  419. }
  420. return 0;
  421. }
  422. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  423. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  424. {
  425. struct kvm_memory_slot *slot;
  426. gfn = unalias_gfn(kvm, gfn);
  427. slot = __gfn_to_memslot(kvm, gfn);
  428. if (!slot)
  429. return bad_hva();
  430. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  431. }
  432. EXPORT_SYMBOL_GPL(gfn_to_hva);
  433. /*
  434. * Requires current->mm->mmap_sem to be held
  435. */
  436. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  437. {
  438. struct page *page[1];
  439. unsigned long addr;
  440. int npages;
  441. might_sleep();
  442. addr = gfn_to_hva(kvm, gfn);
  443. if (kvm_is_error_hva(addr)) {
  444. get_page(bad_page);
  445. return page_to_pfn(bad_page);
  446. }
  447. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  448. NULL);
  449. if (npages != 1) {
  450. get_page(bad_page);
  451. return page_to_pfn(bad_page);
  452. }
  453. return page_to_pfn(page[0]);
  454. }
  455. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  456. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  457. {
  458. return pfn_to_page(gfn_to_pfn(kvm, gfn));
  459. }
  460. EXPORT_SYMBOL_GPL(gfn_to_page);
  461. void kvm_release_page_clean(struct page *page)
  462. {
  463. kvm_release_pfn_clean(page_to_pfn(page));
  464. }
  465. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  466. void kvm_release_pfn_clean(pfn_t pfn)
  467. {
  468. put_page(pfn_to_page(pfn));
  469. }
  470. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  471. void kvm_release_page_dirty(struct page *page)
  472. {
  473. kvm_release_pfn_dirty(page_to_pfn(page));
  474. }
  475. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  476. void kvm_release_pfn_dirty(pfn_t pfn)
  477. {
  478. kvm_set_pfn_dirty(pfn);
  479. kvm_release_pfn_clean(pfn);
  480. }
  481. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  482. void kvm_set_page_dirty(struct page *page)
  483. {
  484. kvm_set_pfn_dirty(page_to_pfn(page));
  485. }
  486. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  487. void kvm_set_pfn_dirty(pfn_t pfn)
  488. {
  489. struct page *page = pfn_to_page(pfn);
  490. if (!PageReserved(page))
  491. SetPageDirty(page);
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  494. void kvm_set_pfn_accessed(pfn_t pfn)
  495. {
  496. mark_page_accessed(pfn_to_page(pfn));
  497. }
  498. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  499. void kvm_get_pfn(pfn_t pfn)
  500. {
  501. get_page(pfn_to_page(pfn));
  502. }
  503. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  504. static int next_segment(unsigned long len, int offset)
  505. {
  506. if (len > PAGE_SIZE - offset)
  507. return PAGE_SIZE - offset;
  508. else
  509. return len;
  510. }
  511. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  512. int len)
  513. {
  514. int r;
  515. unsigned long addr;
  516. addr = gfn_to_hva(kvm, gfn);
  517. if (kvm_is_error_hva(addr))
  518. return -EFAULT;
  519. r = copy_from_user(data, (void __user *)addr + offset, len);
  520. if (r)
  521. return -EFAULT;
  522. return 0;
  523. }
  524. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  525. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  526. {
  527. gfn_t gfn = gpa >> PAGE_SHIFT;
  528. int seg;
  529. int offset = offset_in_page(gpa);
  530. int ret;
  531. while ((seg = next_segment(len, offset)) != 0) {
  532. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  533. if (ret < 0)
  534. return ret;
  535. offset = 0;
  536. len -= seg;
  537. data += seg;
  538. ++gfn;
  539. }
  540. return 0;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_read_guest);
  543. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  544. unsigned long len)
  545. {
  546. int r;
  547. unsigned long addr;
  548. gfn_t gfn = gpa >> PAGE_SHIFT;
  549. int offset = offset_in_page(gpa);
  550. addr = gfn_to_hva(kvm, gfn);
  551. if (kvm_is_error_hva(addr))
  552. return -EFAULT;
  553. pagefault_disable();
  554. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  555. pagefault_enable();
  556. if (r)
  557. return -EFAULT;
  558. return 0;
  559. }
  560. EXPORT_SYMBOL(kvm_read_guest_atomic);
  561. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  562. int offset, int len)
  563. {
  564. int r;
  565. unsigned long addr;
  566. addr = gfn_to_hva(kvm, gfn);
  567. if (kvm_is_error_hva(addr))
  568. return -EFAULT;
  569. r = copy_to_user((void __user *)addr + offset, data, len);
  570. if (r)
  571. return -EFAULT;
  572. mark_page_dirty(kvm, gfn);
  573. return 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  576. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  577. unsigned long len)
  578. {
  579. gfn_t gfn = gpa >> PAGE_SHIFT;
  580. int seg;
  581. int offset = offset_in_page(gpa);
  582. int ret;
  583. while ((seg = next_segment(len, offset)) != 0) {
  584. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  585. if (ret < 0)
  586. return ret;
  587. offset = 0;
  588. len -= seg;
  589. data += seg;
  590. ++gfn;
  591. }
  592. return 0;
  593. }
  594. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  595. {
  596. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  597. }
  598. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  599. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  600. {
  601. gfn_t gfn = gpa >> PAGE_SHIFT;
  602. int seg;
  603. int offset = offset_in_page(gpa);
  604. int ret;
  605. while ((seg = next_segment(len, offset)) != 0) {
  606. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  607. if (ret < 0)
  608. return ret;
  609. offset = 0;
  610. len -= seg;
  611. ++gfn;
  612. }
  613. return 0;
  614. }
  615. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  616. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  617. {
  618. struct kvm_memory_slot *memslot;
  619. gfn = unalias_gfn(kvm, gfn);
  620. memslot = __gfn_to_memslot(kvm, gfn);
  621. if (memslot && memslot->dirty_bitmap) {
  622. unsigned long rel_gfn = gfn - memslot->base_gfn;
  623. /* avoid RMW */
  624. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  625. set_bit(rel_gfn, memslot->dirty_bitmap);
  626. }
  627. }
  628. /*
  629. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  630. */
  631. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  632. {
  633. DEFINE_WAIT(wait);
  634. for (;;) {
  635. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  636. if (kvm_cpu_has_interrupt(vcpu))
  637. break;
  638. if (kvm_cpu_has_pending_timer(vcpu))
  639. break;
  640. if (kvm_arch_vcpu_runnable(vcpu))
  641. break;
  642. if (signal_pending(current))
  643. break;
  644. vcpu_put(vcpu);
  645. schedule();
  646. vcpu_load(vcpu);
  647. }
  648. finish_wait(&vcpu->wq, &wait);
  649. }
  650. void kvm_resched(struct kvm_vcpu *vcpu)
  651. {
  652. if (!need_resched())
  653. return;
  654. cond_resched();
  655. }
  656. EXPORT_SYMBOL_GPL(kvm_resched);
  657. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  658. {
  659. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  660. struct page *page;
  661. if (vmf->pgoff == 0)
  662. page = virt_to_page(vcpu->run);
  663. #ifdef CONFIG_X86
  664. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  665. page = virt_to_page(vcpu->arch.pio_data);
  666. #endif
  667. else
  668. return VM_FAULT_SIGBUS;
  669. get_page(page);
  670. vmf->page = page;
  671. return 0;
  672. }
  673. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  674. .fault = kvm_vcpu_fault,
  675. };
  676. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  677. {
  678. vma->vm_ops = &kvm_vcpu_vm_ops;
  679. return 0;
  680. }
  681. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  682. {
  683. struct kvm_vcpu *vcpu = filp->private_data;
  684. kvm_put_kvm(vcpu->kvm);
  685. return 0;
  686. }
  687. static const struct file_operations kvm_vcpu_fops = {
  688. .release = kvm_vcpu_release,
  689. .unlocked_ioctl = kvm_vcpu_ioctl,
  690. .compat_ioctl = kvm_vcpu_ioctl,
  691. .mmap = kvm_vcpu_mmap,
  692. };
  693. /*
  694. * Allocates an inode for the vcpu.
  695. */
  696. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  697. {
  698. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu);
  699. if (fd < 0)
  700. kvm_put_kvm(vcpu->kvm);
  701. return fd;
  702. }
  703. /*
  704. * Creates some virtual cpus. Good luck creating more than one.
  705. */
  706. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  707. {
  708. int r;
  709. struct kvm_vcpu *vcpu;
  710. if (!valid_vcpu(n))
  711. return -EINVAL;
  712. vcpu = kvm_arch_vcpu_create(kvm, n);
  713. if (IS_ERR(vcpu))
  714. return PTR_ERR(vcpu);
  715. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  716. r = kvm_arch_vcpu_setup(vcpu);
  717. if (r)
  718. goto vcpu_destroy;
  719. mutex_lock(&kvm->lock);
  720. if (kvm->vcpus[n]) {
  721. r = -EEXIST;
  722. mutex_unlock(&kvm->lock);
  723. goto vcpu_destroy;
  724. }
  725. kvm->vcpus[n] = vcpu;
  726. mutex_unlock(&kvm->lock);
  727. /* Now it's all set up, let userspace reach it */
  728. kvm_get_kvm(kvm);
  729. r = create_vcpu_fd(vcpu);
  730. if (r < 0)
  731. goto unlink;
  732. return r;
  733. unlink:
  734. mutex_lock(&kvm->lock);
  735. kvm->vcpus[n] = NULL;
  736. mutex_unlock(&kvm->lock);
  737. vcpu_destroy:
  738. kvm_arch_vcpu_destroy(vcpu);
  739. return r;
  740. }
  741. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  742. {
  743. if (sigset) {
  744. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  745. vcpu->sigset_active = 1;
  746. vcpu->sigset = *sigset;
  747. } else
  748. vcpu->sigset_active = 0;
  749. return 0;
  750. }
  751. static long kvm_vcpu_ioctl(struct file *filp,
  752. unsigned int ioctl, unsigned long arg)
  753. {
  754. struct kvm_vcpu *vcpu = filp->private_data;
  755. void __user *argp = (void __user *)arg;
  756. int r;
  757. if (vcpu->kvm->mm != current->mm)
  758. return -EIO;
  759. switch (ioctl) {
  760. case KVM_RUN:
  761. r = -EINVAL;
  762. if (arg)
  763. goto out;
  764. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  765. break;
  766. case KVM_GET_REGS: {
  767. struct kvm_regs *kvm_regs;
  768. r = -ENOMEM;
  769. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  770. if (!kvm_regs)
  771. goto out;
  772. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  773. if (r)
  774. goto out_free1;
  775. r = -EFAULT;
  776. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  777. goto out_free1;
  778. r = 0;
  779. out_free1:
  780. kfree(kvm_regs);
  781. break;
  782. }
  783. case KVM_SET_REGS: {
  784. struct kvm_regs *kvm_regs;
  785. r = -ENOMEM;
  786. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  787. if (!kvm_regs)
  788. goto out;
  789. r = -EFAULT;
  790. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  791. goto out_free2;
  792. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  793. if (r)
  794. goto out_free2;
  795. r = 0;
  796. out_free2:
  797. kfree(kvm_regs);
  798. break;
  799. }
  800. case KVM_GET_SREGS: {
  801. struct kvm_sregs kvm_sregs;
  802. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  803. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  804. if (r)
  805. goto out;
  806. r = -EFAULT;
  807. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  808. goto out;
  809. r = 0;
  810. break;
  811. }
  812. case KVM_SET_SREGS: {
  813. struct kvm_sregs kvm_sregs;
  814. r = -EFAULT;
  815. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  816. goto out;
  817. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  818. if (r)
  819. goto out;
  820. r = 0;
  821. break;
  822. }
  823. case KVM_GET_MP_STATE: {
  824. struct kvm_mp_state mp_state;
  825. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  826. if (r)
  827. goto out;
  828. r = -EFAULT;
  829. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  830. goto out;
  831. r = 0;
  832. break;
  833. }
  834. case KVM_SET_MP_STATE: {
  835. struct kvm_mp_state mp_state;
  836. r = -EFAULT;
  837. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  838. goto out;
  839. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  840. if (r)
  841. goto out;
  842. r = 0;
  843. break;
  844. }
  845. case KVM_TRANSLATE: {
  846. struct kvm_translation tr;
  847. r = -EFAULT;
  848. if (copy_from_user(&tr, argp, sizeof tr))
  849. goto out;
  850. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  851. if (r)
  852. goto out;
  853. r = -EFAULT;
  854. if (copy_to_user(argp, &tr, sizeof tr))
  855. goto out;
  856. r = 0;
  857. break;
  858. }
  859. case KVM_DEBUG_GUEST: {
  860. struct kvm_debug_guest dbg;
  861. r = -EFAULT;
  862. if (copy_from_user(&dbg, argp, sizeof dbg))
  863. goto out;
  864. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  865. if (r)
  866. goto out;
  867. r = 0;
  868. break;
  869. }
  870. case KVM_SET_SIGNAL_MASK: {
  871. struct kvm_signal_mask __user *sigmask_arg = argp;
  872. struct kvm_signal_mask kvm_sigmask;
  873. sigset_t sigset, *p;
  874. p = NULL;
  875. if (argp) {
  876. r = -EFAULT;
  877. if (copy_from_user(&kvm_sigmask, argp,
  878. sizeof kvm_sigmask))
  879. goto out;
  880. r = -EINVAL;
  881. if (kvm_sigmask.len != sizeof sigset)
  882. goto out;
  883. r = -EFAULT;
  884. if (copy_from_user(&sigset, sigmask_arg->sigset,
  885. sizeof sigset))
  886. goto out;
  887. p = &sigset;
  888. }
  889. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  890. break;
  891. }
  892. case KVM_GET_FPU: {
  893. struct kvm_fpu fpu;
  894. memset(&fpu, 0, sizeof fpu);
  895. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  896. if (r)
  897. goto out;
  898. r = -EFAULT;
  899. if (copy_to_user(argp, &fpu, sizeof fpu))
  900. goto out;
  901. r = 0;
  902. break;
  903. }
  904. case KVM_SET_FPU: {
  905. struct kvm_fpu fpu;
  906. r = -EFAULT;
  907. if (copy_from_user(&fpu, argp, sizeof fpu))
  908. goto out;
  909. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  910. if (r)
  911. goto out;
  912. r = 0;
  913. break;
  914. }
  915. default:
  916. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  917. }
  918. out:
  919. return r;
  920. }
  921. static long kvm_vm_ioctl(struct file *filp,
  922. unsigned int ioctl, unsigned long arg)
  923. {
  924. struct kvm *kvm = filp->private_data;
  925. void __user *argp = (void __user *)arg;
  926. int r;
  927. if (kvm->mm != current->mm)
  928. return -EIO;
  929. switch (ioctl) {
  930. case KVM_CREATE_VCPU:
  931. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  932. if (r < 0)
  933. goto out;
  934. break;
  935. case KVM_SET_USER_MEMORY_REGION: {
  936. struct kvm_userspace_memory_region kvm_userspace_mem;
  937. r = -EFAULT;
  938. if (copy_from_user(&kvm_userspace_mem, argp,
  939. sizeof kvm_userspace_mem))
  940. goto out;
  941. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  942. if (r)
  943. goto out;
  944. break;
  945. }
  946. case KVM_GET_DIRTY_LOG: {
  947. struct kvm_dirty_log log;
  948. r = -EFAULT;
  949. if (copy_from_user(&log, argp, sizeof log))
  950. goto out;
  951. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  952. if (r)
  953. goto out;
  954. break;
  955. }
  956. default:
  957. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  958. }
  959. out:
  960. return r;
  961. }
  962. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  963. {
  964. struct kvm *kvm = vma->vm_file->private_data;
  965. struct page *page;
  966. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  967. return VM_FAULT_SIGBUS;
  968. page = gfn_to_page(kvm, vmf->pgoff);
  969. if (is_error_page(page)) {
  970. kvm_release_page_clean(page);
  971. return VM_FAULT_SIGBUS;
  972. }
  973. vmf->page = page;
  974. return 0;
  975. }
  976. static struct vm_operations_struct kvm_vm_vm_ops = {
  977. .fault = kvm_vm_fault,
  978. };
  979. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  980. {
  981. vma->vm_ops = &kvm_vm_vm_ops;
  982. return 0;
  983. }
  984. static const struct file_operations kvm_vm_fops = {
  985. .release = kvm_vm_release,
  986. .unlocked_ioctl = kvm_vm_ioctl,
  987. .compat_ioctl = kvm_vm_ioctl,
  988. .mmap = kvm_vm_mmap,
  989. };
  990. static int kvm_dev_ioctl_create_vm(void)
  991. {
  992. int fd;
  993. struct kvm *kvm;
  994. kvm = kvm_create_vm();
  995. if (IS_ERR(kvm))
  996. return PTR_ERR(kvm);
  997. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm);
  998. if (fd < 0)
  999. kvm_put_kvm(kvm);
  1000. return fd;
  1001. }
  1002. static long kvm_dev_ioctl(struct file *filp,
  1003. unsigned int ioctl, unsigned long arg)
  1004. {
  1005. void __user *argp = (void __user *)arg;
  1006. long r = -EINVAL;
  1007. switch (ioctl) {
  1008. case KVM_GET_API_VERSION:
  1009. r = -EINVAL;
  1010. if (arg)
  1011. goto out;
  1012. r = KVM_API_VERSION;
  1013. break;
  1014. case KVM_CREATE_VM:
  1015. r = -EINVAL;
  1016. if (arg)
  1017. goto out;
  1018. r = kvm_dev_ioctl_create_vm();
  1019. break;
  1020. case KVM_CHECK_EXTENSION:
  1021. r = kvm_dev_ioctl_check_extension((long)argp);
  1022. break;
  1023. case KVM_GET_VCPU_MMAP_SIZE:
  1024. r = -EINVAL;
  1025. if (arg)
  1026. goto out;
  1027. r = PAGE_SIZE; /* struct kvm_run */
  1028. #ifdef CONFIG_X86
  1029. r += PAGE_SIZE; /* pio data page */
  1030. #endif
  1031. break;
  1032. case KVM_TRACE_ENABLE:
  1033. case KVM_TRACE_PAUSE:
  1034. case KVM_TRACE_DISABLE:
  1035. r = kvm_trace_ioctl(ioctl, arg);
  1036. break;
  1037. default:
  1038. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1039. }
  1040. out:
  1041. return r;
  1042. }
  1043. static struct file_operations kvm_chardev_ops = {
  1044. .unlocked_ioctl = kvm_dev_ioctl,
  1045. .compat_ioctl = kvm_dev_ioctl,
  1046. };
  1047. static struct miscdevice kvm_dev = {
  1048. KVM_MINOR,
  1049. "kvm",
  1050. &kvm_chardev_ops,
  1051. };
  1052. static void hardware_enable(void *junk)
  1053. {
  1054. int cpu = raw_smp_processor_id();
  1055. if (cpu_isset(cpu, cpus_hardware_enabled))
  1056. return;
  1057. cpu_set(cpu, cpus_hardware_enabled);
  1058. kvm_arch_hardware_enable(NULL);
  1059. }
  1060. static void hardware_disable(void *junk)
  1061. {
  1062. int cpu = raw_smp_processor_id();
  1063. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1064. return;
  1065. cpu_clear(cpu, cpus_hardware_enabled);
  1066. decache_vcpus_on_cpu(cpu);
  1067. kvm_arch_hardware_disable(NULL);
  1068. }
  1069. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1070. void *v)
  1071. {
  1072. int cpu = (long)v;
  1073. val &= ~CPU_TASKS_FROZEN;
  1074. switch (val) {
  1075. case CPU_DYING:
  1076. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1077. cpu);
  1078. hardware_disable(NULL);
  1079. break;
  1080. case CPU_UP_CANCELED:
  1081. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1082. cpu);
  1083. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1084. break;
  1085. case CPU_ONLINE:
  1086. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1087. cpu);
  1088. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1089. break;
  1090. }
  1091. return NOTIFY_OK;
  1092. }
  1093. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1094. void *v)
  1095. {
  1096. if (val == SYS_RESTART) {
  1097. /*
  1098. * Some (well, at least mine) BIOSes hang on reboot if
  1099. * in vmx root mode.
  1100. */
  1101. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1102. on_each_cpu(hardware_disable, NULL, 1);
  1103. }
  1104. return NOTIFY_OK;
  1105. }
  1106. static struct notifier_block kvm_reboot_notifier = {
  1107. .notifier_call = kvm_reboot,
  1108. .priority = 0,
  1109. };
  1110. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1111. {
  1112. memset(bus, 0, sizeof(*bus));
  1113. }
  1114. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1115. {
  1116. int i;
  1117. for (i = 0; i < bus->dev_count; i++) {
  1118. struct kvm_io_device *pos = bus->devs[i];
  1119. kvm_iodevice_destructor(pos);
  1120. }
  1121. }
  1122. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1123. {
  1124. int i;
  1125. for (i = 0; i < bus->dev_count; i++) {
  1126. struct kvm_io_device *pos = bus->devs[i];
  1127. if (pos->in_range(pos, addr))
  1128. return pos;
  1129. }
  1130. return NULL;
  1131. }
  1132. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1133. {
  1134. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1135. bus->devs[bus->dev_count++] = dev;
  1136. }
  1137. static struct notifier_block kvm_cpu_notifier = {
  1138. .notifier_call = kvm_cpu_hotplug,
  1139. .priority = 20, /* must be > scheduler priority */
  1140. };
  1141. static int vm_stat_get(void *_offset, u64 *val)
  1142. {
  1143. unsigned offset = (long)_offset;
  1144. struct kvm *kvm;
  1145. *val = 0;
  1146. spin_lock(&kvm_lock);
  1147. list_for_each_entry(kvm, &vm_list, vm_list)
  1148. *val += *(u32 *)((void *)kvm + offset);
  1149. spin_unlock(&kvm_lock);
  1150. return 0;
  1151. }
  1152. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1153. static int vcpu_stat_get(void *_offset, u64 *val)
  1154. {
  1155. unsigned offset = (long)_offset;
  1156. struct kvm *kvm;
  1157. struct kvm_vcpu *vcpu;
  1158. int i;
  1159. *val = 0;
  1160. spin_lock(&kvm_lock);
  1161. list_for_each_entry(kvm, &vm_list, vm_list)
  1162. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1163. vcpu = kvm->vcpus[i];
  1164. if (vcpu)
  1165. *val += *(u32 *)((void *)vcpu + offset);
  1166. }
  1167. spin_unlock(&kvm_lock);
  1168. return 0;
  1169. }
  1170. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1171. static struct file_operations *stat_fops[] = {
  1172. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1173. [KVM_STAT_VM] = &vm_stat_fops,
  1174. };
  1175. static void kvm_init_debug(void)
  1176. {
  1177. struct kvm_stats_debugfs_item *p;
  1178. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1179. for (p = debugfs_entries; p->name; ++p)
  1180. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1181. (void *)(long)p->offset,
  1182. stat_fops[p->kind]);
  1183. }
  1184. static void kvm_exit_debug(void)
  1185. {
  1186. struct kvm_stats_debugfs_item *p;
  1187. for (p = debugfs_entries; p->name; ++p)
  1188. debugfs_remove(p->dentry);
  1189. debugfs_remove(kvm_debugfs_dir);
  1190. }
  1191. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1192. {
  1193. hardware_disable(NULL);
  1194. return 0;
  1195. }
  1196. static int kvm_resume(struct sys_device *dev)
  1197. {
  1198. hardware_enable(NULL);
  1199. return 0;
  1200. }
  1201. static struct sysdev_class kvm_sysdev_class = {
  1202. .name = "kvm",
  1203. .suspend = kvm_suspend,
  1204. .resume = kvm_resume,
  1205. };
  1206. static struct sys_device kvm_sysdev = {
  1207. .id = 0,
  1208. .cls = &kvm_sysdev_class,
  1209. };
  1210. struct page *bad_page;
  1211. pfn_t bad_pfn;
  1212. static inline
  1213. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1214. {
  1215. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1216. }
  1217. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1218. {
  1219. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1220. kvm_arch_vcpu_load(vcpu, cpu);
  1221. }
  1222. static void kvm_sched_out(struct preempt_notifier *pn,
  1223. struct task_struct *next)
  1224. {
  1225. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1226. kvm_arch_vcpu_put(vcpu);
  1227. }
  1228. int kvm_init(void *opaque, unsigned int vcpu_size,
  1229. struct module *module)
  1230. {
  1231. int r;
  1232. int cpu;
  1233. kvm_init_debug();
  1234. r = kvm_arch_init(opaque);
  1235. if (r)
  1236. goto out_fail;
  1237. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1238. if (bad_page == NULL) {
  1239. r = -ENOMEM;
  1240. goto out;
  1241. }
  1242. bad_pfn = page_to_pfn(bad_page);
  1243. r = kvm_arch_hardware_setup();
  1244. if (r < 0)
  1245. goto out_free_0;
  1246. for_each_online_cpu(cpu) {
  1247. smp_call_function_single(cpu,
  1248. kvm_arch_check_processor_compat,
  1249. &r, 1);
  1250. if (r < 0)
  1251. goto out_free_1;
  1252. }
  1253. on_each_cpu(hardware_enable, NULL, 1);
  1254. r = register_cpu_notifier(&kvm_cpu_notifier);
  1255. if (r)
  1256. goto out_free_2;
  1257. register_reboot_notifier(&kvm_reboot_notifier);
  1258. r = sysdev_class_register(&kvm_sysdev_class);
  1259. if (r)
  1260. goto out_free_3;
  1261. r = sysdev_register(&kvm_sysdev);
  1262. if (r)
  1263. goto out_free_4;
  1264. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1265. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1266. __alignof__(struct kvm_vcpu),
  1267. 0, NULL);
  1268. if (!kvm_vcpu_cache) {
  1269. r = -ENOMEM;
  1270. goto out_free_5;
  1271. }
  1272. kvm_chardev_ops.owner = module;
  1273. r = misc_register(&kvm_dev);
  1274. if (r) {
  1275. printk(KERN_ERR "kvm: misc device register failed\n");
  1276. goto out_free;
  1277. }
  1278. kvm_preempt_ops.sched_in = kvm_sched_in;
  1279. kvm_preempt_ops.sched_out = kvm_sched_out;
  1280. return 0;
  1281. out_free:
  1282. kmem_cache_destroy(kvm_vcpu_cache);
  1283. out_free_5:
  1284. sysdev_unregister(&kvm_sysdev);
  1285. out_free_4:
  1286. sysdev_class_unregister(&kvm_sysdev_class);
  1287. out_free_3:
  1288. unregister_reboot_notifier(&kvm_reboot_notifier);
  1289. unregister_cpu_notifier(&kvm_cpu_notifier);
  1290. out_free_2:
  1291. on_each_cpu(hardware_disable, NULL, 1);
  1292. out_free_1:
  1293. kvm_arch_hardware_unsetup();
  1294. out_free_0:
  1295. __free_page(bad_page);
  1296. out:
  1297. kvm_arch_exit();
  1298. kvm_exit_debug();
  1299. out_fail:
  1300. return r;
  1301. }
  1302. EXPORT_SYMBOL_GPL(kvm_init);
  1303. void kvm_exit(void)
  1304. {
  1305. kvm_trace_cleanup();
  1306. misc_deregister(&kvm_dev);
  1307. kmem_cache_destroy(kvm_vcpu_cache);
  1308. sysdev_unregister(&kvm_sysdev);
  1309. sysdev_class_unregister(&kvm_sysdev_class);
  1310. unregister_reboot_notifier(&kvm_reboot_notifier);
  1311. unregister_cpu_notifier(&kvm_cpu_notifier);
  1312. on_each_cpu(hardware_disable, NULL, 1);
  1313. kvm_arch_hardware_unsetup();
  1314. kvm_arch_exit();
  1315. kvm_exit_debug();
  1316. __free_page(bad_page);
  1317. }
  1318. EXPORT_SYMBOL_GPL(kvm_exit);