fsl_dma.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <sound/core.h>
  22. #include <sound/pcm.h>
  23. #include <sound/pcm_params.h>
  24. #include <sound/soc.h>
  25. #include <asm/io.h>
  26. #include "fsl_dma.h"
  27. /*
  28. * The formats that the DMA controller supports, which is anything
  29. * that is 8, 16, or 32 bits.
  30. */
  31. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  32. SNDRV_PCM_FMTBIT_U8 | \
  33. SNDRV_PCM_FMTBIT_S16_LE | \
  34. SNDRV_PCM_FMTBIT_S16_BE | \
  35. SNDRV_PCM_FMTBIT_U16_LE | \
  36. SNDRV_PCM_FMTBIT_U16_BE | \
  37. SNDRV_PCM_FMTBIT_S24_LE | \
  38. SNDRV_PCM_FMTBIT_S24_BE | \
  39. SNDRV_PCM_FMTBIT_U24_LE | \
  40. SNDRV_PCM_FMTBIT_U24_BE | \
  41. SNDRV_PCM_FMTBIT_S32_LE | \
  42. SNDRV_PCM_FMTBIT_S32_BE | \
  43. SNDRV_PCM_FMTBIT_U32_LE | \
  44. SNDRV_PCM_FMTBIT_U32_BE)
  45. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  46. SNDRV_PCM_RATE_CONTINUOUS)
  47. /* DMA global data. This structure is used by fsl_dma_open() to determine
  48. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  49. * not allow the machine driver to provide this information to the PCM
  50. * driver in advance, and there's no way to differentiate between the two
  51. * DMA controllers. So for now, this driver only supports one SSI device
  52. * using two DMA channels. We cannot support multiple DMA devices.
  53. *
  54. * ssi_stx_phys: bus address of SSI STX register
  55. * ssi_srx_phys: bus address of SSI SRX register
  56. * dma_channel: pointer to the DMA channel's registers
  57. * irq: IRQ for this DMA channel
  58. * assigned: set to 1 if that DMA channel is assigned to a substream
  59. */
  60. static struct {
  61. dma_addr_t ssi_stx_phys;
  62. dma_addr_t ssi_srx_phys;
  63. struct ccsr_dma_channel __iomem *dma_channel[2];
  64. unsigned int irq[2];
  65. unsigned int assigned[2];
  66. } dma_global_data;
  67. /*
  68. * The number of DMA links to use. Two is the bare minimum, but if you
  69. * have really small links you might need more.
  70. */
  71. #define NUM_DMA_LINKS 2
  72. /** fsl_dma_private: p-substream DMA data
  73. *
  74. * Each substream has a 1-to-1 association with a DMA channel.
  75. *
  76. * The link[] array is first because it needs to be aligned on a 32-byte
  77. * boundary, so putting it first will ensure alignment without padding the
  78. * structure.
  79. *
  80. * @link[]: array of link descriptors
  81. * @controller_id: which DMA controller (0, 1, ...)
  82. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  83. * @dma_channel: pointer to the DMA channel's registers
  84. * @irq: IRQ for this DMA channel
  85. * @substream: pointer to the substream object, needed by the ISR
  86. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  87. * @ld_buf_phys: physical address of the LD buffer
  88. * @current_link: index into link[] of the link currently being processed
  89. * @dma_buf_phys: physical address of the DMA buffer
  90. * @dma_buf_next: physical address of the next period to process
  91. * @dma_buf_end: physical address of the byte after the end of the DMA
  92. * @buffer period_size: the size of a single period
  93. * @num_periods: the number of periods in the DMA buffer
  94. */
  95. struct fsl_dma_private {
  96. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  97. unsigned int controller_id;
  98. unsigned int channel_id;
  99. struct ccsr_dma_channel __iomem *dma_channel;
  100. unsigned int irq;
  101. struct snd_pcm_substream *substream;
  102. dma_addr_t ssi_sxx_phys;
  103. dma_addr_t ld_buf_phys;
  104. unsigned int current_link;
  105. dma_addr_t dma_buf_phys;
  106. dma_addr_t dma_buf_next;
  107. dma_addr_t dma_buf_end;
  108. size_t period_size;
  109. unsigned int num_periods;
  110. };
  111. /**
  112. * fsl_dma_hardare: define characteristics of the PCM hardware.
  113. *
  114. * The PCM hardware is the Freescale DMA controller. This structure defines
  115. * the capabilities of that hardware.
  116. *
  117. * Since the sampling rate and data format are not controlled by the DMA
  118. * controller, we specify no limits for those values. The only exception is
  119. * period_bytes_min, which is set to a reasonably low value to prevent the
  120. * DMA controller from generating too many interrupts per second.
  121. *
  122. * Since each link descriptor has a 32-bit byte count field, we set
  123. * period_bytes_max to the largest 32-bit number. We also have no maximum
  124. * number of periods.
  125. */
  126. static const struct snd_pcm_hardware fsl_dma_hardware = {
  127. .info = SNDRV_PCM_INFO_INTERLEAVED |
  128. SNDRV_PCM_INFO_MMAP |
  129. SNDRV_PCM_INFO_MMAP_VALID,
  130. .formats = FSLDMA_PCM_FORMATS,
  131. .rates = FSLDMA_PCM_RATES,
  132. .rate_min = 5512,
  133. .rate_max = 192000,
  134. .period_bytes_min = 512, /* A reasonable limit */
  135. .period_bytes_max = (u32) -1,
  136. .periods_min = NUM_DMA_LINKS,
  137. .periods_max = (unsigned int) -1,
  138. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  139. };
  140. /**
  141. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  142. *
  143. * This function should be called by the ISR whenever the DMA controller
  144. * halts data transfer.
  145. */
  146. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  147. {
  148. unsigned long flags;
  149. snd_pcm_stream_lock_irqsave(substream, flags);
  150. if (snd_pcm_running(substream))
  151. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  152. snd_pcm_stream_unlock_irqrestore(substream, flags);
  153. }
  154. /**
  155. * fsl_dma_update_pointers - update LD pointers to point to the next period
  156. *
  157. * As each period is completed, this function changes the the link
  158. * descriptor pointers for that period to point to the next period.
  159. */
  160. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  161. {
  162. struct fsl_dma_link_descriptor *link =
  163. &dma_private->link[dma_private->current_link];
  164. /* Update our link descriptors to point to the next period */
  165. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  166. link->source_addr =
  167. cpu_to_be32(dma_private->dma_buf_next);
  168. else
  169. link->dest_addr =
  170. cpu_to_be32(dma_private->dma_buf_next);
  171. /* Update our variables for next time */
  172. dma_private->dma_buf_next += dma_private->period_size;
  173. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  174. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  175. if (++dma_private->current_link >= NUM_DMA_LINKS)
  176. dma_private->current_link = 0;
  177. }
  178. /**
  179. * fsl_dma_isr: interrupt handler for the DMA controller
  180. *
  181. * @irq: IRQ of the DMA channel
  182. * @dev_id: pointer to the dma_private structure for this DMA channel
  183. */
  184. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  185. {
  186. struct fsl_dma_private *dma_private = dev_id;
  187. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  188. irqreturn_t ret = IRQ_NONE;
  189. u32 sr, sr2 = 0;
  190. /* We got an interrupt, so read the status register to see what we
  191. were interrupted for.
  192. */
  193. sr = in_be32(&dma_channel->sr);
  194. if (sr & CCSR_DMA_SR_TE) {
  195. dev_err(dma_private->substream->pcm->card->dev,
  196. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  197. dma_private->controller_id,
  198. dma_private->channel_id, irq);
  199. fsl_dma_abort_stream(dma_private->substream);
  200. sr2 |= CCSR_DMA_SR_TE;
  201. ret = IRQ_HANDLED;
  202. }
  203. if (sr & CCSR_DMA_SR_CH)
  204. ret = IRQ_HANDLED;
  205. if (sr & CCSR_DMA_SR_PE) {
  206. dev_err(dma_private->substream->pcm->card->dev,
  207. "DMA%u programming error (channel=%u irq=%u)\n",
  208. dma_private->controller_id,
  209. dma_private->channel_id, irq);
  210. fsl_dma_abort_stream(dma_private->substream);
  211. sr2 |= CCSR_DMA_SR_PE;
  212. ret = IRQ_HANDLED;
  213. }
  214. if (sr & CCSR_DMA_SR_EOLNI) {
  215. sr2 |= CCSR_DMA_SR_EOLNI;
  216. ret = IRQ_HANDLED;
  217. }
  218. if (sr & CCSR_DMA_SR_CB)
  219. ret = IRQ_HANDLED;
  220. if (sr & CCSR_DMA_SR_EOSI) {
  221. struct snd_pcm_substream *substream = dma_private->substream;
  222. /* Tell ALSA we completed a period. */
  223. snd_pcm_period_elapsed(substream);
  224. /*
  225. * Update our link descriptors to point to the next period. We
  226. * only need to do this if the number of periods is not equal to
  227. * the number of links.
  228. */
  229. if (dma_private->num_periods != NUM_DMA_LINKS)
  230. fsl_dma_update_pointers(dma_private);
  231. sr2 |= CCSR_DMA_SR_EOSI;
  232. ret = IRQ_HANDLED;
  233. }
  234. if (sr & CCSR_DMA_SR_EOLSI) {
  235. sr2 |= CCSR_DMA_SR_EOLSI;
  236. ret = IRQ_HANDLED;
  237. }
  238. /* Clear the bits that we set */
  239. if (sr2)
  240. out_be32(&dma_channel->sr, sr2);
  241. return ret;
  242. }
  243. /**
  244. * fsl_dma_new: initialize this PCM driver.
  245. *
  246. * This function is called when the codec driver calls snd_soc_new_pcms(),
  247. * once for each .dai_link in the machine driver's snd_soc_machine
  248. * structure.
  249. */
  250. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  251. struct snd_pcm *pcm)
  252. {
  253. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  254. int ret;
  255. if (!card->dev->dma_mask)
  256. card->dev->dma_mask = &fsl_dma_dmamask;
  257. if (!card->dev->coherent_dma_mask)
  258. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  259. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  260. fsl_dma_hardware.buffer_bytes_max,
  261. &pcm->streams[0].substream->dma_buffer);
  262. if (ret) {
  263. dev_err(card->dev,
  264. "Can't allocate playback DMA buffer (size=%u)\n",
  265. fsl_dma_hardware.buffer_bytes_max);
  266. return -ENOMEM;
  267. }
  268. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
  269. fsl_dma_hardware.buffer_bytes_max,
  270. &pcm->streams[1].substream->dma_buffer);
  271. if (ret) {
  272. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  273. dev_err(card->dev,
  274. "Can't allocate capture DMA buffer (size=%u)\n",
  275. fsl_dma_hardware.buffer_bytes_max);
  276. return -ENOMEM;
  277. }
  278. return 0;
  279. }
  280. /**
  281. * fsl_dma_open: open a new substream.
  282. *
  283. * Each substream has its own DMA buffer.
  284. */
  285. static int fsl_dma_open(struct snd_pcm_substream *substream)
  286. {
  287. struct snd_pcm_runtime *runtime = substream->runtime;
  288. struct fsl_dma_private *dma_private;
  289. dma_addr_t ld_buf_phys;
  290. unsigned int channel;
  291. int ret = 0;
  292. /*
  293. * Reject any DMA buffer whose size is not a multiple of the period
  294. * size. We need to make sure that the DMA buffer can be evenly divided
  295. * into periods.
  296. */
  297. ret = snd_pcm_hw_constraint_integer(runtime,
  298. SNDRV_PCM_HW_PARAM_PERIODS);
  299. if (ret < 0) {
  300. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  301. return ret;
  302. }
  303. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  304. if (dma_global_data.assigned[channel]) {
  305. dev_err(substream->pcm->card->dev,
  306. "DMA channel already assigned\n");
  307. return -EBUSY;
  308. }
  309. dma_private = dma_alloc_coherent(substream->pcm->dev,
  310. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  311. if (!dma_private) {
  312. dev_err(substream->pcm->card->dev,
  313. "can't allocate DMA private data\n");
  314. return -ENOMEM;
  315. }
  316. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  317. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  318. else
  319. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  320. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  321. dma_private->irq = dma_global_data.irq[channel];
  322. dma_private->substream = substream;
  323. dma_private->ld_buf_phys = ld_buf_phys;
  324. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  325. /* We only support one DMA controller for now */
  326. dma_private->controller_id = 0;
  327. dma_private->channel_id = channel;
  328. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  329. if (ret) {
  330. dev_err(substream->pcm->card->dev,
  331. "can't register ISR for IRQ %u (ret=%i)\n",
  332. dma_private->irq, ret);
  333. dma_free_coherent(substream->pcm->dev,
  334. sizeof(struct fsl_dma_private),
  335. dma_private, dma_private->ld_buf_phys);
  336. return ret;
  337. }
  338. dma_global_data.assigned[channel] = 1;
  339. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  340. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  341. runtime->private_data = dma_private;
  342. return 0;
  343. }
  344. /**
  345. * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
  346. *
  347. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  348. * descriptors that ping-pong from one period to the next. For example, if
  349. * there are six periods and two link descriptors, this is how they look
  350. * before playback starts:
  351. *
  352. * The last link descriptor
  353. * ____________ points back to the first
  354. * | |
  355. * V |
  356. * ___ ___ |
  357. * | |->| |->|
  358. * |___| |___|
  359. * | |
  360. * | |
  361. * V V
  362. * _________________________________________
  363. * | | | | | | | The DMA buffer is
  364. * | | | | | | | divided into 6 parts
  365. * |______|______|______|______|______|______|
  366. *
  367. * and here's how they look after the first period is finished playing:
  368. *
  369. * ____________
  370. * | |
  371. * V |
  372. * ___ ___ |
  373. * | |->| |->|
  374. * |___| |___|
  375. * | |
  376. * |______________
  377. * | |
  378. * V V
  379. * _________________________________________
  380. * | | | | | | |
  381. * | | | | | | |
  382. * |______|______|______|______|______|______|
  383. *
  384. * The first link descriptor now points to the third period. The DMA
  385. * controller is currently playing the second period. When it finishes, it
  386. * will jump back to the first descriptor and play the third period.
  387. *
  388. * There are four reasons we do this:
  389. *
  390. * 1. The only way to get the DMA controller to automatically restart the
  391. * transfer when it gets to the end of the buffer is to use chaining
  392. * mode. Basic direct mode doesn't offer that feature.
  393. * 2. We need to receive an interrupt at the end of every period. The DMA
  394. * controller can generate an interrupt at the end of every link transfer
  395. * (aka segment). Making each period into a DMA segment will give us the
  396. * interrupts we need.
  397. * 3. By creating only two link descriptors, regardless of the number of
  398. * periods, we do not need to reallocate the link descriptors if the
  399. * number of periods changes.
  400. * 4. All of the audio data is still stored in a single, contiguous DMA
  401. * buffer, which is what ALSA expects. We're just dividing it into
  402. * contiguous parts, and creating a link descriptor for each one.
  403. *
  404. * Note that due to a quirk of the SSI's STX register, the target address
  405. * for the DMA operations depends on the sample size. So we don't program
  406. * the dest_addr (for playback -- source_addr for capture) fields in the
  407. * link descriptors here. We do that in fsl_dma_prepare()
  408. */
  409. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  410. struct snd_pcm_hw_params *hw_params)
  411. {
  412. struct snd_pcm_runtime *runtime = substream->runtime;
  413. struct fsl_dma_private *dma_private = runtime->private_data;
  414. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  415. dma_addr_t temp_addr; /* Pointer to next period */
  416. u64 temp_link; /* Pointer to next link descriptor */
  417. u32 mr; /* Temporary variable for MR register */
  418. unsigned int i;
  419. /* Get all the parameters we need */
  420. size_t buffer_size = params_buffer_bytes(hw_params);
  421. size_t period_size = params_period_bytes(hw_params);
  422. /* Initialize our DMA tracking variables */
  423. dma_private->period_size = period_size;
  424. dma_private->num_periods = params_periods(hw_params);
  425. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  426. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  427. (NUM_DMA_LINKS * period_size);
  428. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  429. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  430. /*
  431. * Initialize each link descriptor.
  432. *
  433. * The actual address in STX0 (destination for playback, source for
  434. * capture) is based on the sample size, but we don't know the sample
  435. * size in this function, so we'll have to adjust that later. See
  436. * comments in fsl_dma_prepare().
  437. *
  438. * The DMA controller does not have a cache, so the CPU does not
  439. * need to tell it to flush its cache. However, the DMA
  440. * controller does need to tell the CPU to flush its cache.
  441. * That's what the SNOOP bit does.
  442. *
  443. * Also, even though the DMA controller supports 36-bit addressing, for
  444. * simplicity we currently support only 32-bit addresses for the audio
  445. * buffer itself.
  446. */
  447. temp_addr = substream->dma_buffer.addr;
  448. temp_link = dma_private->ld_buf_phys +
  449. sizeof(struct fsl_dma_link_descriptor);
  450. for (i = 0; i < NUM_DMA_LINKS; i++) {
  451. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  452. link->count = cpu_to_be32(period_size);
  453. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  454. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  455. link->next = cpu_to_be64(temp_link);
  456. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  457. link->source_addr = cpu_to_be32(temp_addr);
  458. else
  459. link->dest_addr = cpu_to_be32(temp_addr);
  460. temp_addr += period_size;
  461. temp_link += sizeof(struct fsl_dma_link_descriptor);
  462. }
  463. /* The last link descriptor points to the first */
  464. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  465. /* Tell the DMA controller where the first link descriptor is */
  466. out_be32(&dma_channel->clndar,
  467. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  468. out_be32(&dma_channel->eclndar,
  469. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  470. /* The manual says the BCR must be clear before enabling EMP */
  471. out_be32(&dma_channel->bcr, 0);
  472. /*
  473. * Program the mode register for interrupts, external master control,
  474. * and source/destination hold. Also clear the Channel Abort bit.
  475. */
  476. mr = in_be32(&dma_channel->mr) &
  477. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  478. /*
  479. * We want External Master Start and External Master Pause enabled,
  480. * because the SSI is controlling the DMA controller. We want the DMA
  481. * controller to be set up in advance, and then we signal only the SSI
  482. * to start transfering.
  483. *
  484. * We want End-Of-Segment Interrupts enabled, because this will generate
  485. * an interrupt at the end of each segment (each link descriptor
  486. * represents one segment). Each DMA segment is the same thing as an
  487. * ALSA period, so this is how we get an interrupt at the end of every
  488. * period.
  489. *
  490. * We want Error Interrupt enabled, so that we can get an error if
  491. * the DMA controller is mis-programmed somehow.
  492. */
  493. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  494. CCSR_DMA_MR_EMS_EN;
  495. /* For playback, we want the destination address to be held. For
  496. capture, set the source address to be held. */
  497. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  498. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  499. out_be32(&dma_channel->mr, mr);
  500. return 0;
  501. }
  502. /**
  503. * fsl_dma_prepare - prepare the DMA registers for playback.
  504. *
  505. * This function is called after the specifics of the audio data are known,
  506. * i.e. snd_pcm_runtime is initialized.
  507. *
  508. * In this function, we finish programming the registers of the DMA
  509. * controller that are dependent on the sample size.
  510. *
  511. * One of the drawbacks with big-endian is that when copying integers of
  512. * different sizes to a fixed-sized register, the address to which the
  513. * integer must be copied is dependent on the size of the integer.
  514. *
  515. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  516. * integer, then X should be copied to address P. However, if X is a 16-bit
  517. * integer, then it should be copied to P+2. If X is an 8-bit register,
  518. * then it should be copied to P+3.
  519. *
  520. * So for playback of 8-bit samples, the DMA controller must transfer single
  521. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  522. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  523. *
  524. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  525. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  526. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  527. * 24-bit data must be padded to 32 bits.
  528. */
  529. static int fsl_dma_prepare(struct snd_pcm_substream *substream)
  530. {
  531. struct snd_pcm_runtime *runtime = substream->runtime;
  532. struct fsl_dma_private *dma_private = runtime->private_data;
  533. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  534. u32 mr;
  535. unsigned int i;
  536. dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
  537. unsigned int frame_size; /* Number of bytes per frame */
  538. ssi_sxx_phys = dma_private->ssi_sxx_phys;
  539. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  540. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  541. switch (runtime->sample_bits) {
  542. case 8:
  543. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  544. ssi_sxx_phys += 3;
  545. break;
  546. case 16:
  547. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  548. ssi_sxx_phys += 2;
  549. break;
  550. case 32:
  551. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  552. break;
  553. default:
  554. dev_err(substream->pcm->card->dev,
  555. "unsupported sample size %u\n", runtime->sample_bits);
  556. return -EINVAL;
  557. }
  558. frame_size = runtime->frame_bits / 8;
  559. /*
  560. * BWC should always be a multiple of the frame size. BWC determines
  561. * how many bytes are sent/received before the DMA controller checks the
  562. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  563. * hold three frames, so we want to send two frames at a time. For
  564. * capture, the receive FIFO is triggered when it contains one frame, so
  565. * we want to receive one frame at a time.
  566. */
  567. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  568. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  569. else
  570. mr |= CCSR_DMA_MR_BWC(frame_size);
  571. out_be32(&dma_channel->mr, mr);
  572. /*
  573. * Program the address of the DMA transfer to/from the SSI.
  574. */
  575. for (i = 0; i < NUM_DMA_LINKS; i++) {
  576. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  577. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  578. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  579. else
  580. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  581. }
  582. return 0;
  583. }
  584. /**
  585. * fsl_dma_pointer: determine the current position of the DMA transfer
  586. *
  587. * This function is called by ALSA when ALSA wants to know where in the
  588. * stream buffer the hardware currently is.
  589. *
  590. * For playback, the SAR register contains the physical address of the most
  591. * recent DMA transfer. For capture, the value is in the DAR register.
  592. *
  593. * The base address of the buffer is stored in the source_addr field of the
  594. * first link descriptor.
  595. */
  596. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  597. {
  598. struct snd_pcm_runtime *runtime = substream->runtime;
  599. struct fsl_dma_private *dma_private = runtime->private_data;
  600. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  601. dma_addr_t position;
  602. snd_pcm_uframes_t frames;
  603. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  604. position = in_be32(&dma_channel->sar);
  605. else
  606. position = in_be32(&dma_channel->dar);
  607. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  608. /*
  609. * If the current address is just past the end of the buffer, wrap it
  610. * around.
  611. */
  612. if (frames == runtime->buffer_size)
  613. frames = 0;
  614. return frames;
  615. }
  616. /**
  617. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  618. *
  619. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  620. * registers.
  621. *
  622. * This function can be called multiple times.
  623. */
  624. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  625. {
  626. struct snd_pcm_runtime *runtime = substream->runtime;
  627. struct fsl_dma_private *dma_private = runtime->private_data;
  628. if (dma_private) {
  629. struct ccsr_dma_channel __iomem *dma_channel;
  630. dma_channel = dma_private->dma_channel;
  631. /* Stop the DMA */
  632. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  633. out_be32(&dma_channel->mr, 0);
  634. /* Reset all the other registers */
  635. out_be32(&dma_channel->sr, -1);
  636. out_be32(&dma_channel->clndar, 0);
  637. out_be32(&dma_channel->eclndar, 0);
  638. out_be32(&dma_channel->satr, 0);
  639. out_be32(&dma_channel->sar, 0);
  640. out_be32(&dma_channel->datr, 0);
  641. out_be32(&dma_channel->dar, 0);
  642. out_be32(&dma_channel->bcr, 0);
  643. out_be32(&dma_channel->nlndar, 0);
  644. out_be32(&dma_channel->enlndar, 0);
  645. }
  646. return 0;
  647. }
  648. /**
  649. * fsl_dma_close: close the stream.
  650. */
  651. static int fsl_dma_close(struct snd_pcm_substream *substream)
  652. {
  653. struct snd_pcm_runtime *runtime = substream->runtime;
  654. struct fsl_dma_private *dma_private = runtime->private_data;
  655. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  656. if (dma_private) {
  657. if (dma_private->irq)
  658. free_irq(dma_private->irq, dma_private);
  659. if (dma_private->ld_buf_phys) {
  660. dma_unmap_single(substream->pcm->dev,
  661. dma_private->ld_buf_phys,
  662. sizeof(dma_private->link), DMA_TO_DEVICE);
  663. }
  664. /* Deallocate the fsl_dma_private structure */
  665. dma_free_coherent(substream->pcm->dev,
  666. sizeof(struct fsl_dma_private),
  667. dma_private, dma_private->ld_buf_phys);
  668. substream->runtime->private_data = NULL;
  669. }
  670. dma_global_data.assigned[dir] = 0;
  671. return 0;
  672. }
  673. /*
  674. * Remove this PCM driver.
  675. */
  676. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  677. {
  678. struct snd_pcm_substream *substream;
  679. unsigned int i;
  680. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  681. substream = pcm->streams[i].substream;
  682. if (substream) {
  683. snd_dma_free_pages(&substream->dma_buffer);
  684. substream->dma_buffer.area = NULL;
  685. substream->dma_buffer.addr = 0;
  686. }
  687. }
  688. }
  689. static struct snd_pcm_ops fsl_dma_ops = {
  690. .open = fsl_dma_open,
  691. .close = fsl_dma_close,
  692. .ioctl = snd_pcm_lib_ioctl,
  693. .hw_params = fsl_dma_hw_params,
  694. .hw_free = fsl_dma_hw_free,
  695. .prepare = fsl_dma_prepare,
  696. .pointer = fsl_dma_pointer,
  697. };
  698. struct snd_soc_platform fsl_soc_platform = {
  699. .name = "fsl-dma",
  700. .pcm_ops = &fsl_dma_ops,
  701. .pcm_new = fsl_dma_new,
  702. .pcm_free = fsl_dma_free_dma_buffers,
  703. };
  704. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  705. /**
  706. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  707. *
  708. * This function is called by the ASoC fabric driver to give us the DMA and
  709. * SSI channel information.
  710. *
  711. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  712. * data when a substream is created, so for now we need to store this data
  713. * into a global variable. This means that we can only support one DMA
  714. * controller, and hence only one SSI.
  715. */
  716. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  717. {
  718. static int initialized;
  719. /* We only support one DMA controller for now */
  720. if (initialized)
  721. return 0;
  722. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  723. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  724. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  725. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  726. dma_global_data.irq[0] = dma_info->dma_irq[0];
  727. dma_global_data.irq[1] = dma_info->dma_irq[1];
  728. dma_global_data.assigned[0] = 0;
  729. dma_global_data.assigned[1] = 0;
  730. initialized = 1;
  731. return 1;
  732. }
  733. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  734. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  735. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  736. MODULE_LICENSE("GPL");