cs4236_lib.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3. * Routines for control of CS4235/4236B/4237B/4238B/4239 chips
  4. *
  5. * Note:
  6. * -----
  7. *
  8. * Bugs:
  9. * -----
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  24. *
  25. */
  26. /*
  27. * Indirect control registers (CS4236B+)
  28. *
  29. * C0
  30. * D8: WSS reset (all chips)
  31. *
  32. * C1 (all chips except CS4236)
  33. * D7-D5: version
  34. * D4-D0: chip id
  35. * 11101 - CS4235
  36. * 01011 - CS4236B
  37. * 01000 - CS4237B
  38. * 01001 - CS4238B
  39. * 11110 - CS4239
  40. *
  41. * C2
  42. * D7-D4: 3D Space (CS4235,CS4237B,CS4238B,CS4239)
  43. * D3-D0: 3D Center (CS4237B); 3D Volume (CS4238B)
  44. *
  45. * C3
  46. * D7: 3D Enable (CS4237B)
  47. * D6: 3D Mono Enable (CS4237B)
  48. * D5: 3D Serial Output (CS4237B,CS4238B)
  49. * D4: 3D Enable (CS4235,CS4238B,CS4239)
  50. *
  51. * C4
  52. * D7: consumer serial port enable (CS4237B,CS4238B)
  53. * D6: channels status block reset (CS4237B,CS4238B)
  54. * D5: user bit in sub-frame of digital audio data (CS4237B,CS4238B)
  55. * D4: validity bit bit in sub-frame of digital audio data (CS4237B,CS4238B)
  56. *
  57. * C5 lower channel status (digital serial data description) (CS4237B,CS4238B)
  58. * D7-D6: first two bits of category code
  59. * D5: lock
  60. * D4-D3: pre-emphasis (0 = none, 1 = 50/15us)
  61. * D2: copy/copyright (0 = copy inhibited)
  62. * D1: 0 = digital audio / 1 = non-digital audio
  63. *
  64. * C6 upper channel status (digital serial data description) (CS4237B,CS4238B)
  65. * D7-D6: sample frequency (0 = 44.1kHz)
  66. * D5: generation status (0 = no indication, 1 = original/commercially precaptureed data)
  67. * D4-D0: category code (upper bits)
  68. *
  69. * C7 reserved (must write 0)
  70. *
  71. * C8 wavetable control
  72. * D7: volume control interrupt enable (CS4235,CS4239)
  73. * D6: hardware volume control format (CS4235,CS4239)
  74. * D3: wavetable serial port enable (all chips)
  75. * D2: DSP serial port switch (all chips)
  76. * D1: disable MCLK (all chips)
  77. * D0: force BRESET low (all chips)
  78. *
  79. */
  80. #include <asm/io.h>
  81. #include <linux/delay.h>
  82. #include <linux/init.h>
  83. #include <linux/time.h>
  84. #include <linux/wait.h>
  85. #include <sound/core.h>
  86. #include <sound/cs4231.h>
  87. #include <sound/asoundef.h>
  88. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
  89. MODULE_DESCRIPTION("Routines for control of CS4235/4236B/4237B/4238B/4239 chips");
  90. MODULE_LICENSE("GPL");
  91. /*
  92. *
  93. */
  94. static unsigned char snd_cs4236_ext_map[18] = {
  95. /* CS4236_LEFT_LINE */ 0xff,
  96. /* CS4236_RIGHT_LINE */ 0xff,
  97. /* CS4236_LEFT_MIC */ 0xdf,
  98. /* CS4236_RIGHT_MIC */ 0xdf,
  99. /* CS4236_LEFT_MIX_CTRL */ 0xe0 | 0x18,
  100. /* CS4236_RIGHT_MIX_CTRL */ 0xe0,
  101. /* CS4236_LEFT_FM */ 0xbf,
  102. /* CS4236_RIGHT_FM */ 0xbf,
  103. /* CS4236_LEFT_DSP */ 0xbf,
  104. /* CS4236_RIGHT_DSP */ 0xbf,
  105. /* CS4236_RIGHT_LOOPBACK */ 0xbf,
  106. /* CS4236_DAC_MUTE */ 0xe0,
  107. /* CS4236_ADC_RATE */ 0x01, /* 48kHz */
  108. /* CS4236_DAC_RATE */ 0x01, /* 48kHz */
  109. /* CS4236_LEFT_MASTER */ 0xbf,
  110. /* CS4236_RIGHT_MASTER */ 0xbf,
  111. /* CS4236_LEFT_WAVE */ 0xbf,
  112. /* CS4236_RIGHT_WAVE */ 0xbf
  113. };
  114. /*
  115. *
  116. */
  117. static void snd_cs4236_ctrl_out(struct snd_cs4231 *chip, unsigned char reg, unsigned char val)
  118. {
  119. outb(reg, chip->cport + 3);
  120. outb(chip->cimage[reg] = val, chip->cport + 4);
  121. }
  122. static unsigned char snd_cs4236_ctrl_in(struct snd_cs4231 *chip, unsigned char reg)
  123. {
  124. outb(reg, chip->cport + 3);
  125. return inb(chip->cport + 4);
  126. }
  127. /*
  128. * PCM
  129. */
  130. #define CLOCKS 8
  131. static struct snd_ratnum clocks[CLOCKS] = {
  132. { .num = 16934400, .den_min = 353, .den_max = 353, .den_step = 1 },
  133. { .num = 16934400, .den_min = 529, .den_max = 529, .den_step = 1 },
  134. { .num = 16934400, .den_min = 617, .den_max = 617, .den_step = 1 },
  135. { .num = 16934400, .den_min = 1058, .den_max = 1058, .den_step = 1 },
  136. { .num = 16934400, .den_min = 1764, .den_max = 1764, .den_step = 1 },
  137. { .num = 16934400, .den_min = 2117, .den_max = 2117, .den_step = 1 },
  138. { .num = 16934400, .den_min = 2558, .den_max = 2558, .den_step = 1 },
  139. { .num = 16934400/16, .den_min = 21, .den_max = 192, .den_step = 1 }
  140. };
  141. static struct snd_pcm_hw_constraint_ratnums hw_constraints_clocks = {
  142. .nrats = CLOCKS,
  143. .rats = clocks,
  144. };
  145. static int snd_cs4236_xrate(struct snd_pcm_runtime *runtime)
  146. {
  147. return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  148. &hw_constraints_clocks);
  149. }
  150. static unsigned char divisor_to_rate_register(unsigned int divisor)
  151. {
  152. switch (divisor) {
  153. case 353: return 1;
  154. case 529: return 2;
  155. case 617: return 3;
  156. case 1058: return 4;
  157. case 1764: return 5;
  158. case 2117: return 6;
  159. case 2558: return 7;
  160. default:
  161. if (divisor < 21 || divisor > 192) {
  162. snd_BUG();
  163. return 192;
  164. }
  165. return divisor;
  166. }
  167. }
  168. static void snd_cs4236_playback_format(struct snd_cs4231 *chip, struct snd_pcm_hw_params *params, unsigned char pdfr)
  169. {
  170. unsigned long flags;
  171. unsigned char rate = divisor_to_rate_register(params->rate_den);
  172. spin_lock_irqsave(&chip->reg_lock, flags);
  173. /* set fast playback format change and clean playback FIFO */
  174. snd_cs4231_out(chip, CS4231_ALT_FEATURE_1, chip->image[CS4231_ALT_FEATURE_1] | 0x10);
  175. snd_cs4231_out(chip, CS4231_PLAYBK_FORMAT, pdfr & 0xf0);
  176. snd_cs4231_out(chip, CS4231_ALT_FEATURE_1, chip->image[CS4231_ALT_FEATURE_1] & ~0x10);
  177. snd_cs4236_ext_out(chip, CS4236_DAC_RATE, rate);
  178. spin_unlock_irqrestore(&chip->reg_lock, flags);
  179. }
  180. static void snd_cs4236_capture_format(struct snd_cs4231 *chip, struct snd_pcm_hw_params *params, unsigned char cdfr)
  181. {
  182. unsigned long flags;
  183. unsigned char rate = divisor_to_rate_register(params->rate_den);
  184. spin_lock_irqsave(&chip->reg_lock, flags);
  185. /* set fast capture format change and clean capture FIFO */
  186. snd_cs4231_out(chip, CS4231_ALT_FEATURE_1, chip->image[CS4231_ALT_FEATURE_1] | 0x20);
  187. snd_cs4231_out(chip, CS4231_REC_FORMAT, cdfr & 0xf0);
  188. snd_cs4231_out(chip, CS4231_ALT_FEATURE_1, chip->image[CS4231_ALT_FEATURE_1] & ~0x20);
  189. snd_cs4236_ext_out(chip, CS4236_ADC_RATE, rate);
  190. spin_unlock_irqrestore(&chip->reg_lock, flags);
  191. }
  192. #ifdef CONFIG_PM
  193. static void snd_cs4236_suspend(struct snd_cs4231 *chip)
  194. {
  195. int reg;
  196. unsigned long flags;
  197. spin_lock_irqsave(&chip->reg_lock, flags);
  198. for (reg = 0; reg < 32; reg++)
  199. chip->image[reg] = snd_cs4231_in(chip, reg);
  200. for (reg = 0; reg < 18; reg++)
  201. chip->eimage[reg] = snd_cs4236_ext_in(chip, CS4236_I23VAL(reg));
  202. for (reg = 2; reg < 9; reg++)
  203. chip->cimage[reg] = snd_cs4236_ctrl_in(chip, reg);
  204. spin_unlock_irqrestore(&chip->reg_lock, flags);
  205. }
  206. static void snd_cs4236_resume(struct snd_cs4231 *chip)
  207. {
  208. int reg;
  209. unsigned long flags;
  210. snd_cs4231_mce_up(chip);
  211. spin_lock_irqsave(&chip->reg_lock, flags);
  212. for (reg = 0; reg < 32; reg++) {
  213. switch (reg) {
  214. case CS4236_EXT_REG:
  215. case CS4231_VERSION:
  216. case 27: /* why? CS4235 - master left */
  217. case 29: /* why? CS4235 - master right */
  218. break;
  219. default:
  220. snd_cs4231_out(chip, reg, chip->image[reg]);
  221. break;
  222. }
  223. }
  224. for (reg = 0; reg < 18; reg++)
  225. snd_cs4236_ext_out(chip, CS4236_I23VAL(reg), chip->eimage[reg]);
  226. for (reg = 2; reg < 9; reg++) {
  227. switch (reg) {
  228. case 7:
  229. break;
  230. default:
  231. snd_cs4236_ctrl_out(chip, reg, chip->cimage[reg]);
  232. }
  233. }
  234. spin_unlock_irqrestore(&chip->reg_lock, flags);
  235. snd_cs4231_mce_down(chip);
  236. }
  237. #endif /* CONFIG_PM */
  238. int snd_cs4236_create(struct snd_card *card,
  239. unsigned long port,
  240. unsigned long cport,
  241. int irq, int dma1, int dma2,
  242. unsigned short hardware,
  243. unsigned short hwshare,
  244. struct snd_cs4231 ** rchip)
  245. {
  246. struct snd_cs4231 *chip;
  247. unsigned char ver1, ver2;
  248. unsigned int reg;
  249. int err;
  250. *rchip = NULL;
  251. if (hardware == CS4231_HW_DETECT)
  252. hardware = CS4231_HW_DETECT3;
  253. if (cport < 0x100) {
  254. snd_printk("please, specify control port for CS4236+ chips\n");
  255. return -ENODEV;
  256. }
  257. if ((err = snd_cs4231_create(card, port, cport, irq, dma1, dma2, hardware, hwshare, &chip)) < 0)
  258. return err;
  259. if (!(chip->hardware & CS4231_HW_CS4236B_MASK)) {
  260. snd_printk("CS4236+: MODE3 and extended registers not available, hardware=0x%x\n",chip->hardware);
  261. snd_device_free(card, chip);
  262. return -ENODEV;
  263. }
  264. #if 0
  265. {
  266. int idx;
  267. for (idx = 0; idx < 8; idx++)
  268. snd_printk("CD%i = 0x%x\n", idx, inb(chip->cport + idx));
  269. for (idx = 0; idx < 9; idx++)
  270. snd_printk("C%i = 0x%x\n", idx, snd_cs4236_ctrl_in(chip, idx));
  271. }
  272. #endif
  273. ver1 = snd_cs4236_ctrl_in(chip, 1);
  274. ver2 = snd_cs4236_ext_in(chip, CS4236_VERSION);
  275. snd_printdd("CS4236: [0x%lx] C1 (version) = 0x%x, ext = 0x%x\n", cport, ver1, ver2);
  276. if (ver1 != ver2) {
  277. snd_printk("CS4236+ chip detected, but control port 0x%lx is not valid\n", cport);
  278. snd_device_free(card, chip);
  279. return -ENODEV;
  280. }
  281. snd_cs4236_ctrl_out(chip, 0, 0x00);
  282. snd_cs4236_ctrl_out(chip, 2, 0xff);
  283. snd_cs4236_ctrl_out(chip, 3, 0x00);
  284. snd_cs4236_ctrl_out(chip, 4, 0x80);
  285. snd_cs4236_ctrl_out(chip, 5, ((IEC958_AES1_CON_PCM_CODER & 3) << 6) | IEC958_AES0_CON_EMPHASIS_NONE);
  286. snd_cs4236_ctrl_out(chip, 6, IEC958_AES1_CON_PCM_CODER >> 2);
  287. snd_cs4236_ctrl_out(chip, 7, 0x00);
  288. /* 0x8c for C8 is valid for Turtle Beach Malibu - the IEC-958 output */
  289. /* is working with this setup, other hardware should have */
  290. /* different signal paths and this value should be selectable */
  291. /* in the future */
  292. snd_cs4236_ctrl_out(chip, 8, 0x8c);
  293. chip->rate_constraint = snd_cs4236_xrate;
  294. chip->set_playback_format = snd_cs4236_playback_format;
  295. chip->set_capture_format = snd_cs4236_capture_format;
  296. #ifdef CONFIG_PM
  297. chip->suspend = snd_cs4236_suspend;
  298. chip->resume = snd_cs4236_resume;
  299. #endif
  300. /* initialize extended registers */
  301. for (reg = 0; reg < sizeof(snd_cs4236_ext_map); reg++)
  302. snd_cs4236_ext_out(chip, CS4236_I23VAL(reg), snd_cs4236_ext_map[reg]);
  303. /* initialize compatible but more featured registers */
  304. snd_cs4231_out(chip, CS4231_LEFT_INPUT, 0x40);
  305. snd_cs4231_out(chip, CS4231_RIGHT_INPUT, 0x40);
  306. snd_cs4231_out(chip, CS4231_AUX1_LEFT_INPUT, 0xff);
  307. snd_cs4231_out(chip, CS4231_AUX1_RIGHT_INPUT, 0xff);
  308. snd_cs4231_out(chip, CS4231_AUX2_LEFT_INPUT, 0xdf);
  309. snd_cs4231_out(chip, CS4231_AUX2_RIGHT_INPUT, 0xdf);
  310. snd_cs4231_out(chip, CS4231_RIGHT_LINE_IN, 0xff);
  311. snd_cs4231_out(chip, CS4231_LEFT_LINE_IN, 0xff);
  312. snd_cs4231_out(chip, CS4231_RIGHT_LINE_IN, 0xff);
  313. switch (chip->hardware) {
  314. case CS4231_HW_CS4235:
  315. case CS4231_HW_CS4239:
  316. snd_cs4231_out(chip, CS4235_LEFT_MASTER, 0xff);
  317. snd_cs4231_out(chip, CS4235_RIGHT_MASTER, 0xff);
  318. break;
  319. }
  320. *rchip = chip;
  321. return 0;
  322. }
  323. int snd_cs4236_pcm(struct snd_cs4231 *chip, int device, struct snd_pcm **rpcm)
  324. {
  325. struct snd_pcm *pcm;
  326. int err;
  327. if ((err = snd_cs4231_pcm(chip, device, &pcm)) < 0)
  328. return err;
  329. pcm->info_flags &= ~SNDRV_PCM_INFO_JOINT_DUPLEX;
  330. if (rpcm)
  331. *rpcm = pcm;
  332. return 0;
  333. }
  334. /*
  335. * MIXER
  336. */
  337. #define CS4236_SINGLE(xname, xindex, reg, shift, mask, invert) \
  338. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  339. .info = snd_cs4236_info_single, \
  340. .get = snd_cs4236_get_single, .put = snd_cs4236_put_single, \
  341. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  342. static int snd_cs4236_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  343. {
  344. int mask = (kcontrol->private_value >> 16) & 0xff;
  345. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  346. uinfo->count = 1;
  347. uinfo->value.integer.min = 0;
  348. uinfo->value.integer.max = mask;
  349. return 0;
  350. }
  351. static int snd_cs4236_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  352. {
  353. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  354. unsigned long flags;
  355. int reg = kcontrol->private_value & 0xff;
  356. int shift = (kcontrol->private_value >> 8) & 0xff;
  357. int mask = (kcontrol->private_value >> 16) & 0xff;
  358. int invert = (kcontrol->private_value >> 24) & 0xff;
  359. spin_lock_irqsave(&chip->reg_lock, flags);
  360. ucontrol->value.integer.value[0] = (chip->eimage[CS4236_REG(reg)] >> shift) & mask;
  361. spin_unlock_irqrestore(&chip->reg_lock, flags);
  362. if (invert)
  363. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  364. return 0;
  365. }
  366. static int snd_cs4236_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  367. {
  368. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  369. unsigned long flags;
  370. int reg = kcontrol->private_value & 0xff;
  371. int shift = (kcontrol->private_value >> 8) & 0xff;
  372. int mask = (kcontrol->private_value >> 16) & 0xff;
  373. int invert = (kcontrol->private_value >> 24) & 0xff;
  374. int change;
  375. unsigned short val;
  376. val = (ucontrol->value.integer.value[0] & mask);
  377. if (invert)
  378. val = mask - val;
  379. val <<= shift;
  380. spin_lock_irqsave(&chip->reg_lock, flags);
  381. val = (chip->eimage[CS4236_REG(reg)] & ~(mask << shift)) | val;
  382. change = val != chip->eimage[CS4236_REG(reg)];
  383. snd_cs4236_ext_out(chip, reg, val);
  384. spin_unlock_irqrestore(&chip->reg_lock, flags);
  385. return change;
  386. }
  387. #define CS4236_SINGLEC(xname, xindex, reg, shift, mask, invert) \
  388. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  389. .info = snd_cs4236_info_single, \
  390. .get = snd_cs4236_get_singlec, .put = snd_cs4236_put_singlec, \
  391. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  392. static int snd_cs4236_get_singlec(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  393. {
  394. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  395. unsigned long flags;
  396. int reg = kcontrol->private_value & 0xff;
  397. int shift = (kcontrol->private_value >> 8) & 0xff;
  398. int mask = (kcontrol->private_value >> 16) & 0xff;
  399. int invert = (kcontrol->private_value >> 24) & 0xff;
  400. spin_lock_irqsave(&chip->reg_lock, flags);
  401. ucontrol->value.integer.value[0] = (chip->cimage[reg] >> shift) & mask;
  402. spin_unlock_irqrestore(&chip->reg_lock, flags);
  403. if (invert)
  404. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  405. return 0;
  406. }
  407. static int snd_cs4236_put_singlec(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  408. {
  409. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  410. unsigned long flags;
  411. int reg = kcontrol->private_value & 0xff;
  412. int shift = (kcontrol->private_value >> 8) & 0xff;
  413. int mask = (kcontrol->private_value >> 16) & 0xff;
  414. int invert = (kcontrol->private_value >> 24) & 0xff;
  415. int change;
  416. unsigned short val;
  417. val = (ucontrol->value.integer.value[0] & mask);
  418. if (invert)
  419. val = mask - val;
  420. val <<= shift;
  421. spin_lock_irqsave(&chip->reg_lock, flags);
  422. val = (chip->cimage[reg] & ~(mask << shift)) | val;
  423. change = val != chip->cimage[reg];
  424. snd_cs4236_ctrl_out(chip, reg, val);
  425. spin_unlock_irqrestore(&chip->reg_lock, flags);
  426. return change;
  427. }
  428. #define CS4236_DOUBLE(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
  429. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  430. .info = snd_cs4236_info_double, \
  431. .get = snd_cs4236_get_double, .put = snd_cs4236_put_double, \
  432. .private_value = left_reg | (right_reg << 8) | (shift_left << 16) | (shift_right << 19) | (mask << 24) | (invert << 22) }
  433. static int snd_cs4236_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  434. {
  435. int mask = (kcontrol->private_value >> 24) & 0xff;
  436. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  437. uinfo->count = 2;
  438. uinfo->value.integer.min = 0;
  439. uinfo->value.integer.max = mask;
  440. return 0;
  441. }
  442. static int snd_cs4236_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  443. {
  444. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  445. unsigned long flags;
  446. int left_reg = kcontrol->private_value & 0xff;
  447. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  448. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  449. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  450. int mask = (kcontrol->private_value >> 24) & 0xff;
  451. int invert = (kcontrol->private_value >> 22) & 1;
  452. spin_lock_irqsave(&chip->reg_lock, flags);
  453. ucontrol->value.integer.value[0] = (chip->eimage[CS4236_REG(left_reg)] >> shift_left) & mask;
  454. ucontrol->value.integer.value[1] = (chip->eimage[CS4236_REG(right_reg)] >> shift_right) & mask;
  455. spin_unlock_irqrestore(&chip->reg_lock, flags);
  456. if (invert) {
  457. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  458. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  459. }
  460. return 0;
  461. }
  462. static int snd_cs4236_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  463. {
  464. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  465. unsigned long flags;
  466. int left_reg = kcontrol->private_value & 0xff;
  467. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  468. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  469. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  470. int mask = (kcontrol->private_value >> 24) & 0xff;
  471. int invert = (kcontrol->private_value >> 22) & 1;
  472. int change;
  473. unsigned short val1, val2;
  474. val1 = ucontrol->value.integer.value[0] & mask;
  475. val2 = ucontrol->value.integer.value[1] & mask;
  476. if (invert) {
  477. val1 = mask - val1;
  478. val2 = mask - val2;
  479. }
  480. val1 <<= shift_left;
  481. val2 <<= shift_right;
  482. spin_lock_irqsave(&chip->reg_lock, flags);
  483. if (left_reg != right_reg) {
  484. val1 = (chip->eimage[CS4236_REG(left_reg)] & ~(mask << shift_left)) | val1;
  485. val2 = (chip->eimage[CS4236_REG(right_reg)] & ~(mask << shift_right)) | val2;
  486. change = val1 != chip->eimage[CS4236_REG(left_reg)] || val2 != chip->eimage[CS4236_REG(right_reg)];
  487. snd_cs4236_ext_out(chip, left_reg, val1);
  488. snd_cs4236_ext_out(chip, right_reg, val2);
  489. } else {
  490. val1 = (chip->eimage[CS4236_REG(left_reg)] & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
  491. change = val1 != chip->eimage[CS4236_REG(left_reg)];
  492. snd_cs4236_ext_out(chip, left_reg, val1);
  493. }
  494. spin_unlock_irqrestore(&chip->reg_lock, flags);
  495. return change;
  496. }
  497. #define CS4236_DOUBLE1(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
  498. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  499. .info = snd_cs4236_info_double, \
  500. .get = snd_cs4236_get_double1, .put = snd_cs4236_put_double1, \
  501. .private_value = left_reg | (right_reg << 8) | (shift_left << 16) | (shift_right << 19) | (mask << 24) | (invert << 22) }
  502. static int snd_cs4236_get_double1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  503. {
  504. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  505. unsigned long flags;
  506. int left_reg = kcontrol->private_value & 0xff;
  507. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  508. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  509. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  510. int mask = (kcontrol->private_value >> 24) & 0xff;
  511. int invert = (kcontrol->private_value >> 22) & 1;
  512. spin_lock_irqsave(&chip->reg_lock, flags);
  513. ucontrol->value.integer.value[0] = (chip->image[left_reg] >> shift_left) & mask;
  514. ucontrol->value.integer.value[1] = (chip->eimage[CS4236_REG(right_reg)] >> shift_right) & mask;
  515. spin_unlock_irqrestore(&chip->reg_lock, flags);
  516. if (invert) {
  517. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  518. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  519. }
  520. return 0;
  521. }
  522. static int snd_cs4236_put_double1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  523. {
  524. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  525. unsigned long flags;
  526. int left_reg = kcontrol->private_value & 0xff;
  527. int right_reg = (kcontrol->private_value >> 8) & 0xff;
  528. int shift_left = (kcontrol->private_value >> 16) & 0x07;
  529. int shift_right = (kcontrol->private_value >> 19) & 0x07;
  530. int mask = (kcontrol->private_value >> 24) & 0xff;
  531. int invert = (kcontrol->private_value >> 22) & 1;
  532. int change;
  533. unsigned short val1, val2;
  534. val1 = ucontrol->value.integer.value[0] & mask;
  535. val2 = ucontrol->value.integer.value[1] & mask;
  536. if (invert) {
  537. val1 = mask - val1;
  538. val2 = mask - val2;
  539. }
  540. val1 <<= shift_left;
  541. val2 <<= shift_right;
  542. spin_lock_irqsave(&chip->reg_lock, flags);
  543. val1 = (chip->image[left_reg] & ~(mask << shift_left)) | val1;
  544. val2 = (chip->eimage[CS4236_REG(right_reg)] & ~(mask << shift_right)) | val2;
  545. change = val1 != chip->image[left_reg] || val2 != chip->eimage[CS4236_REG(right_reg)];
  546. snd_cs4231_out(chip, left_reg, val1);
  547. snd_cs4236_ext_out(chip, right_reg, val2);
  548. spin_unlock_irqrestore(&chip->reg_lock, flags);
  549. return change;
  550. }
  551. #define CS4236_MASTER_DIGITAL(xname, xindex) \
  552. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  553. .info = snd_cs4236_info_double, \
  554. .get = snd_cs4236_get_master_digital, .put = snd_cs4236_put_master_digital, \
  555. .private_value = 71 << 24 }
  556. static inline int snd_cs4236_mixer_master_digital_invert_volume(int vol)
  557. {
  558. return (vol < 64) ? 63 - vol : 64 + (71 - vol);
  559. }
  560. static int snd_cs4236_get_master_digital(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  561. {
  562. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  563. unsigned long flags;
  564. spin_lock_irqsave(&chip->reg_lock, flags);
  565. ucontrol->value.integer.value[0] = snd_cs4236_mixer_master_digital_invert_volume(chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] & 0x7f);
  566. ucontrol->value.integer.value[1] = snd_cs4236_mixer_master_digital_invert_volume(chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)] & 0x7f);
  567. spin_unlock_irqrestore(&chip->reg_lock, flags);
  568. return 0;
  569. }
  570. static int snd_cs4236_put_master_digital(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  571. {
  572. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  573. unsigned long flags;
  574. int change;
  575. unsigned short val1, val2;
  576. val1 = snd_cs4236_mixer_master_digital_invert_volume(ucontrol->value.integer.value[0] & 0x7f);
  577. val2 = snd_cs4236_mixer_master_digital_invert_volume(ucontrol->value.integer.value[1] & 0x7f);
  578. spin_lock_irqsave(&chip->reg_lock, flags);
  579. val1 = (chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] & ~0x7f) | val1;
  580. val2 = (chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)] & ~0x7f) | val2;
  581. change = val1 != chip->eimage[CS4236_REG(CS4236_LEFT_MASTER)] || val2 != chip->eimage[CS4236_REG(CS4236_RIGHT_MASTER)];
  582. snd_cs4236_ext_out(chip, CS4236_LEFT_MASTER, val1);
  583. snd_cs4236_ext_out(chip, CS4236_RIGHT_MASTER, val2);
  584. spin_unlock_irqrestore(&chip->reg_lock, flags);
  585. return change;
  586. }
  587. #define CS4235_OUTPUT_ACCU(xname, xindex) \
  588. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  589. .info = snd_cs4236_info_double, \
  590. .get = snd_cs4235_get_output_accu, .put = snd_cs4235_put_output_accu, \
  591. .private_value = 3 << 24 }
  592. static inline int snd_cs4235_mixer_output_accu_get_volume(int vol)
  593. {
  594. switch ((vol >> 5) & 3) {
  595. case 0: return 1;
  596. case 1: return 3;
  597. case 2: return 2;
  598. case 3: return 0;
  599. }
  600. return 3;
  601. }
  602. static inline int snd_cs4235_mixer_output_accu_set_volume(int vol)
  603. {
  604. switch (vol & 3) {
  605. case 0: return 3 << 5;
  606. case 1: return 0 << 5;
  607. case 2: return 2 << 5;
  608. case 3: return 1 << 5;
  609. }
  610. return 1 << 5;
  611. }
  612. static int snd_cs4235_get_output_accu(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  613. {
  614. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  615. unsigned long flags;
  616. spin_lock_irqsave(&chip->reg_lock, flags);
  617. ucontrol->value.integer.value[0] = snd_cs4235_mixer_output_accu_get_volume(chip->image[CS4235_LEFT_MASTER]);
  618. ucontrol->value.integer.value[1] = snd_cs4235_mixer_output_accu_get_volume(chip->image[CS4235_RIGHT_MASTER]);
  619. spin_unlock_irqrestore(&chip->reg_lock, flags);
  620. return 0;
  621. }
  622. static int snd_cs4235_put_output_accu(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  623. {
  624. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  625. unsigned long flags;
  626. int change;
  627. unsigned short val1, val2;
  628. val1 = snd_cs4235_mixer_output_accu_set_volume(ucontrol->value.integer.value[0]);
  629. val2 = snd_cs4235_mixer_output_accu_set_volume(ucontrol->value.integer.value[1]);
  630. spin_lock_irqsave(&chip->reg_lock, flags);
  631. val1 = (chip->image[CS4235_LEFT_MASTER] & ~(3 << 5)) | val1;
  632. val2 = (chip->image[CS4235_RIGHT_MASTER] & ~(3 << 5)) | val2;
  633. change = val1 != chip->image[CS4235_LEFT_MASTER] || val2 != chip->image[CS4235_RIGHT_MASTER];
  634. snd_cs4231_out(chip, CS4235_LEFT_MASTER, val1);
  635. snd_cs4231_out(chip, CS4235_RIGHT_MASTER, val2);
  636. spin_unlock_irqrestore(&chip->reg_lock, flags);
  637. return change;
  638. }
  639. static struct snd_kcontrol_new snd_cs4236_controls[] = {
  640. CS4236_DOUBLE("Master Digital Playback Switch", 0, CS4236_LEFT_MASTER, CS4236_RIGHT_MASTER, 7, 7, 1, 1),
  641. CS4236_DOUBLE("Master Digital Capture Switch", 0, CS4236_DAC_MUTE, CS4236_DAC_MUTE, 7, 6, 1, 1),
  642. CS4236_MASTER_DIGITAL("Master Digital Volume", 0),
  643. CS4236_DOUBLE("Capture Boost Volume", 0, CS4236_LEFT_MIX_CTRL, CS4236_RIGHT_MIX_CTRL, 5, 5, 3, 1),
  644. CS4231_DOUBLE("PCM Playback Switch", 0, CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 7, 7, 1, 1),
  645. CS4231_DOUBLE("PCM Playback Volume", 0, CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 0, 0, 63, 1),
  646. CS4236_DOUBLE("DSP Playback Switch", 0, CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 7, 7, 1, 1),
  647. CS4236_DOUBLE("DSP Playback Volume", 0, CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 0, 0, 63, 1),
  648. CS4236_DOUBLE("FM Playback Switch", 0, CS4236_LEFT_FM, CS4236_RIGHT_FM, 7, 7, 1, 1),
  649. CS4236_DOUBLE("FM Playback Volume", 0, CS4236_LEFT_FM, CS4236_RIGHT_FM, 0, 0, 63, 1),
  650. CS4236_DOUBLE("Wavetable Playback Switch", 0, CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 7, 7, 1, 1),
  651. CS4236_DOUBLE("Wavetable Playback Volume", 0, CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 0, 0, 63, 1),
  652. CS4231_DOUBLE("Synth Playback Switch", 0, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 7, 7, 1, 1),
  653. CS4231_DOUBLE("Synth Volume", 0, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 0, 0, 31, 1),
  654. CS4231_DOUBLE("Synth Capture Switch", 0, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 6, 6, 1, 1),
  655. CS4231_DOUBLE("Synth Capture Bypass", 0, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 5, 5, 1, 1),
  656. CS4236_DOUBLE("Mic Playback Switch", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 6, 6, 1, 1),
  657. CS4236_DOUBLE("Mic Capture Switch", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 7, 7, 1, 1),
  658. CS4236_DOUBLE("Mic Volume", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 0, 0, 31, 1),
  659. CS4236_DOUBLE("Mic Playback Boost", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 5, 5, 1, 0),
  660. CS4231_DOUBLE("Line Playback Switch", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 7, 7, 1, 1),
  661. CS4231_DOUBLE("Line Volume", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 0, 0, 31, 1),
  662. CS4231_DOUBLE("Line Capture Switch", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 6, 6, 1, 1),
  663. CS4231_DOUBLE("Line Capture Bypass", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 5, 5, 1, 1),
  664. CS4231_DOUBLE("CD Playback Switch", 0, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 7, 7, 1, 1),
  665. CS4231_DOUBLE("CD Volume", 0, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 0, 0, 31, 1),
  666. CS4231_DOUBLE("CD Capture Switch", 0, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 6, 6, 1, 1),
  667. CS4236_DOUBLE1("Mono Output Playback Switch", 0, CS4231_MONO_CTRL, CS4236_RIGHT_MIX_CTRL, 6, 7, 1, 1),
  668. CS4236_DOUBLE1("Mono Playback Switch", 0, CS4231_MONO_CTRL, CS4236_LEFT_MIX_CTRL, 7, 7, 1, 1),
  669. CS4231_SINGLE("Mono Playback Volume", 0, CS4231_MONO_CTRL, 0, 15, 1),
  670. CS4231_SINGLE("Mono Playback Bypass", 0, CS4231_MONO_CTRL, 5, 1, 0),
  671. CS4231_DOUBLE("Capture Volume", 0, CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 0, 0, 15, 0),
  672. CS4231_DOUBLE("Analog Loopback Capture Switch", 0, CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 7, 7, 1, 0),
  673. CS4231_SINGLE("Digital Loopback Playback Switch", 0, CS4231_LOOPBACK, 0, 1, 0),
  674. CS4236_DOUBLE1("Digital Loopback Playback Volume", 0, CS4231_LOOPBACK, CS4236_RIGHT_LOOPBACK, 2, 0, 63, 1)
  675. };
  676. static struct snd_kcontrol_new snd_cs4235_controls[] = {
  677. CS4231_DOUBLE("Master Switch", 0, CS4235_LEFT_MASTER, CS4235_RIGHT_MASTER, 7, 7, 1, 1),
  678. CS4231_DOUBLE("Master Volume", 0, CS4235_LEFT_MASTER, CS4235_RIGHT_MASTER, 0, 0, 31, 1),
  679. CS4235_OUTPUT_ACCU("Playback Volume", 0),
  680. CS4236_DOUBLE("Master Digital Playback Switch", 0, CS4236_LEFT_MASTER, CS4236_RIGHT_MASTER, 7, 7, 1, 1),
  681. CS4236_DOUBLE("Master Digital Capture Switch", 0, CS4236_DAC_MUTE, CS4236_DAC_MUTE, 7, 6, 1, 1),
  682. CS4236_MASTER_DIGITAL("Master Digital Volume", 0),
  683. CS4231_DOUBLE("Master Digital Playback Switch", 1, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 7, 7, 1, 1),
  684. CS4231_DOUBLE("Master Digital Capture Switch", 1, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 6, 6, 1, 1),
  685. CS4231_DOUBLE("Master Digital Volume", 1, CS4231_LEFT_LINE_IN, CS4231_RIGHT_LINE_IN, 0, 0, 31, 1),
  686. CS4236_DOUBLE("Capture Volume", 0, CS4236_LEFT_MIX_CTRL, CS4236_RIGHT_MIX_CTRL, 5, 5, 3, 1),
  687. CS4231_DOUBLE("PCM Switch", 0, CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 7, 7, 1, 1),
  688. CS4231_DOUBLE("PCM Volume", 0, CS4231_LEFT_OUTPUT, CS4231_RIGHT_OUTPUT, 0, 0, 63, 1),
  689. CS4236_DOUBLE("DSP Switch", 0, CS4236_LEFT_DSP, CS4236_RIGHT_DSP, 7, 7, 1, 1),
  690. CS4236_DOUBLE("FM Switch", 0, CS4236_LEFT_FM, CS4236_RIGHT_FM, 7, 7, 1, 1),
  691. CS4236_DOUBLE("Wavetable Switch", 0, CS4236_LEFT_WAVE, CS4236_RIGHT_WAVE, 7, 7, 1, 1),
  692. CS4236_DOUBLE("Mic Capture Switch", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 7, 7, 1, 1),
  693. CS4236_DOUBLE("Mic Playback Switch", 0, CS4236_LEFT_MIC, CS4236_RIGHT_MIC, 6, 6, 1, 1),
  694. CS4236_SINGLE("Mic Volume", 0, CS4236_LEFT_MIC, 0, 31, 1),
  695. CS4236_SINGLE("Mic Playback Boost", 0, CS4236_LEFT_MIC, 5, 1, 0),
  696. CS4231_DOUBLE("Aux Playback Switch", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 7, 7, 1, 1),
  697. CS4231_DOUBLE("Aux Capture Switch", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 6, 6, 1, 1),
  698. CS4231_DOUBLE("Aux Volume", 0, CS4231_AUX1_LEFT_INPUT, CS4231_AUX1_RIGHT_INPUT, 0, 0, 31, 1),
  699. CS4231_DOUBLE("Aux Playback Switch", 1, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 7, 7, 1, 1),
  700. CS4231_DOUBLE("Aux Capture Switch", 1, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 6, 6, 1, 1),
  701. CS4231_DOUBLE("Aux Volume", 1, CS4231_AUX2_LEFT_INPUT, CS4231_AUX2_RIGHT_INPUT, 0, 0, 31, 1),
  702. CS4236_DOUBLE1("Master Mono Switch", 0, CS4231_MONO_CTRL, CS4236_RIGHT_MIX_CTRL, 6, 7, 1, 1),
  703. CS4236_DOUBLE1("Mono Switch", 0, CS4231_MONO_CTRL, CS4236_LEFT_MIX_CTRL, 7, 7, 1, 1),
  704. CS4231_SINGLE("Mono Volume", 0, CS4231_MONO_CTRL, 0, 15, 1),
  705. CS4231_DOUBLE("Analog Loopback Switch", 0, CS4231_LEFT_INPUT, CS4231_RIGHT_INPUT, 7, 7, 1, 0),
  706. };
  707. #define CS4236_IEC958_ENABLE(xname, xindex) \
  708. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  709. .info = snd_cs4236_info_single, \
  710. .get = snd_cs4236_get_iec958_switch, .put = snd_cs4236_put_iec958_switch, \
  711. .private_value = 1 << 16 }
  712. static int snd_cs4236_get_iec958_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  713. {
  714. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  715. unsigned long flags;
  716. spin_lock_irqsave(&chip->reg_lock, flags);
  717. ucontrol->value.integer.value[0] = chip->image[CS4231_ALT_FEATURE_1] & 0x02 ? 1 : 0;
  718. #if 0
  719. printk("get valid: ALT = 0x%x, C3 = 0x%x, C4 = 0x%x, C5 = 0x%x, C6 = 0x%x, C8 = 0x%x\n",
  720. snd_cs4231_in(chip, CS4231_ALT_FEATURE_1),
  721. snd_cs4236_ctrl_in(chip, 3),
  722. snd_cs4236_ctrl_in(chip, 4),
  723. snd_cs4236_ctrl_in(chip, 5),
  724. snd_cs4236_ctrl_in(chip, 6),
  725. snd_cs4236_ctrl_in(chip, 8));
  726. #endif
  727. spin_unlock_irqrestore(&chip->reg_lock, flags);
  728. return 0;
  729. }
  730. static int snd_cs4236_put_iec958_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  731. {
  732. struct snd_cs4231 *chip = snd_kcontrol_chip(kcontrol);
  733. unsigned long flags;
  734. int change;
  735. unsigned short enable, val;
  736. enable = ucontrol->value.integer.value[0] & 1;
  737. mutex_lock(&chip->mce_mutex);
  738. snd_cs4231_mce_up(chip);
  739. spin_lock_irqsave(&chip->reg_lock, flags);
  740. val = (chip->image[CS4231_ALT_FEATURE_1] & ~0x0e) | (0<<2) | (enable << 1);
  741. change = val != chip->image[CS4231_ALT_FEATURE_1];
  742. snd_cs4231_out(chip, CS4231_ALT_FEATURE_1, val);
  743. val = snd_cs4236_ctrl_in(chip, 4) | 0xc0;
  744. snd_cs4236_ctrl_out(chip, 4, val);
  745. udelay(100);
  746. val &= ~0x40;
  747. snd_cs4236_ctrl_out(chip, 4, val);
  748. spin_unlock_irqrestore(&chip->reg_lock, flags);
  749. snd_cs4231_mce_down(chip);
  750. mutex_unlock(&chip->mce_mutex);
  751. #if 0
  752. printk("set valid: ALT = 0x%x, C3 = 0x%x, C4 = 0x%x, C5 = 0x%x, C6 = 0x%x, C8 = 0x%x\n",
  753. snd_cs4231_in(chip, CS4231_ALT_FEATURE_1),
  754. snd_cs4236_ctrl_in(chip, 3),
  755. snd_cs4236_ctrl_in(chip, 4),
  756. snd_cs4236_ctrl_in(chip, 5),
  757. snd_cs4236_ctrl_in(chip, 6),
  758. snd_cs4236_ctrl_in(chip, 8));
  759. #endif
  760. return change;
  761. }
  762. static struct snd_kcontrol_new snd_cs4236_iec958_controls[] = {
  763. CS4236_IEC958_ENABLE("IEC958 Output Enable", 0),
  764. CS4236_SINGLEC("IEC958 Output Validity", 0, 4, 4, 1, 0),
  765. CS4236_SINGLEC("IEC958 Output User", 0, 4, 5, 1, 0),
  766. CS4236_SINGLEC("IEC958 Output CSBR", 0, 4, 6, 1, 0),
  767. CS4236_SINGLEC("IEC958 Output Channel Status Low", 0, 5, 1, 127, 0),
  768. CS4236_SINGLEC("IEC958 Output Channel Status High", 0, 6, 0, 255, 0)
  769. };
  770. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4235[] = {
  771. CS4236_SINGLEC("3D Control - Switch", 0, 3, 4, 1, 0),
  772. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1)
  773. };
  774. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4237[] = {
  775. CS4236_SINGLEC("3D Control - Switch", 0, 3, 7, 1, 0),
  776. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1),
  777. CS4236_SINGLEC("3D Control - Center", 0, 2, 0, 15, 1),
  778. CS4236_SINGLEC("3D Control - Mono", 0, 3, 6, 1, 0),
  779. CS4236_SINGLEC("3D Control - IEC958", 0, 3, 5, 1, 0)
  780. };
  781. static struct snd_kcontrol_new snd_cs4236_3d_controls_cs4238[] = {
  782. CS4236_SINGLEC("3D Control - Switch", 0, 3, 4, 1, 0),
  783. CS4236_SINGLEC("3D Control - Space", 0, 2, 4, 15, 1),
  784. CS4236_SINGLEC("3D Control - Volume", 0, 2, 0, 15, 1),
  785. CS4236_SINGLEC("3D Control - IEC958", 0, 3, 5, 1, 0)
  786. };
  787. int snd_cs4236_mixer(struct snd_cs4231 *chip)
  788. {
  789. struct snd_card *card;
  790. unsigned int idx, count;
  791. int err;
  792. struct snd_kcontrol_new *kcontrol;
  793. snd_assert(chip != NULL && chip->card != NULL, return -EINVAL);
  794. card = chip->card;
  795. strcpy(card->mixername, snd_cs4231_chip_id(chip));
  796. if (chip->hardware == CS4231_HW_CS4235 ||
  797. chip->hardware == CS4231_HW_CS4239) {
  798. for (idx = 0; idx < ARRAY_SIZE(snd_cs4235_controls); idx++) {
  799. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4235_controls[idx], chip))) < 0)
  800. return err;
  801. }
  802. } else {
  803. for (idx = 0; idx < ARRAY_SIZE(snd_cs4236_controls); idx++) {
  804. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4236_controls[idx], chip))) < 0)
  805. return err;
  806. }
  807. }
  808. switch (chip->hardware) {
  809. case CS4231_HW_CS4235:
  810. case CS4231_HW_CS4239:
  811. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4235);
  812. kcontrol = snd_cs4236_3d_controls_cs4235;
  813. break;
  814. case CS4231_HW_CS4237B:
  815. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4237);
  816. kcontrol = snd_cs4236_3d_controls_cs4237;
  817. break;
  818. case CS4231_HW_CS4238B:
  819. count = ARRAY_SIZE(snd_cs4236_3d_controls_cs4238);
  820. kcontrol = snd_cs4236_3d_controls_cs4238;
  821. break;
  822. default:
  823. count = 0;
  824. kcontrol = NULL;
  825. }
  826. for (idx = 0; idx < count; idx++, kcontrol++) {
  827. if ((err = snd_ctl_add(card, snd_ctl_new1(kcontrol, chip))) < 0)
  828. return err;
  829. }
  830. if (chip->hardware == CS4231_HW_CS4237B ||
  831. chip->hardware == CS4231_HW_CS4238B) {
  832. for (idx = 0; idx < ARRAY_SIZE(snd_cs4236_iec958_controls); idx++) {
  833. if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cs4236_iec958_controls[idx], chip))) < 0)
  834. return err;
  835. }
  836. }
  837. return 0;
  838. }
  839. EXPORT_SYMBOL(snd_cs4236_create);
  840. EXPORT_SYMBOL(snd_cs4236_pcm);
  841. EXPORT_SYMBOL(snd_cs4236_mixer);
  842. /*
  843. * INIT part
  844. */
  845. static int __init alsa_cs4236_init(void)
  846. {
  847. return 0;
  848. }
  849. static void __exit alsa_cs4236_exit(void)
  850. {
  851. }
  852. module_init(alsa_cs4236_init)
  853. module_exit(alsa_cs4236_exit)