fsl_elbc_nand.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. /* Freescale Enhanced Local Bus Controller NAND driver
  2. *
  3. * Copyright (c) 2006-2007 Freescale Semiconductor
  4. *
  5. * Authors: Nick Spence <nick.spence@freescale.com>,
  6. * Scott Wood <scottwood@freescale.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/string.h>
  27. #include <linux/ioport.h>
  28. #include <linux/of_platform.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/mtd/mtd.h>
  32. #include <linux/mtd/nand.h>
  33. #include <linux/mtd/nand_ecc.h>
  34. #include <linux/mtd/partitions.h>
  35. #include <asm/io.h>
  36. #include <asm/fsl_lbc.h>
  37. #define MAX_BANKS 8
  38. #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  39. #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  40. struct fsl_elbc_ctrl;
  41. /* mtd information per set */
  42. struct fsl_elbc_mtd {
  43. struct mtd_info mtd;
  44. struct nand_chip chip;
  45. struct fsl_elbc_ctrl *ctrl;
  46. struct device *dev;
  47. int bank; /* Chip select bank number */
  48. u8 __iomem *vbase; /* Chip select base virtual address */
  49. int page_size; /* NAND page size (0=512, 1=2048) */
  50. unsigned int fmr; /* FCM Flash Mode Register value */
  51. };
  52. /* overview of the fsl elbc controller */
  53. struct fsl_elbc_ctrl {
  54. struct nand_hw_control controller;
  55. struct fsl_elbc_mtd *chips[MAX_BANKS];
  56. /* device info */
  57. struct device *dev;
  58. struct fsl_lbc_regs __iomem *regs;
  59. int irq;
  60. wait_queue_head_t irq_wait;
  61. unsigned int irq_status; /* status read from LTESR by irq handler */
  62. u8 __iomem *addr; /* Address of assigned FCM buffer */
  63. unsigned int page; /* Last page written to / read from */
  64. unsigned int read_bytes; /* Number of bytes read during command */
  65. unsigned int column; /* Saved column from SEQIN */
  66. unsigned int index; /* Pointer to next byte to 'read' */
  67. unsigned int status; /* status read from LTESR after last op */
  68. unsigned int mdr; /* UPM/FCM Data Register value */
  69. unsigned int use_mdr; /* Non zero if the MDR is to be set */
  70. unsigned int oob; /* Non zero if operating on OOB data */
  71. char *oob_poi; /* Place to write ECC after read back */
  72. };
  73. /* These map to the positions used by the FCM hardware ECC generator */
  74. /* Small Page FLASH with FMR[ECCM] = 0 */
  75. static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  76. .eccbytes = 3,
  77. .eccpos = {6, 7, 8},
  78. .oobfree = { {0, 5}, {9, 7} },
  79. .oobavail = 12,
  80. };
  81. /* Small Page FLASH with FMR[ECCM] = 1 */
  82. static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  83. .eccbytes = 3,
  84. .eccpos = {8, 9, 10},
  85. .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  86. .oobavail = 12,
  87. };
  88. /* Large Page FLASH with FMR[ECCM] = 0 */
  89. static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  90. .eccbytes = 12,
  91. .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
  92. .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
  93. .oobavail = 48,
  94. };
  95. /* Large Page FLASH with FMR[ECCM] = 1 */
  96. static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
  97. .eccbytes = 12,
  98. .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
  99. .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
  100. .oobavail = 48,
  101. };
  102. /*=================================*/
  103. /*
  104. * Set up the FCM hardware block and page address fields, and the fcm
  105. * structure addr field to point to the correct FCM buffer in memory
  106. */
  107. static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
  108. {
  109. struct nand_chip *chip = mtd->priv;
  110. struct fsl_elbc_mtd *priv = chip->priv;
  111. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  112. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  113. int buf_num;
  114. ctrl->page = page_addr;
  115. out_be32(&lbc->fbar,
  116. page_addr >> (chip->phys_erase_shift - chip->page_shift));
  117. if (priv->page_size) {
  118. out_be32(&lbc->fpar,
  119. ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
  120. (oob ? FPAR_LP_MS : 0) | column);
  121. buf_num = (page_addr & 1) << 2;
  122. } else {
  123. out_be32(&lbc->fpar,
  124. ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
  125. (oob ? FPAR_SP_MS : 0) | column);
  126. buf_num = page_addr & 7;
  127. }
  128. ctrl->addr = priv->vbase + buf_num * 1024;
  129. ctrl->index = column;
  130. /* for OOB data point to the second half of the buffer */
  131. if (oob)
  132. ctrl->index += priv->page_size ? 2048 : 512;
  133. dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
  134. "index %x, pes %d ps %d\n",
  135. buf_num, ctrl->addr, priv->vbase, ctrl->index,
  136. chip->phys_erase_shift, chip->page_shift);
  137. }
  138. /*
  139. * execute FCM command and wait for it to complete
  140. */
  141. static int fsl_elbc_run_command(struct mtd_info *mtd)
  142. {
  143. struct nand_chip *chip = mtd->priv;
  144. struct fsl_elbc_mtd *priv = chip->priv;
  145. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  146. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  147. /* Setup the FMR[OP] to execute without write protection */
  148. out_be32(&lbc->fmr, priv->fmr | 3);
  149. if (ctrl->use_mdr)
  150. out_be32(&lbc->mdr, ctrl->mdr);
  151. dev_vdbg(ctrl->dev,
  152. "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
  153. in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
  154. dev_vdbg(ctrl->dev,
  155. "fsl_elbc_run_command: fbar=%08x fpar=%08x "
  156. "fbcr=%08x bank=%d\n",
  157. in_be32(&lbc->fbar), in_be32(&lbc->fpar),
  158. in_be32(&lbc->fbcr), priv->bank);
  159. ctrl->irq_status = 0;
  160. /* execute special operation */
  161. out_be32(&lbc->lsor, priv->bank);
  162. /* wait for FCM complete flag or timeout */
  163. wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
  164. FCM_TIMEOUT_MSECS * HZ/1000);
  165. ctrl->status = ctrl->irq_status;
  166. /* store mdr value in case it was needed */
  167. if (ctrl->use_mdr)
  168. ctrl->mdr = in_be32(&lbc->mdr);
  169. ctrl->use_mdr = 0;
  170. dev_vdbg(ctrl->dev,
  171. "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
  172. ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
  173. /* returns 0 on success otherwise non-zero) */
  174. return ctrl->status == LTESR_CC ? 0 : -EIO;
  175. }
  176. static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
  177. {
  178. struct fsl_elbc_mtd *priv = chip->priv;
  179. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  180. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  181. if (priv->page_size) {
  182. out_be32(&lbc->fir,
  183. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  184. (FIR_OP_CA << FIR_OP1_SHIFT) |
  185. (FIR_OP_PA << FIR_OP2_SHIFT) |
  186. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  187. (FIR_OP_RBW << FIR_OP4_SHIFT));
  188. out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  189. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  190. } else {
  191. out_be32(&lbc->fir,
  192. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  193. (FIR_OP_CA << FIR_OP1_SHIFT) |
  194. (FIR_OP_PA << FIR_OP2_SHIFT) |
  195. (FIR_OP_RBW << FIR_OP3_SHIFT));
  196. if (oob)
  197. out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
  198. else
  199. out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  200. }
  201. }
  202. /* cmdfunc send commands to the FCM */
  203. static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
  204. int column, int page_addr)
  205. {
  206. struct nand_chip *chip = mtd->priv;
  207. struct fsl_elbc_mtd *priv = chip->priv;
  208. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  209. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  210. ctrl->use_mdr = 0;
  211. /* clear the read buffer */
  212. ctrl->read_bytes = 0;
  213. if (command != NAND_CMD_PAGEPROG)
  214. ctrl->index = 0;
  215. switch (command) {
  216. /* READ0 and READ1 read the entire buffer to use hardware ECC. */
  217. case NAND_CMD_READ1:
  218. column += 256;
  219. /* fall-through */
  220. case NAND_CMD_READ0:
  221. dev_dbg(ctrl->dev,
  222. "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
  223. " 0x%x, column: 0x%x.\n", page_addr, column);
  224. out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
  225. set_addr(mtd, 0, page_addr, 0);
  226. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  227. ctrl->index += column;
  228. fsl_elbc_do_read(chip, 0);
  229. fsl_elbc_run_command(mtd);
  230. return;
  231. /* READOOB reads only the OOB because no ECC is performed. */
  232. case NAND_CMD_READOOB:
  233. dev_vdbg(ctrl->dev,
  234. "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
  235. " 0x%x, column: 0x%x.\n", page_addr, column);
  236. out_be32(&lbc->fbcr, mtd->oobsize - column);
  237. set_addr(mtd, column, page_addr, 1);
  238. ctrl->read_bytes = mtd->writesize + mtd->oobsize;
  239. fsl_elbc_do_read(chip, 1);
  240. fsl_elbc_run_command(mtd);
  241. return;
  242. /* READID must read all 5 possible bytes while CEB is active */
  243. case NAND_CMD_READID:
  244. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
  245. out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  246. (FIR_OP_UA << FIR_OP1_SHIFT) |
  247. (FIR_OP_RBW << FIR_OP2_SHIFT));
  248. out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
  249. /* 5 bytes for manuf, device and exts */
  250. out_be32(&lbc->fbcr, 5);
  251. ctrl->read_bytes = 5;
  252. ctrl->use_mdr = 1;
  253. ctrl->mdr = 0;
  254. set_addr(mtd, 0, 0, 0);
  255. fsl_elbc_run_command(mtd);
  256. return;
  257. /* ERASE1 stores the block and page address */
  258. case NAND_CMD_ERASE1:
  259. dev_vdbg(ctrl->dev,
  260. "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
  261. "page_addr: 0x%x.\n", page_addr);
  262. set_addr(mtd, 0, page_addr, 0);
  263. return;
  264. /* ERASE2 uses the block and page address from ERASE1 */
  265. case NAND_CMD_ERASE2:
  266. dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
  267. out_be32(&lbc->fir,
  268. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  269. (FIR_OP_PA << FIR_OP1_SHIFT) |
  270. (FIR_OP_CM1 << FIR_OP2_SHIFT));
  271. out_be32(&lbc->fcr,
  272. (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
  273. (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
  274. out_be32(&lbc->fbcr, 0);
  275. ctrl->read_bytes = 0;
  276. fsl_elbc_run_command(mtd);
  277. return;
  278. /* SEQIN sets up the addr buffer and all registers except the length */
  279. case NAND_CMD_SEQIN: {
  280. __be32 fcr;
  281. dev_vdbg(ctrl->dev,
  282. "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
  283. "page_addr: 0x%x, column: 0x%x.\n",
  284. page_addr, column);
  285. ctrl->column = column;
  286. ctrl->oob = 0;
  287. if (priv->page_size) {
  288. fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
  289. (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
  290. out_be32(&lbc->fir,
  291. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  292. (FIR_OP_CA << FIR_OP1_SHIFT) |
  293. (FIR_OP_PA << FIR_OP2_SHIFT) |
  294. (FIR_OP_WB << FIR_OP3_SHIFT) |
  295. (FIR_OP_CW1 << FIR_OP4_SHIFT));
  296. } else {
  297. fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
  298. (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
  299. out_be32(&lbc->fir,
  300. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  301. (FIR_OP_CM2 << FIR_OP1_SHIFT) |
  302. (FIR_OP_CA << FIR_OP2_SHIFT) |
  303. (FIR_OP_PA << FIR_OP3_SHIFT) |
  304. (FIR_OP_WB << FIR_OP4_SHIFT) |
  305. (FIR_OP_CW1 << FIR_OP5_SHIFT));
  306. if (column >= mtd->writesize) {
  307. /* OOB area --> READOOB */
  308. column -= mtd->writesize;
  309. fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
  310. ctrl->oob = 1;
  311. } else if (column < 256) {
  312. /* First 256 bytes --> READ0 */
  313. fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
  314. } else {
  315. /* Second 256 bytes --> READ1 */
  316. fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
  317. }
  318. }
  319. out_be32(&lbc->fcr, fcr);
  320. set_addr(mtd, column, page_addr, ctrl->oob);
  321. return;
  322. }
  323. /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
  324. case NAND_CMD_PAGEPROG: {
  325. int full_page;
  326. dev_vdbg(ctrl->dev,
  327. "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
  328. "writing %d bytes.\n", ctrl->index);
  329. /* if the write did not start at 0 or is not a full page
  330. * then set the exact length, otherwise use a full page
  331. * write so the HW generates the ECC.
  332. */
  333. if (ctrl->oob || ctrl->column != 0 ||
  334. ctrl->index != mtd->writesize + mtd->oobsize) {
  335. out_be32(&lbc->fbcr, ctrl->index);
  336. full_page = 0;
  337. } else {
  338. out_be32(&lbc->fbcr, 0);
  339. full_page = 1;
  340. }
  341. fsl_elbc_run_command(mtd);
  342. /* Read back the page in order to fill in the ECC for the
  343. * caller. Is this really needed?
  344. */
  345. if (full_page && ctrl->oob_poi) {
  346. out_be32(&lbc->fbcr, 3);
  347. set_addr(mtd, 6, page_addr, 1);
  348. ctrl->read_bytes = mtd->writesize + 9;
  349. fsl_elbc_do_read(chip, 1);
  350. fsl_elbc_run_command(mtd);
  351. memcpy_fromio(ctrl->oob_poi + 6,
  352. &ctrl->addr[ctrl->index], 3);
  353. ctrl->index += 3;
  354. }
  355. ctrl->oob_poi = NULL;
  356. return;
  357. }
  358. /* CMD_STATUS must read the status byte while CEB is active */
  359. /* Note - it does not wait for the ready line */
  360. case NAND_CMD_STATUS:
  361. out_be32(&lbc->fir,
  362. (FIR_OP_CM0 << FIR_OP0_SHIFT) |
  363. (FIR_OP_RBW << FIR_OP1_SHIFT));
  364. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  365. out_be32(&lbc->fbcr, 1);
  366. set_addr(mtd, 0, 0, 0);
  367. ctrl->read_bytes = 1;
  368. fsl_elbc_run_command(mtd);
  369. /* The chip always seems to report that it is
  370. * write-protected, even when it is not.
  371. */
  372. setbits8(ctrl->addr, NAND_STATUS_WP);
  373. return;
  374. /* RESET without waiting for the ready line */
  375. case NAND_CMD_RESET:
  376. dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
  377. out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
  378. out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
  379. fsl_elbc_run_command(mtd);
  380. return;
  381. default:
  382. dev_err(ctrl->dev,
  383. "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
  384. command);
  385. }
  386. }
  387. static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
  388. {
  389. /* The hardware does not seem to support multiple
  390. * chips per bank.
  391. */
  392. }
  393. /*
  394. * Write buf to the FCM Controller Data Buffer
  395. */
  396. static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
  397. {
  398. struct nand_chip *chip = mtd->priv;
  399. struct fsl_elbc_mtd *priv = chip->priv;
  400. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  401. unsigned int bufsize = mtd->writesize + mtd->oobsize;
  402. if (len <= 0) {
  403. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  404. ctrl->status = 0;
  405. return;
  406. }
  407. if ((unsigned int)len > bufsize - ctrl->index) {
  408. dev_err(ctrl->dev,
  409. "write_buf beyond end of buffer "
  410. "(%d requested, %u available)\n",
  411. len, bufsize - ctrl->index);
  412. len = bufsize - ctrl->index;
  413. }
  414. memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
  415. /*
  416. * This is workaround for the weird elbc hangs during nand write,
  417. * Scott Wood says: "...perhaps difference in how long it takes a
  418. * write to make it through the localbus compared to a write to IMMR
  419. * is causing problems, and sync isn't helping for some reason."
  420. * Reading back the last byte helps though.
  421. */
  422. in_8(&ctrl->addr[ctrl->index] + len - 1);
  423. ctrl->index += len;
  424. }
  425. /*
  426. * read a byte from either the FCM hardware buffer if it has any data left
  427. * otherwise issue a command to read a single byte.
  428. */
  429. static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
  430. {
  431. struct nand_chip *chip = mtd->priv;
  432. struct fsl_elbc_mtd *priv = chip->priv;
  433. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  434. /* If there are still bytes in the FCM, then use the next byte. */
  435. if (ctrl->index < ctrl->read_bytes)
  436. return in_8(&ctrl->addr[ctrl->index++]);
  437. dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
  438. return ERR_BYTE;
  439. }
  440. /*
  441. * Read from the FCM Controller Data Buffer
  442. */
  443. static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
  444. {
  445. struct nand_chip *chip = mtd->priv;
  446. struct fsl_elbc_mtd *priv = chip->priv;
  447. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  448. int avail;
  449. if (len < 0)
  450. return;
  451. avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
  452. memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
  453. ctrl->index += avail;
  454. if (len > avail)
  455. dev_err(ctrl->dev,
  456. "read_buf beyond end of buffer "
  457. "(%d requested, %d available)\n",
  458. len, avail);
  459. }
  460. /*
  461. * Verify buffer against the FCM Controller Data Buffer
  462. */
  463. static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
  464. {
  465. struct nand_chip *chip = mtd->priv;
  466. struct fsl_elbc_mtd *priv = chip->priv;
  467. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  468. int i;
  469. if (len < 0) {
  470. dev_err(ctrl->dev, "write_buf of %d bytes", len);
  471. return -EINVAL;
  472. }
  473. if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
  474. dev_err(ctrl->dev,
  475. "verify_buf beyond end of buffer "
  476. "(%d requested, %u available)\n",
  477. len, ctrl->read_bytes - ctrl->index);
  478. ctrl->index = ctrl->read_bytes;
  479. return -EINVAL;
  480. }
  481. for (i = 0; i < len; i++)
  482. if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
  483. break;
  484. ctrl->index += len;
  485. return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
  486. }
  487. /* This function is called after Program and Erase Operations to
  488. * check for success or failure.
  489. */
  490. static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
  491. {
  492. struct fsl_elbc_mtd *priv = chip->priv;
  493. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  494. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  495. if (ctrl->status != LTESR_CC)
  496. return NAND_STATUS_FAIL;
  497. /* Use READ_STATUS command, but wait for the device to be ready */
  498. ctrl->use_mdr = 0;
  499. out_be32(&lbc->fir,
  500. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  501. (FIR_OP_RBW << FIR_OP1_SHIFT));
  502. out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
  503. out_be32(&lbc->fbcr, 1);
  504. set_addr(mtd, 0, 0, 0);
  505. ctrl->read_bytes = 1;
  506. fsl_elbc_run_command(mtd);
  507. if (ctrl->status != LTESR_CC)
  508. return NAND_STATUS_FAIL;
  509. /* The chip always seems to report that it is
  510. * write-protected, even when it is not.
  511. */
  512. setbits8(ctrl->addr, NAND_STATUS_WP);
  513. return fsl_elbc_read_byte(mtd);
  514. }
  515. static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
  516. {
  517. struct nand_chip *chip = mtd->priv;
  518. struct fsl_elbc_mtd *priv = chip->priv;
  519. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  520. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  521. unsigned int al;
  522. /* calculate FMR Address Length field */
  523. al = 0;
  524. if (chip->pagemask & 0xffff0000)
  525. al++;
  526. if (chip->pagemask & 0xff000000)
  527. al++;
  528. /* add to ECCM mode set in fsl_elbc_init */
  529. priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
  530. (al << FMR_AL_SHIFT);
  531. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
  532. chip->numchips);
  533. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
  534. chip->chipsize);
  535. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
  536. chip->pagemask);
  537. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
  538. chip->chip_delay);
  539. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
  540. chip->badblockpos);
  541. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
  542. chip->chip_shift);
  543. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
  544. chip->page_shift);
  545. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
  546. chip->phys_erase_shift);
  547. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
  548. chip->ecclayout);
  549. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
  550. chip->ecc.mode);
  551. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
  552. chip->ecc.steps);
  553. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
  554. chip->ecc.bytes);
  555. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
  556. chip->ecc.total);
  557. dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
  558. chip->ecc.layout);
  559. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
  560. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
  561. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
  562. mtd->erasesize);
  563. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
  564. mtd->writesize);
  565. dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
  566. mtd->oobsize);
  567. /* adjust Option Register and ECC to match Flash page size */
  568. if (mtd->writesize == 512) {
  569. priv->page_size = 0;
  570. clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  571. } else if (mtd->writesize == 2048) {
  572. priv->page_size = 1;
  573. setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
  574. /* adjust ecc setup if needed */
  575. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  576. BR_DECC_CHK_GEN) {
  577. chip->ecc.size = 512;
  578. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  579. &fsl_elbc_oob_lp_eccm1 :
  580. &fsl_elbc_oob_lp_eccm0;
  581. mtd->ecclayout = chip->ecc.layout;
  582. mtd->oobavail = chip->ecc.layout->oobavail;
  583. }
  584. } else {
  585. dev_err(ctrl->dev,
  586. "fsl_elbc_init: page size %d is not supported\n",
  587. mtd->writesize);
  588. return -1;
  589. }
  590. return 0;
  591. }
  592. static int fsl_elbc_read_page(struct mtd_info *mtd,
  593. struct nand_chip *chip,
  594. uint8_t *buf)
  595. {
  596. fsl_elbc_read_buf(mtd, buf, mtd->writesize);
  597. fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
  598. if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
  599. mtd->ecc_stats.failed++;
  600. return 0;
  601. }
  602. /* ECC will be calculated automatically, and errors will be detected in
  603. * waitfunc.
  604. */
  605. static void fsl_elbc_write_page(struct mtd_info *mtd,
  606. struct nand_chip *chip,
  607. const uint8_t *buf)
  608. {
  609. struct fsl_elbc_mtd *priv = chip->priv;
  610. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  611. fsl_elbc_write_buf(mtd, buf, mtd->writesize);
  612. fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
  613. ctrl->oob_poi = chip->oob_poi;
  614. }
  615. static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
  616. {
  617. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  618. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  619. struct nand_chip *chip = &priv->chip;
  620. dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
  621. /* Fill in fsl_elbc_mtd structure */
  622. priv->mtd.priv = chip;
  623. priv->mtd.owner = THIS_MODULE;
  624. priv->fmr = 0; /* rest filled in later */
  625. /* fill in nand_chip structure */
  626. /* set up function call table */
  627. chip->read_byte = fsl_elbc_read_byte;
  628. chip->write_buf = fsl_elbc_write_buf;
  629. chip->read_buf = fsl_elbc_read_buf;
  630. chip->verify_buf = fsl_elbc_verify_buf;
  631. chip->select_chip = fsl_elbc_select_chip;
  632. chip->cmdfunc = fsl_elbc_cmdfunc;
  633. chip->waitfunc = fsl_elbc_wait;
  634. /* set up nand options */
  635. chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
  636. chip->controller = &ctrl->controller;
  637. chip->priv = priv;
  638. chip->ecc.read_page = fsl_elbc_read_page;
  639. chip->ecc.write_page = fsl_elbc_write_page;
  640. /* If CS Base Register selects full hardware ECC then use it */
  641. if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
  642. BR_DECC_CHK_GEN) {
  643. chip->ecc.mode = NAND_ECC_HW;
  644. /* put in small page settings and adjust later if needed */
  645. chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
  646. &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
  647. chip->ecc.size = 512;
  648. chip->ecc.bytes = 3;
  649. } else {
  650. /* otherwise fall back to default software ECC */
  651. chip->ecc.mode = NAND_ECC_SOFT;
  652. }
  653. return 0;
  654. }
  655. static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
  656. {
  657. struct fsl_elbc_ctrl *ctrl = priv->ctrl;
  658. nand_release(&priv->mtd);
  659. kfree(priv->mtd.name);
  660. if (priv->vbase)
  661. iounmap(priv->vbase);
  662. ctrl->chips[priv->bank] = NULL;
  663. kfree(priv);
  664. return 0;
  665. }
  666. static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
  667. struct device_node *node)
  668. {
  669. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  670. struct fsl_elbc_mtd *priv;
  671. struct resource res;
  672. #ifdef CONFIG_MTD_PARTITIONS
  673. static const char *part_probe_types[]
  674. = { "cmdlinepart", "RedBoot", NULL };
  675. struct mtd_partition *parts;
  676. #endif
  677. int ret;
  678. int bank;
  679. /* get, allocate and map the memory resource */
  680. ret = of_address_to_resource(node, 0, &res);
  681. if (ret) {
  682. dev_err(ctrl->dev, "failed to get resource\n");
  683. return ret;
  684. }
  685. /* find which chip select it is connected to */
  686. for (bank = 0; bank < MAX_BANKS; bank++)
  687. if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
  688. (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
  689. (in_be32(&lbc->bank[bank].br) &
  690. in_be32(&lbc->bank[bank].or) & BR_BA)
  691. == res.start)
  692. break;
  693. if (bank >= MAX_BANKS) {
  694. dev_err(ctrl->dev, "address did not match any chip selects\n");
  695. return -ENODEV;
  696. }
  697. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  698. if (!priv)
  699. return -ENOMEM;
  700. ctrl->chips[bank] = priv;
  701. priv->bank = bank;
  702. priv->ctrl = ctrl;
  703. priv->dev = ctrl->dev;
  704. priv->vbase = ioremap(res.start, res.end - res.start + 1);
  705. if (!priv->vbase) {
  706. dev_err(ctrl->dev, "failed to map chip region\n");
  707. ret = -ENOMEM;
  708. goto err;
  709. }
  710. priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", res.start);
  711. if (!priv->mtd.name) {
  712. ret = -ENOMEM;
  713. goto err;
  714. }
  715. ret = fsl_elbc_chip_init(priv);
  716. if (ret)
  717. goto err;
  718. ret = nand_scan_ident(&priv->mtd, 1);
  719. if (ret)
  720. goto err;
  721. ret = fsl_elbc_chip_init_tail(&priv->mtd);
  722. if (ret)
  723. goto err;
  724. ret = nand_scan_tail(&priv->mtd);
  725. if (ret)
  726. goto err;
  727. #ifdef CONFIG_MTD_PARTITIONS
  728. /* First look for RedBoot table or partitions on the command
  729. * line, these take precedence over device tree information */
  730. ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
  731. if (ret < 0)
  732. goto err;
  733. #ifdef CONFIG_MTD_OF_PARTS
  734. if (ret == 0) {
  735. ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
  736. node, &parts);
  737. if (ret < 0)
  738. goto err;
  739. }
  740. #endif
  741. if (ret > 0)
  742. add_mtd_partitions(&priv->mtd, parts, ret);
  743. else
  744. #endif
  745. add_mtd_device(&priv->mtd);
  746. printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
  747. res.start, priv->bank);
  748. return 0;
  749. err:
  750. fsl_elbc_chip_remove(priv);
  751. return ret;
  752. }
  753. static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
  754. {
  755. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  756. /* clear event registers */
  757. setbits32(&lbc->ltesr, LTESR_NAND_MASK);
  758. out_be32(&lbc->lteatr, 0);
  759. /* Enable interrupts for any detected events */
  760. out_be32(&lbc->lteir, LTESR_NAND_MASK);
  761. ctrl->read_bytes = 0;
  762. ctrl->index = 0;
  763. ctrl->addr = NULL;
  764. return 0;
  765. }
  766. static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
  767. {
  768. struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
  769. int i;
  770. for (i = 0; i < MAX_BANKS; i++)
  771. if (ctrl->chips[i])
  772. fsl_elbc_chip_remove(ctrl->chips[i]);
  773. if (ctrl->irq)
  774. free_irq(ctrl->irq, ctrl);
  775. if (ctrl->regs)
  776. iounmap(ctrl->regs);
  777. dev_set_drvdata(&ofdev->dev, NULL);
  778. kfree(ctrl);
  779. return 0;
  780. }
  781. /* NOTE: This interrupt is also used to report other localbus events,
  782. * such as transaction errors on other chipselects. If we want to
  783. * capture those, we'll need to move the IRQ code into a shared
  784. * LBC driver.
  785. */
  786. static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
  787. {
  788. struct fsl_elbc_ctrl *ctrl = data;
  789. struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
  790. __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
  791. if (status) {
  792. out_be32(&lbc->ltesr, status);
  793. out_be32(&lbc->lteatr, 0);
  794. ctrl->irq_status = status;
  795. smp_wmb();
  796. wake_up(&ctrl->irq_wait);
  797. return IRQ_HANDLED;
  798. }
  799. return IRQ_NONE;
  800. }
  801. /* fsl_elbc_ctrl_probe
  802. *
  803. * called by device layer when it finds a device matching
  804. * one our driver can handled. This code allocates all of
  805. * the resources needed for the controller only. The
  806. * resources for the NAND banks themselves are allocated
  807. * in the chip probe function.
  808. */
  809. static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
  810. const struct of_device_id *match)
  811. {
  812. struct device_node *child;
  813. struct fsl_elbc_ctrl *ctrl;
  814. int ret;
  815. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  816. if (!ctrl)
  817. return -ENOMEM;
  818. dev_set_drvdata(&ofdev->dev, ctrl);
  819. spin_lock_init(&ctrl->controller.lock);
  820. init_waitqueue_head(&ctrl->controller.wq);
  821. init_waitqueue_head(&ctrl->irq_wait);
  822. ctrl->regs = of_iomap(ofdev->node, 0);
  823. if (!ctrl->regs) {
  824. dev_err(&ofdev->dev, "failed to get memory region\n");
  825. ret = -ENODEV;
  826. goto err;
  827. }
  828. ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
  829. if (ctrl->irq == NO_IRQ) {
  830. dev_err(&ofdev->dev, "failed to get irq resource\n");
  831. ret = -ENODEV;
  832. goto err;
  833. }
  834. ctrl->dev = &ofdev->dev;
  835. ret = fsl_elbc_ctrl_init(ctrl);
  836. if (ret < 0)
  837. goto err;
  838. ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
  839. if (ret != 0) {
  840. dev_err(&ofdev->dev, "failed to install irq (%d)\n",
  841. ctrl->irq);
  842. ret = ctrl->irq;
  843. goto err;
  844. }
  845. for_each_child_of_node(ofdev->node, child)
  846. if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
  847. fsl_elbc_chip_probe(ctrl, child);
  848. return 0;
  849. err:
  850. fsl_elbc_ctrl_remove(ofdev);
  851. return ret;
  852. }
  853. static const struct of_device_id fsl_elbc_match[] = {
  854. {
  855. .compatible = "fsl,elbc",
  856. },
  857. {}
  858. };
  859. static struct of_platform_driver fsl_elbc_ctrl_driver = {
  860. .driver = {
  861. .name = "fsl-elbc",
  862. },
  863. .match_table = fsl_elbc_match,
  864. .probe = fsl_elbc_ctrl_probe,
  865. .remove = __devexit_p(fsl_elbc_ctrl_remove),
  866. };
  867. static int __init fsl_elbc_init(void)
  868. {
  869. return of_register_platform_driver(&fsl_elbc_ctrl_driver);
  870. }
  871. static void __exit fsl_elbc_exit(void)
  872. {
  873. of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
  874. }
  875. module_init(fsl_elbc_init);
  876. module_exit(fsl_elbc_exit);
  877. MODULE_LICENSE("GPL");
  878. MODULE_AUTHOR("Freescale");
  879. MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");