slab.c 115 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <linux/debugobjects.h>
  113. #include <asm/cacheflush.h>
  114. #include <asm/tlbflush.h>
  115. #include <asm/page.h>
  116. /*
  117. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * STATS - 1 to collect stats for /proc/slabinfo.
  121. * 0 for faster, smaller code (especially in the critical paths).
  122. *
  123. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  124. */
  125. #ifdef CONFIG_DEBUG_SLAB
  126. #define DEBUG 1
  127. #define STATS 1
  128. #define FORCED_DEBUG 1
  129. #else
  130. #define DEBUG 0
  131. #define STATS 0
  132. #define FORCED_DEBUG 0
  133. #endif
  134. /* Shouldn't this be in a header file somewhere? */
  135. #define BYTES_PER_WORD sizeof(void *)
  136. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  137. #ifndef ARCH_KMALLOC_MINALIGN
  138. /*
  139. * Enforce a minimum alignment for the kmalloc caches.
  140. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  141. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  142. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  143. * alignment larger than the alignment of a 64-bit integer.
  144. * ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that increasing this value may disable some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  170. SLAB_DEBUG_OBJECTS)
  171. #else
  172. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  173. SLAB_CACHE_DMA | \
  174. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  175. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  176. SLAB_DEBUG_OBJECTS)
  177. #endif
  178. /*
  179. * kmem_bufctl_t:
  180. *
  181. * Bufctl's are used for linking objs within a slab
  182. * linked offsets.
  183. *
  184. * This implementation relies on "struct page" for locating the cache &
  185. * slab an object belongs to.
  186. * This allows the bufctl structure to be small (one int), but limits
  187. * the number of objects a slab (not a cache) can contain when off-slab
  188. * bufctls are used. The limit is the size of the largest general cache
  189. * that does not use off-slab slabs.
  190. * For 32bit archs with 4 kB pages, is this 56.
  191. * This is not serious, as it is only for large objects, when it is unwise
  192. * to have too many per slab.
  193. * Note: This limit can be raised by introducing a general cache whose size
  194. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  195. */
  196. typedef unsigned int kmem_bufctl_t;
  197. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  198. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  199. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  200. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  201. /*
  202. * struct slab
  203. *
  204. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  205. * for a slab, or allocated from an general cache.
  206. * Slabs are chained into three list: fully used, partial, fully free slabs.
  207. */
  208. struct slab {
  209. struct list_head list;
  210. unsigned long colouroff;
  211. void *s_mem; /* including colour offset */
  212. unsigned int inuse; /* num of objs active in slab */
  213. kmem_bufctl_t free;
  214. unsigned short nodeid;
  215. };
  216. /*
  217. * struct slab_rcu
  218. *
  219. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  220. * arrange for kmem_freepages to be called via RCU. This is useful if
  221. * we need to approach a kernel structure obliquely, from its address
  222. * obtained without the usual locking. We can lock the structure to
  223. * stabilize it and check it's still at the given address, only if we
  224. * can be sure that the memory has not been meanwhile reused for some
  225. * other kind of object (which our subsystem's lock might corrupt).
  226. *
  227. * rcu_read_lock before reading the address, then rcu_read_unlock after
  228. * taking the spinlock within the structure expected at that address.
  229. *
  230. * We assume struct slab_rcu can overlay struct slab when destroying.
  231. */
  232. struct slab_rcu {
  233. struct rcu_head head;
  234. struct kmem_cache *cachep;
  235. void *addr;
  236. };
  237. /*
  238. * struct array_cache
  239. *
  240. * Purpose:
  241. * - LIFO ordering, to hand out cache-warm objects from _alloc
  242. * - reduce the number of linked list operations
  243. * - reduce spinlock operations
  244. *
  245. * The limit is stored in the per-cpu structure to reduce the data cache
  246. * footprint.
  247. *
  248. */
  249. struct array_cache {
  250. unsigned int avail;
  251. unsigned int limit;
  252. unsigned int batchcount;
  253. unsigned int touched;
  254. spinlock_t lock;
  255. void *entry[]; /*
  256. * Must have this definition in here for the proper
  257. * alignment of array_cache. Also simplifies accessing
  258. * the entries.
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC MAX_NUMNODES
  293. #define SIZE_L3 (2 * MAX_NUMNODES)
  294. static int drain_freelist(struct kmem_cache *cache,
  295. struct kmem_list3 *l3, int tofree);
  296. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  297. int node);
  298. static int enable_cpucache(struct kmem_cache *cachep);
  299. static void cache_reap(struct work_struct *unused);
  300. /*
  301. * This function must be completely optimized away if a constant is passed to
  302. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  303. */
  304. static __always_inline int index_of(const size_t size)
  305. {
  306. extern void __bad_size(void);
  307. if (__builtin_constant_p(size)) {
  308. int i = 0;
  309. #define CACHE(x) \
  310. if (size <=x) \
  311. return i; \
  312. else \
  313. i++;
  314. #include <linux/kmalloc_sizes.h>
  315. #undef CACHE
  316. __bad_size();
  317. } else
  318. __bad_size();
  319. return 0;
  320. }
  321. static int slab_early_init = 1;
  322. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  323. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  324. static void kmem_list3_init(struct kmem_list3 *parent)
  325. {
  326. INIT_LIST_HEAD(&parent->slabs_full);
  327. INIT_LIST_HEAD(&parent->slabs_partial);
  328. INIT_LIST_HEAD(&parent->slabs_free);
  329. parent->shared = NULL;
  330. parent->alien = NULL;
  331. parent->colour_next = 0;
  332. spin_lock_init(&parent->list_lock);
  333. parent->free_objects = 0;
  334. parent->free_touched = 0;
  335. }
  336. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  337. do { \
  338. INIT_LIST_HEAD(listp); \
  339. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  340. } while (0)
  341. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  342. do { \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  346. } while (0)
  347. /*
  348. * struct kmem_cache
  349. *
  350. * manages a cache.
  351. */
  352. struct kmem_cache {
  353. /* 1) per-cpu data, touched during every alloc/free */
  354. struct array_cache *array[NR_CPUS];
  355. /* 2) Cache tunables. Protected by cache_chain_mutex */
  356. unsigned int batchcount;
  357. unsigned int limit;
  358. unsigned int shared;
  359. unsigned int buffer_size;
  360. u32 reciprocal_buffer_size;
  361. /* 3) touched by every alloc & free from the backend */
  362. unsigned int flags; /* constant flags */
  363. unsigned int num; /* # of objs per slab */
  364. /* 4) cache_grow/shrink */
  365. /* order of pgs per slab (2^n) */
  366. unsigned int gfporder;
  367. /* force GFP flags, e.g. GFP_DMA */
  368. gfp_t gfpflags;
  369. size_t colour; /* cache colouring range */
  370. unsigned int colour_off; /* colour offset */
  371. struct kmem_cache *slabp_cache;
  372. unsigned int slab_size;
  373. unsigned int dflags; /* dynamic flags */
  374. /* constructor func */
  375. void (*ctor)(struct kmem_cache *, void *);
  376. /* 5) cache creation/removal */
  377. const char *name;
  378. struct list_head next;
  379. /* 6) statistics */
  380. #if STATS
  381. unsigned long num_active;
  382. unsigned long num_allocations;
  383. unsigned long high_mark;
  384. unsigned long grown;
  385. unsigned long reaped;
  386. unsigned long errors;
  387. unsigned long max_freeable;
  388. unsigned long node_allocs;
  389. unsigned long node_frees;
  390. unsigned long node_overflow;
  391. atomic_t allochit;
  392. atomic_t allocmiss;
  393. atomic_t freehit;
  394. atomic_t freemiss;
  395. #endif
  396. #if DEBUG
  397. /*
  398. * If debugging is enabled, then the allocator can add additional
  399. * fields and/or padding to every object. buffer_size contains the total
  400. * object size including these internal fields, the following two
  401. * variables contain the offset to the user object and its size.
  402. */
  403. int obj_offset;
  404. int obj_size;
  405. #endif
  406. /*
  407. * We put nodelists[] at the end of kmem_cache, because we want to size
  408. * this array to nr_node_ids slots instead of MAX_NUMNODES
  409. * (see kmem_cache_init())
  410. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  411. * is statically defined, so we reserve the max number of nodes.
  412. */
  413. struct kmem_list3 *nodelists[MAX_NUMNODES];
  414. /*
  415. * Do not add fields after nodelists[]
  416. */
  417. };
  418. #define CFLGS_OFF_SLAB (0x80000000UL)
  419. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  420. #define BATCHREFILL_LIMIT 16
  421. /*
  422. * Optimization question: fewer reaps means less probability for unnessary
  423. * cpucache drain/refill cycles.
  424. *
  425. * OTOH the cpuarrays can contain lots of objects,
  426. * which could lock up otherwise freeable slabs.
  427. */
  428. #define REAPTIMEOUT_CPUC (2*HZ)
  429. #define REAPTIMEOUT_LIST3 (4*HZ)
  430. #if STATS
  431. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  432. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  433. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  434. #define STATS_INC_GROWN(x) ((x)->grown++)
  435. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  436. #define STATS_SET_HIGH(x) \
  437. do { \
  438. if ((x)->num_active > (x)->high_mark) \
  439. (x)->high_mark = (x)->num_active; \
  440. } while (0)
  441. #define STATS_INC_ERR(x) ((x)->errors++)
  442. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  443. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  444. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  445. #define STATS_SET_FREEABLE(x, i) \
  446. do { \
  447. if ((x)->max_freeable < i) \
  448. (x)->max_freeable = i; \
  449. } while (0)
  450. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  451. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  452. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  453. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  454. #else
  455. #define STATS_INC_ACTIVE(x) do { } while (0)
  456. #define STATS_DEC_ACTIVE(x) do { } while (0)
  457. #define STATS_INC_ALLOCED(x) do { } while (0)
  458. #define STATS_INC_GROWN(x) do { } while (0)
  459. #define STATS_ADD_REAPED(x,y) do { } while (0)
  460. #define STATS_SET_HIGH(x) do { } while (0)
  461. #define STATS_INC_ERR(x) do { } while (0)
  462. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  463. #define STATS_INC_NODEFREES(x) do { } while (0)
  464. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  465. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  466. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  467. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  468. #define STATS_INC_FREEHIT(x) do { } while (0)
  469. #define STATS_INC_FREEMISS(x) do { } while (0)
  470. #endif
  471. #if DEBUG
  472. /*
  473. * memory layout of objects:
  474. * 0 : objp
  475. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  476. * the end of an object is aligned with the end of the real
  477. * allocation. Catches writes behind the end of the allocation.
  478. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  479. * redzone word.
  480. * cachep->obj_offset: The real object.
  481. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  482. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  483. * [BYTES_PER_WORD long]
  484. */
  485. static int obj_offset(struct kmem_cache *cachep)
  486. {
  487. return cachep->obj_offset;
  488. }
  489. static int obj_size(struct kmem_cache *cachep)
  490. {
  491. return cachep->obj_size;
  492. }
  493. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  494. {
  495. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  496. return (unsigned long long*) (objp + obj_offset(cachep) -
  497. sizeof(unsigned long long));
  498. }
  499. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  500. {
  501. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  502. if (cachep->flags & SLAB_STORE_USER)
  503. return (unsigned long long *)(objp + cachep->buffer_size -
  504. sizeof(unsigned long long) -
  505. REDZONE_ALIGN);
  506. return (unsigned long long *) (objp + cachep->buffer_size -
  507. sizeof(unsigned long long));
  508. }
  509. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  510. {
  511. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  512. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  513. }
  514. #else
  515. #define obj_offset(x) 0
  516. #define obj_size(cachep) (cachep->buffer_size)
  517. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  518. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  519. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  520. #endif
  521. /*
  522. * Do not go above this order unless 0 objects fit into the slab.
  523. */
  524. #define BREAK_GFP_ORDER_HI 1
  525. #define BREAK_GFP_ORDER_LO 0
  526. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  527. /*
  528. * Functions for storing/retrieving the cachep and or slab from the page
  529. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  530. * these are used to find the cache which an obj belongs to.
  531. */
  532. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  533. {
  534. page->lru.next = (struct list_head *)cache;
  535. }
  536. static inline struct kmem_cache *page_get_cache(struct page *page)
  537. {
  538. page = compound_head(page);
  539. BUG_ON(!PageSlab(page));
  540. return (struct kmem_cache *)page->lru.next;
  541. }
  542. static inline void page_set_slab(struct page *page, struct slab *slab)
  543. {
  544. page->lru.prev = (struct list_head *)slab;
  545. }
  546. static inline struct slab *page_get_slab(struct page *page)
  547. {
  548. BUG_ON(!PageSlab(page));
  549. return (struct slab *)page->lru.prev;
  550. }
  551. static inline struct kmem_cache *virt_to_cache(const void *obj)
  552. {
  553. struct page *page = virt_to_head_page(obj);
  554. return page_get_cache(page);
  555. }
  556. static inline struct slab *virt_to_slab(const void *obj)
  557. {
  558. struct page *page = virt_to_head_page(obj);
  559. return page_get_slab(page);
  560. }
  561. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  562. unsigned int idx)
  563. {
  564. return slab->s_mem + cache->buffer_size * idx;
  565. }
  566. /*
  567. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  568. * Using the fact that buffer_size is a constant for a particular cache,
  569. * we can replace (offset / cache->buffer_size) by
  570. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  571. */
  572. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  573. const struct slab *slab, void *obj)
  574. {
  575. u32 offset = (obj - slab->s_mem);
  576. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  577. }
  578. /*
  579. * These are the default caches for kmalloc. Custom caches can have other sizes.
  580. */
  581. struct cache_sizes malloc_sizes[] = {
  582. #define CACHE(x) { .cs_size = (x) },
  583. #include <linux/kmalloc_sizes.h>
  584. CACHE(ULONG_MAX)
  585. #undef CACHE
  586. };
  587. EXPORT_SYMBOL(malloc_sizes);
  588. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  589. struct cache_names {
  590. char *name;
  591. char *name_dma;
  592. };
  593. static struct cache_names __initdata cache_names[] = {
  594. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  595. #include <linux/kmalloc_sizes.h>
  596. {NULL,}
  597. #undef CACHE
  598. };
  599. static struct arraycache_init initarray_cache __initdata =
  600. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  601. static struct arraycache_init initarray_generic =
  602. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  603. /* internal cache of cache description objs */
  604. static struct kmem_cache cache_cache = {
  605. .batchcount = 1,
  606. .limit = BOOT_CPUCACHE_ENTRIES,
  607. .shared = 1,
  608. .buffer_size = sizeof(struct kmem_cache),
  609. .name = "kmem_cache",
  610. };
  611. #define BAD_ALIEN_MAGIC 0x01020304ul
  612. #ifdef CONFIG_LOCKDEP
  613. /*
  614. * Slab sometimes uses the kmalloc slabs to store the slab headers
  615. * for other slabs "off slab".
  616. * The locking for this is tricky in that it nests within the locks
  617. * of all other slabs in a few places; to deal with this special
  618. * locking we put on-slab caches into a separate lock-class.
  619. *
  620. * We set lock class for alien array caches which are up during init.
  621. * The lock annotation will be lost if all cpus of a node goes down and
  622. * then comes back up during hotplug
  623. */
  624. static struct lock_class_key on_slab_l3_key;
  625. static struct lock_class_key on_slab_alc_key;
  626. static inline void init_lock_keys(void)
  627. {
  628. int q;
  629. struct cache_sizes *s = malloc_sizes;
  630. while (s->cs_size != ULONG_MAX) {
  631. for_each_node(q) {
  632. struct array_cache **alc;
  633. int r;
  634. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  635. if (!l3 || OFF_SLAB(s->cs_cachep))
  636. continue;
  637. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  638. alc = l3->alien;
  639. /*
  640. * FIXME: This check for BAD_ALIEN_MAGIC
  641. * should go away when common slab code is taught to
  642. * work even without alien caches.
  643. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  644. * for alloc_alien_cache,
  645. */
  646. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  647. continue;
  648. for_each_node(r) {
  649. if (alc[r])
  650. lockdep_set_class(&alc[r]->lock,
  651. &on_slab_alc_key);
  652. }
  653. }
  654. s++;
  655. }
  656. }
  657. #else
  658. static inline void init_lock_keys(void)
  659. {
  660. }
  661. #endif
  662. /*
  663. * Guard access to the cache-chain.
  664. */
  665. static DEFINE_MUTEX(cache_chain_mutex);
  666. static struct list_head cache_chain;
  667. /*
  668. * chicken and egg problem: delay the per-cpu array allocation
  669. * until the general caches are up.
  670. */
  671. static enum {
  672. NONE,
  673. PARTIAL_AC,
  674. PARTIAL_L3,
  675. FULL
  676. } g_cpucache_up;
  677. /*
  678. * used by boot code to determine if it can use slab based allocator
  679. */
  680. int slab_is_available(void)
  681. {
  682. return g_cpucache_up == FULL;
  683. }
  684. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  685. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  686. {
  687. return cachep->array[smp_processor_id()];
  688. }
  689. static inline struct kmem_cache *__find_general_cachep(size_t size,
  690. gfp_t gfpflags)
  691. {
  692. struct cache_sizes *csizep = malloc_sizes;
  693. #if DEBUG
  694. /* This happens if someone tries to call
  695. * kmem_cache_create(), or __kmalloc(), before
  696. * the generic caches are initialized.
  697. */
  698. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  699. #endif
  700. if (!size)
  701. return ZERO_SIZE_PTR;
  702. while (size > csizep->cs_size)
  703. csizep++;
  704. /*
  705. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  706. * has cs_{dma,}cachep==NULL. Thus no special case
  707. * for large kmalloc calls required.
  708. */
  709. #ifdef CONFIG_ZONE_DMA
  710. if (unlikely(gfpflags & GFP_DMA))
  711. return csizep->cs_dmacachep;
  712. #endif
  713. return csizep->cs_cachep;
  714. }
  715. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  716. {
  717. return __find_general_cachep(size, gfpflags);
  718. }
  719. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  720. {
  721. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  722. }
  723. /*
  724. * Calculate the number of objects and left-over bytes for a given buffer size.
  725. */
  726. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  727. size_t align, int flags, size_t *left_over,
  728. unsigned int *num)
  729. {
  730. int nr_objs;
  731. size_t mgmt_size;
  732. size_t slab_size = PAGE_SIZE << gfporder;
  733. /*
  734. * The slab management structure can be either off the slab or
  735. * on it. For the latter case, the memory allocated for a
  736. * slab is used for:
  737. *
  738. * - The struct slab
  739. * - One kmem_bufctl_t for each object
  740. * - Padding to respect alignment of @align
  741. * - @buffer_size bytes for each object
  742. *
  743. * If the slab management structure is off the slab, then the
  744. * alignment will already be calculated into the size. Because
  745. * the slabs are all pages aligned, the objects will be at the
  746. * correct alignment when allocated.
  747. */
  748. if (flags & CFLGS_OFF_SLAB) {
  749. mgmt_size = 0;
  750. nr_objs = slab_size / buffer_size;
  751. if (nr_objs > SLAB_LIMIT)
  752. nr_objs = SLAB_LIMIT;
  753. } else {
  754. /*
  755. * Ignore padding for the initial guess. The padding
  756. * is at most @align-1 bytes, and @buffer_size is at
  757. * least @align. In the worst case, this result will
  758. * be one greater than the number of objects that fit
  759. * into the memory allocation when taking the padding
  760. * into account.
  761. */
  762. nr_objs = (slab_size - sizeof(struct slab)) /
  763. (buffer_size + sizeof(kmem_bufctl_t));
  764. /*
  765. * This calculated number will be either the right
  766. * amount, or one greater than what we want.
  767. */
  768. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  769. > slab_size)
  770. nr_objs--;
  771. if (nr_objs > SLAB_LIMIT)
  772. nr_objs = SLAB_LIMIT;
  773. mgmt_size = slab_mgmt_size(nr_objs, align);
  774. }
  775. *num = nr_objs;
  776. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  777. }
  778. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  779. static void __slab_error(const char *function, struct kmem_cache *cachep,
  780. char *msg)
  781. {
  782. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  783. function, cachep->name, msg);
  784. dump_stack();
  785. }
  786. /*
  787. * By default on NUMA we use alien caches to stage the freeing of
  788. * objects allocated from other nodes. This causes massive memory
  789. * inefficiencies when using fake NUMA setup to split memory into a
  790. * large number of small nodes, so it can be disabled on the command
  791. * line
  792. */
  793. static int use_alien_caches __read_mostly = 1;
  794. static int numa_platform __read_mostly = 1;
  795. static int __init noaliencache_setup(char *s)
  796. {
  797. use_alien_caches = 0;
  798. return 1;
  799. }
  800. __setup("noaliencache", noaliencache_setup);
  801. #ifdef CONFIG_NUMA
  802. /*
  803. * Special reaping functions for NUMA systems called from cache_reap().
  804. * These take care of doing round robin flushing of alien caches (containing
  805. * objects freed on different nodes from which they were allocated) and the
  806. * flushing of remote pcps by calling drain_node_pages.
  807. */
  808. static DEFINE_PER_CPU(unsigned long, reap_node);
  809. static void init_reap_node(int cpu)
  810. {
  811. int node;
  812. node = next_node(cpu_to_node(cpu), node_online_map);
  813. if (node == MAX_NUMNODES)
  814. node = first_node(node_online_map);
  815. per_cpu(reap_node, cpu) = node;
  816. }
  817. static void next_reap_node(void)
  818. {
  819. int node = __get_cpu_var(reap_node);
  820. node = next_node(node, node_online_map);
  821. if (unlikely(node >= MAX_NUMNODES))
  822. node = first_node(node_online_map);
  823. __get_cpu_var(reap_node) = node;
  824. }
  825. #else
  826. #define init_reap_node(cpu) do { } while (0)
  827. #define next_reap_node(void) do { } while (0)
  828. #endif
  829. /*
  830. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  831. * via the workqueue/eventd.
  832. * Add the CPU number into the expiration time to minimize the possibility of
  833. * the CPUs getting into lockstep and contending for the global cache chain
  834. * lock.
  835. */
  836. static void __cpuinit start_cpu_timer(int cpu)
  837. {
  838. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  839. /*
  840. * When this gets called from do_initcalls via cpucache_init(),
  841. * init_workqueues() has already run, so keventd will be setup
  842. * at that time.
  843. */
  844. if (keventd_up() && reap_work->work.func == NULL) {
  845. init_reap_node(cpu);
  846. INIT_DELAYED_WORK(reap_work, cache_reap);
  847. schedule_delayed_work_on(cpu, reap_work,
  848. __round_jiffies_relative(HZ, cpu));
  849. }
  850. }
  851. static struct array_cache *alloc_arraycache(int node, int entries,
  852. int batchcount)
  853. {
  854. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  855. struct array_cache *nc = NULL;
  856. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  857. if (nc) {
  858. nc->avail = 0;
  859. nc->limit = entries;
  860. nc->batchcount = batchcount;
  861. nc->touched = 0;
  862. spin_lock_init(&nc->lock);
  863. }
  864. return nc;
  865. }
  866. /*
  867. * Transfer objects in one arraycache to another.
  868. * Locking must be handled by the caller.
  869. *
  870. * Return the number of entries transferred.
  871. */
  872. static int transfer_objects(struct array_cache *to,
  873. struct array_cache *from, unsigned int max)
  874. {
  875. /* Figure out how many entries to transfer */
  876. int nr = min(min(from->avail, max), to->limit - to->avail);
  877. if (!nr)
  878. return 0;
  879. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  880. sizeof(void *) *nr);
  881. from->avail -= nr;
  882. to->avail += nr;
  883. to->touched = 1;
  884. return nr;
  885. }
  886. #ifndef CONFIG_NUMA
  887. #define drain_alien_cache(cachep, alien) do { } while (0)
  888. #define reap_alien(cachep, l3) do { } while (0)
  889. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  890. {
  891. return (struct array_cache **)BAD_ALIEN_MAGIC;
  892. }
  893. static inline void free_alien_cache(struct array_cache **ac_ptr)
  894. {
  895. }
  896. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  897. {
  898. return 0;
  899. }
  900. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  901. gfp_t flags)
  902. {
  903. return NULL;
  904. }
  905. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  906. gfp_t flags, int nodeid)
  907. {
  908. return NULL;
  909. }
  910. #else /* CONFIG_NUMA */
  911. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  912. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  913. static struct array_cache **alloc_alien_cache(int node, int limit)
  914. {
  915. struct array_cache **ac_ptr;
  916. int memsize = sizeof(void *) * nr_node_ids;
  917. int i;
  918. if (limit > 1)
  919. limit = 12;
  920. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  921. if (ac_ptr) {
  922. for_each_node(i) {
  923. if (i == node || !node_online(i)) {
  924. ac_ptr[i] = NULL;
  925. continue;
  926. }
  927. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  928. if (!ac_ptr[i]) {
  929. for (i--; i >= 0; i--)
  930. kfree(ac_ptr[i]);
  931. kfree(ac_ptr);
  932. return NULL;
  933. }
  934. }
  935. }
  936. return ac_ptr;
  937. }
  938. static void free_alien_cache(struct array_cache **ac_ptr)
  939. {
  940. int i;
  941. if (!ac_ptr)
  942. return;
  943. for_each_node(i)
  944. kfree(ac_ptr[i]);
  945. kfree(ac_ptr);
  946. }
  947. static void __drain_alien_cache(struct kmem_cache *cachep,
  948. struct array_cache *ac, int node)
  949. {
  950. struct kmem_list3 *rl3 = cachep->nodelists[node];
  951. if (ac->avail) {
  952. spin_lock(&rl3->list_lock);
  953. /*
  954. * Stuff objects into the remote nodes shared array first.
  955. * That way we could avoid the overhead of putting the objects
  956. * into the free lists and getting them back later.
  957. */
  958. if (rl3->shared)
  959. transfer_objects(rl3->shared, ac, ac->limit);
  960. free_block(cachep, ac->entry, ac->avail, node);
  961. ac->avail = 0;
  962. spin_unlock(&rl3->list_lock);
  963. }
  964. }
  965. /*
  966. * Called from cache_reap() to regularly drain alien caches round robin.
  967. */
  968. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  969. {
  970. int node = __get_cpu_var(reap_node);
  971. if (l3->alien) {
  972. struct array_cache *ac = l3->alien[node];
  973. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  974. __drain_alien_cache(cachep, ac, node);
  975. spin_unlock_irq(&ac->lock);
  976. }
  977. }
  978. }
  979. static void drain_alien_cache(struct kmem_cache *cachep,
  980. struct array_cache **alien)
  981. {
  982. int i = 0;
  983. struct array_cache *ac;
  984. unsigned long flags;
  985. for_each_online_node(i) {
  986. ac = alien[i];
  987. if (ac) {
  988. spin_lock_irqsave(&ac->lock, flags);
  989. __drain_alien_cache(cachep, ac, i);
  990. spin_unlock_irqrestore(&ac->lock, flags);
  991. }
  992. }
  993. }
  994. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  995. {
  996. struct slab *slabp = virt_to_slab(objp);
  997. int nodeid = slabp->nodeid;
  998. struct kmem_list3 *l3;
  999. struct array_cache *alien = NULL;
  1000. int node;
  1001. node = numa_node_id();
  1002. /*
  1003. * Make sure we are not freeing a object from another node to the array
  1004. * cache on this cpu.
  1005. */
  1006. if (likely(slabp->nodeid == node))
  1007. return 0;
  1008. l3 = cachep->nodelists[node];
  1009. STATS_INC_NODEFREES(cachep);
  1010. if (l3->alien && l3->alien[nodeid]) {
  1011. alien = l3->alien[nodeid];
  1012. spin_lock(&alien->lock);
  1013. if (unlikely(alien->avail == alien->limit)) {
  1014. STATS_INC_ACOVERFLOW(cachep);
  1015. __drain_alien_cache(cachep, alien, nodeid);
  1016. }
  1017. alien->entry[alien->avail++] = objp;
  1018. spin_unlock(&alien->lock);
  1019. } else {
  1020. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1021. free_block(cachep, &objp, 1, nodeid);
  1022. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1023. }
  1024. return 1;
  1025. }
  1026. #endif
  1027. static void __cpuinit cpuup_canceled(long cpu)
  1028. {
  1029. struct kmem_cache *cachep;
  1030. struct kmem_list3 *l3 = NULL;
  1031. int node = cpu_to_node(cpu);
  1032. node_to_cpumask_ptr(mask, node);
  1033. list_for_each_entry(cachep, &cache_chain, next) {
  1034. struct array_cache *nc;
  1035. struct array_cache *shared;
  1036. struct array_cache **alien;
  1037. /* cpu is dead; no one can alloc from it. */
  1038. nc = cachep->array[cpu];
  1039. cachep->array[cpu] = NULL;
  1040. l3 = cachep->nodelists[node];
  1041. if (!l3)
  1042. goto free_array_cache;
  1043. spin_lock_irq(&l3->list_lock);
  1044. /* Free limit for this kmem_list3 */
  1045. l3->free_limit -= cachep->batchcount;
  1046. if (nc)
  1047. free_block(cachep, nc->entry, nc->avail, node);
  1048. if (!cpus_empty(*mask)) {
  1049. spin_unlock_irq(&l3->list_lock);
  1050. goto free_array_cache;
  1051. }
  1052. shared = l3->shared;
  1053. if (shared) {
  1054. free_block(cachep, shared->entry,
  1055. shared->avail, node);
  1056. l3->shared = NULL;
  1057. }
  1058. alien = l3->alien;
  1059. l3->alien = NULL;
  1060. spin_unlock_irq(&l3->list_lock);
  1061. kfree(shared);
  1062. if (alien) {
  1063. drain_alien_cache(cachep, alien);
  1064. free_alien_cache(alien);
  1065. }
  1066. free_array_cache:
  1067. kfree(nc);
  1068. }
  1069. /*
  1070. * In the previous loop, all the objects were freed to
  1071. * the respective cache's slabs, now we can go ahead and
  1072. * shrink each nodelist to its limit.
  1073. */
  1074. list_for_each_entry(cachep, &cache_chain, next) {
  1075. l3 = cachep->nodelists[node];
  1076. if (!l3)
  1077. continue;
  1078. drain_freelist(cachep, l3, l3->free_objects);
  1079. }
  1080. }
  1081. static int __cpuinit cpuup_prepare(long cpu)
  1082. {
  1083. struct kmem_cache *cachep;
  1084. struct kmem_list3 *l3 = NULL;
  1085. int node = cpu_to_node(cpu);
  1086. const int memsize = sizeof(struct kmem_list3);
  1087. /*
  1088. * We need to do this right in the beginning since
  1089. * alloc_arraycache's are going to use this list.
  1090. * kmalloc_node allows us to add the slab to the right
  1091. * kmem_list3 and not this cpu's kmem_list3
  1092. */
  1093. list_for_each_entry(cachep, &cache_chain, next) {
  1094. /*
  1095. * Set up the size64 kmemlist for cpu before we can
  1096. * begin anything. Make sure some other cpu on this
  1097. * node has not already allocated this
  1098. */
  1099. if (!cachep->nodelists[node]) {
  1100. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1101. if (!l3)
  1102. goto bad;
  1103. kmem_list3_init(l3);
  1104. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1105. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1106. /*
  1107. * The l3s don't come and go as CPUs come and
  1108. * go. cache_chain_mutex is sufficient
  1109. * protection here.
  1110. */
  1111. cachep->nodelists[node] = l3;
  1112. }
  1113. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1114. cachep->nodelists[node]->free_limit =
  1115. (1 + nr_cpus_node(node)) *
  1116. cachep->batchcount + cachep->num;
  1117. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1118. }
  1119. /*
  1120. * Now we can go ahead with allocating the shared arrays and
  1121. * array caches
  1122. */
  1123. list_for_each_entry(cachep, &cache_chain, next) {
  1124. struct array_cache *nc;
  1125. struct array_cache *shared = NULL;
  1126. struct array_cache **alien = NULL;
  1127. nc = alloc_arraycache(node, cachep->limit,
  1128. cachep->batchcount);
  1129. if (!nc)
  1130. goto bad;
  1131. if (cachep->shared) {
  1132. shared = alloc_arraycache(node,
  1133. cachep->shared * cachep->batchcount,
  1134. 0xbaadf00d);
  1135. if (!shared) {
  1136. kfree(nc);
  1137. goto bad;
  1138. }
  1139. }
  1140. if (use_alien_caches) {
  1141. alien = alloc_alien_cache(node, cachep->limit);
  1142. if (!alien) {
  1143. kfree(shared);
  1144. kfree(nc);
  1145. goto bad;
  1146. }
  1147. }
  1148. cachep->array[cpu] = nc;
  1149. l3 = cachep->nodelists[node];
  1150. BUG_ON(!l3);
  1151. spin_lock_irq(&l3->list_lock);
  1152. if (!l3->shared) {
  1153. /*
  1154. * We are serialised from CPU_DEAD or
  1155. * CPU_UP_CANCELLED by the cpucontrol lock
  1156. */
  1157. l3->shared = shared;
  1158. shared = NULL;
  1159. }
  1160. #ifdef CONFIG_NUMA
  1161. if (!l3->alien) {
  1162. l3->alien = alien;
  1163. alien = NULL;
  1164. }
  1165. #endif
  1166. spin_unlock_irq(&l3->list_lock);
  1167. kfree(shared);
  1168. free_alien_cache(alien);
  1169. }
  1170. return 0;
  1171. bad:
  1172. cpuup_canceled(cpu);
  1173. return -ENOMEM;
  1174. }
  1175. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1176. unsigned long action, void *hcpu)
  1177. {
  1178. long cpu = (long)hcpu;
  1179. int err = 0;
  1180. switch (action) {
  1181. case CPU_UP_PREPARE:
  1182. case CPU_UP_PREPARE_FROZEN:
  1183. mutex_lock(&cache_chain_mutex);
  1184. err = cpuup_prepare(cpu);
  1185. mutex_unlock(&cache_chain_mutex);
  1186. break;
  1187. case CPU_ONLINE:
  1188. case CPU_ONLINE_FROZEN:
  1189. start_cpu_timer(cpu);
  1190. break;
  1191. #ifdef CONFIG_HOTPLUG_CPU
  1192. case CPU_DOWN_PREPARE:
  1193. case CPU_DOWN_PREPARE_FROZEN:
  1194. /*
  1195. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1196. * held so that if cache_reap() is invoked it cannot do
  1197. * anything expensive but will only modify reap_work
  1198. * and reschedule the timer.
  1199. */
  1200. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1201. /* Now the cache_reaper is guaranteed to be not running. */
  1202. per_cpu(reap_work, cpu).work.func = NULL;
  1203. break;
  1204. case CPU_DOWN_FAILED:
  1205. case CPU_DOWN_FAILED_FROZEN:
  1206. start_cpu_timer(cpu);
  1207. break;
  1208. case CPU_DEAD:
  1209. case CPU_DEAD_FROZEN:
  1210. /*
  1211. * Even if all the cpus of a node are down, we don't free the
  1212. * kmem_list3 of any cache. This to avoid a race between
  1213. * cpu_down, and a kmalloc allocation from another cpu for
  1214. * memory from the node of the cpu going down. The list3
  1215. * structure is usually allocated from kmem_cache_create() and
  1216. * gets destroyed at kmem_cache_destroy().
  1217. */
  1218. /* fall through */
  1219. #endif
  1220. case CPU_UP_CANCELED:
  1221. case CPU_UP_CANCELED_FROZEN:
  1222. mutex_lock(&cache_chain_mutex);
  1223. cpuup_canceled(cpu);
  1224. mutex_unlock(&cache_chain_mutex);
  1225. break;
  1226. }
  1227. return err ? NOTIFY_BAD : NOTIFY_OK;
  1228. }
  1229. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1230. &cpuup_callback, NULL, 0
  1231. };
  1232. /*
  1233. * swap the static kmem_list3 with kmalloced memory
  1234. */
  1235. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1236. int nodeid)
  1237. {
  1238. struct kmem_list3 *ptr;
  1239. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1240. BUG_ON(!ptr);
  1241. local_irq_disable();
  1242. memcpy(ptr, list, sizeof(struct kmem_list3));
  1243. /*
  1244. * Do not assume that spinlocks can be initialized via memcpy:
  1245. */
  1246. spin_lock_init(&ptr->list_lock);
  1247. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1248. cachep->nodelists[nodeid] = ptr;
  1249. local_irq_enable();
  1250. }
  1251. /*
  1252. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1253. * size of kmem_list3.
  1254. */
  1255. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1256. {
  1257. int node;
  1258. for_each_online_node(node) {
  1259. cachep->nodelists[node] = &initkmem_list3[index + node];
  1260. cachep->nodelists[node]->next_reap = jiffies +
  1261. REAPTIMEOUT_LIST3 +
  1262. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1263. }
  1264. }
  1265. /*
  1266. * Initialisation. Called after the page allocator have been initialised and
  1267. * before smp_init().
  1268. */
  1269. void __init kmem_cache_init(void)
  1270. {
  1271. size_t left_over;
  1272. struct cache_sizes *sizes;
  1273. struct cache_names *names;
  1274. int i;
  1275. int order;
  1276. int node;
  1277. if (num_possible_nodes() == 1) {
  1278. use_alien_caches = 0;
  1279. numa_platform = 0;
  1280. }
  1281. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1282. kmem_list3_init(&initkmem_list3[i]);
  1283. if (i < MAX_NUMNODES)
  1284. cache_cache.nodelists[i] = NULL;
  1285. }
  1286. set_up_list3s(&cache_cache, CACHE_CACHE);
  1287. /*
  1288. * Fragmentation resistance on low memory - only use bigger
  1289. * page orders on machines with more than 32MB of memory.
  1290. */
  1291. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1292. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1293. /* Bootstrap is tricky, because several objects are allocated
  1294. * from caches that do not exist yet:
  1295. * 1) initialize the cache_cache cache: it contains the struct
  1296. * kmem_cache structures of all caches, except cache_cache itself:
  1297. * cache_cache is statically allocated.
  1298. * Initially an __init data area is used for the head array and the
  1299. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1300. * array at the end of the bootstrap.
  1301. * 2) Create the first kmalloc cache.
  1302. * The struct kmem_cache for the new cache is allocated normally.
  1303. * An __init data area is used for the head array.
  1304. * 3) Create the remaining kmalloc caches, with minimally sized
  1305. * head arrays.
  1306. * 4) Replace the __init data head arrays for cache_cache and the first
  1307. * kmalloc cache with kmalloc allocated arrays.
  1308. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1309. * the other cache's with kmalloc allocated memory.
  1310. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1311. */
  1312. node = numa_node_id();
  1313. /* 1) create the cache_cache */
  1314. INIT_LIST_HEAD(&cache_chain);
  1315. list_add(&cache_cache.next, &cache_chain);
  1316. cache_cache.colour_off = cache_line_size();
  1317. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1318. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1319. /*
  1320. * struct kmem_cache size depends on nr_node_ids, which
  1321. * can be less than MAX_NUMNODES.
  1322. */
  1323. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1324. nr_node_ids * sizeof(struct kmem_list3 *);
  1325. #if DEBUG
  1326. cache_cache.obj_size = cache_cache.buffer_size;
  1327. #endif
  1328. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1329. cache_line_size());
  1330. cache_cache.reciprocal_buffer_size =
  1331. reciprocal_value(cache_cache.buffer_size);
  1332. for (order = 0; order < MAX_ORDER; order++) {
  1333. cache_estimate(order, cache_cache.buffer_size,
  1334. cache_line_size(), 0, &left_over, &cache_cache.num);
  1335. if (cache_cache.num)
  1336. break;
  1337. }
  1338. BUG_ON(!cache_cache.num);
  1339. cache_cache.gfporder = order;
  1340. cache_cache.colour = left_over / cache_cache.colour_off;
  1341. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1342. sizeof(struct slab), cache_line_size());
  1343. /* 2+3) create the kmalloc caches */
  1344. sizes = malloc_sizes;
  1345. names = cache_names;
  1346. /*
  1347. * Initialize the caches that provide memory for the array cache and the
  1348. * kmem_list3 structures first. Without this, further allocations will
  1349. * bug.
  1350. */
  1351. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1352. sizes[INDEX_AC].cs_size,
  1353. ARCH_KMALLOC_MINALIGN,
  1354. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1355. NULL);
  1356. if (INDEX_AC != INDEX_L3) {
  1357. sizes[INDEX_L3].cs_cachep =
  1358. kmem_cache_create(names[INDEX_L3].name,
  1359. sizes[INDEX_L3].cs_size,
  1360. ARCH_KMALLOC_MINALIGN,
  1361. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1362. NULL);
  1363. }
  1364. slab_early_init = 0;
  1365. while (sizes->cs_size != ULONG_MAX) {
  1366. /*
  1367. * For performance, all the general caches are L1 aligned.
  1368. * This should be particularly beneficial on SMP boxes, as it
  1369. * eliminates "false sharing".
  1370. * Note for systems short on memory removing the alignment will
  1371. * allow tighter packing of the smaller caches.
  1372. */
  1373. if (!sizes->cs_cachep) {
  1374. sizes->cs_cachep = kmem_cache_create(names->name,
  1375. sizes->cs_size,
  1376. ARCH_KMALLOC_MINALIGN,
  1377. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1378. NULL);
  1379. }
  1380. #ifdef CONFIG_ZONE_DMA
  1381. sizes->cs_dmacachep = kmem_cache_create(
  1382. names->name_dma,
  1383. sizes->cs_size,
  1384. ARCH_KMALLOC_MINALIGN,
  1385. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1386. SLAB_PANIC,
  1387. NULL);
  1388. #endif
  1389. sizes++;
  1390. names++;
  1391. }
  1392. /* 4) Replace the bootstrap head arrays */
  1393. {
  1394. struct array_cache *ptr;
  1395. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1396. local_irq_disable();
  1397. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1398. memcpy(ptr, cpu_cache_get(&cache_cache),
  1399. sizeof(struct arraycache_init));
  1400. /*
  1401. * Do not assume that spinlocks can be initialized via memcpy:
  1402. */
  1403. spin_lock_init(&ptr->lock);
  1404. cache_cache.array[smp_processor_id()] = ptr;
  1405. local_irq_enable();
  1406. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1407. local_irq_disable();
  1408. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1409. != &initarray_generic.cache);
  1410. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1411. sizeof(struct arraycache_init));
  1412. /*
  1413. * Do not assume that spinlocks can be initialized via memcpy:
  1414. */
  1415. spin_lock_init(&ptr->lock);
  1416. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1417. ptr;
  1418. local_irq_enable();
  1419. }
  1420. /* 5) Replace the bootstrap kmem_list3's */
  1421. {
  1422. int nid;
  1423. for_each_online_node(nid) {
  1424. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1425. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1426. &initkmem_list3[SIZE_AC + nid], nid);
  1427. if (INDEX_AC != INDEX_L3) {
  1428. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1429. &initkmem_list3[SIZE_L3 + nid], nid);
  1430. }
  1431. }
  1432. }
  1433. /* 6) resize the head arrays to their final sizes */
  1434. {
  1435. struct kmem_cache *cachep;
  1436. mutex_lock(&cache_chain_mutex);
  1437. list_for_each_entry(cachep, &cache_chain, next)
  1438. if (enable_cpucache(cachep))
  1439. BUG();
  1440. mutex_unlock(&cache_chain_mutex);
  1441. }
  1442. /* Annotate slab for lockdep -- annotate the malloc caches */
  1443. init_lock_keys();
  1444. /* Done! */
  1445. g_cpucache_up = FULL;
  1446. /*
  1447. * Register a cpu startup notifier callback that initializes
  1448. * cpu_cache_get for all new cpus
  1449. */
  1450. register_cpu_notifier(&cpucache_notifier);
  1451. /*
  1452. * The reap timers are started later, with a module init call: That part
  1453. * of the kernel is not yet operational.
  1454. */
  1455. }
  1456. static int __init cpucache_init(void)
  1457. {
  1458. int cpu;
  1459. /*
  1460. * Register the timers that return unneeded pages to the page allocator
  1461. */
  1462. for_each_online_cpu(cpu)
  1463. start_cpu_timer(cpu);
  1464. return 0;
  1465. }
  1466. __initcall(cpucache_init);
  1467. /*
  1468. * Interface to system's page allocator. No need to hold the cache-lock.
  1469. *
  1470. * If we requested dmaable memory, we will get it. Even if we
  1471. * did not request dmaable memory, we might get it, but that
  1472. * would be relatively rare and ignorable.
  1473. */
  1474. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1475. {
  1476. struct page *page;
  1477. int nr_pages;
  1478. int i;
  1479. #ifndef CONFIG_MMU
  1480. /*
  1481. * Nommu uses slab's for process anonymous memory allocations, and thus
  1482. * requires __GFP_COMP to properly refcount higher order allocations
  1483. */
  1484. flags |= __GFP_COMP;
  1485. #endif
  1486. flags |= cachep->gfpflags;
  1487. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1488. flags |= __GFP_RECLAIMABLE;
  1489. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1490. if (!page)
  1491. return NULL;
  1492. nr_pages = (1 << cachep->gfporder);
  1493. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1494. add_zone_page_state(page_zone(page),
  1495. NR_SLAB_RECLAIMABLE, nr_pages);
  1496. else
  1497. add_zone_page_state(page_zone(page),
  1498. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1499. for (i = 0; i < nr_pages; i++)
  1500. __SetPageSlab(page + i);
  1501. return page_address(page);
  1502. }
  1503. /*
  1504. * Interface to system's page release.
  1505. */
  1506. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1507. {
  1508. unsigned long i = (1 << cachep->gfporder);
  1509. struct page *page = virt_to_page(addr);
  1510. const unsigned long nr_freed = i;
  1511. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1512. sub_zone_page_state(page_zone(page),
  1513. NR_SLAB_RECLAIMABLE, nr_freed);
  1514. else
  1515. sub_zone_page_state(page_zone(page),
  1516. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1517. while (i--) {
  1518. BUG_ON(!PageSlab(page));
  1519. __ClearPageSlab(page);
  1520. page++;
  1521. }
  1522. if (current->reclaim_state)
  1523. current->reclaim_state->reclaimed_slab += nr_freed;
  1524. free_pages((unsigned long)addr, cachep->gfporder);
  1525. }
  1526. static void kmem_rcu_free(struct rcu_head *head)
  1527. {
  1528. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1529. struct kmem_cache *cachep = slab_rcu->cachep;
  1530. kmem_freepages(cachep, slab_rcu->addr);
  1531. if (OFF_SLAB(cachep))
  1532. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1533. }
  1534. #if DEBUG
  1535. #ifdef CONFIG_DEBUG_PAGEALLOC
  1536. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1537. unsigned long caller)
  1538. {
  1539. int size = obj_size(cachep);
  1540. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1541. if (size < 5 * sizeof(unsigned long))
  1542. return;
  1543. *addr++ = 0x12345678;
  1544. *addr++ = caller;
  1545. *addr++ = smp_processor_id();
  1546. size -= 3 * sizeof(unsigned long);
  1547. {
  1548. unsigned long *sptr = &caller;
  1549. unsigned long svalue;
  1550. while (!kstack_end(sptr)) {
  1551. svalue = *sptr++;
  1552. if (kernel_text_address(svalue)) {
  1553. *addr++ = svalue;
  1554. size -= sizeof(unsigned long);
  1555. if (size <= sizeof(unsigned long))
  1556. break;
  1557. }
  1558. }
  1559. }
  1560. *addr++ = 0x87654321;
  1561. }
  1562. #endif
  1563. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1564. {
  1565. int size = obj_size(cachep);
  1566. addr = &((char *)addr)[obj_offset(cachep)];
  1567. memset(addr, val, size);
  1568. *(unsigned char *)(addr + size - 1) = POISON_END;
  1569. }
  1570. static void dump_line(char *data, int offset, int limit)
  1571. {
  1572. int i;
  1573. unsigned char error = 0;
  1574. int bad_count = 0;
  1575. printk(KERN_ERR "%03x:", offset);
  1576. for (i = 0; i < limit; i++) {
  1577. if (data[offset + i] != POISON_FREE) {
  1578. error = data[offset + i];
  1579. bad_count++;
  1580. }
  1581. printk(" %02x", (unsigned char)data[offset + i]);
  1582. }
  1583. printk("\n");
  1584. if (bad_count == 1) {
  1585. error ^= POISON_FREE;
  1586. if (!(error & (error - 1))) {
  1587. printk(KERN_ERR "Single bit error detected. Probably "
  1588. "bad RAM.\n");
  1589. #ifdef CONFIG_X86
  1590. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1591. "test tool.\n");
  1592. #else
  1593. printk(KERN_ERR "Run a memory test tool.\n");
  1594. #endif
  1595. }
  1596. }
  1597. }
  1598. #endif
  1599. #if DEBUG
  1600. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1601. {
  1602. int i, size;
  1603. char *realobj;
  1604. if (cachep->flags & SLAB_RED_ZONE) {
  1605. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1606. *dbg_redzone1(cachep, objp),
  1607. *dbg_redzone2(cachep, objp));
  1608. }
  1609. if (cachep->flags & SLAB_STORE_USER) {
  1610. printk(KERN_ERR "Last user: [<%p>]",
  1611. *dbg_userword(cachep, objp));
  1612. print_symbol("(%s)",
  1613. (unsigned long)*dbg_userword(cachep, objp));
  1614. printk("\n");
  1615. }
  1616. realobj = (char *)objp + obj_offset(cachep);
  1617. size = obj_size(cachep);
  1618. for (i = 0; i < size && lines; i += 16, lines--) {
  1619. int limit;
  1620. limit = 16;
  1621. if (i + limit > size)
  1622. limit = size - i;
  1623. dump_line(realobj, i, limit);
  1624. }
  1625. }
  1626. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1627. {
  1628. char *realobj;
  1629. int size, i;
  1630. int lines = 0;
  1631. realobj = (char *)objp + obj_offset(cachep);
  1632. size = obj_size(cachep);
  1633. for (i = 0; i < size; i++) {
  1634. char exp = POISON_FREE;
  1635. if (i == size - 1)
  1636. exp = POISON_END;
  1637. if (realobj[i] != exp) {
  1638. int limit;
  1639. /* Mismatch ! */
  1640. /* Print header */
  1641. if (lines == 0) {
  1642. printk(KERN_ERR
  1643. "Slab corruption: %s start=%p, len=%d\n",
  1644. cachep->name, realobj, size);
  1645. print_objinfo(cachep, objp, 0);
  1646. }
  1647. /* Hexdump the affected line */
  1648. i = (i / 16) * 16;
  1649. limit = 16;
  1650. if (i + limit > size)
  1651. limit = size - i;
  1652. dump_line(realobj, i, limit);
  1653. i += 16;
  1654. lines++;
  1655. /* Limit to 5 lines */
  1656. if (lines > 5)
  1657. break;
  1658. }
  1659. }
  1660. if (lines != 0) {
  1661. /* Print some data about the neighboring objects, if they
  1662. * exist:
  1663. */
  1664. struct slab *slabp = virt_to_slab(objp);
  1665. unsigned int objnr;
  1666. objnr = obj_to_index(cachep, slabp, objp);
  1667. if (objnr) {
  1668. objp = index_to_obj(cachep, slabp, objnr - 1);
  1669. realobj = (char *)objp + obj_offset(cachep);
  1670. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1671. realobj, size);
  1672. print_objinfo(cachep, objp, 2);
  1673. }
  1674. if (objnr + 1 < cachep->num) {
  1675. objp = index_to_obj(cachep, slabp, objnr + 1);
  1676. realobj = (char *)objp + obj_offset(cachep);
  1677. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1678. realobj, size);
  1679. print_objinfo(cachep, objp, 2);
  1680. }
  1681. }
  1682. }
  1683. #endif
  1684. #if DEBUG
  1685. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1686. {
  1687. int i;
  1688. for (i = 0; i < cachep->num; i++) {
  1689. void *objp = index_to_obj(cachep, slabp, i);
  1690. if (cachep->flags & SLAB_POISON) {
  1691. #ifdef CONFIG_DEBUG_PAGEALLOC
  1692. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1693. OFF_SLAB(cachep))
  1694. kernel_map_pages(virt_to_page(objp),
  1695. cachep->buffer_size / PAGE_SIZE, 1);
  1696. else
  1697. check_poison_obj(cachep, objp);
  1698. #else
  1699. check_poison_obj(cachep, objp);
  1700. #endif
  1701. }
  1702. if (cachep->flags & SLAB_RED_ZONE) {
  1703. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1704. slab_error(cachep, "start of a freed object "
  1705. "was overwritten");
  1706. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1707. slab_error(cachep, "end of a freed object "
  1708. "was overwritten");
  1709. }
  1710. }
  1711. }
  1712. #else
  1713. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1714. {
  1715. }
  1716. #endif
  1717. /**
  1718. * slab_destroy - destroy and release all objects in a slab
  1719. * @cachep: cache pointer being destroyed
  1720. * @slabp: slab pointer being destroyed
  1721. *
  1722. * Destroy all the objs in a slab, and release the mem back to the system.
  1723. * Before calling the slab must have been unlinked from the cache. The
  1724. * cache-lock is not held/needed.
  1725. */
  1726. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1727. {
  1728. void *addr = slabp->s_mem - slabp->colouroff;
  1729. slab_destroy_debugcheck(cachep, slabp);
  1730. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1731. struct slab_rcu *slab_rcu;
  1732. slab_rcu = (struct slab_rcu *)slabp;
  1733. slab_rcu->cachep = cachep;
  1734. slab_rcu->addr = addr;
  1735. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1736. } else {
  1737. kmem_freepages(cachep, addr);
  1738. if (OFF_SLAB(cachep))
  1739. kmem_cache_free(cachep->slabp_cache, slabp);
  1740. }
  1741. }
  1742. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1743. {
  1744. int i;
  1745. struct kmem_list3 *l3;
  1746. for_each_online_cpu(i)
  1747. kfree(cachep->array[i]);
  1748. /* NUMA: free the list3 structures */
  1749. for_each_online_node(i) {
  1750. l3 = cachep->nodelists[i];
  1751. if (l3) {
  1752. kfree(l3->shared);
  1753. free_alien_cache(l3->alien);
  1754. kfree(l3);
  1755. }
  1756. }
  1757. kmem_cache_free(&cache_cache, cachep);
  1758. }
  1759. /**
  1760. * calculate_slab_order - calculate size (page order) of slabs
  1761. * @cachep: pointer to the cache that is being created
  1762. * @size: size of objects to be created in this cache.
  1763. * @align: required alignment for the objects.
  1764. * @flags: slab allocation flags
  1765. *
  1766. * Also calculates the number of objects per slab.
  1767. *
  1768. * This could be made much more intelligent. For now, try to avoid using
  1769. * high order pages for slabs. When the gfp() functions are more friendly
  1770. * towards high-order requests, this should be changed.
  1771. */
  1772. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1773. size_t size, size_t align, unsigned long flags)
  1774. {
  1775. unsigned long offslab_limit;
  1776. size_t left_over = 0;
  1777. int gfporder;
  1778. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1779. unsigned int num;
  1780. size_t remainder;
  1781. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1782. if (!num)
  1783. continue;
  1784. if (flags & CFLGS_OFF_SLAB) {
  1785. /*
  1786. * Max number of objs-per-slab for caches which
  1787. * use off-slab slabs. Needed to avoid a possible
  1788. * looping condition in cache_grow().
  1789. */
  1790. offslab_limit = size - sizeof(struct slab);
  1791. offslab_limit /= sizeof(kmem_bufctl_t);
  1792. if (num > offslab_limit)
  1793. break;
  1794. }
  1795. /* Found something acceptable - save it away */
  1796. cachep->num = num;
  1797. cachep->gfporder = gfporder;
  1798. left_over = remainder;
  1799. /*
  1800. * A VFS-reclaimable slab tends to have most allocations
  1801. * as GFP_NOFS and we really don't want to have to be allocating
  1802. * higher-order pages when we are unable to shrink dcache.
  1803. */
  1804. if (flags & SLAB_RECLAIM_ACCOUNT)
  1805. break;
  1806. /*
  1807. * Large number of objects is good, but very large slabs are
  1808. * currently bad for the gfp()s.
  1809. */
  1810. if (gfporder >= slab_break_gfp_order)
  1811. break;
  1812. /*
  1813. * Acceptable internal fragmentation?
  1814. */
  1815. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1816. break;
  1817. }
  1818. return left_over;
  1819. }
  1820. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
  1821. {
  1822. if (g_cpucache_up == FULL)
  1823. return enable_cpucache(cachep);
  1824. if (g_cpucache_up == NONE) {
  1825. /*
  1826. * Note: the first kmem_cache_create must create the cache
  1827. * that's used by kmalloc(24), otherwise the creation of
  1828. * further caches will BUG().
  1829. */
  1830. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1831. /*
  1832. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1833. * the first cache, then we need to set up all its list3s,
  1834. * otherwise the creation of further caches will BUG().
  1835. */
  1836. set_up_list3s(cachep, SIZE_AC);
  1837. if (INDEX_AC == INDEX_L3)
  1838. g_cpucache_up = PARTIAL_L3;
  1839. else
  1840. g_cpucache_up = PARTIAL_AC;
  1841. } else {
  1842. cachep->array[smp_processor_id()] =
  1843. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1844. if (g_cpucache_up == PARTIAL_AC) {
  1845. set_up_list3s(cachep, SIZE_L3);
  1846. g_cpucache_up = PARTIAL_L3;
  1847. } else {
  1848. int node;
  1849. for_each_online_node(node) {
  1850. cachep->nodelists[node] =
  1851. kmalloc_node(sizeof(struct kmem_list3),
  1852. GFP_KERNEL, node);
  1853. BUG_ON(!cachep->nodelists[node]);
  1854. kmem_list3_init(cachep->nodelists[node]);
  1855. }
  1856. }
  1857. }
  1858. cachep->nodelists[numa_node_id()]->next_reap =
  1859. jiffies + REAPTIMEOUT_LIST3 +
  1860. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1861. cpu_cache_get(cachep)->avail = 0;
  1862. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1863. cpu_cache_get(cachep)->batchcount = 1;
  1864. cpu_cache_get(cachep)->touched = 0;
  1865. cachep->batchcount = 1;
  1866. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1867. return 0;
  1868. }
  1869. /**
  1870. * kmem_cache_create - Create a cache.
  1871. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1872. * @size: The size of objects to be created in this cache.
  1873. * @align: The required alignment for the objects.
  1874. * @flags: SLAB flags
  1875. * @ctor: A constructor for the objects.
  1876. *
  1877. * Returns a ptr to the cache on success, NULL on failure.
  1878. * Cannot be called within a int, but can be interrupted.
  1879. * The @ctor is run when new pages are allocated by the cache.
  1880. *
  1881. * @name must be valid until the cache is destroyed. This implies that
  1882. * the module calling this has to destroy the cache before getting unloaded.
  1883. *
  1884. * The flags are
  1885. *
  1886. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1887. * to catch references to uninitialised memory.
  1888. *
  1889. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1890. * for buffer overruns.
  1891. *
  1892. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1893. * cacheline. This can be beneficial if you're counting cycles as closely
  1894. * as davem.
  1895. */
  1896. struct kmem_cache *
  1897. kmem_cache_create (const char *name, size_t size, size_t align,
  1898. unsigned long flags,
  1899. void (*ctor)(struct kmem_cache *, void *))
  1900. {
  1901. size_t left_over, slab_size, ralign;
  1902. struct kmem_cache *cachep = NULL, *pc;
  1903. /*
  1904. * Sanity checks... these are all serious usage bugs.
  1905. */
  1906. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1907. size > KMALLOC_MAX_SIZE) {
  1908. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1909. name);
  1910. BUG();
  1911. }
  1912. /*
  1913. * We use cache_chain_mutex to ensure a consistent view of
  1914. * cpu_online_map as well. Please see cpuup_callback
  1915. */
  1916. get_online_cpus();
  1917. mutex_lock(&cache_chain_mutex);
  1918. list_for_each_entry(pc, &cache_chain, next) {
  1919. char tmp;
  1920. int res;
  1921. /*
  1922. * This happens when the module gets unloaded and doesn't
  1923. * destroy its slab cache and no-one else reuses the vmalloc
  1924. * area of the module. Print a warning.
  1925. */
  1926. res = probe_kernel_address(pc->name, tmp);
  1927. if (res) {
  1928. printk(KERN_ERR
  1929. "SLAB: cache with size %d has lost its name\n",
  1930. pc->buffer_size);
  1931. continue;
  1932. }
  1933. if (!strcmp(pc->name, name)) {
  1934. printk(KERN_ERR
  1935. "kmem_cache_create: duplicate cache %s\n", name);
  1936. dump_stack();
  1937. goto oops;
  1938. }
  1939. }
  1940. #if DEBUG
  1941. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1942. #if FORCED_DEBUG
  1943. /*
  1944. * Enable redzoning and last user accounting, except for caches with
  1945. * large objects, if the increased size would increase the object size
  1946. * above the next power of two: caches with object sizes just above a
  1947. * power of two have a significant amount of internal fragmentation.
  1948. */
  1949. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1950. 2 * sizeof(unsigned long long)))
  1951. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1952. if (!(flags & SLAB_DESTROY_BY_RCU))
  1953. flags |= SLAB_POISON;
  1954. #endif
  1955. if (flags & SLAB_DESTROY_BY_RCU)
  1956. BUG_ON(flags & SLAB_POISON);
  1957. #endif
  1958. /*
  1959. * Always checks flags, a caller might be expecting debug support which
  1960. * isn't available.
  1961. */
  1962. BUG_ON(flags & ~CREATE_MASK);
  1963. /*
  1964. * Check that size is in terms of words. This is needed to avoid
  1965. * unaligned accesses for some archs when redzoning is used, and makes
  1966. * sure any on-slab bufctl's are also correctly aligned.
  1967. */
  1968. if (size & (BYTES_PER_WORD - 1)) {
  1969. size += (BYTES_PER_WORD - 1);
  1970. size &= ~(BYTES_PER_WORD - 1);
  1971. }
  1972. /* calculate the final buffer alignment: */
  1973. /* 1) arch recommendation: can be overridden for debug */
  1974. if (flags & SLAB_HWCACHE_ALIGN) {
  1975. /*
  1976. * Default alignment: as specified by the arch code. Except if
  1977. * an object is really small, then squeeze multiple objects into
  1978. * one cacheline.
  1979. */
  1980. ralign = cache_line_size();
  1981. while (size <= ralign / 2)
  1982. ralign /= 2;
  1983. } else {
  1984. ralign = BYTES_PER_WORD;
  1985. }
  1986. /*
  1987. * Redzoning and user store require word alignment or possibly larger.
  1988. * Note this will be overridden by architecture or caller mandated
  1989. * alignment if either is greater than BYTES_PER_WORD.
  1990. */
  1991. if (flags & SLAB_STORE_USER)
  1992. ralign = BYTES_PER_WORD;
  1993. if (flags & SLAB_RED_ZONE) {
  1994. ralign = REDZONE_ALIGN;
  1995. /* If redzoning, ensure that the second redzone is suitably
  1996. * aligned, by adjusting the object size accordingly. */
  1997. size += REDZONE_ALIGN - 1;
  1998. size &= ~(REDZONE_ALIGN - 1);
  1999. }
  2000. /* 2) arch mandated alignment */
  2001. if (ralign < ARCH_SLAB_MINALIGN) {
  2002. ralign = ARCH_SLAB_MINALIGN;
  2003. }
  2004. /* 3) caller mandated alignment */
  2005. if (ralign < align) {
  2006. ralign = align;
  2007. }
  2008. /* disable debug if necessary */
  2009. if (ralign > __alignof__(unsigned long long))
  2010. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2011. /*
  2012. * 4) Store it.
  2013. */
  2014. align = ralign;
  2015. /* Get cache's description obj. */
  2016. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2017. if (!cachep)
  2018. goto oops;
  2019. #if DEBUG
  2020. cachep->obj_size = size;
  2021. /*
  2022. * Both debugging options require word-alignment which is calculated
  2023. * into align above.
  2024. */
  2025. if (flags & SLAB_RED_ZONE) {
  2026. /* add space for red zone words */
  2027. cachep->obj_offset += sizeof(unsigned long long);
  2028. size += 2 * sizeof(unsigned long long);
  2029. }
  2030. if (flags & SLAB_STORE_USER) {
  2031. /* user store requires one word storage behind the end of
  2032. * the real object. But if the second red zone needs to be
  2033. * aligned to 64 bits, we must allow that much space.
  2034. */
  2035. if (flags & SLAB_RED_ZONE)
  2036. size += REDZONE_ALIGN;
  2037. else
  2038. size += BYTES_PER_WORD;
  2039. }
  2040. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2041. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2042. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2043. cachep->obj_offset += PAGE_SIZE - size;
  2044. size = PAGE_SIZE;
  2045. }
  2046. #endif
  2047. #endif
  2048. /*
  2049. * Determine if the slab management is 'on' or 'off' slab.
  2050. * (bootstrapping cannot cope with offslab caches so don't do
  2051. * it too early on.)
  2052. */
  2053. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2054. /*
  2055. * Size is large, assume best to place the slab management obj
  2056. * off-slab (should allow better packing of objs).
  2057. */
  2058. flags |= CFLGS_OFF_SLAB;
  2059. size = ALIGN(size, align);
  2060. left_over = calculate_slab_order(cachep, size, align, flags);
  2061. if (!cachep->num) {
  2062. printk(KERN_ERR
  2063. "kmem_cache_create: couldn't create cache %s.\n", name);
  2064. kmem_cache_free(&cache_cache, cachep);
  2065. cachep = NULL;
  2066. goto oops;
  2067. }
  2068. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2069. + sizeof(struct slab), align);
  2070. /*
  2071. * If the slab has been placed off-slab, and we have enough space then
  2072. * move it on-slab. This is at the expense of any extra colouring.
  2073. */
  2074. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2075. flags &= ~CFLGS_OFF_SLAB;
  2076. left_over -= slab_size;
  2077. }
  2078. if (flags & CFLGS_OFF_SLAB) {
  2079. /* really off slab. No need for manual alignment */
  2080. slab_size =
  2081. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2082. }
  2083. cachep->colour_off = cache_line_size();
  2084. /* Offset must be a multiple of the alignment. */
  2085. if (cachep->colour_off < align)
  2086. cachep->colour_off = align;
  2087. cachep->colour = left_over / cachep->colour_off;
  2088. cachep->slab_size = slab_size;
  2089. cachep->flags = flags;
  2090. cachep->gfpflags = 0;
  2091. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2092. cachep->gfpflags |= GFP_DMA;
  2093. cachep->buffer_size = size;
  2094. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2095. if (flags & CFLGS_OFF_SLAB) {
  2096. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2097. /*
  2098. * This is a possibility for one of the malloc_sizes caches.
  2099. * But since we go off slab only for object size greater than
  2100. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2101. * this should not happen at all.
  2102. * But leave a BUG_ON for some lucky dude.
  2103. */
  2104. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2105. }
  2106. cachep->ctor = ctor;
  2107. cachep->name = name;
  2108. if (setup_cpu_cache(cachep)) {
  2109. __kmem_cache_destroy(cachep);
  2110. cachep = NULL;
  2111. goto oops;
  2112. }
  2113. /* cache setup completed, link it into the list */
  2114. list_add(&cachep->next, &cache_chain);
  2115. oops:
  2116. if (!cachep && (flags & SLAB_PANIC))
  2117. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2118. name);
  2119. mutex_unlock(&cache_chain_mutex);
  2120. put_online_cpus();
  2121. return cachep;
  2122. }
  2123. EXPORT_SYMBOL(kmem_cache_create);
  2124. #if DEBUG
  2125. static void check_irq_off(void)
  2126. {
  2127. BUG_ON(!irqs_disabled());
  2128. }
  2129. static void check_irq_on(void)
  2130. {
  2131. BUG_ON(irqs_disabled());
  2132. }
  2133. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2134. {
  2135. #ifdef CONFIG_SMP
  2136. check_irq_off();
  2137. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2138. #endif
  2139. }
  2140. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2141. {
  2142. #ifdef CONFIG_SMP
  2143. check_irq_off();
  2144. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2145. #endif
  2146. }
  2147. #else
  2148. #define check_irq_off() do { } while(0)
  2149. #define check_irq_on() do { } while(0)
  2150. #define check_spinlock_acquired(x) do { } while(0)
  2151. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2152. #endif
  2153. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2154. struct array_cache *ac,
  2155. int force, int node);
  2156. static void do_drain(void *arg)
  2157. {
  2158. struct kmem_cache *cachep = arg;
  2159. struct array_cache *ac;
  2160. int node = numa_node_id();
  2161. check_irq_off();
  2162. ac = cpu_cache_get(cachep);
  2163. spin_lock(&cachep->nodelists[node]->list_lock);
  2164. free_block(cachep, ac->entry, ac->avail, node);
  2165. spin_unlock(&cachep->nodelists[node]->list_lock);
  2166. ac->avail = 0;
  2167. }
  2168. static void drain_cpu_caches(struct kmem_cache *cachep)
  2169. {
  2170. struct kmem_list3 *l3;
  2171. int node;
  2172. on_each_cpu(do_drain, cachep, 1);
  2173. check_irq_on();
  2174. for_each_online_node(node) {
  2175. l3 = cachep->nodelists[node];
  2176. if (l3 && l3->alien)
  2177. drain_alien_cache(cachep, l3->alien);
  2178. }
  2179. for_each_online_node(node) {
  2180. l3 = cachep->nodelists[node];
  2181. if (l3)
  2182. drain_array(cachep, l3, l3->shared, 1, node);
  2183. }
  2184. }
  2185. /*
  2186. * Remove slabs from the list of free slabs.
  2187. * Specify the number of slabs to drain in tofree.
  2188. *
  2189. * Returns the actual number of slabs released.
  2190. */
  2191. static int drain_freelist(struct kmem_cache *cache,
  2192. struct kmem_list3 *l3, int tofree)
  2193. {
  2194. struct list_head *p;
  2195. int nr_freed;
  2196. struct slab *slabp;
  2197. nr_freed = 0;
  2198. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2199. spin_lock_irq(&l3->list_lock);
  2200. p = l3->slabs_free.prev;
  2201. if (p == &l3->slabs_free) {
  2202. spin_unlock_irq(&l3->list_lock);
  2203. goto out;
  2204. }
  2205. slabp = list_entry(p, struct slab, list);
  2206. #if DEBUG
  2207. BUG_ON(slabp->inuse);
  2208. #endif
  2209. list_del(&slabp->list);
  2210. /*
  2211. * Safe to drop the lock. The slab is no longer linked
  2212. * to the cache.
  2213. */
  2214. l3->free_objects -= cache->num;
  2215. spin_unlock_irq(&l3->list_lock);
  2216. slab_destroy(cache, slabp);
  2217. nr_freed++;
  2218. }
  2219. out:
  2220. return nr_freed;
  2221. }
  2222. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2223. static int __cache_shrink(struct kmem_cache *cachep)
  2224. {
  2225. int ret = 0, i = 0;
  2226. struct kmem_list3 *l3;
  2227. drain_cpu_caches(cachep);
  2228. check_irq_on();
  2229. for_each_online_node(i) {
  2230. l3 = cachep->nodelists[i];
  2231. if (!l3)
  2232. continue;
  2233. drain_freelist(cachep, l3, l3->free_objects);
  2234. ret += !list_empty(&l3->slabs_full) ||
  2235. !list_empty(&l3->slabs_partial);
  2236. }
  2237. return (ret ? 1 : 0);
  2238. }
  2239. /**
  2240. * kmem_cache_shrink - Shrink a cache.
  2241. * @cachep: The cache to shrink.
  2242. *
  2243. * Releases as many slabs as possible for a cache.
  2244. * To help debugging, a zero exit status indicates all slabs were released.
  2245. */
  2246. int kmem_cache_shrink(struct kmem_cache *cachep)
  2247. {
  2248. int ret;
  2249. BUG_ON(!cachep || in_interrupt());
  2250. get_online_cpus();
  2251. mutex_lock(&cache_chain_mutex);
  2252. ret = __cache_shrink(cachep);
  2253. mutex_unlock(&cache_chain_mutex);
  2254. put_online_cpus();
  2255. return ret;
  2256. }
  2257. EXPORT_SYMBOL(kmem_cache_shrink);
  2258. /**
  2259. * kmem_cache_destroy - delete a cache
  2260. * @cachep: the cache to destroy
  2261. *
  2262. * Remove a &struct kmem_cache object from the slab cache.
  2263. *
  2264. * It is expected this function will be called by a module when it is
  2265. * unloaded. This will remove the cache completely, and avoid a duplicate
  2266. * cache being allocated each time a module is loaded and unloaded, if the
  2267. * module doesn't have persistent in-kernel storage across loads and unloads.
  2268. *
  2269. * The cache must be empty before calling this function.
  2270. *
  2271. * The caller must guarantee that noone will allocate memory from the cache
  2272. * during the kmem_cache_destroy().
  2273. */
  2274. void kmem_cache_destroy(struct kmem_cache *cachep)
  2275. {
  2276. BUG_ON(!cachep || in_interrupt());
  2277. /* Find the cache in the chain of caches. */
  2278. get_online_cpus();
  2279. mutex_lock(&cache_chain_mutex);
  2280. /*
  2281. * the chain is never empty, cache_cache is never destroyed
  2282. */
  2283. list_del(&cachep->next);
  2284. if (__cache_shrink(cachep)) {
  2285. slab_error(cachep, "Can't free all objects");
  2286. list_add(&cachep->next, &cache_chain);
  2287. mutex_unlock(&cache_chain_mutex);
  2288. put_online_cpus();
  2289. return;
  2290. }
  2291. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2292. synchronize_rcu();
  2293. __kmem_cache_destroy(cachep);
  2294. mutex_unlock(&cache_chain_mutex);
  2295. put_online_cpus();
  2296. }
  2297. EXPORT_SYMBOL(kmem_cache_destroy);
  2298. /*
  2299. * Get the memory for a slab management obj.
  2300. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2301. * always come from malloc_sizes caches. The slab descriptor cannot
  2302. * come from the same cache which is getting created because,
  2303. * when we are searching for an appropriate cache for these
  2304. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2305. * If we are creating a malloc_sizes cache here it would not be visible to
  2306. * kmem_find_general_cachep till the initialization is complete.
  2307. * Hence we cannot have slabp_cache same as the original cache.
  2308. */
  2309. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2310. int colour_off, gfp_t local_flags,
  2311. int nodeid)
  2312. {
  2313. struct slab *slabp;
  2314. if (OFF_SLAB(cachep)) {
  2315. /* Slab management obj is off-slab. */
  2316. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2317. local_flags & ~GFP_THISNODE, nodeid);
  2318. if (!slabp)
  2319. return NULL;
  2320. } else {
  2321. slabp = objp + colour_off;
  2322. colour_off += cachep->slab_size;
  2323. }
  2324. slabp->inuse = 0;
  2325. slabp->colouroff = colour_off;
  2326. slabp->s_mem = objp + colour_off;
  2327. slabp->nodeid = nodeid;
  2328. slabp->free = 0;
  2329. return slabp;
  2330. }
  2331. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2332. {
  2333. return (kmem_bufctl_t *) (slabp + 1);
  2334. }
  2335. static void cache_init_objs(struct kmem_cache *cachep,
  2336. struct slab *slabp)
  2337. {
  2338. int i;
  2339. for (i = 0; i < cachep->num; i++) {
  2340. void *objp = index_to_obj(cachep, slabp, i);
  2341. #if DEBUG
  2342. /* need to poison the objs? */
  2343. if (cachep->flags & SLAB_POISON)
  2344. poison_obj(cachep, objp, POISON_FREE);
  2345. if (cachep->flags & SLAB_STORE_USER)
  2346. *dbg_userword(cachep, objp) = NULL;
  2347. if (cachep->flags & SLAB_RED_ZONE) {
  2348. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2349. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2350. }
  2351. /*
  2352. * Constructors are not allowed to allocate memory from the same
  2353. * cache which they are a constructor for. Otherwise, deadlock.
  2354. * They must also be threaded.
  2355. */
  2356. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2357. cachep->ctor(cachep, objp + obj_offset(cachep));
  2358. if (cachep->flags & SLAB_RED_ZONE) {
  2359. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2360. slab_error(cachep, "constructor overwrote the"
  2361. " end of an object");
  2362. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2363. slab_error(cachep, "constructor overwrote the"
  2364. " start of an object");
  2365. }
  2366. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2367. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2368. kernel_map_pages(virt_to_page(objp),
  2369. cachep->buffer_size / PAGE_SIZE, 0);
  2370. #else
  2371. if (cachep->ctor)
  2372. cachep->ctor(cachep, objp);
  2373. #endif
  2374. slab_bufctl(slabp)[i] = i + 1;
  2375. }
  2376. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2377. }
  2378. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2379. {
  2380. if (CONFIG_ZONE_DMA_FLAG) {
  2381. if (flags & GFP_DMA)
  2382. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2383. else
  2384. BUG_ON(cachep->gfpflags & GFP_DMA);
  2385. }
  2386. }
  2387. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2388. int nodeid)
  2389. {
  2390. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2391. kmem_bufctl_t next;
  2392. slabp->inuse++;
  2393. next = slab_bufctl(slabp)[slabp->free];
  2394. #if DEBUG
  2395. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2396. WARN_ON(slabp->nodeid != nodeid);
  2397. #endif
  2398. slabp->free = next;
  2399. return objp;
  2400. }
  2401. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2402. void *objp, int nodeid)
  2403. {
  2404. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2405. #if DEBUG
  2406. /* Verify that the slab belongs to the intended node */
  2407. WARN_ON(slabp->nodeid != nodeid);
  2408. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2409. printk(KERN_ERR "slab: double free detected in cache "
  2410. "'%s', objp %p\n", cachep->name, objp);
  2411. BUG();
  2412. }
  2413. #endif
  2414. slab_bufctl(slabp)[objnr] = slabp->free;
  2415. slabp->free = objnr;
  2416. slabp->inuse--;
  2417. }
  2418. /*
  2419. * Map pages beginning at addr to the given cache and slab. This is required
  2420. * for the slab allocator to be able to lookup the cache and slab of a
  2421. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2422. */
  2423. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2424. void *addr)
  2425. {
  2426. int nr_pages;
  2427. struct page *page;
  2428. page = virt_to_page(addr);
  2429. nr_pages = 1;
  2430. if (likely(!PageCompound(page)))
  2431. nr_pages <<= cache->gfporder;
  2432. do {
  2433. page_set_cache(page, cache);
  2434. page_set_slab(page, slab);
  2435. page++;
  2436. } while (--nr_pages);
  2437. }
  2438. /*
  2439. * Grow (by 1) the number of slabs within a cache. This is called by
  2440. * kmem_cache_alloc() when there are no active objs left in a cache.
  2441. */
  2442. static int cache_grow(struct kmem_cache *cachep,
  2443. gfp_t flags, int nodeid, void *objp)
  2444. {
  2445. struct slab *slabp;
  2446. size_t offset;
  2447. gfp_t local_flags;
  2448. struct kmem_list3 *l3;
  2449. /*
  2450. * Be lazy and only check for valid flags here, keeping it out of the
  2451. * critical path in kmem_cache_alloc().
  2452. */
  2453. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2454. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2455. /* Take the l3 list lock to change the colour_next on this node */
  2456. check_irq_off();
  2457. l3 = cachep->nodelists[nodeid];
  2458. spin_lock(&l3->list_lock);
  2459. /* Get colour for the slab, and cal the next value. */
  2460. offset = l3->colour_next;
  2461. l3->colour_next++;
  2462. if (l3->colour_next >= cachep->colour)
  2463. l3->colour_next = 0;
  2464. spin_unlock(&l3->list_lock);
  2465. offset *= cachep->colour_off;
  2466. if (local_flags & __GFP_WAIT)
  2467. local_irq_enable();
  2468. /*
  2469. * The test for missing atomic flag is performed here, rather than
  2470. * the more obvious place, simply to reduce the critical path length
  2471. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2472. * will eventually be caught here (where it matters).
  2473. */
  2474. kmem_flagcheck(cachep, flags);
  2475. /*
  2476. * Get mem for the objs. Attempt to allocate a physical page from
  2477. * 'nodeid'.
  2478. */
  2479. if (!objp)
  2480. objp = kmem_getpages(cachep, local_flags, nodeid);
  2481. if (!objp)
  2482. goto failed;
  2483. /* Get slab management. */
  2484. slabp = alloc_slabmgmt(cachep, objp, offset,
  2485. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2486. if (!slabp)
  2487. goto opps1;
  2488. slab_map_pages(cachep, slabp, objp);
  2489. cache_init_objs(cachep, slabp);
  2490. if (local_flags & __GFP_WAIT)
  2491. local_irq_disable();
  2492. check_irq_off();
  2493. spin_lock(&l3->list_lock);
  2494. /* Make slab active. */
  2495. list_add_tail(&slabp->list, &(l3->slabs_free));
  2496. STATS_INC_GROWN(cachep);
  2497. l3->free_objects += cachep->num;
  2498. spin_unlock(&l3->list_lock);
  2499. return 1;
  2500. opps1:
  2501. kmem_freepages(cachep, objp);
  2502. failed:
  2503. if (local_flags & __GFP_WAIT)
  2504. local_irq_disable();
  2505. return 0;
  2506. }
  2507. #if DEBUG
  2508. /*
  2509. * Perform extra freeing checks:
  2510. * - detect bad pointers.
  2511. * - POISON/RED_ZONE checking
  2512. */
  2513. static void kfree_debugcheck(const void *objp)
  2514. {
  2515. if (!virt_addr_valid(objp)) {
  2516. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2517. (unsigned long)objp);
  2518. BUG();
  2519. }
  2520. }
  2521. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2522. {
  2523. unsigned long long redzone1, redzone2;
  2524. redzone1 = *dbg_redzone1(cache, obj);
  2525. redzone2 = *dbg_redzone2(cache, obj);
  2526. /*
  2527. * Redzone is ok.
  2528. */
  2529. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2530. return;
  2531. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2532. slab_error(cache, "double free detected");
  2533. else
  2534. slab_error(cache, "memory outside object was overwritten");
  2535. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2536. obj, redzone1, redzone2);
  2537. }
  2538. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2539. void *caller)
  2540. {
  2541. struct page *page;
  2542. unsigned int objnr;
  2543. struct slab *slabp;
  2544. BUG_ON(virt_to_cache(objp) != cachep);
  2545. objp -= obj_offset(cachep);
  2546. kfree_debugcheck(objp);
  2547. page = virt_to_head_page(objp);
  2548. slabp = page_get_slab(page);
  2549. if (cachep->flags & SLAB_RED_ZONE) {
  2550. verify_redzone_free(cachep, objp);
  2551. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2552. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2553. }
  2554. if (cachep->flags & SLAB_STORE_USER)
  2555. *dbg_userword(cachep, objp) = caller;
  2556. objnr = obj_to_index(cachep, slabp, objp);
  2557. BUG_ON(objnr >= cachep->num);
  2558. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2559. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2560. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2561. #endif
  2562. if (cachep->flags & SLAB_POISON) {
  2563. #ifdef CONFIG_DEBUG_PAGEALLOC
  2564. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2565. store_stackinfo(cachep, objp, (unsigned long)caller);
  2566. kernel_map_pages(virt_to_page(objp),
  2567. cachep->buffer_size / PAGE_SIZE, 0);
  2568. } else {
  2569. poison_obj(cachep, objp, POISON_FREE);
  2570. }
  2571. #else
  2572. poison_obj(cachep, objp, POISON_FREE);
  2573. #endif
  2574. }
  2575. return objp;
  2576. }
  2577. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2578. {
  2579. kmem_bufctl_t i;
  2580. int entries = 0;
  2581. /* Check slab's freelist to see if this obj is there. */
  2582. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2583. entries++;
  2584. if (entries > cachep->num || i >= cachep->num)
  2585. goto bad;
  2586. }
  2587. if (entries != cachep->num - slabp->inuse) {
  2588. bad:
  2589. printk(KERN_ERR "slab: Internal list corruption detected in "
  2590. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2591. cachep->name, cachep->num, slabp, slabp->inuse);
  2592. for (i = 0;
  2593. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2594. i++) {
  2595. if (i % 16 == 0)
  2596. printk("\n%03x:", i);
  2597. printk(" %02x", ((unsigned char *)slabp)[i]);
  2598. }
  2599. printk("\n");
  2600. BUG();
  2601. }
  2602. }
  2603. #else
  2604. #define kfree_debugcheck(x) do { } while(0)
  2605. #define cache_free_debugcheck(x,objp,z) (objp)
  2606. #define check_slabp(x,y) do { } while(0)
  2607. #endif
  2608. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2609. {
  2610. int batchcount;
  2611. struct kmem_list3 *l3;
  2612. struct array_cache *ac;
  2613. int node;
  2614. retry:
  2615. check_irq_off();
  2616. node = numa_node_id();
  2617. ac = cpu_cache_get(cachep);
  2618. batchcount = ac->batchcount;
  2619. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2620. /*
  2621. * If there was little recent activity on this cache, then
  2622. * perform only a partial refill. Otherwise we could generate
  2623. * refill bouncing.
  2624. */
  2625. batchcount = BATCHREFILL_LIMIT;
  2626. }
  2627. l3 = cachep->nodelists[node];
  2628. BUG_ON(ac->avail > 0 || !l3);
  2629. spin_lock(&l3->list_lock);
  2630. /* See if we can refill from the shared array */
  2631. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2632. goto alloc_done;
  2633. while (batchcount > 0) {
  2634. struct list_head *entry;
  2635. struct slab *slabp;
  2636. /* Get slab alloc is to come from. */
  2637. entry = l3->slabs_partial.next;
  2638. if (entry == &l3->slabs_partial) {
  2639. l3->free_touched = 1;
  2640. entry = l3->slabs_free.next;
  2641. if (entry == &l3->slabs_free)
  2642. goto must_grow;
  2643. }
  2644. slabp = list_entry(entry, struct slab, list);
  2645. check_slabp(cachep, slabp);
  2646. check_spinlock_acquired(cachep);
  2647. /*
  2648. * The slab was either on partial or free list so
  2649. * there must be at least one object available for
  2650. * allocation.
  2651. */
  2652. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2653. while (slabp->inuse < cachep->num && batchcount--) {
  2654. STATS_INC_ALLOCED(cachep);
  2655. STATS_INC_ACTIVE(cachep);
  2656. STATS_SET_HIGH(cachep);
  2657. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2658. node);
  2659. }
  2660. check_slabp(cachep, slabp);
  2661. /* move slabp to correct slabp list: */
  2662. list_del(&slabp->list);
  2663. if (slabp->free == BUFCTL_END)
  2664. list_add(&slabp->list, &l3->slabs_full);
  2665. else
  2666. list_add(&slabp->list, &l3->slabs_partial);
  2667. }
  2668. must_grow:
  2669. l3->free_objects -= ac->avail;
  2670. alloc_done:
  2671. spin_unlock(&l3->list_lock);
  2672. if (unlikely(!ac->avail)) {
  2673. int x;
  2674. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2675. /* cache_grow can reenable interrupts, then ac could change. */
  2676. ac = cpu_cache_get(cachep);
  2677. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2678. return NULL;
  2679. if (!ac->avail) /* objects refilled by interrupt? */
  2680. goto retry;
  2681. }
  2682. ac->touched = 1;
  2683. return ac->entry[--ac->avail];
  2684. }
  2685. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2686. gfp_t flags)
  2687. {
  2688. might_sleep_if(flags & __GFP_WAIT);
  2689. #if DEBUG
  2690. kmem_flagcheck(cachep, flags);
  2691. #endif
  2692. }
  2693. #if DEBUG
  2694. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2695. gfp_t flags, void *objp, void *caller)
  2696. {
  2697. if (!objp)
  2698. return objp;
  2699. if (cachep->flags & SLAB_POISON) {
  2700. #ifdef CONFIG_DEBUG_PAGEALLOC
  2701. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2702. kernel_map_pages(virt_to_page(objp),
  2703. cachep->buffer_size / PAGE_SIZE, 1);
  2704. else
  2705. check_poison_obj(cachep, objp);
  2706. #else
  2707. check_poison_obj(cachep, objp);
  2708. #endif
  2709. poison_obj(cachep, objp, POISON_INUSE);
  2710. }
  2711. if (cachep->flags & SLAB_STORE_USER)
  2712. *dbg_userword(cachep, objp) = caller;
  2713. if (cachep->flags & SLAB_RED_ZONE) {
  2714. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2715. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2716. slab_error(cachep, "double free, or memory outside"
  2717. " object was overwritten");
  2718. printk(KERN_ERR
  2719. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2720. objp, *dbg_redzone1(cachep, objp),
  2721. *dbg_redzone2(cachep, objp));
  2722. }
  2723. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2724. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2725. }
  2726. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2727. {
  2728. struct slab *slabp;
  2729. unsigned objnr;
  2730. slabp = page_get_slab(virt_to_head_page(objp));
  2731. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2732. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2733. }
  2734. #endif
  2735. objp += obj_offset(cachep);
  2736. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2737. cachep->ctor(cachep, objp);
  2738. #if ARCH_SLAB_MINALIGN
  2739. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2740. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2741. objp, ARCH_SLAB_MINALIGN);
  2742. }
  2743. #endif
  2744. return objp;
  2745. }
  2746. #else
  2747. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2748. #endif
  2749. #ifdef CONFIG_FAILSLAB
  2750. static struct failslab_attr {
  2751. struct fault_attr attr;
  2752. u32 ignore_gfp_wait;
  2753. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2754. struct dentry *ignore_gfp_wait_file;
  2755. #endif
  2756. } failslab = {
  2757. .attr = FAULT_ATTR_INITIALIZER,
  2758. .ignore_gfp_wait = 1,
  2759. };
  2760. static int __init setup_failslab(char *str)
  2761. {
  2762. return setup_fault_attr(&failslab.attr, str);
  2763. }
  2764. __setup("failslab=", setup_failslab);
  2765. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2766. {
  2767. if (cachep == &cache_cache)
  2768. return 0;
  2769. if (flags & __GFP_NOFAIL)
  2770. return 0;
  2771. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2772. return 0;
  2773. return should_fail(&failslab.attr, obj_size(cachep));
  2774. }
  2775. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2776. static int __init failslab_debugfs(void)
  2777. {
  2778. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2779. struct dentry *dir;
  2780. int err;
  2781. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2782. if (err)
  2783. return err;
  2784. dir = failslab.attr.dentries.dir;
  2785. failslab.ignore_gfp_wait_file =
  2786. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2787. &failslab.ignore_gfp_wait);
  2788. if (!failslab.ignore_gfp_wait_file) {
  2789. err = -ENOMEM;
  2790. debugfs_remove(failslab.ignore_gfp_wait_file);
  2791. cleanup_fault_attr_dentries(&failslab.attr);
  2792. }
  2793. return err;
  2794. }
  2795. late_initcall(failslab_debugfs);
  2796. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2797. #else /* CONFIG_FAILSLAB */
  2798. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2799. {
  2800. return 0;
  2801. }
  2802. #endif /* CONFIG_FAILSLAB */
  2803. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2804. {
  2805. void *objp;
  2806. struct array_cache *ac;
  2807. check_irq_off();
  2808. ac = cpu_cache_get(cachep);
  2809. if (likely(ac->avail)) {
  2810. STATS_INC_ALLOCHIT(cachep);
  2811. ac->touched = 1;
  2812. objp = ac->entry[--ac->avail];
  2813. } else {
  2814. STATS_INC_ALLOCMISS(cachep);
  2815. objp = cache_alloc_refill(cachep, flags);
  2816. }
  2817. return objp;
  2818. }
  2819. #ifdef CONFIG_NUMA
  2820. /*
  2821. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2822. *
  2823. * If we are in_interrupt, then process context, including cpusets and
  2824. * mempolicy, may not apply and should not be used for allocation policy.
  2825. */
  2826. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2827. {
  2828. int nid_alloc, nid_here;
  2829. if (in_interrupt() || (flags & __GFP_THISNODE))
  2830. return NULL;
  2831. nid_alloc = nid_here = numa_node_id();
  2832. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2833. nid_alloc = cpuset_mem_spread_node();
  2834. else if (current->mempolicy)
  2835. nid_alloc = slab_node(current->mempolicy);
  2836. if (nid_alloc != nid_here)
  2837. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2838. return NULL;
  2839. }
  2840. /*
  2841. * Fallback function if there was no memory available and no objects on a
  2842. * certain node and fall back is permitted. First we scan all the
  2843. * available nodelists for available objects. If that fails then we
  2844. * perform an allocation without specifying a node. This allows the page
  2845. * allocator to do its reclaim / fallback magic. We then insert the
  2846. * slab into the proper nodelist and then allocate from it.
  2847. */
  2848. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2849. {
  2850. struct zonelist *zonelist;
  2851. gfp_t local_flags;
  2852. struct zoneref *z;
  2853. struct zone *zone;
  2854. enum zone_type high_zoneidx = gfp_zone(flags);
  2855. void *obj = NULL;
  2856. int nid;
  2857. if (flags & __GFP_THISNODE)
  2858. return NULL;
  2859. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2860. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2861. retry:
  2862. /*
  2863. * Look through allowed nodes for objects available
  2864. * from existing per node queues.
  2865. */
  2866. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2867. nid = zone_to_nid(zone);
  2868. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2869. cache->nodelists[nid] &&
  2870. cache->nodelists[nid]->free_objects) {
  2871. obj = ____cache_alloc_node(cache,
  2872. flags | GFP_THISNODE, nid);
  2873. if (obj)
  2874. break;
  2875. }
  2876. }
  2877. if (!obj) {
  2878. /*
  2879. * This allocation will be performed within the constraints
  2880. * of the current cpuset / memory policy requirements.
  2881. * We may trigger various forms of reclaim on the allowed
  2882. * set and go into memory reserves if necessary.
  2883. */
  2884. if (local_flags & __GFP_WAIT)
  2885. local_irq_enable();
  2886. kmem_flagcheck(cache, flags);
  2887. obj = kmem_getpages(cache, local_flags, -1);
  2888. if (local_flags & __GFP_WAIT)
  2889. local_irq_disable();
  2890. if (obj) {
  2891. /*
  2892. * Insert into the appropriate per node queues
  2893. */
  2894. nid = page_to_nid(virt_to_page(obj));
  2895. if (cache_grow(cache, flags, nid, obj)) {
  2896. obj = ____cache_alloc_node(cache,
  2897. flags | GFP_THISNODE, nid);
  2898. if (!obj)
  2899. /*
  2900. * Another processor may allocate the
  2901. * objects in the slab since we are
  2902. * not holding any locks.
  2903. */
  2904. goto retry;
  2905. } else {
  2906. /* cache_grow already freed obj */
  2907. obj = NULL;
  2908. }
  2909. }
  2910. }
  2911. return obj;
  2912. }
  2913. /*
  2914. * A interface to enable slab creation on nodeid
  2915. */
  2916. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2917. int nodeid)
  2918. {
  2919. struct list_head *entry;
  2920. struct slab *slabp;
  2921. struct kmem_list3 *l3;
  2922. void *obj;
  2923. int x;
  2924. l3 = cachep->nodelists[nodeid];
  2925. BUG_ON(!l3);
  2926. retry:
  2927. check_irq_off();
  2928. spin_lock(&l3->list_lock);
  2929. entry = l3->slabs_partial.next;
  2930. if (entry == &l3->slabs_partial) {
  2931. l3->free_touched = 1;
  2932. entry = l3->slabs_free.next;
  2933. if (entry == &l3->slabs_free)
  2934. goto must_grow;
  2935. }
  2936. slabp = list_entry(entry, struct slab, list);
  2937. check_spinlock_acquired_node(cachep, nodeid);
  2938. check_slabp(cachep, slabp);
  2939. STATS_INC_NODEALLOCS(cachep);
  2940. STATS_INC_ACTIVE(cachep);
  2941. STATS_SET_HIGH(cachep);
  2942. BUG_ON(slabp->inuse == cachep->num);
  2943. obj = slab_get_obj(cachep, slabp, nodeid);
  2944. check_slabp(cachep, slabp);
  2945. l3->free_objects--;
  2946. /* move slabp to correct slabp list: */
  2947. list_del(&slabp->list);
  2948. if (slabp->free == BUFCTL_END)
  2949. list_add(&slabp->list, &l3->slabs_full);
  2950. else
  2951. list_add(&slabp->list, &l3->slabs_partial);
  2952. spin_unlock(&l3->list_lock);
  2953. goto done;
  2954. must_grow:
  2955. spin_unlock(&l3->list_lock);
  2956. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2957. if (x)
  2958. goto retry;
  2959. return fallback_alloc(cachep, flags);
  2960. done:
  2961. return obj;
  2962. }
  2963. /**
  2964. * kmem_cache_alloc_node - Allocate an object on the specified node
  2965. * @cachep: The cache to allocate from.
  2966. * @flags: See kmalloc().
  2967. * @nodeid: node number of the target node.
  2968. * @caller: return address of caller, used for debug information
  2969. *
  2970. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2971. * node, which can improve the performance for cpu bound structures.
  2972. *
  2973. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2974. */
  2975. static __always_inline void *
  2976. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2977. void *caller)
  2978. {
  2979. unsigned long save_flags;
  2980. void *ptr;
  2981. if (should_failslab(cachep, flags))
  2982. return NULL;
  2983. cache_alloc_debugcheck_before(cachep, flags);
  2984. local_irq_save(save_flags);
  2985. if (unlikely(nodeid == -1))
  2986. nodeid = numa_node_id();
  2987. if (unlikely(!cachep->nodelists[nodeid])) {
  2988. /* Node not bootstrapped yet */
  2989. ptr = fallback_alloc(cachep, flags);
  2990. goto out;
  2991. }
  2992. if (nodeid == numa_node_id()) {
  2993. /*
  2994. * Use the locally cached objects if possible.
  2995. * However ____cache_alloc does not allow fallback
  2996. * to other nodes. It may fail while we still have
  2997. * objects on other nodes available.
  2998. */
  2999. ptr = ____cache_alloc(cachep, flags);
  3000. if (ptr)
  3001. goto out;
  3002. }
  3003. /* ___cache_alloc_node can fall back to other nodes */
  3004. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3005. out:
  3006. local_irq_restore(save_flags);
  3007. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3008. if (unlikely((flags & __GFP_ZERO) && ptr))
  3009. memset(ptr, 0, obj_size(cachep));
  3010. return ptr;
  3011. }
  3012. static __always_inline void *
  3013. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3014. {
  3015. void *objp;
  3016. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3017. objp = alternate_node_alloc(cache, flags);
  3018. if (objp)
  3019. goto out;
  3020. }
  3021. objp = ____cache_alloc(cache, flags);
  3022. /*
  3023. * We may just have run out of memory on the local node.
  3024. * ____cache_alloc_node() knows how to locate memory on other nodes
  3025. */
  3026. if (!objp)
  3027. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3028. out:
  3029. return objp;
  3030. }
  3031. #else
  3032. static __always_inline void *
  3033. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3034. {
  3035. return ____cache_alloc(cachep, flags);
  3036. }
  3037. #endif /* CONFIG_NUMA */
  3038. static __always_inline void *
  3039. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3040. {
  3041. unsigned long save_flags;
  3042. void *objp;
  3043. if (should_failslab(cachep, flags))
  3044. return NULL;
  3045. cache_alloc_debugcheck_before(cachep, flags);
  3046. local_irq_save(save_flags);
  3047. objp = __do_cache_alloc(cachep, flags);
  3048. local_irq_restore(save_flags);
  3049. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3050. prefetchw(objp);
  3051. if (unlikely((flags & __GFP_ZERO) && objp))
  3052. memset(objp, 0, obj_size(cachep));
  3053. return objp;
  3054. }
  3055. /*
  3056. * Caller needs to acquire correct kmem_list's list_lock
  3057. */
  3058. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3059. int node)
  3060. {
  3061. int i;
  3062. struct kmem_list3 *l3;
  3063. for (i = 0; i < nr_objects; i++) {
  3064. void *objp = objpp[i];
  3065. struct slab *slabp;
  3066. slabp = virt_to_slab(objp);
  3067. l3 = cachep->nodelists[node];
  3068. list_del(&slabp->list);
  3069. check_spinlock_acquired_node(cachep, node);
  3070. check_slabp(cachep, slabp);
  3071. slab_put_obj(cachep, slabp, objp, node);
  3072. STATS_DEC_ACTIVE(cachep);
  3073. l3->free_objects++;
  3074. check_slabp(cachep, slabp);
  3075. /* fixup slab chains */
  3076. if (slabp->inuse == 0) {
  3077. if (l3->free_objects > l3->free_limit) {
  3078. l3->free_objects -= cachep->num;
  3079. /* No need to drop any previously held
  3080. * lock here, even if we have a off-slab slab
  3081. * descriptor it is guaranteed to come from
  3082. * a different cache, refer to comments before
  3083. * alloc_slabmgmt.
  3084. */
  3085. slab_destroy(cachep, slabp);
  3086. } else {
  3087. list_add(&slabp->list, &l3->slabs_free);
  3088. }
  3089. } else {
  3090. /* Unconditionally move a slab to the end of the
  3091. * partial list on free - maximum time for the
  3092. * other objects to be freed, too.
  3093. */
  3094. list_add_tail(&slabp->list, &l3->slabs_partial);
  3095. }
  3096. }
  3097. }
  3098. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3099. {
  3100. int batchcount;
  3101. struct kmem_list3 *l3;
  3102. int node = numa_node_id();
  3103. batchcount = ac->batchcount;
  3104. #if DEBUG
  3105. BUG_ON(!batchcount || batchcount > ac->avail);
  3106. #endif
  3107. check_irq_off();
  3108. l3 = cachep->nodelists[node];
  3109. spin_lock(&l3->list_lock);
  3110. if (l3->shared) {
  3111. struct array_cache *shared_array = l3->shared;
  3112. int max = shared_array->limit - shared_array->avail;
  3113. if (max) {
  3114. if (batchcount > max)
  3115. batchcount = max;
  3116. memcpy(&(shared_array->entry[shared_array->avail]),
  3117. ac->entry, sizeof(void *) * batchcount);
  3118. shared_array->avail += batchcount;
  3119. goto free_done;
  3120. }
  3121. }
  3122. free_block(cachep, ac->entry, batchcount, node);
  3123. free_done:
  3124. #if STATS
  3125. {
  3126. int i = 0;
  3127. struct list_head *p;
  3128. p = l3->slabs_free.next;
  3129. while (p != &(l3->slabs_free)) {
  3130. struct slab *slabp;
  3131. slabp = list_entry(p, struct slab, list);
  3132. BUG_ON(slabp->inuse);
  3133. i++;
  3134. p = p->next;
  3135. }
  3136. STATS_SET_FREEABLE(cachep, i);
  3137. }
  3138. #endif
  3139. spin_unlock(&l3->list_lock);
  3140. ac->avail -= batchcount;
  3141. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3142. }
  3143. /*
  3144. * Release an obj back to its cache. If the obj has a constructed state, it must
  3145. * be in this state _before_ it is released. Called with disabled ints.
  3146. */
  3147. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3148. {
  3149. struct array_cache *ac = cpu_cache_get(cachep);
  3150. check_irq_off();
  3151. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3152. /*
  3153. * Skip calling cache_free_alien() when the platform is not numa.
  3154. * This will avoid cache misses that happen while accessing slabp (which
  3155. * is per page memory reference) to get nodeid. Instead use a global
  3156. * variable to skip the call, which is mostly likely to be present in
  3157. * the cache.
  3158. */
  3159. if (numa_platform && cache_free_alien(cachep, objp))
  3160. return;
  3161. if (likely(ac->avail < ac->limit)) {
  3162. STATS_INC_FREEHIT(cachep);
  3163. ac->entry[ac->avail++] = objp;
  3164. return;
  3165. } else {
  3166. STATS_INC_FREEMISS(cachep);
  3167. cache_flusharray(cachep, ac);
  3168. ac->entry[ac->avail++] = objp;
  3169. }
  3170. }
  3171. /**
  3172. * kmem_cache_alloc - Allocate an object
  3173. * @cachep: The cache to allocate from.
  3174. * @flags: See kmalloc().
  3175. *
  3176. * Allocate an object from this cache. The flags are only relevant
  3177. * if the cache has no available objects.
  3178. */
  3179. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3180. {
  3181. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3182. }
  3183. EXPORT_SYMBOL(kmem_cache_alloc);
  3184. /**
  3185. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3186. * @cachep: the cache we're checking against
  3187. * @ptr: pointer to validate
  3188. *
  3189. * This verifies that the untrusted pointer looks sane;
  3190. * it is _not_ a guarantee that the pointer is actually
  3191. * part of the slab cache in question, but it at least
  3192. * validates that the pointer can be dereferenced and
  3193. * looks half-way sane.
  3194. *
  3195. * Currently only used for dentry validation.
  3196. */
  3197. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3198. {
  3199. unsigned long addr = (unsigned long)ptr;
  3200. unsigned long min_addr = PAGE_OFFSET;
  3201. unsigned long align_mask = BYTES_PER_WORD - 1;
  3202. unsigned long size = cachep->buffer_size;
  3203. struct page *page;
  3204. if (unlikely(addr < min_addr))
  3205. goto out;
  3206. if (unlikely(addr > (unsigned long)high_memory - size))
  3207. goto out;
  3208. if (unlikely(addr & align_mask))
  3209. goto out;
  3210. if (unlikely(!kern_addr_valid(addr)))
  3211. goto out;
  3212. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3213. goto out;
  3214. page = virt_to_page(ptr);
  3215. if (unlikely(!PageSlab(page)))
  3216. goto out;
  3217. if (unlikely(page_get_cache(page) != cachep))
  3218. goto out;
  3219. return 1;
  3220. out:
  3221. return 0;
  3222. }
  3223. #ifdef CONFIG_NUMA
  3224. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3225. {
  3226. return __cache_alloc_node(cachep, flags, nodeid,
  3227. __builtin_return_address(0));
  3228. }
  3229. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3230. static __always_inline void *
  3231. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3232. {
  3233. struct kmem_cache *cachep;
  3234. cachep = kmem_find_general_cachep(size, flags);
  3235. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3236. return cachep;
  3237. return kmem_cache_alloc_node(cachep, flags, node);
  3238. }
  3239. #ifdef CONFIG_DEBUG_SLAB
  3240. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3241. {
  3242. return __do_kmalloc_node(size, flags, node,
  3243. __builtin_return_address(0));
  3244. }
  3245. EXPORT_SYMBOL(__kmalloc_node);
  3246. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3247. int node, void *caller)
  3248. {
  3249. return __do_kmalloc_node(size, flags, node, caller);
  3250. }
  3251. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3252. #else
  3253. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3254. {
  3255. return __do_kmalloc_node(size, flags, node, NULL);
  3256. }
  3257. EXPORT_SYMBOL(__kmalloc_node);
  3258. #endif /* CONFIG_DEBUG_SLAB */
  3259. #endif /* CONFIG_NUMA */
  3260. /**
  3261. * __do_kmalloc - allocate memory
  3262. * @size: how many bytes of memory are required.
  3263. * @flags: the type of memory to allocate (see kmalloc).
  3264. * @caller: function caller for debug tracking of the caller
  3265. */
  3266. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3267. void *caller)
  3268. {
  3269. struct kmem_cache *cachep;
  3270. /* If you want to save a few bytes .text space: replace
  3271. * __ with kmem_.
  3272. * Then kmalloc uses the uninlined functions instead of the inline
  3273. * functions.
  3274. */
  3275. cachep = __find_general_cachep(size, flags);
  3276. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3277. return cachep;
  3278. return __cache_alloc(cachep, flags, caller);
  3279. }
  3280. #ifdef CONFIG_DEBUG_SLAB
  3281. void *__kmalloc(size_t size, gfp_t flags)
  3282. {
  3283. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3284. }
  3285. EXPORT_SYMBOL(__kmalloc);
  3286. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3287. {
  3288. return __do_kmalloc(size, flags, caller);
  3289. }
  3290. EXPORT_SYMBOL(__kmalloc_track_caller);
  3291. #else
  3292. void *__kmalloc(size_t size, gfp_t flags)
  3293. {
  3294. return __do_kmalloc(size, flags, NULL);
  3295. }
  3296. EXPORT_SYMBOL(__kmalloc);
  3297. #endif
  3298. /**
  3299. * kmem_cache_free - Deallocate an object
  3300. * @cachep: The cache the allocation was from.
  3301. * @objp: The previously allocated object.
  3302. *
  3303. * Free an object which was previously allocated from this
  3304. * cache.
  3305. */
  3306. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3307. {
  3308. unsigned long flags;
  3309. local_irq_save(flags);
  3310. debug_check_no_locks_freed(objp, obj_size(cachep));
  3311. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3312. debug_check_no_obj_freed(objp, obj_size(cachep));
  3313. __cache_free(cachep, objp);
  3314. local_irq_restore(flags);
  3315. }
  3316. EXPORT_SYMBOL(kmem_cache_free);
  3317. /**
  3318. * kfree - free previously allocated memory
  3319. * @objp: pointer returned by kmalloc.
  3320. *
  3321. * If @objp is NULL, no operation is performed.
  3322. *
  3323. * Don't free memory not originally allocated by kmalloc()
  3324. * or you will run into trouble.
  3325. */
  3326. void kfree(const void *objp)
  3327. {
  3328. struct kmem_cache *c;
  3329. unsigned long flags;
  3330. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3331. return;
  3332. local_irq_save(flags);
  3333. kfree_debugcheck(objp);
  3334. c = virt_to_cache(objp);
  3335. debug_check_no_locks_freed(objp, obj_size(c));
  3336. debug_check_no_obj_freed(objp, obj_size(c));
  3337. __cache_free(c, (void *)objp);
  3338. local_irq_restore(flags);
  3339. }
  3340. EXPORT_SYMBOL(kfree);
  3341. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3342. {
  3343. return obj_size(cachep);
  3344. }
  3345. EXPORT_SYMBOL(kmem_cache_size);
  3346. const char *kmem_cache_name(struct kmem_cache *cachep)
  3347. {
  3348. return cachep->name;
  3349. }
  3350. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3351. /*
  3352. * This initializes kmem_list3 or resizes various caches for all nodes.
  3353. */
  3354. static int alloc_kmemlist(struct kmem_cache *cachep)
  3355. {
  3356. int node;
  3357. struct kmem_list3 *l3;
  3358. struct array_cache *new_shared;
  3359. struct array_cache **new_alien = NULL;
  3360. for_each_online_node(node) {
  3361. if (use_alien_caches) {
  3362. new_alien = alloc_alien_cache(node, cachep->limit);
  3363. if (!new_alien)
  3364. goto fail;
  3365. }
  3366. new_shared = NULL;
  3367. if (cachep->shared) {
  3368. new_shared = alloc_arraycache(node,
  3369. cachep->shared*cachep->batchcount,
  3370. 0xbaadf00d);
  3371. if (!new_shared) {
  3372. free_alien_cache(new_alien);
  3373. goto fail;
  3374. }
  3375. }
  3376. l3 = cachep->nodelists[node];
  3377. if (l3) {
  3378. struct array_cache *shared = l3->shared;
  3379. spin_lock_irq(&l3->list_lock);
  3380. if (shared)
  3381. free_block(cachep, shared->entry,
  3382. shared->avail, node);
  3383. l3->shared = new_shared;
  3384. if (!l3->alien) {
  3385. l3->alien = new_alien;
  3386. new_alien = NULL;
  3387. }
  3388. l3->free_limit = (1 + nr_cpus_node(node)) *
  3389. cachep->batchcount + cachep->num;
  3390. spin_unlock_irq(&l3->list_lock);
  3391. kfree(shared);
  3392. free_alien_cache(new_alien);
  3393. continue;
  3394. }
  3395. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3396. if (!l3) {
  3397. free_alien_cache(new_alien);
  3398. kfree(new_shared);
  3399. goto fail;
  3400. }
  3401. kmem_list3_init(l3);
  3402. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3403. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3404. l3->shared = new_shared;
  3405. l3->alien = new_alien;
  3406. l3->free_limit = (1 + nr_cpus_node(node)) *
  3407. cachep->batchcount + cachep->num;
  3408. cachep->nodelists[node] = l3;
  3409. }
  3410. return 0;
  3411. fail:
  3412. if (!cachep->next.next) {
  3413. /* Cache is not active yet. Roll back what we did */
  3414. node--;
  3415. while (node >= 0) {
  3416. if (cachep->nodelists[node]) {
  3417. l3 = cachep->nodelists[node];
  3418. kfree(l3->shared);
  3419. free_alien_cache(l3->alien);
  3420. kfree(l3);
  3421. cachep->nodelists[node] = NULL;
  3422. }
  3423. node--;
  3424. }
  3425. }
  3426. return -ENOMEM;
  3427. }
  3428. struct ccupdate_struct {
  3429. struct kmem_cache *cachep;
  3430. struct array_cache *new[NR_CPUS];
  3431. };
  3432. static void do_ccupdate_local(void *info)
  3433. {
  3434. struct ccupdate_struct *new = info;
  3435. struct array_cache *old;
  3436. check_irq_off();
  3437. old = cpu_cache_get(new->cachep);
  3438. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3439. new->new[smp_processor_id()] = old;
  3440. }
  3441. /* Always called with the cache_chain_mutex held */
  3442. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3443. int batchcount, int shared)
  3444. {
  3445. struct ccupdate_struct *new;
  3446. int i;
  3447. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3448. if (!new)
  3449. return -ENOMEM;
  3450. for_each_online_cpu(i) {
  3451. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3452. batchcount);
  3453. if (!new->new[i]) {
  3454. for (i--; i >= 0; i--)
  3455. kfree(new->new[i]);
  3456. kfree(new);
  3457. return -ENOMEM;
  3458. }
  3459. }
  3460. new->cachep = cachep;
  3461. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3462. check_irq_on();
  3463. cachep->batchcount = batchcount;
  3464. cachep->limit = limit;
  3465. cachep->shared = shared;
  3466. for_each_online_cpu(i) {
  3467. struct array_cache *ccold = new->new[i];
  3468. if (!ccold)
  3469. continue;
  3470. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3471. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3472. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3473. kfree(ccold);
  3474. }
  3475. kfree(new);
  3476. return alloc_kmemlist(cachep);
  3477. }
  3478. /* Called with cache_chain_mutex held always */
  3479. static int enable_cpucache(struct kmem_cache *cachep)
  3480. {
  3481. int err;
  3482. int limit, shared;
  3483. /*
  3484. * The head array serves three purposes:
  3485. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3486. * - reduce the number of spinlock operations.
  3487. * - reduce the number of linked list operations on the slab and
  3488. * bufctl chains: array operations are cheaper.
  3489. * The numbers are guessed, we should auto-tune as described by
  3490. * Bonwick.
  3491. */
  3492. if (cachep->buffer_size > 131072)
  3493. limit = 1;
  3494. else if (cachep->buffer_size > PAGE_SIZE)
  3495. limit = 8;
  3496. else if (cachep->buffer_size > 1024)
  3497. limit = 24;
  3498. else if (cachep->buffer_size > 256)
  3499. limit = 54;
  3500. else
  3501. limit = 120;
  3502. /*
  3503. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3504. * allocation behaviour: Most allocs on one cpu, most free operations
  3505. * on another cpu. For these cases, an efficient object passing between
  3506. * cpus is necessary. This is provided by a shared array. The array
  3507. * replaces Bonwick's magazine layer.
  3508. * On uniprocessor, it's functionally equivalent (but less efficient)
  3509. * to a larger limit. Thus disabled by default.
  3510. */
  3511. shared = 0;
  3512. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3513. shared = 8;
  3514. #if DEBUG
  3515. /*
  3516. * With debugging enabled, large batchcount lead to excessively long
  3517. * periods with disabled local interrupts. Limit the batchcount
  3518. */
  3519. if (limit > 32)
  3520. limit = 32;
  3521. #endif
  3522. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3523. if (err)
  3524. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3525. cachep->name, -err);
  3526. return err;
  3527. }
  3528. /*
  3529. * Drain an array if it contains any elements taking the l3 lock only if
  3530. * necessary. Note that the l3 listlock also protects the array_cache
  3531. * if drain_array() is used on the shared array.
  3532. */
  3533. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3534. struct array_cache *ac, int force, int node)
  3535. {
  3536. int tofree;
  3537. if (!ac || !ac->avail)
  3538. return;
  3539. if (ac->touched && !force) {
  3540. ac->touched = 0;
  3541. } else {
  3542. spin_lock_irq(&l3->list_lock);
  3543. if (ac->avail) {
  3544. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3545. if (tofree > ac->avail)
  3546. tofree = (ac->avail + 1) / 2;
  3547. free_block(cachep, ac->entry, tofree, node);
  3548. ac->avail -= tofree;
  3549. memmove(ac->entry, &(ac->entry[tofree]),
  3550. sizeof(void *) * ac->avail);
  3551. }
  3552. spin_unlock_irq(&l3->list_lock);
  3553. }
  3554. }
  3555. /**
  3556. * cache_reap - Reclaim memory from caches.
  3557. * @w: work descriptor
  3558. *
  3559. * Called from workqueue/eventd every few seconds.
  3560. * Purpose:
  3561. * - clear the per-cpu caches for this CPU.
  3562. * - return freeable pages to the main free memory pool.
  3563. *
  3564. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3565. * again on the next iteration.
  3566. */
  3567. static void cache_reap(struct work_struct *w)
  3568. {
  3569. struct kmem_cache *searchp;
  3570. struct kmem_list3 *l3;
  3571. int node = numa_node_id();
  3572. struct delayed_work *work =
  3573. container_of(w, struct delayed_work, work);
  3574. if (!mutex_trylock(&cache_chain_mutex))
  3575. /* Give up. Setup the next iteration. */
  3576. goto out;
  3577. list_for_each_entry(searchp, &cache_chain, next) {
  3578. check_irq_on();
  3579. /*
  3580. * We only take the l3 lock if absolutely necessary and we
  3581. * have established with reasonable certainty that
  3582. * we can do some work if the lock was obtained.
  3583. */
  3584. l3 = searchp->nodelists[node];
  3585. reap_alien(searchp, l3);
  3586. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3587. /*
  3588. * These are racy checks but it does not matter
  3589. * if we skip one check or scan twice.
  3590. */
  3591. if (time_after(l3->next_reap, jiffies))
  3592. goto next;
  3593. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3594. drain_array(searchp, l3, l3->shared, 0, node);
  3595. if (l3->free_touched)
  3596. l3->free_touched = 0;
  3597. else {
  3598. int freed;
  3599. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3600. 5 * searchp->num - 1) / (5 * searchp->num));
  3601. STATS_ADD_REAPED(searchp, freed);
  3602. }
  3603. next:
  3604. cond_resched();
  3605. }
  3606. check_irq_on();
  3607. mutex_unlock(&cache_chain_mutex);
  3608. next_reap_node();
  3609. out:
  3610. /* Set up the next iteration */
  3611. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3612. }
  3613. #ifdef CONFIG_SLABINFO
  3614. static void print_slabinfo_header(struct seq_file *m)
  3615. {
  3616. /*
  3617. * Output format version, so at least we can change it
  3618. * without _too_ many complaints.
  3619. */
  3620. #if STATS
  3621. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3622. #else
  3623. seq_puts(m, "slabinfo - version: 2.1\n");
  3624. #endif
  3625. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3626. "<objperslab> <pagesperslab>");
  3627. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3628. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3629. #if STATS
  3630. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3631. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3632. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3633. #endif
  3634. seq_putc(m, '\n');
  3635. }
  3636. static void *s_start(struct seq_file *m, loff_t *pos)
  3637. {
  3638. loff_t n = *pos;
  3639. mutex_lock(&cache_chain_mutex);
  3640. if (!n)
  3641. print_slabinfo_header(m);
  3642. return seq_list_start(&cache_chain, *pos);
  3643. }
  3644. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3645. {
  3646. return seq_list_next(p, &cache_chain, pos);
  3647. }
  3648. static void s_stop(struct seq_file *m, void *p)
  3649. {
  3650. mutex_unlock(&cache_chain_mutex);
  3651. }
  3652. static int s_show(struct seq_file *m, void *p)
  3653. {
  3654. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3655. struct slab *slabp;
  3656. unsigned long active_objs;
  3657. unsigned long num_objs;
  3658. unsigned long active_slabs = 0;
  3659. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3660. const char *name;
  3661. char *error = NULL;
  3662. int node;
  3663. struct kmem_list3 *l3;
  3664. active_objs = 0;
  3665. num_slabs = 0;
  3666. for_each_online_node(node) {
  3667. l3 = cachep->nodelists[node];
  3668. if (!l3)
  3669. continue;
  3670. check_irq_on();
  3671. spin_lock_irq(&l3->list_lock);
  3672. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3673. if (slabp->inuse != cachep->num && !error)
  3674. error = "slabs_full accounting error";
  3675. active_objs += cachep->num;
  3676. active_slabs++;
  3677. }
  3678. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3679. if (slabp->inuse == cachep->num && !error)
  3680. error = "slabs_partial inuse accounting error";
  3681. if (!slabp->inuse && !error)
  3682. error = "slabs_partial/inuse accounting error";
  3683. active_objs += slabp->inuse;
  3684. active_slabs++;
  3685. }
  3686. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3687. if (slabp->inuse && !error)
  3688. error = "slabs_free/inuse accounting error";
  3689. num_slabs++;
  3690. }
  3691. free_objects += l3->free_objects;
  3692. if (l3->shared)
  3693. shared_avail += l3->shared->avail;
  3694. spin_unlock_irq(&l3->list_lock);
  3695. }
  3696. num_slabs += active_slabs;
  3697. num_objs = num_slabs * cachep->num;
  3698. if (num_objs - active_objs != free_objects && !error)
  3699. error = "free_objects accounting error";
  3700. name = cachep->name;
  3701. if (error)
  3702. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3703. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3704. name, active_objs, num_objs, cachep->buffer_size,
  3705. cachep->num, (1 << cachep->gfporder));
  3706. seq_printf(m, " : tunables %4u %4u %4u",
  3707. cachep->limit, cachep->batchcount, cachep->shared);
  3708. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3709. active_slabs, num_slabs, shared_avail);
  3710. #if STATS
  3711. { /* list3 stats */
  3712. unsigned long high = cachep->high_mark;
  3713. unsigned long allocs = cachep->num_allocations;
  3714. unsigned long grown = cachep->grown;
  3715. unsigned long reaped = cachep->reaped;
  3716. unsigned long errors = cachep->errors;
  3717. unsigned long max_freeable = cachep->max_freeable;
  3718. unsigned long node_allocs = cachep->node_allocs;
  3719. unsigned long node_frees = cachep->node_frees;
  3720. unsigned long overflows = cachep->node_overflow;
  3721. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3722. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3723. reaped, errors, max_freeable, node_allocs,
  3724. node_frees, overflows);
  3725. }
  3726. /* cpu stats */
  3727. {
  3728. unsigned long allochit = atomic_read(&cachep->allochit);
  3729. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3730. unsigned long freehit = atomic_read(&cachep->freehit);
  3731. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3732. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3733. allochit, allocmiss, freehit, freemiss);
  3734. }
  3735. #endif
  3736. seq_putc(m, '\n');
  3737. return 0;
  3738. }
  3739. /*
  3740. * slabinfo_op - iterator that generates /proc/slabinfo
  3741. *
  3742. * Output layout:
  3743. * cache-name
  3744. * num-active-objs
  3745. * total-objs
  3746. * object size
  3747. * num-active-slabs
  3748. * total-slabs
  3749. * num-pages-per-slab
  3750. * + further values on SMP and with statistics enabled
  3751. */
  3752. const struct seq_operations slabinfo_op = {
  3753. .start = s_start,
  3754. .next = s_next,
  3755. .stop = s_stop,
  3756. .show = s_show,
  3757. };
  3758. #define MAX_SLABINFO_WRITE 128
  3759. /**
  3760. * slabinfo_write - Tuning for the slab allocator
  3761. * @file: unused
  3762. * @buffer: user buffer
  3763. * @count: data length
  3764. * @ppos: unused
  3765. */
  3766. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3767. size_t count, loff_t *ppos)
  3768. {
  3769. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3770. int limit, batchcount, shared, res;
  3771. struct kmem_cache *cachep;
  3772. if (count > MAX_SLABINFO_WRITE)
  3773. return -EINVAL;
  3774. if (copy_from_user(&kbuf, buffer, count))
  3775. return -EFAULT;
  3776. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3777. tmp = strchr(kbuf, ' ');
  3778. if (!tmp)
  3779. return -EINVAL;
  3780. *tmp = '\0';
  3781. tmp++;
  3782. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3783. return -EINVAL;
  3784. /* Find the cache in the chain of caches. */
  3785. mutex_lock(&cache_chain_mutex);
  3786. res = -EINVAL;
  3787. list_for_each_entry(cachep, &cache_chain, next) {
  3788. if (!strcmp(cachep->name, kbuf)) {
  3789. if (limit < 1 || batchcount < 1 ||
  3790. batchcount > limit || shared < 0) {
  3791. res = 0;
  3792. } else {
  3793. res = do_tune_cpucache(cachep, limit,
  3794. batchcount, shared);
  3795. }
  3796. break;
  3797. }
  3798. }
  3799. mutex_unlock(&cache_chain_mutex);
  3800. if (res >= 0)
  3801. res = count;
  3802. return res;
  3803. }
  3804. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3805. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3806. {
  3807. mutex_lock(&cache_chain_mutex);
  3808. return seq_list_start(&cache_chain, *pos);
  3809. }
  3810. static inline int add_caller(unsigned long *n, unsigned long v)
  3811. {
  3812. unsigned long *p;
  3813. int l;
  3814. if (!v)
  3815. return 1;
  3816. l = n[1];
  3817. p = n + 2;
  3818. while (l) {
  3819. int i = l/2;
  3820. unsigned long *q = p + 2 * i;
  3821. if (*q == v) {
  3822. q[1]++;
  3823. return 1;
  3824. }
  3825. if (*q > v) {
  3826. l = i;
  3827. } else {
  3828. p = q + 2;
  3829. l -= i + 1;
  3830. }
  3831. }
  3832. if (++n[1] == n[0])
  3833. return 0;
  3834. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3835. p[0] = v;
  3836. p[1] = 1;
  3837. return 1;
  3838. }
  3839. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3840. {
  3841. void *p;
  3842. int i;
  3843. if (n[0] == n[1])
  3844. return;
  3845. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3846. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3847. continue;
  3848. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3849. return;
  3850. }
  3851. }
  3852. static void show_symbol(struct seq_file *m, unsigned long address)
  3853. {
  3854. #ifdef CONFIG_KALLSYMS
  3855. unsigned long offset, size;
  3856. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3857. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3858. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3859. if (modname[0])
  3860. seq_printf(m, " [%s]", modname);
  3861. return;
  3862. }
  3863. #endif
  3864. seq_printf(m, "%p", (void *)address);
  3865. }
  3866. static int leaks_show(struct seq_file *m, void *p)
  3867. {
  3868. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3869. struct slab *slabp;
  3870. struct kmem_list3 *l3;
  3871. const char *name;
  3872. unsigned long *n = m->private;
  3873. int node;
  3874. int i;
  3875. if (!(cachep->flags & SLAB_STORE_USER))
  3876. return 0;
  3877. if (!(cachep->flags & SLAB_RED_ZONE))
  3878. return 0;
  3879. /* OK, we can do it */
  3880. n[1] = 0;
  3881. for_each_online_node(node) {
  3882. l3 = cachep->nodelists[node];
  3883. if (!l3)
  3884. continue;
  3885. check_irq_on();
  3886. spin_lock_irq(&l3->list_lock);
  3887. list_for_each_entry(slabp, &l3->slabs_full, list)
  3888. handle_slab(n, cachep, slabp);
  3889. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3890. handle_slab(n, cachep, slabp);
  3891. spin_unlock_irq(&l3->list_lock);
  3892. }
  3893. name = cachep->name;
  3894. if (n[0] == n[1]) {
  3895. /* Increase the buffer size */
  3896. mutex_unlock(&cache_chain_mutex);
  3897. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3898. if (!m->private) {
  3899. /* Too bad, we are really out */
  3900. m->private = n;
  3901. mutex_lock(&cache_chain_mutex);
  3902. return -ENOMEM;
  3903. }
  3904. *(unsigned long *)m->private = n[0] * 2;
  3905. kfree(n);
  3906. mutex_lock(&cache_chain_mutex);
  3907. /* Now make sure this entry will be retried */
  3908. m->count = m->size;
  3909. return 0;
  3910. }
  3911. for (i = 0; i < n[1]; i++) {
  3912. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3913. show_symbol(m, n[2*i+2]);
  3914. seq_putc(m, '\n');
  3915. }
  3916. return 0;
  3917. }
  3918. const struct seq_operations slabstats_op = {
  3919. .start = leaks_start,
  3920. .next = s_next,
  3921. .stop = s_stop,
  3922. .show = leaks_show,
  3923. };
  3924. #endif
  3925. #endif
  3926. /**
  3927. * ksize - get the actual amount of memory allocated for a given object
  3928. * @objp: Pointer to the object
  3929. *
  3930. * kmalloc may internally round up allocations and return more memory
  3931. * than requested. ksize() can be used to determine the actual amount of
  3932. * memory allocated. The caller may use this additional memory, even though
  3933. * a smaller amount of memory was initially specified with the kmalloc call.
  3934. * The caller must guarantee that objp points to a valid object previously
  3935. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3936. * must not be freed during the duration of the call.
  3937. */
  3938. size_t ksize(const void *objp)
  3939. {
  3940. BUG_ON(!objp);
  3941. if (unlikely(objp == ZERO_SIZE_PTR))
  3942. return 0;
  3943. return obj_size(virt_to_cache(objp));
  3944. }
  3945. EXPORT_SYMBOL(ksize);