memory.c 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <asm/pgalloc.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/tlb.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/pgtable.h>
  54. #include <linux/swapops.h>
  55. #include <linux/elf.h>
  56. #ifndef CONFIG_NEED_MULTIPLE_NODES
  57. /* use the per-pgdat data instead for discontigmem - mbligh */
  58. unsigned long max_mapnr;
  59. struct page *mem_map;
  60. EXPORT_SYMBOL(max_mapnr);
  61. EXPORT_SYMBOL(mem_map);
  62. #endif
  63. unsigned long num_physpages;
  64. /*
  65. * A number of key systems in x86 including ioremap() rely on the assumption
  66. * that high_memory defines the upper bound on direct map memory, then end
  67. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  68. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  69. * and ZONE_HIGHMEM.
  70. */
  71. void * high_memory;
  72. EXPORT_SYMBOL(num_physpages);
  73. EXPORT_SYMBOL(high_memory);
  74. /*
  75. * Randomize the address space (stacks, mmaps, brk, etc.).
  76. *
  77. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  78. * as ancient (libc5 based) binaries can segfault. )
  79. */
  80. int randomize_va_space __read_mostly =
  81. #ifdef CONFIG_COMPAT_BRK
  82. 1;
  83. #else
  84. 2;
  85. #endif
  86. static int __init disable_randmaps(char *s)
  87. {
  88. randomize_va_space = 0;
  89. return 1;
  90. }
  91. __setup("norandmaps", disable_randmaps);
  92. /*
  93. * If a p?d_bad entry is found while walking page tables, report
  94. * the error, before resetting entry to p?d_none. Usually (but
  95. * very seldom) called out from the p?d_none_or_clear_bad macros.
  96. */
  97. void pgd_clear_bad(pgd_t *pgd)
  98. {
  99. pgd_ERROR(*pgd);
  100. pgd_clear(pgd);
  101. }
  102. void pud_clear_bad(pud_t *pud)
  103. {
  104. pud_ERROR(*pud);
  105. pud_clear(pud);
  106. }
  107. void pmd_clear_bad(pmd_t *pmd)
  108. {
  109. pmd_ERROR(*pmd);
  110. pmd_clear(pmd);
  111. }
  112. /*
  113. * Note: this doesn't free the actual pages themselves. That
  114. * has been handled earlier when unmapping all the memory regions.
  115. */
  116. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  117. {
  118. pgtable_t token = pmd_pgtable(*pmd);
  119. pmd_clear(pmd);
  120. pte_free_tlb(tlb, token);
  121. tlb->mm->nr_ptes--;
  122. }
  123. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  124. unsigned long addr, unsigned long end,
  125. unsigned long floor, unsigned long ceiling)
  126. {
  127. pmd_t *pmd;
  128. unsigned long next;
  129. unsigned long start;
  130. start = addr;
  131. pmd = pmd_offset(pud, addr);
  132. do {
  133. next = pmd_addr_end(addr, end);
  134. if (pmd_none_or_clear_bad(pmd))
  135. continue;
  136. free_pte_range(tlb, pmd);
  137. } while (pmd++, addr = next, addr != end);
  138. start &= PUD_MASK;
  139. if (start < floor)
  140. return;
  141. if (ceiling) {
  142. ceiling &= PUD_MASK;
  143. if (!ceiling)
  144. return;
  145. }
  146. if (end - 1 > ceiling - 1)
  147. return;
  148. pmd = pmd_offset(pud, start);
  149. pud_clear(pud);
  150. pmd_free_tlb(tlb, pmd);
  151. }
  152. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  153. unsigned long addr, unsigned long end,
  154. unsigned long floor, unsigned long ceiling)
  155. {
  156. pud_t *pud;
  157. unsigned long next;
  158. unsigned long start;
  159. start = addr;
  160. pud = pud_offset(pgd, addr);
  161. do {
  162. next = pud_addr_end(addr, end);
  163. if (pud_none_or_clear_bad(pud))
  164. continue;
  165. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  166. } while (pud++, addr = next, addr != end);
  167. start &= PGDIR_MASK;
  168. if (start < floor)
  169. return;
  170. if (ceiling) {
  171. ceiling &= PGDIR_MASK;
  172. if (!ceiling)
  173. return;
  174. }
  175. if (end - 1 > ceiling - 1)
  176. return;
  177. pud = pud_offset(pgd, start);
  178. pgd_clear(pgd);
  179. pud_free_tlb(tlb, pud);
  180. }
  181. /*
  182. * This function frees user-level page tables of a process.
  183. *
  184. * Must be called with pagetable lock held.
  185. */
  186. void free_pgd_range(struct mmu_gather **tlb,
  187. unsigned long addr, unsigned long end,
  188. unsigned long floor, unsigned long ceiling)
  189. {
  190. pgd_t *pgd;
  191. unsigned long next;
  192. unsigned long start;
  193. /*
  194. * The next few lines have given us lots of grief...
  195. *
  196. * Why are we testing PMD* at this top level? Because often
  197. * there will be no work to do at all, and we'd prefer not to
  198. * go all the way down to the bottom just to discover that.
  199. *
  200. * Why all these "- 1"s? Because 0 represents both the bottom
  201. * of the address space and the top of it (using -1 for the
  202. * top wouldn't help much: the masks would do the wrong thing).
  203. * The rule is that addr 0 and floor 0 refer to the bottom of
  204. * the address space, but end 0 and ceiling 0 refer to the top
  205. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  206. * that end 0 case should be mythical).
  207. *
  208. * Wherever addr is brought up or ceiling brought down, we must
  209. * be careful to reject "the opposite 0" before it confuses the
  210. * subsequent tests. But what about where end is brought down
  211. * by PMD_SIZE below? no, end can't go down to 0 there.
  212. *
  213. * Whereas we round start (addr) and ceiling down, by different
  214. * masks at different levels, in order to test whether a table
  215. * now has no other vmas using it, so can be freed, we don't
  216. * bother to round floor or end up - the tests don't need that.
  217. */
  218. addr &= PMD_MASK;
  219. if (addr < floor) {
  220. addr += PMD_SIZE;
  221. if (!addr)
  222. return;
  223. }
  224. if (ceiling) {
  225. ceiling &= PMD_MASK;
  226. if (!ceiling)
  227. return;
  228. }
  229. if (end - 1 > ceiling - 1)
  230. end -= PMD_SIZE;
  231. if (addr > end - 1)
  232. return;
  233. start = addr;
  234. pgd = pgd_offset((*tlb)->mm, addr);
  235. do {
  236. next = pgd_addr_end(addr, end);
  237. if (pgd_none_or_clear_bad(pgd))
  238. continue;
  239. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  240. } while (pgd++, addr = next, addr != end);
  241. }
  242. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  243. unsigned long floor, unsigned long ceiling)
  244. {
  245. while (vma) {
  246. struct vm_area_struct *next = vma->vm_next;
  247. unsigned long addr = vma->vm_start;
  248. /*
  249. * Hide vma from rmap and vmtruncate before freeing pgtables
  250. */
  251. anon_vma_unlink(vma);
  252. unlink_file_vma(vma);
  253. if (is_vm_hugetlb_page(vma)) {
  254. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  255. floor, next? next->vm_start: ceiling);
  256. } else {
  257. /*
  258. * Optimization: gather nearby vmas into one call down
  259. */
  260. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  261. && !is_vm_hugetlb_page(next)) {
  262. vma = next;
  263. next = vma->vm_next;
  264. anon_vma_unlink(vma);
  265. unlink_file_vma(vma);
  266. }
  267. free_pgd_range(tlb, addr, vma->vm_end,
  268. floor, next? next->vm_start: ceiling);
  269. }
  270. vma = next;
  271. }
  272. }
  273. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  274. {
  275. pgtable_t new = pte_alloc_one(mm, address);
  276. if (!new)
  277. return -ENOMEM;
  278. /*
  279. * Ensure all pte setup (eg. pte page lock and page clearing) are
  280. * visible before the pte is made visible to other CPUs by being
  281. * put into page tables.
  282. *
  283. * The other side of the story is the pointer chasing in the page
  284. * table walking code (when walking the page table without locking;
  285. * ie. most of the time). Fortunately, these data accesses consist
  286. * of a chain of data-dependent loads, meaning most CPUs (alpha
  287. * being the notable exception) will already guarantee loads are
  288. * seen in-order. See the alpha page table accessors for the
  289. * smp_read_barrier_depends() barriers in page table walking code.
  290. */
  291. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  292. spin_lock(&mm->page_table_lock);
  293. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  294. mm->nr_ptes++;
  295. pmd_populate(mm, pmd, new);
  296. new = NULL;
  297. }
  298. spin_unlock(&mm->page_table_lock);
  299. if (new)
  300. pte_free(mm, new);
  301. return 0;
  302. }
  303. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  304. {
  305. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  306. if (!new)
  307. return -ENOMEM;
  308. smp_wmb(); /* See comment in __pte_alloc */
  309. spin_lock(&init_mm.page_table_lock);
  310. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  311. pmd_populate_kernel(&init_mm, pmd, new);
  312. new = NULL;
  313. }
  314. spin_unlock(&init_mm.page_table_lock);
  315. if (new)
  316. pte_free_kernel(&init_mm, new);
  317. return 0;
  318. }
  319. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  320. {
  321. if (file_rss)
  322. add_mm_counter(mm, file_rss, file_rss);
  323. if (anon_rss)
  324. add_mm_counter(mm, anon_rss, anon_rss);
  325. }
  326. /*
  327. * This function is called to print an error when a bad pte
  328. * is found. For example, we might have a PFN-mapped pte in
  329. * a region that doesn't allow it.
  330. *
  331. * The calling function must still handle the error.
  332. */
  333. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  334. {
  335. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  336. "vm_flags = %lx, vaddr = %lx\n",
  337. (long long)pte_val(pte),
  338. (vma->vm_mm == current->mm ? current->comm : "???"),
  339. vma->vm_flags, vaddr);
  340. dump_stack();
  341. }
  342. static inline int is_cow_mapping(unsigned int flags)
  343. {
  344. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  345. }
  346. /*
  347. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  348. *
  349. * "Special" mappings do not wish to be associated with a "struct page" (either
  350. * it doesn't exist, or it exists but they don't want to touch it). In this
  351. * case, NULL is returned here. "Normal" mappings do have a struct page.
  352. *
  353. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  354. * pte bit, in which case this function is trivial. Secondly, an architecture
  355. * may not have a spare pte bit, which requires a more complicated scheme,
  356. * described below.
  357. *
  358. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  359. * special mapping (even if there are underlying and valid "struct pages").
  360. * COWed pages of a VM_PFNMAP are always normal.
  361. *
  362. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  363. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  364. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  365. * mapping will always honor the rule
  366. *
  367. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  368. *
  369. * And for normal mappings this is false.
  370. *
  371. * This restricts such mappings to be a linear translation from virtual address
  372. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  373. * as the vma is not a COW mapping; in that case, we know that all ptes are
  374. * special (because none can have been COWed).
  375. *
  376. *
  377. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  378. *
  379. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  380. * page" backing, however the difference is that _all_ pages with a struct
  381. * page (that is, those where pfn_valid is true) are refcounted and considered
  382. * normal pages by the VM. The disadvantage is that pages are refcounted
  383. * (which can be slower and simply not an option for some PFNMAP users). The
  384. * advantage is that we don't have to follow the strict linearity rule of
  385. * PFNMAP mappings in order to support COWable mappings.
  386. *
  387. */
  388. #ifdef __HAVE_ARCH_PTE_SPECIAL
  389. # define HAVE_PTE_SPECIAL 1
  390. #else
  391. # define HAVE_PTE_SPECIAL 0
  392. #endif
  393. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  394. pte_t pte)
  395. {
  396. unsigned long pfn;
  397. if (HAVE_PTE_SPECIAL) {
  398. if (likely(!pte_special(pte))) {
  399. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  400. return pte_page(pte);
  401. }
  402. VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
  403. return NULL;
  404. }
  405. /* !HAVE_PTE_SPECIAL case follows: */
  406. pfn = pte_pfn(pte);
  407. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  408. if (vma->vm_flags & VM_MIXEDMAP) {
  409. if (!pfn_valid(pfn))
  410. return NULL;
  411. goto out;
  412. } else {
  413. unsigned long off;
  414. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  415. if (pfn == vma->vm_pgoff + off)
  416. return NULL;
  417. if (!is_cow_mapping(vma->vm_flags))
  418. return NULL;
  419. }
  420. }
  421. VM_BUG_ON(!pfn_valid(pfn));
  422. /*
  423. * NOTE! We still have PageReserved() pages in the page tables.
  424. *
  425. * eg. VDSO mappings can cause them to exist.
  426. */
  427. out:
  428. return pfn_to_page(pfn);
  429. }
  430. /*
  431. * copy one vm_area from one task to the other. Assumes the page tables
  432. * already present in the new task to be cleared in the whole range
  433. * covered by this vma.
  434. */
  435. static inline void
  436. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  437. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  438. unsigned long addr, int *rss)
  439. {
  440. unsigned long vm_flags = vma->vm_flags;
  441. pte_t pte = *src_pte;
  442. struct page *page;
  443. /* pte contains position in swap or file, so copy. */
  444. if (unlikely(!pte_present(pte))) {
  445. if (!pte_file(pte)) {
  446. swp_entry_t entry = pte_to_swp_entry(pte);
  447. swap_duplicate(entry);
  448. /* make sure dst_mm is on swapoff's mmlist. */
  449. if (unlikely(list_empty(&dst_mm->mmlist))) {
  450. spin_lock(&mmlist_lock);
  451. if (list_empty(&dst_mm->mmlist))
  452. list_add(&dst_mm->mmlist,
  453. &src_mm->mmlist);
  454. spin_unlock(&mmlist_lock);
  455. }
  456. if (is_write_migration_entry(entry) &&
  457. is_cow_mapping(vm_flags)) {
  458. /*
  459. * COW mappings require pages in both parent
  460. * and child to be set to read.
  461. */
  462. make_migration_entry_read(&entry);
  463. pte = swp_entry_to_pte(entry);
  464. set_pte_at(src_mm, addr, src_pte, pte);
  465. }
  466. }
  467. goto out_set_pte;
  468. }
  469. /*
  470. * If it's a COW mapping, write protect it both
  471. * in the parent and the child
  472. */
  473. if (is_cow_mapping(vm_flags)) {
  474. ptep_set_wrprotect(src_mm, addr, src_pte);
  475. pte = pte_wrprotect(pte);
  476. }
  477. /*
  478. * If it's a shared mapping, mark it clean in
  479. * the child
  480. */
  481. if (vm_flags & VM_SHARED)
  482. pte = pte_mkclean(pte);
  483. pte = pte_mkold(pte);
  484. page = vm_normal_page(vma, addr, pte);
  485. if (page) {
  486. get_page(page);
  487. page_dup_rmap(page, vma, addr);
  488. rss[!!PageAnon(page)]++;
  489. }
  490. out_set_pte:
  491. set_pte_at(dst_mm, addr, dst_pte, pte);
  492. }
  493. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  494. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  495. unsigned long addr, unsigned long end)
  496. {
  497. pte_t *src_pte, *dst_pte;
  498. spinlock_t *src_ptl, *dst_ptl;
  499. int progress = 0;
  500. int rss[2];
  501. again:
  502. rss[1] = rss[0] = 0;
  503. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  504. if (!dst_pte)
  505. return -ENOMEM;
  506. src_pte = pte_offset_map_nested(src_pmd, addr);
  507. src_ptl = pte_lockptr(src_mm, src_pmd);
  508. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  509. arch_enter_lazy_mmu_mode();
  510. do {
  511. /*
  512. * We are holding two locks at this point - either of them
  513. * could generate latencies in another task on another CPU.
  514. */
  515. if (progress >= 32) {
  516. progress = 0;
  517. if (need_resched() ||
  518. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  519. break;
  520. }
  521. if (pte_none(*src_pte)) {
  522. progress++;
  523. continue;
  524. }
  525. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  526. progress += 8;
  527. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  528. arch_leave_lazy_mmu_mode();
  529. spin_unlock(src_ptl);
  530. pte_unmap_nested(src_pte - 1);
  531. add_mm_rss(dst_mm, rss[0], rss[1]);
  532. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  533. cond_resched();
  534. if (addr != end)
  535. goto again;
  536. return 0;
  537. }
  538. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  539. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  540. unsigned long addr, unsigned long end)
  541. {
  542. pmd_t *src_pmd, *dst_pmd;
  543. unsigned long next;
  544. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  545. if (!dst_pmd)
  546. return -ENOMEM;
  547. src_pmd = pmd_offset(src_pud, addr);
  548. do {
  549. next = pmd_addr_end(addr, end);
  550. if (pmd_none_or_clear_bad(src_pmd))
  551. continue;
  552. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  553. vma, addr, next))
  554. return -ENOMEM;
  555. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  556. return 0;
  557. }
  558. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  559. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  560. unsigned long addr, unsigned long end)
  561. {
  562. pud_t *src_pud, *dst_pud;
  563. unsigned long next;
  564. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  565. if (!dst_pud)
  566. return -ENOMEM;
  567. src_pud = pud_offset(src_pgd, addr);
  568. do {
  569. next = pud_addr_end(addr, end);
  570. if (pud_none_or_clear_bad(src_pud))
  571. continue;
  572. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  573. vma, addr, next))
  574. return -ENOMEM;
  575. } while (dst_pud++, src_pud++, addr = next, addr != end);
  576. return 0;
  577. }
  578. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. struct vm_area_struct *vma)
  580. {
  581. pgd_t *src_pgd, *dst_pgd;
  582. unsigned long next;
  583. unsigned long addr = vma->vm_start;
  584. unsigned long end = vma->vm_end;
  585. /*
  586. * Don't copy ptes where a page fault will fill them correctly.
  587. * Fork becomes much lighter when there are big shared or private
  588. * readonly mappings. The tradeoff is that copy_page_range is more
  589. * efficient than faulting.
  590. */
  591. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  592. if (!vma->anon_vma)
  593. return 0;
  594. }
  595. if (is_vm_hugetlb_page(vma))
  596. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  597. dst_pgd = pgd_offset(dst_mm, addr);
  598. src_pgd = pgd_offset(src_mm, addr);
  599. do {
  600. next = pgd_addr_end(addr, end);
  601. if (pgd_none_or_clear_bad(src_pgd))
  602. continue;
  603. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  604. vma, addr, next))
  605. return -ENOMEM;
  606. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  607. return 0;
  608. }
  609. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  610. struct vm_area_struct *vma, pmd_t *pmd,
  611. unsigned long addr, unsigned long end,
  612. long *zap_work, struct zap_details *details)
  613. {
  614. struct mm_struct *mm = tlb->mm;
  615. pte_t *pte;
  616. spinlock_t *ptl;
  617. int file_rss = 0;
  618. int anon_rss = 0;
  619. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  620. arch_enter_lazy_mmu_mode();
  621. do {
  622. pte_t ptent = *pte;
  623. if (pte_none(ptent)) {
  624. (*zap_work)--;
  625. continue;
  626. }
  627. (*zap_work) -= PAGE_SIZE;
  628. if (pte_present(ptent)) {
  629. struct page *page;
  630. page = vm_normal_page(vma, addr, ptent);
  631. if (unlikely(details) && page) {
  632. /*
  633. * unmap_shared_mapping_pages() wants to
  634. * invalidate cache without truncating:
  635. * unmap shared but keep private pages.
  636. */
  637. if (details->check_mapping &&
  638. details->check_mapping != page->mapping)
  639. continue;
  640. /*
  641. * Each page->index must be checked when
  642. * invalidating or truncating nonlinear.
  643. */
  644. if (details->nonlinear_vma &&
  645. (page->index < details->first_index ||
  646. page->index > details->last_index))
  647. continue;
  648. }
  649. ptent = ptep_get_and_clear_full(mm, addr, pte,
  650. tlb->fullmm);
  651. tlb_remove_tlb_entry(tlb, pte, addr);
  652. if (unlikely(!page))
  653. continue;
  654. if (unlikely(details) && details->nonlinear_vma
  655. && linear_page_index(details->nonlinear_vma,
  656. addr) != page->index)
  657. set_pte_at(mm, addr, pte,
  658. pgoff_to_pte(page->index));
  659. if (PageAnon(page))
  660. anon_rss--;
  661. else {
  662. if (pte_dirty(ptent))
  663. set_page_dirty(page);
  664. if (pte_young(ptent))
  665. SetPageReferenced(page);
  666. file_rss--;
  667. }
  668. page_remove_rmap(page, vma);
  669. tlb_remove_page(tlb, page);
  670. continue;
  671. }
  672. /*
  673. * If details->check_mapping, we leave swap entries;
  674. * if details->nonlinear_vma, we leave file entries.
  675. */
  676. if (unlikely(details))
  677. continue;
  678. if (!pte_file(ptent))
  679. free_swap_and_cache(pte_to_swp_entry(ptent));
  680. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  681. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  682. add_mm_rss(mm, file_rss, anon_rss);
  683. arch_leave_lazy_mmu_mode();
  684. pte_unmap_unlock(pte - 1, ptl);
  685. return addr;
  686. }
  687. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  688. struct vm_area_struct *vma, pud_t *pud,
  689. unsigned long addr, unsigned long end,
  690. long *zap_work, struct zap_details *details)
  691. {
  692. pmd_t *pmd;
  693. unsigned long next;
  694. pmd = pmd_offset(pud, addr);
  695. do {
  696. next = pmd_addr_end(addr, end);
  697. if (pmd_none_or_clear_bad(pmd)) {
  698. (*zap_work)--;
  699. continue;
  700. }
  701. next = zap_pte_range(tlb, vma, pmd, addr, next,
  702. zap_work, details);
  703. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  704. return addr;
  705. }
  706. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  707. struct vm_area_struct *vma, pgd_t *pgd,
  708. unsigned long addr, unsigned long end,
  709. long *zap_work, struct zap_details *details)
  710. {
  711. pud_t *pud;
  712. unsigned long next;
  713. pud = pud_offset(pgd, addr);
  714. do {
  715. next = pud_addr_end(addr, end);
  716. if (pud_none_or_clear_bad(pud)) {
  717. (*zap_work)--;
  718. continue;
  719. }
  720. next = zap_pmd_range(tlb, vma, pud, addr, next,
  721. zap_work, details);
  722. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  723. return addr;
  724. }
  725. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  726. struct vm_area_struct *vma,
  727. unsigned long addr, unsigned long end,
  728. long *zap_work, struct zap_details *details)
  729. {
  730. pgd_t *pgd;
  731. unsigned long next;
  732. if (details && !details->check_mapping && !details->nonlinear_vma)
  733. details = NULL;
  734. BUG_ON(addr >= end);
  735. tlb_start_vma(tlb, vma);
  736. pgd = pgd_offset(vma->vm_mm, addr);
  737. do {
  738. next = pgd_addr_end(addr, end);
  739. if (pgd_none_or_clear_bad(pgd)) {
  740. (*zap_work)--;
  741. continue;
  742. }
  743. next = zap_pud_range(tlb, vma, pgd, addr, next,
  744. zap_work, details);
  745. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  746. tlb_end_vma(tlb, vma);
  747. return addr;
  748. }
  749. #ifdef CONFIG_PREEMPT
  750. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  751. #else
  752. /* No preempt: go for improved straight-line efficiency */
  753. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  754. #endif
  755. /**
  756. * unmap_vmas - unmap a range of memory covered by a list of vma's
  757. * @tlbp: address of the caller's struct mmu_gather
  758. * @vma: the starting vma
  759. * @start_addr: virtual address at which to start unmapping
  760. * @end_addr: virtual address at which to end unmapping
  761. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  762. * @details: details of nonlinear truncation or shared cache invalidation
  763. *
  764. * Returns the end address of the unmapping (restart addr if interrupted).
  765. *
  766. * Unmap all pages in the vma list.
  767. *
  768. * We aim to not hold locks for too long (for scheduling latency reasons).
  769. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  770. * return the ending mmu_gather to the caller.
  771. *
  772. * Only addresses between `start' and `end' will be unmapped.
  773. *
  774. * The VMA list must be sorted in ascending virtual address order.
  775. *
  776. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  777. * range after unmap_vmas() returns. So the only responsibility here is to
  778. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  779. * drops the lock and schedules.
  780. */
  781. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  782. struct vm_area_struct *vma, unsigned long start_addr,
  783. unsigned long end_addr, unsigned long *nr_accounted,
  784. struct zap_details *details)
  785. {
  786. long zap_work = ZAP_BLOCK_SIZE;
  787. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  788. int tlb_start_valid = 0;
  789. unsigned long start = start_addr;
  790. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  791. int fullmm = (*tlbp)->fullmm;
  792. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  793. unsigned long end;
  794. start = max(vma->vm_start, start_addr);
  795. if (start >= vma->vm_end)
  796. continue;
  797. end = min(vma->vm_end, end_addr);
  798. if (end <= vma->vm_start)
  799. continue;
  800. if (vma->vm_flags & VM_ACCOUNT)
  801. *nr_accounted += (end - start) >> PAGE_SHIFT;
  802. while (start != end) {
  803. if (!tlb_start_valid) {
  804. tlb_start = start;
  805. tlb_start_valid = 1;
  806. }
  807. if (unlikely(is_vm_hugetlb_page(vma))) {
  808. unmap_hugepage_range(vma, start, end);
  809. zap_work -= (end - start) /
  810. (HPAGE_SIZE / PAGE_SIZE);
  811. start = end;
  812. } else
  813. start = unmap_page_range(*tlbp, vma,
  814. start, end, &zap_work, details);
  815. if (zap_work > 0) {
  816. BUG_ON(start != end);
  817. break;
  818. }
  819. tlb_finish_mmu(*tlbp, tlb_start, start);
  820. if (need_resched() ||
  821. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  822. if (i_mmap_lock) {
  823. *tlbp = NULL;
  824. goto out;
  825. }
  826. cond_resched();
  827. }
  828. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  829. tlb_start_valid = 0;
  830. zap_work = ZAP_BLOCK_SIZE;
  831. }
  832. }
  833. out:
  834. return start; /* which is now the end (or restart) address */
  835. }
  836. /**
  837. * zap_page_range - remove user pages in a given range
  838. * @vma: vm_area_struct holding the applicable pages
  839. * @address: starting address of pages to zap
  840. * @size: number of bytes to zap
  841. * @details: details of nonlinear truncation or shared cache invalidation
  842. */
  843. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  844. unsigned long size, struct zap_details *details)
  845. {
  846. struct mm_struct *mm = vma->vm_mm;
  847. struct mmu_gather *tlb;
  848. unsigned long end = address + size;
  849. unsigned long nr_accounted = 0;
  850. lru_add_drain();
  851. tlb = tlb_gather_mmu(mm, 0);
  852. update_hiwater_rss(mm);
  853. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  854. if (tlb)
  855. tlb_finish_mmu(tlb, address, end);
  856. return end;
  857. }
  858. /*
  859. * Do a quick page-table lookup for a single page.
  860. */
  861. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  862. unsigned int flags)
  863. {
  864. pgd_t *pgd;
  865. pud_t *pud;
  866. pmd_t *pmd;
  867. pte_t *ptep, pte;
  868. spinlock_t *ptl;
  869. struct page *page;
  870. struct mm_struct *mm = vma->vm_mm;
  871. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  872. if (!IS_ERR(page)) {
  873. BUG_ON(flags & FOLL_GET);
  874. goto out;
  875. }
  876. page = NULL;
  877. pgd = pgd_offset(mm, address);
  878. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  879. goto no_page_table;
  880. pud = pud_offset(pgd, address);
  881. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  882. goto no_page_table;
  883. pmd = pmd_offset(pud, address);
  884. if (pmd_none(*pmd))
  885. goto no_page_table;
  886. if (pmd_huge(*pmd)) {
  887. BUG_ON(flags & FOLL_GET);
  888. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  889. goto out;
  890. }
  891. if (unlikely(pmd_bad(*pmd)))
  892. goto no_page_table;
  893. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  894. pte = *ptep;
  895. if (!pte_present(pte))
  896. goto no_page;
  897. if ((flags & FOLL_WRITE) && !pte_write(pte))
  898. goto unlock;
  899. page = vm_normal_page(vma, address, pte);
  900. if (unlikely(!page))
  901. goto bad_page;
  902. if (flags & FOLL_GET)
  903. get_page(page);
  904. if (flags & FOLL_TOUCH) {
  905. if ((flags & FOLL_WRITE) &&
  906. !pte_dirty(pte) && !PageDirty(page))
  907. set_page_dirty(page);
  908. mark_page_accessed(page);
  909. }
  910. unlock:
  911. pte_unmap_unlock(ptep, ptl);
  912. out:
  913. return page;
  914. bad_page:
  915. pte_unmap_unlock(ptep, ptl);
  916. return ERR_PTR(-EFAULT);
  917. no_page:
  918. pte_unmap_unlock(ptep, ptl);
  919. if (!pte_none(pte))
  920. return page;
  921. /* Fall through to ZERO_PAGE handling */
  922. no_page_table:
  923. /*
  924. * When core dumping an enormous anonymous area that nobody
  925. * has touched so far, we don't want to allocate page tables.
  926. */
  927. if (flags & FOLL_ANON) {
  928. page = ZERO_PAGE(0);
  929. if (flags & FOLL_GET)
  930. get_page(page);
  931. BUG_ON(flags & FOLL_WRITE);
  932. }
  933. return page;
  934. }
  935. /* Can we do the FOLL_ANON optimization? */
  936. static inline int use_zero_page(struct vm_area_struct *vma)
  937. {
  938. /*
  939. * We don't want to optimize FOLL_ANON for make_pages_present()
  940. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  941. * we want to get the page from the page tables to make sure
  942. * that we serialize and update with any other user of that
  943. * mapping.
  944. */
  945. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  946. return 0;
  947. /*
  948. * And if we have a fault or a nopfn routine, it's not an
  949. * anonymous region.
  950. */
  951. return !vma->vm_ops ||
  952. (!vma->vm_ops->fault && !vma->vm_ops->nopfn);
  953. }
  954. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  955. unsigned long start, int len, int write, int force,
  956. struct page **pages, struct vm_area_struct **vmas)
  957. {
  958. int i;
  959. unsigned int vm_flags;
  960. if (len <= 0)
  961. return 0;
  962. /*
  963. * Require read or write permissions.
  964. * If 'force' is set, we only require the "MAY" flags.
  965. */
  966. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  967. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  968. i = 0;
  969. do {
  970. struct vm_area_struct *vma;
  971. unsigned int foll_flags;
  972. vma = find_extend_vma(mm, start);
  973. if (!vma && in_gate_area(tsk, start)) {
  974. unsigned long pg = start & PAGE_MASK;
  975. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  976. pgd_t *pgd;
  977. pud_t *pud;
  978. pmd_t *pmd;
  979. pte_t *pte;
  980. if (write) /* user gate pages are read-only */
  981. return i ? : -EFAULT;
  982. if (pg > TASK_SIZE)
  983. pgd = pgd_offset_k(pg);
  984. else
  985. pgd = pgd_offset_gate(mm, pg);
  986. BUG_ON(pgd_none(*pgd));
  987. pud = pud_offset(pgd, pg);
  988. BUG_ON(pud_none(*pud));
  989. pmd = pmd_offset(pud, pg);
  990. if (pmd_none(*pmd))
  991. return i ? : -EFAULT;
  992. pte = pte_offset_map(pmd, pg);
  993. if (pte_none(*pte)) {
  994. pte_unmap(pte);
  995. return i ? : -EFAULT;
  996. }
  997. if (pages) {
  998. struct page *page = vm_normal_page(gate_vma, start, *pte);
  999. pages[i] = page;
  1000. if (page)
  1001. get_page(page);
  1002. }
  1003. pte_unmap(pte);
  1004. if (vmas)
  1005. vmas[i] = gate_vma;
  1006. i++;
  1007. start += PAGE_SIZE;
  1008. len--;
  1009. continue;
  1010. }
  1011. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  1012. || !(vm_flags & vma->vm_flags))
  1013. return i ? : -EFAULT;
  1014. if (is_vm_hugetlb_page(vma)) {
  1015. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1016. &start, &len, i, write);
  1017. continue;
  1018. }
  1019. foll_flags = FOLL_TOUCH;
  1020. if (pages)
  1021. foll_flags |= FOLL_GET;
  1022. if (!write && use_zero_page(vma))
  1023. foll_flags |= FOLL_ANON;
  1024. do {
  1025. struct page *page;
  1026. /*
  1027. * If tsk is ooming, cut off its access to large memory
  1028. * allocations. It has a pending SIGKILL, but it can't
  1029. * be processed until returning to user space.
  1030. */
  1031. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  1032. return i ? i : -ENOMEM;
  1033. if (write)
  1034. foll_flags |= FOLL_WRITE;
  1035. cond_resched();
  1036. while (!(page = follow_page(vma, start, foll_flags))) {
  1037. int ret;
  1038. ret = handle_mm_fault(mm, vma, start,
  1039. foll_flags & FOLL_WRITE);
  1040. if (ret & VM_FAULT_ERROR) {
  1041. if (ret & VM_FAULT_OOM)
  1042. return i ? i : -ENOMEM;
  1043. else if (ret & VM_FAULT_SIGBUS)
  1044. return i ? i : -EFAULT;
  1045. BUG();
  1046. }
  1047. if (ret & VM_FAULT_MAJOR)
  1048. tsk->maj_flt++;
  1049. else
  1050. tsk->min_flt++;
  1051. /*
  1052. * The VM_FAULT_WRITE bit tells us that
  1053. * do_wp_page has broken COW when necessary,
  1054. * even if maybe_mkwrite decided not to set
  1055. * pte_write. We can thus safely do subsequent
  1056. * page lookups as if they were reads.
  1057. */
  1058. if (ret & VM_FAULT_WRITE)
  1059. foll_flags &= ~FOLL_WRITE;
  1060. cond_resched();
  1061. }
  1062. if (IS_ERR(page))
  1063. return i ? i : PTR_ERR(page);
  1064. if (pages) {
  1065. pages[i] = page;
  1066. flush_anon_page(vma, page, start);
  1067. flush_dcache_page(page);
  1068. }
  1069. if (vmas)
  1070. vmas[i] = vma;
  1071. i++;
  1072. start += PAGE_SIZE;
  1073. len--;
  1074. } while (len && start < vma->vm_end);
  1075. } while (len);
  1076. return i;
  1077. }
  1078. EXPORT_SYMBOL(get_user_pages);
  1079. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1080. spinlock_t **ptl)
  1081. {
  1082. pgd_t * pgd = pgd_offset(mm, addr);
  1083. pud_t * pud = pud_alloc(mm, pgd, addr);
  1084. if (pud) {
  1085. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1086. if (pmd)
  1087. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1088. }
  1089. return NULL;
  1090. }
  1091. /*
  1092. * This is the old fallback for page remapping.
  1093. *
  1094. * For historical reasons, it only allows reserved pages. Only
  1095. * old drivers should use this, and they needed to mark their
  1096. * pages reserved for the old functions anyway.
  1097. */
  1098. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1099. struct page *page, pgprot_t prot)
  1100. {
  1101. struct mm_struct *mm = vma->vm_mm;
  1102. int retval;
  1103. pte_t *pte;
  1104. spinlock_t *ptl;
  1105. retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
  1106. if (retval)
  1107. goto out;
  1108. retval = -EINVAL;
  1109. if (PageAnon(page))
  1110. goto out_uncharge;
  1111. retval = -ENOMEM;
  1112. flush_dcache_page(page);
  1113. pte = get_locked_pte(mm, addr, &ptl);
  1114. if (!pte)
  1115. goto out_uncharge;
  1116. retval = -EBUSY;
  1117. if (!pte_none(*pte))
  1118. goto out_unlock;
  1119. /* Ok, finally just insert the thing.. */
  1120. get_page(page);
  1121. inc_mm_counter(mm, file_rss);
  1122. page_add_file_rmap(page);
  1123. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1124. retval = 0;
  1125. pte_unmap_unlock(pte, ptl);
  1126. return retval;
  1127. out_unlock:
  1128. pte_unmap_unlock(pte, ptl);
  1129. out_uncharge:
  1130. mem_cgroup_uncharge_page(page);
  1131. out:
  1132. return retval;
  1133. }
  1134. /**
  1135. * vm_insert_page - insert single page into user vma
  1136. * @vma: user vma to map to
  1137. * @addr: target user address of this page
  1138. * @page: source kernel page
  1139. *
  1140. * This allows drivers to insert individual pages they've allocated
  1141. * into a user vma.
  1142. *
  1143. * The page has to be a nice clean _individual_ kernel allocation.
  1144. * If you allocate a compound page, you need to have marked it as
  1145. * such (__GFP_COMP), or manually just split the page up yourself
  1146. * (see split_page()).
  1147. *
  1148. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1149. * took an arbitrary page protection parameter. This doesn't allow
  1150. * that. Your vma protection will have to be set up correctly, which
  1151. * means that if you want a shared writable mapping, you'd better
  1152. * ask for a shared writable mapping!
  1153. *
  1154. * The page does not need to be reserved.
  1155. */
  1156. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1157. struct page *page)
  1158. {
  1159. if (addr < vma->vm_start || addr >= vma->vm_end)
  1160. return -EFAULT;
  1161. if (!page_count(page))
  1162. return -EINVAL;
  1163. vma->vm_flags |= VM_INSERTPAGE;
  1164. return insert_page(vma, addr, page, vma->vm_page_prot);
  1165. }
  1166. EXPORT_SYMBOL(vm_insert_page);
  1167. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1168. unsigned long pfn, pgprot_t prot)
  1169. {
  1170. struct mm_struct *mm = vma->vm_mm;
  1171. int retval;
  1172. pte_t *pte, entry;
  1173. spinlock_t *ptl;
  1174. retval = -ENOMEM;
  1175. pte = get_locked_pte(mm, addr, &ptl);
  1176. if (!pte)
  1177. goto out;
  1178. retval = -EBUSY;
  1179. if (!pte_none(*pte))
  1180. goto out_unlock;
  1181. /* Ok, finally just insert the thing.. */
  1182. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1183. set_pte_at(mm, addr, pte, entry);
  1184. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1185. retval = 0;
  1186. out_unlock:
  1187. pte_unmap_unlock(pte, ptl);
  1188. out:
  1189. return retval;
  1190. }
  1191. /**
  1192. * vm_insert_pfn - insert single pfn into user vma
  1193. * @vma: user vma to map to
  1194. * @addr: target user address of this page
  1195. * @pfn: source kernel pfn
  1196. *
  1197. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1198. * they've allocated into a user vma. Same comments apply.
  1199. *
  1200. * This function should only be called from a vm_ops->fault handler, and
  1201. * in that case the handler should return NULL.
  1202. */
  1203. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1204. unsigned long pfn)
  1205. {
  1206. /*
  1207. * Technically, architectures with pte_special can avoid all these
  1208. * restrictions (same for remap_pfn_range). However we would like
  1209. * consistency in testing and feature parity among all, so we should
  1210. * try to keep these invariants in place for everybody.
  1211. */
  1212. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1213. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1214. (VM_PFNMAP|VM_MIXEDMAP));
  1215. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1216. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1217. if (addr < vma->vm_start || addr >= vma->vm_end)
  1218. return -EFAULT;
  1219. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1220. }
  1221. EXPORT_SYMBOL(vm_insert_pfn);
  1222. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1223. unsigned long pfn)
  1224. {
  1225. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1226. if (addr < vma->vm_start || addr >= vma->vm_end)
  1227. return -EFAULT;
  1228. /*
  1229. * If we don't have pte special, then we have to use the pfn_valid()
  1230. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1231. * refcount the page if pfn_valid is true (hence insert_page rather
  1232. * than insert_pfn).
  1233. */
  1234. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1235. struct page *page;
  1236. page = pfn_to_page(pfn);
  1237. return insert_page(vma, addr, page, vma->vm_page_prot);
  1238. }
  1239. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1240. }
  1241. EXPORT_SYMBOL(vm_insert_mixed);
  1242. /*
  1243. * maps a range of physical memory into the requested pages. the old
  1244. * mappings are removed. any references to nonexistent pages results
  1245. * in null mappings (currently treated as "copy-on-access")
  1246. */
  1247. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1248. unsigned long addr, unsigned long end,
  1249. unsigned long pfn, pgprot_t prot)
  1250. {
  1251. pte_t *pte;
  1252. spinlock_t *ptl;
  1253. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1254. if (!pte)
  1255. return -ENOMEM;
  1256. arch_enter_lazy_mmu_mode();
  1257. do {
  1258. BUG_ON(!pte_none(*pte));
  1259. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1260. pfn++;
  1261. } while (pte++, addr += PAGE_SIZE, addr != end);
  1262. arch_leave_lazy_mmu_mode();
  1263. pte_unmap_unlock(pte - 1, ptl);
  1264. return 0;
  1265. }
  1266. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1267. unsigned long addr, unsigned long end,
  1268. unsigned long pfn, pgprot_t prot)
  1269. {
  1270. pmd_t *pmd;
  1271. unsigned long next;
  1272. pfn -= addr >> PAGE_SHIFT;
  1273. pmd = pmd_alloc(mm, pud, addr);
  1274. if (!pmd)
  1275. return -ENOMEM;
  1276. do {
  1277. next = pmd_addr_end(addr, end);
  1278. if (remap_pte_range(mm, pmd, addr, next,
  1279. pfn + (addr >> PAGE_SHIFT), prot))
  1280. return -ENOMEM;
  1281. } while (pmd++, addr = next, addr != end);
  1282. return 0;
  1283. }
  1284. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1285. unsigned long addr, unsigned long end,
  1286. unsigned long pfn, pgprot_t prot)
  1287. {
  1288. pud_t *pud;
  1289. unsigned long next;
  1290. pfn -= addr >> PAGE_SHIFT;
  1291. pud = pud_alloc(mm, pgd, addr);
  1292. if (!pud)
  1293. return -ENOMEM;
  1294. do {
  1295. next = pud_addr_end(addr, end);
  1296. if (remap_pmd_range(mm, pud, addr, next,
  1297. pfn + (addr >> PAGE_SHIFT), prot))
  1298. return -ENOMEM;
  1299. } while (pud++, addr = next, addr != end);
  1300. return 0;
  1301. }
  1302. /**
  1303. * remap_pfn_range - remap kernel memory to userspace
  1304. * @vma: user vma to map to
  1305. * @addr: target user address to start at
  1306. * @pfn: physical address of kernel memory
  1307. * @size: size of map area
  1308. * @prot: page protection flags for this mapping
  1309. *
  1310. * Note: this is only safe if the mm semaphore is held when called.
  1311. */
  1312. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1313. unsigned long pfn, unsigned long size, pgprot_t prot)
  1314. {
  1315. pgd_t *pgd;
  1316. unsigned long next;
  1317. unsigned long end = addr + PAGE_ALIGN(size);
  1318. struct mm_struct *mm = vma->vm_mm;
  1319. int err;
  1320. /*
  1321. * Physically remapped pages are special. Tell the
  1322. * rest of the world about it:
  1323. * VM_IO tells people not to look at these pages
  1324. * (accesses can have side effects).
  1325. * VM_RESERVED is specified all over the place, because
  1326. * in 2.4 it kept swapout's vma scan off this vma; but
  1327. * in 2.6 the LRU scan won't even find its pages, so this
  1328. * flag means no more than count its pages in reserved_vm,
  1329. * and omit it from core dump, even when VM_IO turned off.
  1330. * VM_PFNMAP tells the core MM that the base pages are just
  1331. * raw PFN mappings, and do not have a "struct page" associated
  1332. * with them.
  1333. *
  1334. * There's a horrible special case to handle copy-on-write
  1335. * behaviour that some programs depend on. We mark the "original"
  1336. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1337. */
  1338. if (is_cow_mapping(vma->vm_flags)) {
  1339. if (addr != vma->vm_start || end != vma->vm_end)
  1340. return -EINVAL;
  1341. vma->vm_pgoff = pfn;
  1342. }
  1343. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1344. BUG_ON(addr >= end);
  1345. pfn -= addr >> PAGE_SHIFT;
  1346. pgd = pgd_offset(mm, addr);
  1347. flush_cache_range(vma, addr, end);
  1348. do {
  1349. next = pgd_addr_end(addr, end);
  1350. err = remap_pud_range(mm, pgd, addr, next,
  1351. pfn + (addr >> PAGE_SHIFT), prot);
  1352. if (err)
  1353. break;
  1354. } while (pgd++, addr = next, addr != end);
  1355. return err;
  1356. }
  1357. EXPORT_SYMBOL(remap_pfn_range);
  1358. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1359. unsigned long addr, unsigned long end,
  1360. pte_fn_t fn, void *data)
  1361. {
  1362. pte_t *pte;
  1363. int err;
  1364. pgtable_t token;
  1365. spinlock_t *uninitialized_var(ptl);
  1366. pte = (mm == &init_mm) ?
  1367. pte_alloc_kernel(pmd, addr) :
  1368. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1369. if (!pte)
  1370. return -ENOMEM;
  1371. BUG_ON(pmd_huge(*pmd));
  1372. token = pmd_pgtable(*pmd);
  1373. do {
  1374. err = fn(pte, token, addr, data);
  1375. if (err)
  1376. break;
  1377. } while (pte++, addr += PAGE_SIZE, addr != end);
  1378. if (mm != &init_mm)
  1379. pte_unmap_unlock(pte-1, ptl);
  1380. return err;
  1381. }
  1382. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1383. unsigned long addr, unsigned long end,
  1384. pte_fn_t fn, void *data)
  1385. {
  1386. pmd_t *pmd;
  1387. unsigned long next;
  1388. int err;
  1389. pmd = pmd_alloc(mm, pud, addr);
  1390. if (!pmd)
  1391. return -ENOMEM;
  1392. do {
  1393. next = pmd_addr_end(addr, end);
  1394. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1395. if (err)
  1396. break;
  1397. } while (pmd++, addr = next, addr != end);
  1398. return err;
  1399. }
  1400. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1401. unsigned long addr, unsigned long end,
  1402. pte_fn_t fn, void *data)
  1403. {
  1404. pud_t *pud;
  1405. unsigned long next;
  1406. int err;
  1407. pud = pud_alloc(mm, pgd, addr);
  1408. if (!pud)
  1409. return -ENOMEM;
  1410. do {
  1411. next = pud_addr_end(addr, end);
  1412. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1413. if (err)
  1414. break;
  1415. } while (pud++, addr = next, addr != end);
  1416. return err;
  1417. }
  1418. /*
  1419. * Scan a region of virtual memory, filling in page tables as necessary
  1420. * and calling a provided function on each leaf page table.
  1421. */
  1422. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1423. unsigned long size, pte_fn_t fn, void *data)
  1424. {
  1425. pgd_t *pgd;
  1426. unsigned long next;
  1427. unsigned long end = addr + size;
  1428. int err;
  1429. BUG_ON(addr >= end);
  1430. pgd = pgd_offset(mm, addr);
  1431. do {
  1432. next = pgd_addr_end(addr, end);
  1433. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1434. if (err)
  1435. break;
  1436. } while (pgd++, addr = next, addr != end);
  1437. return err;
  1438. }
  1439. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1440. /*
  1441. * handle_pte_fault chooses page fault handler according to an entry
  1442. * which was read non-atomically. Before making any commitment, on
  1443. * those architectures or configurations (e.g. i386 with PAE) which
  1444. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1445. * must check under lock before unmapping the pte and proceeding
  1446. * (but do_wp_page is only called after already making such a check;
  1447. * and do_anonymous_page and do_no_page can safely check later on).
  1448. */
  1449. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1450. pte_t *page_table, pte_t orig_pte)
  1451. {
  1452. int same = 1;
  1453. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1454. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1455. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1456. spin_lock(ptl);
  1457. same = pte_same(*page_table, orig_pte);
  1458. spin_unlock(ptl);
  1459. }
  1460. #endif
  1461. pte_unmap(page_table);
  1462. return same;
  1463. }
  1464. /*
  1465. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1466. * servicing faults for write access. In the normal case, do always want
  1467. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1468. * that do not have writing enabled, when used by access_process_vm.
  1469. */
  1470. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1471. {
  1472. if (likely(vma->vm_flags & VM_WRITE))
  1473. pte = pte_mkwrite(pte);
  1474. return pte;
  1475. }
  1476. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1477. {
  1478. /*
  1479. * If the source page was a PFN mapping, we don't have
  1480. * a "struct page" for it. We do a best-effort copy by
  1481. * just copying from the original user address. If that
  1482. * fails, we just zero-fill it. Live with it.
  1483. */
  1484. if (unlikely(!src)) {
  1485. void *kaddr = kmap_atomic(dst, KM_USER0);
  1486. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1487. /*
  1488. * This really shouldn't fail, because the page is there
  1489. * in the page tables. But it might just be unreadable,
  1490. * in which case we just give up and fill the result with
  1491. * zeroes.
  1492. */
  1493. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1494. memset(kaddr, 0, PAGE_SIZE);
  1495. kunmap_atomic(kaddr, KM_USER0);
  1496. flush_dcache_page(dst);
  1497. } else
  1498. copy_user_highpage(dst, src, va, vma);
  1499. }
  1500. /*
  1501. * This routine handles present pages, when users try to write
  1502. * to a shared page. It is done by copying the page to a new address
  1503. * and decrementing the shared-page counter for the old page.
  1504. *
  1505. * Note that this routine assumes that the protection checks have been
  1506. * done by the caller (the low-level page fault routine in most cases).
  1507. * Thus we can safely just mark it writable once we've done any necessary
  1508. * COW.
  1509. *
  1510. * We also mark the page dirty at this point even though the page will
  1511. * change only once the write actually happens. This avoids a few races,
  1512. * and potentially makes it more efficient.
  1513. *
  1514. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1515. * but allow concurrent faults), with pte both mapped and locked.
  1516. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1517. */
  1518. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1519. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1520. spinlock_t *ptl, pte_t orig_pte)
  1521. {
  1522. struct page *old_page, *new_page;
  1523. pte_t entry;
  1524. int reuse = 0, ret = 0;
  1525. int page_mkwrite = 0;
  1526. struct page *dirty_page = NULL;
  1527. old_page = vm_normal_page(vma, address, orig_pte);
  1528. if (!old_page) {
  1529. /*
  1530. * VM_MIXEDMAP !pfn_valid() case
  1531. *
  1532. * We should not cow pages in a shared writeable mapping.
  1533. * Just mark the pages writable as we can't do any dirty
  1534. * accounting on raw pfn maps.
  1535. */
  1536. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1537. (VM_WRITE|VM_SHARED))
  1538. goto reuse;
  1539. goto gotten;
  1540. }
  1541. /*
  1542. * Take out anonymous pages first, anonymous shared vmas are
  1543. * not dirty accountable.
  1544. */
  1545. if (PageAnon(old_page)) {
  1546. if (!TestSetPageLocked(old_page)) {
  1547. reuse = can_share_swap_page(old_page);
  1548. unlock_page(old_page);
  1549. }
  1550. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1551. (VM_WRITE|VM_SHARED))) {
  1552. /*
  1553. * Only catch write-faults on shared writable pages,
  1554. * read-only shared pages can get COWed by
  1555. * get_user_pages(.write=1, .force=1).
  1556. */
  1557. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1558. /*
  1559. * Notify the address space that the page is about to
  1560. * become writable so that it can prohibit this or wait
  1561. * for the page to get into an appropriate state.
  1562. *
  1563. * We do this without the lock held, so that it can
  1564. * sleep if it needs to.
  1565. */
  1566. page_cache_get(old_page);
  1567. pte_unmap_unlock(page_table, ptl);
  1568. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1569. goto unwritable_page;
  1570. /*
  1571. * Since we dropped the lock we need to revalidate
  1572. * the PTE as someone else may have changed it. If
  1573. * they did, we just return, as we can count on the
  1574. * MMU to tell us if they didn't also make it writable.
  1575. */
  1576. page_table = pte_offset_map_lock(mm, pmd, address,
  1577. &ptl);
  1578. page_cache_release(old_page);
  1579. if (!pte_same(*page_table, orig_pte))
  1580. goto unlock;
  1581. page_mkwrite = 1;
  1582. }
  1583. dirty_page = old_page;
  1584. get_page(dirty_page);
  1585. reuse = 1;
  1586. }
  1587. if (reuse) {
  1588. reuse:
  1589. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1590. entry = pte_mkyoung(orig_pte);
  1591. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1592. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1593. update_mmu_cache(vma, address, entry);
  1594. ret |= VM_FAULT_WRITE;
  1595. goto unlock;
  1596. }
  1597. /*
  1598. * Ok, we need to copy. Oh, well..
  1599. */
  1600. page_cache_get(old_page);
  1601. gotten:
  1602. pte_unmap_unlock(page_table, ptl);
  1603. if (unlikely(anon_vma_prepare(vma)))
  1604. goto oom;
  1605. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1606. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1607. if (!new_page)
  1608. goto oom;
  1609. cow_user_page(new_page, old_page, address, vma);
  1610. __SetPageUptodate(new_page);
  1611. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1612. goto oom_free_new;
  1613. /*
  1614. * Re-check the pte - we dropped the lock
  1615. */
  1616. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1617. if (likely(pte_same(*page_table, orig_pte))) {
  1618. if (old_page) {
  1619. if (!PageAnon(old_page)) {
  1620. dec_mm_counter(mm, file_rss);
  1621. inc_mm_counter(mm, anon_rss);
  1622. }
  1623. } else
  1624. inc_mm_counter(mm, anon_rss);
  1625. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1626. entry = mk_pte(new_page, vma->vm_page_prot);
  1627. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1628. /*
  1629. * Clear the pte entry and flush it first, before updating the
  1630. * pte with the new entry. This will avoid a race condition
  1631. * seen in the presence of one thread doing SMC and another
  1632. * thread doing COW.
  1633. */
  1634. ptep_clear_flush(vma, address, page_table);
  1635. set_pte_at(mm, address, page_table, entry);
  1636. update_mmu_cache(vma, address, entry);
  1637. lru_cache_add_active(new_page);
  1638. page_add_new_anon_rmap(new_page, vma, address);
  1639. if (old_page) {
  1640. /*
  1641. * Only after switching the pte to the new page may
  1642. * we remove the mapcount here. Otherwise another
  1643. * process may come and find the rmap count decremented
  1644. * before the pte is switched to the new page, and
  1645. * "reuse" the old page writing into it while our pte
  1646. * here still points into it and can be read by other
  1647. * threads.
  1648. *
  1649. * The critical issue is to order this
  1650. * page_remove_rmap with the ptp_clear_flush above.
  1651. * Those stores are ordered by (if nothing else,)
  1652. * the barrier present in the atomic_add_negative
  1653. * in page_remove_rmap.
  1654. *
  1655. * Then the TLB flush in ptep_clear_flush ensures that
  1656. * no process can access the old page before the
  1657. * decremented mapcount is visible. And the old page
  1658. * cannot be reused until after the decremented
  1659. * mapcount is visible. So transitively, TLBs to
  1660. * old page will be flushed before it can be reused.
  1661. */
  1662. page_remove_rmap(old_page, vma);
  1663. }
  1664. /* Free the old page.. */
  1665. new_page = old_page;
  1666. ret |= VM_FAULT_WRITE;
  1667. } else
  1668. mem_cgroup_uncharge_page(new_page);
  1669. if (new_page)
  1670. page_cache_release(new_page);
  1671. if (old_page)
  1672. page_cache_release(old_page);
  1673. unlock:
  1674. pte_unmap_unlock(page_table, ptl);
  1675. if (dirty_page) {
  1676. if (vma->vm_file)
  1677. file_update_time(vma->vm_file);
  1678. /*
  1679. * Yes, Virginia, this is actually required to prevent a race
  1680. * with clear_page_dirty_for_io() from clearing the page dirty
  1681. * bit after it clear all dirty ptes, but before a racing
  1682. * do_wp_page installs a dirty pte.
  1683. *
  1684. * do_no_page is protected similarly.
  1685. */
  1686. wait_on_page_locked(dirty_page);
  1687. set_page_dirty_balance(dirty_page, page_mkwrite);
  1688. put_page(dirty_page);
  1689. }
  1690. return ret;
  1691. oom_free_new:
  1692. page_cache_release(new_page);
  1693. oom:
  1694. if (old_page)
  1695. page_cache_release(old_page);
  1696. return VM_FAULT_OOM;
  1697. unwritable_page:
  1698. page_cache_release(old_page);
  1699. return VM_FAULT_SIGBUS;
  1700. }
  1701. /*
  1702. * Helper functions for unmap_mapping_range().
  1703. *
  1704. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1705. *
  1706. * We have to restart searching the prio_tree whenever we drop the lock,
  1707. * since the iterator is only valid while the lock is held, and anyway
  1708. * a later vma might be split and reinserted earlier while lock dropped.
  1709. *
  1710. * The list of nonlinear vmas could be handled more efficiently, using
  1711. * a placeholder, but handle it in the same way until a need is shown.
  1712. * It is important to search the prio_tree before nonlinear list: a vma
  1713. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1714. * while the lock is dropped; but never shifted from list to prio_tree.
  1715. *
  1716. * In order to make forward progress despite restarting the search,
  1717. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1718. * quickly skip it next time around. Since the prio_tree search only
  1719. * shows us those vmas affected by unmapping the range in question, we
  1720. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1721. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1722. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1723. * i_mmap_lock.
  1724. *
  1725. * In order to make forward progress despite repeatedly restarting some
  1726. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1727. * and restart from that address when we reach that vma again. It might
  1728. * have been split or merged, shrunk or extended, but never shifted: so
  1729. * restart_addr remains valid so long as it remains in the vma's range.
  1730. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1731. * values so we can save vma's restart_addr in its truncate_count field.
  1732. */
  1733. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1734. static void reset_vma_truncate_counts(struct address_space *mapping)
  1735. {
  1736. struct vm_area_struct *vma;
  1737. struct prio_tree_iter iter;
  1738. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1739. vma->vm_truncate_count = 0;
  1740. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1741. vma->vm_truncate_count = 0;
  1742. }
  1743. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1744. unsigned long start_addr, unsigned long end_addr,
  1745. struct zap_details *details)
  1746. {
  1747. unsigned long restart_addr;
  1748. int need_break;
  1749. /*
  1750. * files that support invalidating or truncating portions of the
  1751. * file from under mmaped areas must have their ->fault function
  1752. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1753. * This provides synchronisation against concurrent unmapping here.
  1754. */
  1755. again:
  1756. restart_addr = vma->vm_truncate_count;
  1757. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1758. start_addr = restart_addr;
  1759. if (start_addr >= end_addr) {
  1760. /* Top of vma has been split off since last time */
  1761. vma->vm_truncate_count = details->truncate_count;
  1762. return 0;
  1763. }
  1764. }
  1765. restart_addr = zap_page_range(vma, start_addr,
  1766. end_addr - start_addr, details);
  1767. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1768. if (restart_addr >= end_addr) {
  1769. /* We have now completed this vma: mark it so */
  1770. vma->vm_truncate_count = details->truncate_count;
  1771. if (!need_break)
  1772. return 0;
  1773. } else {
  1774. /* Note restart_addr in vma's truncate_count field */
  1775. vma->vm_truncate_count = restart_addr;
  1776. if (!need_break)
  1777. goto again;
  1778. }
  1779. spin_unlock(details->i_mmap_lock);
  1780. cond_resched();
  1781. spin_lock(details->i_mmap_lock);
  1782. return -EINTR;
  1783. }
  1784. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1785. struct zap_details *details)
  1786. {
  1787. struct vm_area_struct *vma;
  1788. struct prio_tree_iter iter;
  1789. pgoff_t vba, vea, zba, zea;
  1790. restart:
  1791. vma_prio_tree_foreach(vma, &iter, root,
  1792. details->first_index, details->last_index) {
  1793. /* Skip quickly over those we have already dealt with */
  1794. if (vma->vm_truncate_count == details->truncate_count)
  1795. continue;
  1796. vba = vma->vm_pgoff;
  1797. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1798. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1799. zba = details->first_index;
  1800. if (zba < vba)
  1801. zba = vba;
  1802. zea = details->last_index;
  1803. if (zea > vea)
  1804. zea = vea;
  1805. if (unmap_mapping_range_vma(vma,
  1806. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1807. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1808. details) < 0)
  1809. goto restart;
  1810. }
  1811. }
  1812. static inline void unmap_mapping_range_list(struct list_head *head,
  1813. struct zap_details *details)
  1814. {
  1815. struct vm_area_struct *vma;
  1816. /*
  1817. * In nonlinear VMAs there is no correspondence between virtual address
  1818. * offset and file offset. So we must perform an exhaustive search
  1819. * across *all* the pages in each nonlinear VMA, not just the pages
  1820. * whose virtual address lies outside the file truncation point.
  1821. */
  1822. restart:
  1823. list_for_each_entry(vma, head, shared.vm_set.list) {
  1824. /* Skip quickly over those we have already dealt with */
  1825. if (vma->vm_truncate_count == details->truncate_count)
  1826. continue;
  1827. details->nonlinear_vma = vma;
  1828. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1829. vma->vm_end, details) < 0)
  1830. goto restart;
  1831. }
  1832. }
  1833. /**
  1834. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1835. * @mapping: the address space containing mmaps to be unmapped.
  1836. * @holebegin: byte in first page to unmap, relative to the start of
  1837. * the underlying file. This will be rounded down to a PAGE_SIZE
  1838. * boundary. Note that this is different from vmtruncate(), which
  1839. * must keep the partial page. In contrast, we must get rid of
  1840. * partial pages.
  1841. * @holelen: size of prospective hole in bytes. This will be rounded
  1842. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1843. * end of the file.
  1844. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1845. * but 0 when invalidating pagecache, don't throw away private data.
  1846. */
  1847. void unmap_mapping_range(struct address_space *mapping,
  1848. loff_t const holebegin, loff_t const holelen, int even_cows)
  1849. {
  1850. struct zap_details details;
  1851. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1852. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1853. /* Check for overflow. */
  1854. if (sizeof(holelen) > sizeof(hlen)) {
  1855. long long holeend =
  1856. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1857. if (holeend & ~(long long)ULONG_MAX)
  1858. hlen = ULONG_MAX - hba + 1;
  1859. }
  1860. details.check_mapping = even_cows? NULL: mapping;
  1861. details.nonlinear_vma = NULL;
  1862. details.first_index = hba;
  1863. details.last_index = hba + hlen - 1;
  1864. if (details.last_index < details.first_index)
  1865. details.last_index = ULONG_MAX;
  1866. details.i_mmap_lock = &mapping->i_mmap_lock;
  1867. spin_lock(&mapping->i_mmap_lock);
  1868. /* Protect against endless unmapping loops */
  1869. mapping->truncate_count++;
  1870. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1871. if (mapping->truncate_count == 0)
  1872. reset_vma_truncate_counts(mapping);
  1873. mapping->truncate_count++;
  1874. }
  1875. details.truncate_count = mapping->truncate_count;
  1876. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1877. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1878. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1879. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1880. spin_unlock(&mapping->i_mmap_lock);
  1881. }
  1882. EXPORT_SYMBOL(unmap_mapping_range);
  1883. /**
  1884. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1885. * @inode: inode of the file used
  1886. * @offset: file offset to start truncating
  1887. *
  1888. * NOTE! We have to be ready to update the memory sharing
  1889. * between the file and the memory map for a potential last
  1890. * incomplete page. Ugly, but necessary.
  1891. */
  1892. int vmtruncate(struct inode * inode, loff_t offset)
  1893. {
  1894. if (inode->i_size < offset) {
  1895. unsigned long limit;
  1896. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1897. if (limit != RLIM_INFINITY && offset > limit)
  1898. goto out_sig;
  1899. if (offset > inode->i_sb->s_maxbytes)
  1900. goto out_big;
  1901. i_size_write(inode, offset);
  1902. } else {
  1903. struct address_space *mapping = inode->i_mapping;
  1904. /*
  1905. * truncation of in-use swapfiles is disallowed - it would
  1906. * cause subsequent swapout to scribble on the now-freed
  1907. * blocks.
  1908. */
  1909. if (IS_SWAPFILE(inode))
  1910. return -ETXTBSY;
  1911. i_size_write(inode, offset);
  1912. /*
  1913. * unmap_mapping_range is called twice, first simply for
  1914. * efficiency so that truncate_inode_pages does fewer
  1915. * single-page unmaps. However after this first call, and
  1916. * before truncate_inode_pages finishes, it is possible for
  1917. * private pages to be COWed, which remain after
  1918. * truncate_inode_pages finishes, hence the second
  1919. * unmap_mapping_range call must be made for correctness.
  1920. */
  1921. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1922. truncate_inode_pages(mapping, offset);
  1923. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1924. }
  1925. if (inode->i_op && inode->i_op->truncate)
  1926. inode->i_op->truncate(inode);
  1927. return 0;
  1928. out_sig:
  1929. send_sig(SIGXFSZ, current, 0);
  1930. out_big:
  1931. return -EFBIG;
  1932. }
  1933. EXPORT_SYMBOL(vmtruncate);
  1934. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1935. {
  1936. struct address_space *mapping = inode->i_mapping;
  1937. /*
  1938. * If the underlying filesystem is not going to provide
  1939. * a way to truncate a range of blocks (punch a hole) -
  1940. * we should return failure right now.
  1941. */
  1942. if (!inode->i_op || !inode->i_op->truncate_range)
  1943. return -ENOSYS;
  1944. mutex_lock(&inode->i_mutex);
  1945. down_write(&inode->i_alloc_sem);
  1946. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1947. truncate_inode_pages_range(mapping, offset, end);
  1948. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1949. inode->i_op->truncate_range(inode, offset, end);
  1950. up_write(&inode->i_alloc_sem);
  1951. mutex_unlock(&inode->i_mutex);
  1952. return 0;
  1953. }
  1954. /*
  1955. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1956. * but allow concurrent faults), and pte mapped but not yet locked.
  1957. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1958. */
  1959. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1960. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1961. int write_access, pte_t orig_pte)
  1962. {
  1963. spinlock_t *ptl;
  1964. struct page *page;
  1965. swp_entry_t entry;
  1966. pte_t pte;
  1967. int ret = 0;
  1968. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1969. goto out;
  1970. entry = pte_to_swp_entry(orig_pte);
  1971. if (is_migration_entry(entry)) {
  1972. migration_entry_wait(mm, pmd, address);
  1973. goto out;
  1974. }
  1975. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1976. page = lookup_swap_cache(entry);
  1977. if (!page) {
  1978. grab_swap_token(); /* Contend for token _before_ read-in */
  1979. page = swapin_readahead(entry,
  1980. GFP_HIGHUSER_MOVABLE, vma, address);
  1981. if (!page) {
  1982. /*
  1983. * Back out if somebody else faulted in this pte
  1984. * while we released the pte lock.
  1985. */
  1986. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1987. if (likely(pte_same(*page_table, orig_pte)))
  1988. ret = VM_FAULT_OOM;
  1989. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1990. goto unlock;
  1991. }
  1992. /* Had to read the page from swap area: Major fault */
  1993. ret = VM_FAULT_MAJOR;
  1994. count_vm_event(PGMAJFAULT);
  1995. }
  1996. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  1997. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1998. ret = VM_FAULT_OOM;
  1999. goto out;
  2000. }
  2001. mark_page_accessed(page);
  2002. lock_page(page);
  2003. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2004. /*
  2005. * Back out if somebody else already faulted in this pte.
  2006. */
  2007. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2008. if (unlikely(!pte_same(*page_table, orig_pte)))
  2009. goto out_nomap;
  2010. if (unlikely(!PageUptodate(page))) {
  2011. ret = VM_FAULT_SIGBUS;
  2012. goto out_nomap;
  2013. }
  2014. /* The page isn't present yet, go ahead with the fault. */
  2015. inc_mm_counter(mm, anon_rss);
  2016. pte = mk_pte(page, vma->vm_page_prot);
  2017. if (write_access && can_share_swap_page(page)) {
  2018. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2019. write_access = 0;
  2020. }
  2021. flush_icache_page(vma, page);
  2022. set_pte_at(mm, address, page_table, pte);
  2023. page_add_anon_rmap(page, vma, address);
  2024. swap_free(entry);
  2025. if (vm_swap_full())
  2026. remove_exclusive_swap_page(page);
  2027. unlock_page(page);
  2028. if (write_access) {
  2029. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2030. if (ret & VM_FAULT_ERROR)
  2031. ret &= VM_FAULT_ERROR;
  2032. goto out;
  2033. }
  2034. /* No need to invalidate - it was non-present before */
  2035. update_mmu_cache(vma, address, pte);
  2036. unlock:
  2037. pte_unmap_unlock(page_table, ptl);
  2038. out:
  2039. return ret;
  2040. out_nomap:
  2041. mem_cgroup_uncharge_page(page);
  2042. pte_unmap_unlock(page_table, ptl);
  2043. unlock_page(page);
  2044. page_cache_release(page);
  2045. return ret;
  2046. }
  2047. /*
  2048. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2049. * but allow concurrent faults), and pte mapped but not yet locked.
  2050. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2051. */
  2052. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2053. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2054. int write_access)
  2055. {
  2056. struct page *page;
  2057. spinlock_t *ptl;
  2058. pte_t entry;
  2059. /* Allocate our own private page. */
  2060. pte_unmap(page_table);
  2061. if (unlikely(anon_vma_prepare(vma)))
  2062. goto oom;
  2063. page = alloc_zeroed_user_highpage_movable(vma, address);
  2064. if (!page)
  2065. goto oom;
  2066. __SetPageUptodate(page);
  2067. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  2068. goto oom_free_page;
  2069. entry = mk_pte(page, vma->vm_page_prot);
  2070. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2071. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2072. if (!pte_none(*page_table))
  2073. goto release;
  2074. inc_mm_counter(mm, anon_rss);
  2075. lru_cache_add_active(page);
  2076. page_add_new_anon_rmap(page, vma, address);
  2077. set_pte_at(mm, address, page_table, entry);
  2078. /* No need to invalidate - it was non-present before */
  2079. update_mmu_cache(vma, address, entry);
  2080. unlock:
  2081. pte_unmap_unlock(page_table, ptl);
  2082. return 0;
  2083. release:
  2084. mem_cgroup_uncharge_page(page);
  2085. page_cache_release(page);
  2086. goto unlock;
  2087. oom_free_page:
  2088. page_cache_release(page);
  2089. oom:
  2090. return VM_FAULT_OOM;
  2091. }
  2092. /*
  2093. * __do_fault() tries to create a new page mapping. It aggressively
  2094. * tries to share with existing pages, but makes a separate copy if
  2095. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2096. * the next page fault.
  2097. *
  2098. * As this is called only for pages that do not currently exist, we
  2099. * do not need to flush old virtual caches or the TLB.
  2100. *
  2101. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2102. * but allow concurrent faults), and pte neither mapped nor locked.
  2103. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2104. */
  2105. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2106. unsigned long address, pmd_t *pmd,
  2107. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2108. {
  2109. pte_t *page_table;
  2110. spinlock_t *ptl;
  2111. struct page *page;
  2112. pte_t entry;
  2113. int anon = 0;
  2114. struct page *dirty_page = NULL;
  2115. struct vm_fault vmf;
  2116. int ret;
  2117. int page_mkwrite = 0;
  2118. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2119. vmf.pgoff = pgoff;
  2120. vmf.flags = flags;
  2121. vmf.page = NULL;
  2122. ret = vma->vm_ops->fault(vma, &vmf);
  2123. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2124. return ret;
  2125. /*
  2126. * For consistency in subsequent calls, make the faulted page always
  2127. * locked.
  2128. */
  2129. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2130. lock_page(vmf.page);
  2131. else
  2132. VM_BUG_ON(!PageLocked(vmf.page));
  2133. /*
  2134. * Should we do an early C-O-W break?
  2135. */
  2136. page = vmf.page;
  2137. if (flags & FAULT_FLAG_WRITE) {
  2138. if (!(vma->vm_flags & VM_SHARED)) {
  2139. anon = 1;
  2140. if (unlikely(anon_vma_prepare(vma))) {
  2141. ret = VM_FAULT_OOM;
  2142. goto out;
  2143. }
  2144. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2145. vma, address);
  2146. if (!page) {
  2147. ret = VM_FAULT_OOM;
  2148. goto out;
  2149. }
  2150. copy_user_highpage(page, vmf.page, address, vma);
  2151. __SetPageUptodate(page);
  2152. } else {
  2153. /*
  2154. * If the page will be shareable, see if the backing
  2155. * address space wants to know that the page is about
  2156. * to become writable
  2157. */
  2158. if (vma->vm_ops->page_mkwrite) {
  2159. unlock_page(page);
  2160. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2161. ret = VM_FAULT_SIGBUS;
  2162. anon = 1; /* no anon but release vmf.page */
  2163. goto out_unlocked;
  2164. }
  2165. lock_page(page);
  2166. /*
  2167. * XXX: this is not quite right (racy vs
  2168. * invalidate) to unlock and relock the page
  2169. * like this, however a better fix requires
  2170. * reworking page_mkwrite locking API, which
  2171. * is better done later.
  2172. */
  2173. if (!page->mapping) {
  2174. ret = 0;
  2175. anon = 1; /* no anon but release vmf.page */
  2176. goto out;
  2177. }
  2178. page_mkwrite = 1;
  2179. }
  2180. }
  2181. }
  2182. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2183. ret = VM_FAULT_OOM;
  2184. goto out;
  2185. }
  2186. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2187. /*
  2188. * This silly early PAGE_DIRTY setting removes a race
  2189. * due to the bad i386 page protection. But it's valid
  2190. * for other architectures too.
  2191. *
  2192. * Note that if write_access is true, we either now have
  2193. * an exclusive copy of the page, or this is a shared mapping,
  2194. * so we can make it writable and dirty to avoid having to
  2195. * handle that later.
  2196. */
  2197. /* Only go through if we didn't race with anybody else... */
  2198. if (likely(pte_same(*page_table, orig_pte))) {
  2199. flush_icache_page(vma, page);
  2200. entry = mk_pte(page, vma->vm_page_prot);
  2201. if (flags & FAULT_FLAG_WRITE)
  2202. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2203. set_pte_at(mm, address, page_table, entry);
  2204. if (anon) {
  2205. inc_mm_counter(mm, anon_rss);
  2206. lru_cache_add_active(page);
  2207. page_add_new_anon_rmap(page, vma, address);
  2208. } else {
  2209. inc_mm_counter(mm, file_rss);
  2210. page_add_file_rmap(page);
  2211. if (flags & FAULT_FLAG_WRITE) {
  2212. dirty_page = page;
  2213. get_page(dirty_page);
  2214. }
  2215. }
  2216. /* no need to invalidate: a not-present page won't be cached */
  2217. update_mmu_cache(vma, address, entry);
  2218. } else {
  2219. mem_cgroup_uncharge_page(page);
  2220. if (anon)
  2221. page_cache_release(page);
  2222. else
  2223. anon = 1; /* no anon but release faulted_page */
  2224. }
  2225. pte_unmap_unlock(page_table, ptl);
  2226. out:
  2227. unlock_page(vmf.page);
  2228. out_unlocked:
  2229. if (anon)
  2230. page_cache_release(vmf.page);
  2231. else if (dirty_page) {
  2232. if (vma->vm_file)
  2233. file_update_time(vma->vm_file);
  2234. set_page_dirty_balance(dirty_page, page_mkwrite);
  2235. put_page(dirty_page);
  2236. }
  2237. return ret;
  2238. }
  2239. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2240. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2241. int write_access, pte_t orig_pte)
  2242. {
  2243. pgoff_t pgoff = (((address & PAGE_MASK)
  2244. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2245. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2246. pte_unmap(page_table);
  2247. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2248. }
  2249. /*
  2250. * do_no_pfn() tries to create a new page mapping for a page without
  2251. * a struct_page backing it
  2252. *
  2253. * As this is called only for pages that do not currently exist, we
  2254. * do not need to flush old virtual caches or the TLB.
  2255. *
  2256. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2257. * but allow concurrent faults), and pte mapped but not yet locked.
  2258. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2259. *
  2260. * It is expected that the ->nopfn handler always returns the same pfn
  2261. * for a given virtual mapping.
  2262. *
  2263. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2264. */
  2265. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2266. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2267. int write_access)
  2268. {
  2269. spinlock_t *ptl;
  2270. pte_t entry;
  2271. unsigned long pfn;
  2272. pte_unmap(page_table);
  2273. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  2274. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  2275. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2276. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  2277. if (unlikely(pfn == NOPFN_OOM))
  2278. return VM_FAULT_OOM;
  2279. else if (unlikely(pfn == NOPFN_SIGBUS))
  2280. return VM_FAULT_SIGBUS;
  2281. else if (unlikely(pfn == NOPFN_REFAULT))
  2282. return 0;
  2283. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2284. /* Only go through if we didn't race with anybody else... */
  2285. if (pte_none(*page_table)) {
  2286. entry = pfn_pte(pfn, vma->vm_page_prot);
  2287. if (write_access)
  2288. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2289. set_pte_at(mm, address, page_table, entry);
  2290. }
  2291. pte_unmap_unlock(page_table, ptl);
  2292. return 0;
  2293. }
  2294. /*
  2295. * Fault of a previously existing named mapping. Repopulate the pte
  2296. * from the encoded file_pte if possible. This enables swappable
  2297. * nonlinear vmas.
  2298. *
  2299. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2300. * but allow concurrent faults), and pte mapped but not yet locked.
  2301. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2302. */
  2303. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2304. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2305. int write_access, pte_t orig_pte)
  2306. {
  2307. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2308. (write_access ? FAULT_FLAG_WRITE : 0);
  2309. pgoff_t pgoff;
  2310. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2311. return 0;
  2312. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2313. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2314. /*
  2315. * Page table corrupted: show pte and kill process.
  2316. */
  2317. print_bad_pte(vma, orig_pte, address);
  2318. return VM_FAULT_OOM;
  2319. }
  2320. pgoff = pte_to_pgoff(orig_pte);
  2321. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2322. }
  2323. /*
  2324. * These routines also need to handle stuff like marking pages dirty
  2325. * and/or accessed for architectures that don't do it in hardware (most
  2326. * RISC architectures). The early dirtying is also good on the i386.
  2327. *
  2328. * There is also a hook called "update_mmu_cache()" that architectures
  2329. * with external mmu caches can use to update those (ie the Sparc or
  2330. * PowerPC hashed page tables that act as extended TLBs).
  2331. *
  2332. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2333. * but allow concurrent faults), and pte mapped but not yet locked.
  2334. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2335. */
  2336. static inline int handle_pte_fault(struct mm_struct *mm,
  2337. struct vm_area_struct *vma, unsigned long address,
  2338. pte_t *pte, pmd_t *pmd, int write_access)
  2339. {
  2340. pte_t entry;
  2341. spinlock_t *ptl;
  2342. entry = *pte;
  2343. if (!pte_present(entry)) {
  2344. if (pte_none(entry)) {
  2345. if (vma->vm_ops) {
  2346. if (likely(vma->vm_ops->fault))
  2347. return do_linear_fault(mm, vma, address,
  2348. pte, pmd, write_access, entry);
  2349. if (unlikely(vma->vm_ops->nopfn))
  2350. return do_no_pfn(mm, vma, address, pte,
  2351. pmd, write_access);
  2352. }
  2353. return do_anonymous_page(mm, vma, address,
  2354. pte, pmd, write_access);
  2355. }
  2356. if (pte_file(entry))
  2357. return do_nonlinear_fault(mm, vma, address,
  2358. pte, pmd, write_access, entry);
  2359. return do_swap_page(mm, vma, address,
  2360. pte, pmd, write_access, entry);
  2361. }
  2362. ptl = pte_lockptr(mm, pmd);
  2363. spin_lock(ptl);
  2364. if (unlikely(!pte_same(*pte, entry)))
  2365. goto unlock;
  2366. if (write_access) {
  2367. if (!pte_write(entry))
  2368. return do_wp_page(mm, vma, address,
  2369. pte, pmd, ptl, entry);
  2370. entry = pte_mkdirty(entry);
  2371. }
  2372. entry = pte_mkyoung(entry);
  2373. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2374. update_mmu_cache(vma, address, entry);
  2375. } else {
  2376. /*
  2377. * This is needed only for protection faults but the arch code
  2378. * is not yet telling us if this is a protection fault or not.
  2379. * This still avoids useless tlb flushes for .text page faults
  2380. * with threads.
  2381. */
  2382. if (write_access)
  2383. flush_tlb_page(vma, address);
  2384. }
  2385. unlock:
  2386. pte_unmap_unlock(pte, ptl);
  2387. return 0;
  2388. }
  2389. /*
  2390. * By the time we get here, we already hold the mm semaphore
  2391. */
  2392. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2393. unsigned long address, int write_access)
  2394. {
  2395. pgd_t *pgd;
  2396. pud_t *pud;
  2397. pmd_t *pmd;
  2398. pte_t *pte;
  2399. __set_current_state(TASK_RUNNING);
  2400. count_vm_event(PGFAULT);
  2401. if (unlikely(is_vm_hugetlb_page(vma)))
  2402. return hugetlb_fault(mm, vma, address, write_access);
  2403. pgd = pgd_offset(mm, address);
  2404. pud = pud_alloc(mm, pgd, address);
  2405. if (!pud)
  2406. return VM_FAULT_OOM;
  2407. pmd = pmd_alloc(mm, pud, address);
  2408. if (!pmd)
  2409. return VM_FAULT_OOM;
  2410. pte = pte_alloc_map(mm, pmd, address);
  2411. if (!pte)
  2412. return VM_FAULT_OOM;
  2413. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2414. }
  2415. #ifndef __PAGETABLE_PUD_FOLDED
  2416. /*
  2417. * Allocate page upper directory.
  2418. * We've already handled the fast-path in-line.
  2419. */
  2420. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2421. {
  2422. pud_t *new = pud_alloc_one(mm, address);
  2423. if (!new)
  2424. return -ENOMEM;
  2425. smp_wmb(); /* See comment in __pte_alloc */
  2426. spin_lock(&mm->page_table_lock);
  2427. if (pgd_present(*pgd)) /* Another has populated it */
  2428. pud_free(mm, new);
  2429. else
  2430. pgd_populate(mm, pgd, new);
  2431. spin_unlock(&mm->page_table_lock);
  2432. return 0;
  2433. }
  2434. #endif /* __PAGETABLE_PUD_FOLDED */
  2435. #ifndef __PAGETABLE_PMD_FOLDED
  2436. /*
  2437. * Allocate page middle directory.
  2438. * We've already handled the fast-path in-line.
  2439. */
  2440. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2441. {
  2442. pmd_t *new = pmd_alloc_one(mm, address);
  2443. if (!new)
  2444. return -ENOMEM;
  2445. smp_wmb(); /* See comment in __pte_alloc */
  2446. spin_lock(&mm->page_table_lock);
  2447. #ifndef __ARCH_HAS_4LEVEL_HACK
  2448. if (pud_present(*pud)) /* Another has populated it */
  2449. pmd_free(mm, new);
  2450. else
  2451. pud_populate(mm, pud, new);
  2452. #else
  2453. if (pgd_present(*pud)) /* Another has populated it */
  2454. pmd_free(mm, new);
  2455. else
  2456. pgd_populate(mm, pud, new);
  2457. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2458. spin_unlock(&mm->page_table_lock);
  2459. return 0;
  2460. }
  2461. #endif /* __PAGETABLE_PMD_FOLDED */
  2462. int make_pages_present(unsigned long addr, unsigned long end)
  2463. {
  2464. int ret, len, write;
  2465. struct vm_area_struct * vma;
  2466. vma = find_vma(current->mm, addr);
  2467. if (!vma)
  2468. return -1;
  2469. write = (vma->vm_flags & VM_WRITE) != 0;
  2470. BUG_ON(addr >= end);
  2471. BUG_ON(end > vma->vm_end);
  2472. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2473. ret = get_user_pages(current, current->mm, addr,
  2474. len, write, 0, NULL, NULL);
  2475. if (ret < 0)
  2476. return ret;
  2477. return ret == len ? 0 : -1;
  2478. }
  2479. #if !defined(__HAVE_ARCH_GATE_AREA)
  2480. #if defined(AT_SYSINFO_EHDR)
  2481. static struct vm_area_struct gate_vma;
  2482. static int __init gate_vma_init(void)
  2483. {
  2484. gate_vma.vm_mm = NULL;
  2485. gate_vma.vm_start = FIXADDR_USER_START;
  2486. gate_vma.vm_end = FIXADDR_USER_END;
  2487. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2488. gate_vma.vm_page_prot = __P101;
  2489. /*
  2490. * Make sure the vDSO gets into every core dump.
  2491. * Dumping its contents makes post-mortem fully interpretable later
  2492. * without matching up the same kernel and hardware config to see
  2493. * what PC values meant.
  2494. */
  2495. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2496. return 0;
  2497. }
  2498. __initcall(gate_vma_init);
  2499. #endif
  2500. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2501. {
  2502. #ifdef AT_SYSINFO_EHDR
  2503. return &gate_vma;
  2504. #else
  2505. return NULL;
  2506. #endif
  2507. }
  2508. int in_gate_area_no_task(unsigned long addr)
  2509. {
  2510. #ifdef AT_SYSINFO_EHDR
  2511. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2512. return 1;
  2513. #endif
  2514. return 0;
  2515. }
  2516. #endif /* __HAVE_ARCH_GATE_AREA */
  2517. /*
  2518. * Access another process' address space.
  2519. * Source/target buffer must be kernel space,
  2520. * Do not walk the page table directly, use get_user_pages
  2521. */
  2522. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2523. {
  2524. struct mm_struct *mm;
  2525. struct vm_area_struct *vma;
  2526. struct page *page;
  2527. void *old_buf = buf;
  2528. mm = get_task_mm(tsk);
  2529. if (!mm)
  2530. return 0;
  2531. down_read(&mm->mmap_sem);
  2532. /* ignore errors, just check how much was successfully transferred */
  2533. while (len) {
  2534. int bytes, ret, offset;
  2535. void *maddr;
  2536. ret = get_user_pages(tsk, mm, addr, 1,
  2537. write, 1, &page, &vma);
  2538. if (ret <= 0)
  2539. break;
  2540. bytes = len;
  2541. offset = addr & (PAGE_SIZE-1);
  2542. if (bytes > PAGE_SIZE-offset)
  2543. bytes = PAGE_SIZE-offset;
  2544. maddr = kmap(page);
  2545. if (write) {
  2546. copy_to_user_page(vma, page, addr,
  2547. maddr + offset, buf, bytes);
  2548. set_page_dirty_lock(page);
  2549. } else {
  2550. copy_from_user_page(vma, page, addr,
  2551. buf, maddr + offset, bytes);
  2552. }
  2553. kunmap(page);
  2554. page_cache_release(page);
  2555. len -= bytes;
  2556. buf += bytes;
  2557. addr += bytes;
  2558. }
  2559. up_read(&mm->mmap_sem);
  2560. mmput(mm);
  2561. return buf - old_buf;
  2562. }
  2563. /*
  2564. * Print the name of a VMA.
  2565. */
  2566. void print_vma_addr(char *prefix, unsigned long ip)
  2567. {
  2568. struct mm_struct *mm = current->mm;
  2569. struct vm_area_struct *vma;
  2570. /*
  2571. * Do not print if we are in atomic
  2572. * contexts (in exception stacks, etc.):
  2573. */
  2574. if (preempt_count())
  2575. return;
  2576. down_read(&mm->mmap_sem);
  2577. vma = find_vma(mm, ip);
  2578. if (vma && vma->vm_file) {
  2579. struct file *f = vma->vm_file;
  2580. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2581. if (buf) {
  2582. char *p, *s;
  2583. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2584. if (IS_ERR(p))
  2585. p = "?";
  2586. s = strrchr(p, '/');
  2587. if (s)
  2588. p = s+1;
  2589. printk("%s%s[%lx+%lx]", prefix, p,
  2590. vma->vm_start,
  2591. vma->vm_end - vma->vm_start);
  2592. free_page((unsigned long)buf);
  2593. }
  2594. }
  2595. up_read(&current->mm->mmap_sem);
  2596. }