pmac.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. /*
  2. * Support for IDE interfaces on PowerMacs.
  3. *
  4. * These IDE interfaces are memory-mapped and have a DBDMA channel
  5. * for doing DMA.
  6. *
  7. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  8. * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #undef IDE_PMAC_DEBUG
  49. #define DMA_WAIT_TIMEOUT 50
  50. typedef struct pmac_ide_hwif {
  51. unsigned long regbase;
  52. int irq;
  53. int kind;
  54. int aapl_bus_id;
  55. unsigned mediabay : 1;
  56. unsigned broken_dma : 1;
  57. unsigned broken_dma_warn : 1;
  58. struct device_node* node;
  59. struct macio_dev *mdev;
  60. u32 timings[4];
  61. volatile u32 __iomem * *kauai_fcr;
  62. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  63. /* Those fields are duplicating what is in hwif. We currently
  64. * can't use the hwif ones because of some assumptions that are
  65. * beeing done by the generic code about the kind of dma controller
  66. * and format of the dma table. This will have to be fixed though.
  67. */
  68. volatile struct dbdma_regs __iomem * dma_regs;
  69. struct dbdma_cmd* dma_table_cpu;
  70. #endif
  71. } pmac_ide_hwif_t;
  72. enum {
  73. controller_ohare, /* OHare based */
  74. controller_heathrow, /* Heathrow/Paddington */
  75. controller_kl_ata3, /* KeyLargo ATA-3 */
  76. controller_kl_ata4, /* KeyLargo ATA-4 */
  77. controller_un_ata6, /* UniNorth2 ATA-6 */
  78. controller_k2_ata6, /* K2 ATA-6 */
  79. controller_sh_ata6, /* Shasta ATA-6 */
  80. };
  81. static const char* model_name[] = {
  82. "OHare ATA", /* OHare based */
  83. "Heathrow ATA", /* Heathrow/Paddington */
  84. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  85. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  86. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  87. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  88. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  89. };
  90. /*
  91. * Extra registers, both 32-bit little-endian
  92. */
  93. #define IDE_TIMING_CONFIG 0x200
  94. #define IDE_INTERRUPT 0x300
  95. /* Kauai (U2) ATA has different register setup */
  96. #define IDE_KAUAI_PIO_CONFIG 0x200
  97. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  98. #define IDE_KAUAI_POLL_CONFIG 0x220
  99. /*
  100. * Timing configuration register definitions
  101. */
  102. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  103. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  104. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  105. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  106. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  107. /* 133Mhz cell, found in shasta.
  108. * See comments about 100 Mhz Uninorth 2...
  109. * Note that PIO_MASK and MDMA_MASK seem to overlap
  110. */
  111. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  112. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  113. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  114. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  115. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  116. * this one yet, it appears as a pci device (106b/0033) on uninorth
  117. * internal PCI bus and it's clock is controlled like gem or fw. It
  118. * appears to be an evolution of keylargo ATA4 with a timing register
  119. * extended to 2 32bits registers and a similar DBDMA channel. Other
  120. * registers seem to exist but I can't tell much about them.
  121. *
  122. * So far, I'm using pre-calculated tables for this extracted from
  123. * the values used by the MacOS X driver.
  124. *
  125. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  126. * register controls the UDMA timings. At least, it seems bit 0
  127. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  128. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  129. * know their meaning yet
  130. */
  131. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  132. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  133. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  134. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  135. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  136. * 40 connector cable and to 4 on 80 connector one.
  137. * Clock unit is 15ns (66Mhz)
  138. *
  139. * 3 Values can be programmed:
  140. * - Write data setup, which appears to match the cycle time. They
  141. * also call it DIOW setup.
  142. * - Ready to pause time (from spec)
  143. * - Address setup. That one is weird. I don't see where exactly
  144. * it fits in UDMA cycles, I got it's name from an obscure piece
  145. * of commented out code in Darwin. They leave it to 0, we do as
  146. * well, despite a comment that would lead to think it has a
  147. * min value of 45ns.
  148. * Apple also add 60ns to the write data setup (or cycle time ?) on
  149. * reads.
  150. */
  151. #define TR_66_UDMA_MASK 0xfff00000
  152. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  153. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  154. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  155. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  156. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  157. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  158. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  159. #define TR_66_MDMA_MASK 0x000ffc00
  160. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  161. #define TR_66_MDMA_RECOVERY_SHIFT 15
  162. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  163. #define TR_66_MDMA_ACCESS_SHIFT 10
  164. #define TR_66_PIO_MASK 0x000003ff
  165. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  166. #define TR_66_PIO_RECOVERY_SHIFT 5
  167. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  168. #define TR_66_PIO_ACCESS_SHIFT 0
  169. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  170. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  171. *
  172. * The access time and recovery time can be programmed. Some older
  173. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  174. * the same here fore safety against broken old hardware ;)
  175. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  176. * time and removes one from recovery. It's not supported on KeyLargo
  177. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  178. * is used to reach long timings used in this mode.
  179. */
  180. #define TR_33_MDMA_MASK 0x003ff800
  181. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  182. #define TR_33_MDMA_RECOVERY_SHIFT 16
  183. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  184. #define TR_33_MDMA_ACCESS_SHIFT 11
  185. #define TR_33_MDMA_HALFTICK 0x00200000
  186. #define TR_33_PIO_MASK 0x000007ff
  187. #define TR_33_PIO_E 0x00000400
  188. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  189. #define TR_33_PIO_RECOVERY_SHIFT 5
  190. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  191. #define TR_33_PIO_ACCESS_SHIFT 0
  192. /*
  193. * Interrupt register definitions
  194. */
  195. #define IDE_INTR_DMA 0x80000000
  196. #define IDE_INTR_DEVICE 0x40000000
  197. /*
  198. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  199. */
  200. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  201. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  202. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  203. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  204. /* Rounded Multiword DMA timings
  205. *
  206. * I gave up finding a generic formula for all controller
  207. * types and instead, built tables based on timing values
  208. * used by Apple in Darwin's implementation.
  209. */
  210. struct mdma_timings_t {
  211. int accessTime;
  212. int recoveryTime;
  213. int cycleTime;
  214. };
  215. struct mdma_timings_t mdma_timings_33[] =
  216. {
  217. { 240, 240, 480 },
  218. { 180, 180, 360 },
  219. { 135, 135, 270 },
  220. { 120, 120, 240 },
  221. { 105, 105, 210 },
  222. { 90, 90, 180 },
  223. { 75, 75, 150 },
  224. { 75, 45, 120 },
  225. { 0, 0, 0 }
  226. };
  227. struct mdma_timings_t mdma_timings_33k[] =
  228. {
  229. { 240, 240, 480 },
  230. { 180, 180, 360 },
  231. { 150, 150, 300 },
  232. { 120, 120, 240 },
  233. { 90, 120, 210 },
  234. { 90, 90, 180 },
  235. { 90, 60, 150 },
  236. { 90, 30, 120 },
  237. { 0, 0, 0 }
  238. };
  239. struct mdma_timings_t mdma_timings_66[] =
  240. {
  241. { 240, 240, 480 },
  242. { 180, 180, 360 },
  243. { 135, 135, 270 },
  244. { 120, 120, 240 },
  245. { 105, 105, 210 },
  246. { 90, 90, 180 },
  247. { 90, 75, 165 },
  248. { 75, 45, 120 },
  249. { 0, 0, 0 }
  250. };
  251. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  252. struct {
  253. int addrSetup; /* ??? */
  254. int rdy2pause;
  255. int wrDataSetup;
  256. } kl66_udma_timings[] =
  257. {
  258. { 0, 180, 120 }, /* Mode 0 */
  259. { 0, 150, 90 }, /* 1 */
  260. { 0, 120, 60 }, /* 2 */
  261. { 0, 90, 45 }, /* 3 */
  262. { 0, 90, 30 } /* 4 */
  263. };
  264. /* UniNorth 2 ATA/100 timings */
  265. struct kauai_timing {
  266. int cycle_time;
  267. u32 timing_reg;
  268. };
  269. static struct kauai_timing kauai_pio_timings[] =
  270. {
  271. { 930 , 0x08000fff },
  272. { 600 , 0x08000a92 },
  273. { 383 , 0x0800060f },
  274. { 360 , 0x08000492 },
  275. { 330 , 0x0800048f },
  276. { 300 , 0x080003cf },
  277. { 270 , 0x080003cc },
  278. { 240 , 0x0800038b },
  279. { 239 , 0x0800030c },
  280. { 180 , 0x05000249 },
  281. { 120 , 0x04000148 },
  282. { 0 , 0 },
  283. };
  284. static struct kauai_timing kauai_mdma_timings[] =
  285. {
  286. { 1260 , 0x00fff000 },
  287. { 480 , 0x00618000 },
  288. { 360 , 0x00492000 },
  289. { 270 , 0x0038e000 },
  290. { 240 , 0x0030c000 },
  291. { 210 , 0x002cb000 },
  292. { 180 , 0x00249000 },
  293. { 150 , 0x00209000 },
  294. { 120 , 0x00148000 },
  295. { 0 , 0 },
  296. };
  297. static struct kauai_timing kauai_udma_timings[] =
  298. {
  299. { 120 , 0x000070c0 },
  300. { 90 , 0x00005d80 },
  301. { 60 , 0x00004a60 },
  302. { 45 , 0x00003a50 },
  303. { 30 , 0x00002a30 },
  304. { 20 , 0x00002921 },
  305. { 0 , 0 },
  306. };
  307. static struct kauai_timing shasta_pio_timings[] =
  308. {
  309. { 930 , 0x08000fff },
  310. { 600 , 0x0A000c97 },
  311. { 383 , 0x07000712 },
  312. { 360 , 0x040003cd },
  313. { 330 , 0x040003cd },
  314. { 300 , 0x040003cd },
  315. { 270 , 0x040003cd },
  316. { 240 , 0x040003cd },
  317. { 239 , 0x040003cd },
  318. { 180 , 0x0400028b },
  319. { 120 , 0x0400010a },
  320. { 0 , 0 },
  321. };
  322. static struct kauai_timing shasta_mdma_timings[] =
  323. {
  324. { 1260 , 0x00fff000 },
  325. { 480 , 0x00820800 },
  326. { 360 , 0x00820800 },
  327. { 270 , 0x00820800 },
  328. { 240 , 0x00820800 },
  329. { 210 , 0x00820800 },
  330. { 180 , 0x00820800 },
  331. { 150 , 0x0028b000 },
  332. { 120 , 0x001ca000 },
  333. { 0 , 0 },
  334. };
  335. static struct kauai_timing shasta_udma133_timings[] =
  336. {
  337. { 120 , 0x00035901, },
  338. { 90 , 0x000348b1, },
  339. { 60 , 0x00033881, },
  340. { 45 , 0x00033861, },
  341. { 30 , 0x00033841, },
  342. { 20 , 0x00033031, },
  343. { 15 , 0x00033021, },
  344. { 0 , 0 },
  345. };
  346. static inline u32
  347. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  348. {
  349. int i;
  350. for (i=0; table[i].cycle_time; i++)
  351. if (cycle_time > table[i+1].cycle_time)
  352. return table[i].timing_reg;
  353. BUG();
  354. return 0;
  355. }
  356. /* allow up to 256 DBDMA commands per xfer */
  357. #define MAX_DCMDS 256
  358. /*
  359. * Wait 1s for disk to answer on IDE bus after a hard reset
  360. * of the device (via GPIO/FCR).
  361. *
  362. * Some devices seem to "pollute" the bus even after dropping
  363. * the BSY bit (typically some combo drives slave on the UDMA
  364. * bus) after a hard reset. Since we hard reset all drives on
  365. * KeyLargo ATA66, we have to keep that delay around. I may end
  366. * up not hard resetting anymore on these and keep the delay only
  367. * for older interfaces instead (we have to reset when coming
  368. * from MacOS...) --BenH.
  369. */
  370. #define IDE_WAKEUP_DELAY (1*HZ)
  371. static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
  372. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  373. static void pmac_ide_selectproc(ide_drive_t *drive);
  374. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  375. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  376. #define PMAC_IDE_REG(x) \
  377. ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
  378. /*
  379. * Apply the timings of the proper unit (master/slave) to the shared
  380. * timing register when selecting that unit. This version is for
  381. * ASICs with a single timing register
  382. */
  383. static void
  384. pmac_ide_selectproc(ide_drive_t *drive)
  385. {
  386. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  387. if (pmif == NULL)
  388. return;
  389. if (drive->select.b.unit & 0x01)
  390. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  391. else
  392. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  393. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  394. }
  395. /*
  396. * Apply the timings of the proper unit (master/slave) to the shared
  397. * timing register when selecting that unit. This version is for
  398. * ASICs with a dual timing register (Kauai)
  399. */
  400. static void
  401. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  402. {
  403. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  404. if (pmif == NULL)
  405. return;
  406. if (drive->select.b.unit & 0x01) {
  407. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  408. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  409. } else {
  410. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  411. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  412. }
  413. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  414. }
  415. /*
  416. * Force an update of controller timing values for a given drive
  417. */
  418. static void
  419. pmac_ide_do_update_timings(ide_drive_t *drive)
  420. {
  421. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  422. if (pmif == NULL)
  423. return;
  424. if (pmif->kind == controller_sh_ata6 ||
  425. pmif->kind == controller_un_ata6 ||
  426. pmif->kind == controller_k2_ata6)
  427. pmac_ide_kauai_selectproc(drive);
  428. else
  429. pmac_ide_selectproc(drive);
  430. }
  431. static void pmac_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
  432. {
  433. u32 tmp;
  434. writeb(value, (void __iomem *) port);
  435. tmp = readl((void __iomem *)(hwif->io_ports.data_addr
  436. + IDE_TIMING_CONFIG));
  437. }
  438. /*
  439. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  440. */
  441. static void
  442. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  443. {
  444. struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
  445. u32 *timings, t;
  446. unsigned accessTicks, recTicks;
  447. unsigned accessTime, recTime;
  448. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  449. unsigned int cycle_time;
  450. if (pmif == NULL)
  451. return;
  452. /* which drive is it ? */
  453. timings = &pmif->timings[drive->select.b.unit & 0x01];
  454. t = *timings;
  455. cycle_time = ide_pio_cycle_time(drive, pio);
  456. switch (pmif->kind) {
  457. case controller_sh_ata6: {
  458. /* 133Mhz cell */
  459. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  460. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  461. break;
  462. }
  463. case controller_un_ata6:
  464. case controller_k2_ata6: {
  465. /* 100Mhz cell */
  466. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  467. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  468. break;
  469. }
  470. case controller_kl_ata4:
  471. /* 66Mhz cell */
  472. recTime = cycle_time - tim->active - tim->setup;
  473. recTime = max(recTime, 150U);
  474. accessTime = tim->active;
  475. accessTime = max(accessTime, 150U);
  476. accessTicks = SYSCLK_TICKS_66(accessTime);
  477. accessTicks = min(accessTicks, 0x1fU);
  478. recTicks = SYSCLK_TICKS_66(recTime);
  479. recTicks = min(recTicks, 0x1fU);
  480. t = (t & ~TR_66_PIO_MASK) |
  481. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  482. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  483. break;
  484. default: {
  485. /* 33Mhz cell */
  486. int ebit = 0;
  487. recTime = cycle_time - tim->active - tim->setup;
  488. recTime = max(recTime, 150U);
  489. accessTime = tim->active;
  490. accessTime = max(accessTime, 150U);
  491. accessTicks = SYSCLK_TICKS(accessTime);
  492. accessTicks = min(accessTicks, 0x1fU);
  493. accessTicks = max(accessTicks, 4U);
  494. recTicks = SYSCLK_TICKS(recTime);
  495. recTicks = min(recTicks, 0x1fU);
  496. recTicks = max(recTicks, 5U) - 4;
  497. if (recTicks > 9) {
  498. recTicks--; /* guess, but it's only for PIO0, so... */
  499. ebit = 1;
  500. }
  501. t = (t & ~TR_33_PIO_MASK) |
  502. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  503. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  504. if (ebit)
  505. t |= TR_33_PIO_E;
  506. break;
  507. }
  508. }
  509. #ifdef IDE_PMAC_DEBUG
  510. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  511. drive->name, pio, *timings);
  512. #endif
  513. *timings = t;
  514. pmac_ide_do_update_timings(drive);
  515. }
  516. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  517. /*
  518. * Calculate KeyLargo ATA/66 UDMA timings
  519. */
  520. static int
  521. set_timings_udma_ata4(u32 *timings, u8 speed)
  522. {
  523. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  524. if (speed > XFER_UDMA_4)
  525. return 1;
  526. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  527. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  528. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  529. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  530. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  531. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  532. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  533. TR_66_UDMA_EN;
  534. #ifdef IDE_PMAC_DEBUG
  535. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  536. speed & 0xf, *timings);
  537. #endif
  538. return 0;
  539. }
  540. /*
  541. * Calculate Kauai ATA/100 UDMA timings
  542. */
  543. static int
  544. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  545. {
  546. struct ide_timing *t = ide_timing_find_mode(speed);
  547. u32 tr;
  548. if (speed > XFER_UDMA_5 || t == NULL)
  549. return 1;
  550. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  551. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  552. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  553. return 0;
  554. }
  555. /*
  556. * Calculate Shasta ATA/133 UDMA timings
  557. */
  558. static int
  559. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  560. {
  561. struct ide_timing *t = ide_timing_find_mode(speed);
  562. u32 tr;
  563. if (speed > XFER_UDMA_6 || t == NULL)
  564. return 1;
  565. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  566. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  567. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  568. return 0;
  569. }
  570. /*
  571. * Calculate MDMA timings for all cells
  572. */
  573. static void
  574. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  575. u8 speed)
  576. {
  577. int cycleTime, accessTime = 0, recTime = 0;
  578. unsigned accessTicks, recTicks;
  579. struct hd_driveid *id = drive->id;
  580. struct mdma_timings_t* tm = NULL;
  581. int i;
  582. /* Get default cycle time for mode */
  583. switch(speed & 0xf) {
  584. case 0: cycleTime = 480; break;
  585. case 1: cycleTime = 150; break;
  586. case 2: cycleTime = 120; break;
  587. default:
  588. BUG();
  589. break;
  590. }
  591. /* Check if drive provides explicit DMA cycle time */
  592. if ((id->field_valid & 2) && id->eide_dma_time)
  593. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  594. /* OHare limits according to some old Apple sources */
  595. if ((intf_type == controller_ohare) && (cycleTime < 150))
  596. cycleTime = 150;
  597. /* Get the proper timing array for this controller */
  598. switch(intf_type) {
  599. case controller_sh_ata6:
  600. case controller_un_ata6:
  601. case controller_k2_ata6:
  602. break;
  603. case controller_kl_ata4:
  604. tm = mdma_timings_66;
  605. break;
  606. case controller_kl_ata3:
  607. tm = mdma_timings_33k;
  608. break;
  609. default:
  610. tm = mdma_timings_33;
  611. break;
  612. }
  613. if (tm != NULL) {
  614. /* Lookup matching access & recovery times */
  615. i = -1;
  616. for (;;) {
  617. if (tm[i+1].cycleTime < cycleTime)
  618. break;
  619. i++;
  620. }
  621. cycleTime = tm[i].cycleTime;
  622. accessTime = tm[i].accessTime;
  623. recTime = tm[i].recoveryTime;
  624. #ifdef IDE_PMAC_DEBUG
  625. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  626. drive->name, cycleTime, accessTime, recTime);
  627. #endif
  628. }
  629. switch(intf_type) {
  630. case controller_sh_ata6: {
  631. /* 133Mhz cell */
  632. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  633. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  634. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  635. }
  636. case controller_un_ata6:
  637. case controller_k2_ata6: {
  638. /* 100Mhz cell */
  639. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  640. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  641. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  642. }
  643. break;
  644. case controller_kl_ata4:
  645. /* 66Mhz cell */
  646. accessTicks = SYSCLK_TICKS_66(accessTime);
  647. accessTicks = min(accessTicks, 0x1fU);
  648. accessTicks = max(accessTicks, 0x1U);
  649. recTicks = SYSCLK_TICKS_66(recTime);
  650. recTicks = min(recTicks, 0x1fU);
  651. recTicks = max(recTicks, 0x3U);
  652. /* Clear out mdma bits and disable udma */
  653. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  654. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  655. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  656. break;
  657. case controller_kl_ata3:
  658. /* 33Mhz cell on KeyLargo */
  659. accessTicks = SYSCLK_TICKS(accessTime);
  660. accessTicks = max(accessTicks, 1U);
  661. accessTicks = min(accessTicks, 0x1fU);
  662. accessTime = accessTicks * IDE_SYSCLK_NS;
  663. recTicks = SYSCLK_TICKS(recTime);
  664. recTicks = max(recTicks, 1U);
  665. recTicks = min(recTicks, 0x1fU);
  666. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  667. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  668. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  669. break;
  670. default: {
  671. /* 33Mhz cell on others */
  672. int halfTick = 0;
  673. int origAccessTime = accessTime;
  674. int origRecTime = recTime;
  675. accessTicks = SYSCLK_TICKS(accessTime);
  676. accessTicks = max(accessTicks, 1U);
  677. accessTicks = min(accessTicks, 0x1fU);
  678. accessTime = accessTicks * IDE_SYSCLK_NS;
  679. recTicks = SYSCLK_TICKS(recTime);
  680. recTicks = max(recTicks, 2U) - 1;
  681. recTicks = min(recTicks, 0x1fU);
  682. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  683. if ((accessTicks > 1) &&
  684. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  685. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  686. halfTick = 1;
  687. accessTicks--;
  688. }
  689. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  690. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  691. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  692. if (halfTick)
  693. *timings |= TR_33_MDMA_HALFTICK;
  694. }
  695. }
  696. #ifdef IDE_PMAC_DEBUG
  697. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  698. drive->name, speed & 0xf, *timings);
  699. #endif
  700. }
  701. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  702. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  703. {
  704. int unit = (drive->select.b.unit & 0x01);
  705. int ret = 0;
  706. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  707. u32 *timings, *timings2, tl[2];
  708. timings = &pmif->timings[unit];
  709. timings2 = &pmif->timings[unit+2];
  710. /* Copy timings to local image */
  711. tl[0] = *timings;
  712. tl[1] = *timings2;
  713. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  714. if (speed >= XFER_UDMA_0) {
  715. if (pmif->kind == controller_kl_ata4)
  716. ret = set_timings_udma_ata4(&tl[0], speed);
  717. else if (pmif->kind == controller_un_ata6
  718. || pmif->kind == controller_k2_ata6)
  719. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  720. else if (pmif->kind == controller_sh_ata6)
  721. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  722. else
  723. ret = -1;
  724. } else
  725. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  726. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  727. if (ret)
  728. return;
  729. /* Apply timings to controller */
  730. *timings = tl[0];
  731. *timings2 = tl[1];
  732. pmac_ide_do_update_timings(drive);
  733. }
  734. /*
  735. * Blast some well known "safe" values to the timing registers at init or
  736. * wakeup from sleep time, before we do real calculation
  737. */
  738. static void
  739. sanitize_timings(pmac_ide_hwif_t *pmif)
  740. {
  741. unsigned int value, value2 = 0;
  742. switch(pmif->kind) {
  743. case controller_sh_ata6:
  744. value = 0x0a820c97;
  745. value2 = 0x00033031;
  746. break;
  747. case controller_un_ata6:
  748. case controller_k2_ata6:
  749. value = 0x08618a92;
  750. value2 = 0x00002921;
  751. break;
  752. case controller_kl_ata4:
  753. value = 0x0008438c;
  754. break;
  755. case controller_kl_ata3:
  756. value = 0x00084526;
  757. break;
  758. case controller_heathrow:
  759. case controller_ohare:
  760. default:
  761. value = 0x00074526;
  762. break;
  763. }
  764. pmif->timings[0] = pmif->timings[1] = value;
  765. pmif->timings[2] = pmif->timings[3] = value2;
  766. }
  767. /* Suspend call back, should be called after the child devices
  768. * have actually been suspended
  769. */
  770. static int
  771. pmac_ide_do_suspend(ide_hwif_t *hwif)
  772. {
  773. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  774. /* We clear the timings */
  775. pmif->timings[0] = 0;
  776. pmif->timings[1] = 0;
  777. disable_irq(pmif->irq);
  778. /* The media bay will handle itself just fine */
  779. if (pmif->mediabay)
  780. return 0;
  781. /* Kauai has bus control FCRs directly here */
  782. if (pmif->kauai_fcr) {
  783. u32 fcr = readl(pmif->kauai_fcr);
  784. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  785. writel(fcr, pmif->kauai_fcr);
  786. }
  787. /* Disable the bus on older machines and the cell on kauai */
  788. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  789. 0);
  790. return 0;
  791. }
  792. /* Resume call back, should be called before the child devices
  793. * are resumed
  794. */
  795. static int
  796. pmac_ide_do_resume(ide_hwif_t *hwif)
  797. {
  798. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  799. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  800. if (!pmif->mediabay) {
  801. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  802. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  803. msleep(10);
  804. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  805. /* Kauai has it different */
  806. if (pmif->kauai_fcr) {
  807. u32 fcr = readl(pmif->kauai_fcr);
  808. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  809. writel(fcr, pmif->kauai_fcr);
  810. }
  811. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  812. }
  813. /* Sanitize drive timings */
  814. sanitize_timings(pmif);
  815. enable_irq(pmif->irq);
  816. return 0;
  817. }
  818. static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
  819. {
  820. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)ide_get_hwifdata(hwif);
  821. struct device_node *np = pmif->node;
  822. const char *cable = of_get_property(np, "cable-type", NULL);
  823. /* Get cable type from device-tree. */
  824. if (cable && !strncmp(cable, "80-", 3))
  825. return ATA_CBL_PATA80;
  826. /*
  827. * G5's seem to have incorrect cable type in device-tree.
  828. * Let's assume they have a 80 conductor cable, this seem
  829. * to be always the case unless the user mucked around.
  830. */
  831. if (of_device_is_compatible(np, "K2-UATA") ||
  832. of_device_is_compatible(np, "shasta-ata"))
  833. return ATA_CBL_PATA80;
  834. return ATA_CBL_PATA40;
  835. }
  836. static const struct ide_port_ops pmac_ide_ata6_port_ops = {
  837. .set_pio_mode = pmac_ide_set_pio_mode,
  838. .set_dma_mode = pmac_ide_set_dma_mode,
  839. .selectproc = pmac_ide_kauai_selectproc,
  840. .cable_detect = pmac_ide_cable_detect,
  841. };
  842. static const struct ide_port_ops pmac_ide_ata4_port_ops = {
  843. .set_pio_mode = pmac_ide_set_pio_mode,
  844. .set_dma_mode = pmac_ide_set_dma_mode,
  845. .selectproc = pmac_ide_selectproc,
  846. .cable_detect = pmac_ide_cable_detect,
  847. };
  848. static const struct ide_port_ops pmac_ide_port_ops = {
  849. .set_pio_mode = pmac_ide_set_pio_mode,
  850. .set_dma_mode = pmac_ide_set_dma_mode,
  851. .selectproc = pmac_ide_selectproc,
  852. };
  853. static const struct ide_dma_ops pmac_dma_ops;
  854. static const struct ide_port_info pmac_port_info = {
  855. .init_dma = pmac_ide_init_dma,
  856. .chipset = ide_pmac,
  857. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  858. .dma_ops = &pmac_dma_ops,
  859. #endif
  860. .port_ops = &pmac_ide_port_ops,
  861. .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  862. IDE_HFLAG_POST_SET_MODE |
  863. IDE_HFLAG_MMIO |
  864. IDE_HFLAG_UNMASK_IRQS,
  865. .pio_mask = ATA_PIO4,
  866. .mwdma_mask = ATA_MWDMA2,
  867. };
  868. /*
  869. * Setup, register & probe an IDE channel driven by this driver, this is
  870. * called by one of the 2 probe functions (macio or PCI).
  871. */
  872. static int __devinit
  873. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
  874. {
  875. struct device_node *np = pmif->node;
  876. const int *bidp;
  877. u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
  878. struct ide_port_info d = pmac_port_info;
  879. pmif->broken_dma = pmif->broken_dma_warn = 0;
  880. if (of_device_is_compatible(np, "shasta-ata")) {
  881. pmif->kind = controller_sh_ata6;
  882. d.port_ops = &pmac_ide_ata6_port_ops;
  883. d.udma_mask = ATA_UDMA6;
  884. } else if (of_device_is_compatible(np, "kauai-ata")) {
  885. pmif->kind = controller_un_ata6;
  886. d.port_ops = &pmac_ide_ata6_port_ops;
  887. d.udma_mask = ATA_UDMA5;
  888. } else if (of_device_is_compatible(np, "K2-UATA")) {
  889. pmif->kind = controller_k2_ata6;
  890. d.port_ops = &pmac_ide_ata6_port_ops;
  891. d.udma_mask = ATA_UDMA5;
  892. } else if (of_device_is_compatible(np, "keylargo-ata")) {
  893. if (strcmp(np->name, "ata-4") == 0) {
  894. pmif->kind = controller_kl_ata4;
  895. d.port_ops = &pmac_ide_ata4_port_ops;
  896. d.udma_mask = ATA_UDMA4;
  897. } else
  898. pmif->kind = controller_kl_ata3;
  899. } else if (of_device_is_compatible(np, "heathrow-ata")) {
  900. pmif->kind = controller_heathrow;
  901. } else {
  902. pmif->kind = controller_ohare;
  903. pmif->broken_dma = 1;
  904. }
  905. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  906. pmif->aapl_bus_id = bidp ? *bidp : 0;
  907. /* On Kauai-type controllers, we make sure the FCR is correct */
  908. if (pmif->kauai_fcr)
  909. writel(KAUAI_FCR_UATA_MAGIC |
  910. KAUAI_FCR_UATA_RESET_N |
  911. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  912. pmif->mediabay = 0;
  913. /* Make sure we have sane timings */
  914. sanitize_timings(pmif);
  915. #ifndef CONFIG_PPC64
  916. /* XXX FIXME: Media bay stuff need re-organizing */
  917. if (np->parent && np->parent->name
  918. && strcasecmp(np->parent->name, "media-bay") == 0) {
  919. #ifdef CONFIG_PMAC_MEDIABAY
  920. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
  921. hwif);
  922. #endif /* CONFIG_PMAC_MEDIABAY */
  923. pmif->mediabay = 1;
  924. if (!bidp)
  925. pmif->aapl_bus_id = 1;
  926. } else if (pmif->kind == controller_ohare) {
  927. /* The code below is having trouble on some ohare machines
  928. * (timing related ?). Until I can put my hand on one of these
  929. * units, I keep the old way
  930. */
  931. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  932. } else
  933. #endif
  934. {
  935. /* This is necessary to enable IDE when net-booting */
  936. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  937. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  938. msleep(10);
  939. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  940. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  941. }
  942. /* Setup MMIO ops */
  943. default_hwif_mmiops(hwif);
  944. hwif->OUTBSYNC = pmac_outbsync;
  945. hwif->hwif_data = pmif;
  946. ide_init_port_hw(hwif, hw);
  947. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  948. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  949. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  950. if (pmif->mediabay) {
  951. #ifdef CONFIG_PMAC_MEDIABAY
  952. if (check_media_bay_by_base(pmif->regbase, MB_CD)) {
  953. #else
  954. if (1) {
  955. #endif
  956. hwif->drives[0].noprobe = 1;
  957. hwif->drives[1].noprobe = 1;
  958. }
  959. }
  960. idx[0] = hwif->index;
  961. ide_device_add(idx, &d);
  962. return 0;
  963. }
  964. static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
  965. {
  966. int i;
  967. for (i = 0; i < 8; ++i)
  968. hw->io_ports_array[i] = base + i * 0x10;
  969. hw->io_ports.ctl_addr = base + 0x160;
  970. }
  971. /*
  972. * Attach to a macio probed interface
  973. */
  974. static int __devinit
  975. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  976. {
  977. void __iomem *base;
  978. unsigned long regbase;
  979. ide_hwif_t *hwif;
  980. pmac_ide_hwif_t *pmif;
  981. int irq, rc;
  982. hw_regs_t hw;
  983. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  984. if (pmif == NULL)
  985. return -ENOMEM;
  986. hwif = ide_find_port();
  987. if (hwif == NULL) {
  988. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  989. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  990. rc = -ENODEV;
  991. goto out_free_pmif;
  992. }
  993. if (macio_resource_count(mdev) == 0) {
  994. printk(KERN_WARNING "ide-pmac: no address for %s\n",
  995. mdev->ofdev.node->full_name);
  996. rc = -ENXIO;
  997. goto out_free_pmif;
  998. }
  999. /* Request memory resource for IO ports */
  1000. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1001. printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
  1002. "%s!\n", mdev->ofdev.node->full_name);
  1003. rc = -EBUSY;
  1004. goto out_free_pmif;
  1005. }
  1006. /* XXX This is bogus. Should be fixed in the registry by checking
  1007. * the kind of host interrupt controller, a bit like gatwick
  1008. * fixes in irq.c. That works well enough for the single case
  1009. * where that happens though...
  1010. */
  1011. if (macio_irq_count(mdev) == 0) {
  1012. printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
  1013. "13\n", mdev->ofdev.node->full_name);
  1014. irq = irq_create_mapping(NULL, 13);
  1015. } else
  1016. irq = macio_irq(mdev, 0);
  1017. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1018. regbase = (unsigned long) base;
  1019. pmif->mdev = mdev;
  1020. pmif->node = mdev->ofdev.node;
  1021. pmif->regbase = regbase;
  1022. pmif->irq = irq;
  1023. pmif->kauai_fcr = NULL;
  1024. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1025. if (macio_resource_count(mdev) >= 2) {
  1026. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1027. printk(KERN_WARNING "ide-pmac: can't request DMA "
  1028. "resource for %s!\n",
  1029. mdev->ofdev.node->full_name);
  1030. else
  1031. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1032. } else
  1033. pmif->dma_regs = NULL;
  1034. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1035. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1036. memset(&hw, 0, sizeof(hw));
  1037. pmac_ide_init_ports(&hw, pmif->regbase);
  1038. hw.irq = irq;
  1039. hw.dev = &mdev->bus->pdev->dev;
  1040. hw.parent = &mdev->ofdev.dev;
  1041. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1042. if (rc != 0) {
  1043. /* The inteface is released to the common IDE layer */
  1044. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1045. iounmap(base);
  1046. if (pmif->dma_regs) {
  1047. iounmap(pmif->dma_regs);
  1048. macio_release_resource(mdev, 1);
  1049. }
  1050. macio_release_resource(mdev, 0);
  1051. kfree(pmif);
  1052. }
  1053. return rc;
  1054. out_free_pmif:
  1055. kfree(pmif);
  1056. return rc;
  1057. }
  1058. static int
  1059. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1060. {
  1061. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1062. int rc = 0;
  1063. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1064. && (mesg.event & PM_EVENT_SLEEP)) {
  1065. rc = pmac_ide_do_suspend(hwif);
  1066. if (rc == 0)
  1067. mdev->ofdev.dev.power.power_state = mesg;
  1068. }
  1069. return rc;
  1070. }
  1071. static int
  1072. pmac_ide_macio_resume(struct macio_dev *mdev)
  1073. {
  1074. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1075. int rc = 0;
  1076. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1077. rc = pmac_ide_do_resume(hwif);
  1078. if (rc == 0)
  1079. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1080. }
  1081. return rc;
  1082. }
  1083. /*
  1084. * Attach to a PCI probed interface
  1085. */
  1086. static int __devinit
  1087. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1088. {
  1089. ide_hwif_t *hwif;
  1090. struct device_node *np;
  1091. pmac_ide_hwif_t *pmif;
  1092. void __iomem *base;
  1093. unsigned long rbase, rlen;
  1094. int rc;
  1095. hw_regs_t hw;
  1096. np = pci_device_to_OF_node(pdev);
  1097. if (np == NULL) {
  1098. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1099. return -ENODEV;
  1100. }
  1101. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1102. if (pmif == NULL)
  1103. return -ENOMEM;
  1104. hwif = ide_find_port();
  1105. if (hwif == NULL) {
  1106. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1107. printk(KERN_ERR " %s\n", np->full_name);
  1108. rc = -ENODEV;
  1109. goto out_free_pmif;
  1110. }
  1111. if (pci_enable_device(pdev)) {
  1112. printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
  1113. "%s\n", np->full_name);
  1114. rc = -ENXIO;
  1115. goto out_free_pmif;
  1116. }
  1117. pci_set_master(pdev);
  1118. if (pci_request_regions(pdev, "Kauai ATA")) {
  1119. printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
  1120. "%s\n", np->full_name);
  1121. rc = -ENXIO;
  1122. goto out_free_pmif;
  1123. }
  1124. pmif->mdev = NULL;
  1125. pmif->node = np;
  1126. rbase = pci_resource_start(pdev, 0);
  1127. rlen = pci_resource_len(pdev, 0);
  1128. base = ioremap(rbase, rlen);
  1129. pmif->regbase = (unsigned long) base + 0x2000;
  1130. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1131. pmif->dma_regs = base + 0x1000;
  1132. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1133. pmif->kauai_fcr = base;
  1134. pmif->irq = pdev->irq;
  1135. pci_set_drvdata(pdev, hwif);
  1136. memset(&hw, 0, sizeof(hw));
  1137. pmac_ide_init_ports(&hw, pmif->regbase);
  1138. hw.irq = pdev->irq;
  1139. hw.dev = &pdev->dev;
  1140. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1141. if (rc != 0) {
  1142. /* The inteface is released to the common IDE layer */
  1143. pci_set_drvdata(pdev, NULL);
  1144. iounmap(base);
  1145. pci_release_regions(pdev);
  1146. kfree(pmif);
  1147. }
  1148. return rc;
  1149. out_free_pmif:
  1150. kfree(pmif);
  1151. return rc;
  1152. }
  1153. static int
  1154. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1155. {
  1156. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1157. int rc = 0;
  1158. if (mesg.event != pdev->dev.power.power_state.event
  1159. && (mesg.event & PM_EVENT_SLEEP)) {
  1160. rc = pmac_ide_do_suspend(hwif);
  1161. if (rc == 0)
  1162. pdev->dev.power.power_state = mesg;
  1163. }
  1164. return rc;
  1165. }
  1166. static int
  1167. pmac_ide_pci_resume(struct pci_dev *pdev)
  1168. {
  1169. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1170. int rc = 0;
  1171. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1172. rc = pmac_ide_do_resume(hwif);
  1173. if (rc == 0)
  1174. pdev->dev.power.power_state = PMSG_ON;
  1175. }
  1176. return rc;
  1177. }
  1178. static struct of_device_id pmac_ide_macio_match[] =
  1179. {
  1180. {
  1181. .name = "IDE",
  1182. },
  1183. {
  1184. .name = "ATA",
  1185. },
  1186. {
  1187. .type = "ide",
  1188. },
  1189. {
  1190. .type = "ata",
  1191. },
  1192. {},
  1193. };
  1194. static struct macio_driver pmac_ide_macio_driver =
  1195. {
  1196. .name = "ide-pmac",
  1197. .match_table = pmac_ide_macio_match,
  1198. .probe = pmac_ide_macio_attach,
  1199. .suspend = pmac_ide_macio_suspend,
  1200. .resume = pmac_ide_macio_resume,
  1201. };
  1202. static const struct pci_device_id pmac_ide_pci_match[] = {
  1203. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1204. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1205. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1206. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1207. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1208. {},
  1209. };
  1210. static struct pci_driver pmac_ide_pci_driver = {
  1211. .name = "ide-pmac",
  1212. .id_table = pmac_ide_pci_match,
  1213. .probe = pmac_ide_pci_attach,
  1214. .suspend = pmac_ide_pci_suspend,
  1215. .resume = pmac_ide_pci_resume,
  1216. };
  1217. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1218. int __init pmac_ide_probe(void)
  1219. {
  1220. int error;
  1221. if (!machine_is(powermac))
  1222. return -ENODEV;
  1223. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1224. error = pci_register_driver(&pmac_ide_pci_driver);
  1225. if (error)
  1226. goto out;
  1227. error = macio_register_driver(&pmac_ide_macio_driver);
  1228. if (error) {
  1229. pci_unregister_driver(&pmac_ide_pci_driver);
  1230. goto out;
  1231. }
  1232. #else
  1233. error = macio_register_driver(&pmac_ide_macio_driver);
  1234. if (error)
  1235. goto out;
  1236. error = pci_register_driver(&pmac_ide_pci_driver);
  1237. if (error) {
  1238. macio_unregister_driver(&pmac_ide_macio_driver);
  1239. goto out;
  1240. }
  1241. #endif
  1242. out:
  1243. return error;
  1244. }
  1245. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1246. /*
  1247. * pmac_ide_build_dmatable builds the DBDMA command list
  1248. * for a transfer and sets the DBDMA channel to point to it.
  1249. */
  1250. static int
  1251. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1252. {
  1253. struct dbdma_cmd *table;
  1254. int i, count = 0;
  1255. ide_hwif_t *hwif = HWIF(drive);
  1256. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1257. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1258. struct scatterlist *sg;
  1259. int wr = (rq_data_dir(rq) == WRITE);
  1260. /* DMA table is already aligned */
  1261. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1262. /* Make sure DMA controller is stopped (necessary ?) */
  1263. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1264. while (readl(&dma->status) & RUN)
  1265. udelay(1);
  1266. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1267. if (!i)
  1268. return 0;
  1269. /* Build DBDMA commands list */
  1270. sg = hwif->sg_table;
  1271. while (i && sg_dma_len(sg)) {
  1272. u32 cur_addr;
  1273. u32 cur_len;
  1274. cur_addr = sg_dma_address(sg);
  1275. cur_len = sg_dma_len(sg);
  1276. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1277. if (pmif->broken_dma_warn == 0) {
  1278. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1279. "switching to PIO on Ohare chipset\n", drive->name);
  1280. pmif->broken_dma_warn = 1;
  1281. }
  1282. goto use_pio_instead;
  1283. }
  1284. while (cur_len) {
  1285. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1286. if (count++ >= MAX_DCMDS) {
  1287. printk(KERN_WARNING "%s: DMA table too small\n",
  1288. drive->name);
  1289. goto use_pio_instead;
  1290. }
  1291. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1292. st_le16(&table->req_count, tc);
  1293. st_le32(&table->phy_addr, cur_addr);
  1294. table->cmd_dep = 0;
  1295. table->xfer_status = 0;
  1296. table->res_count = 0;
  1297. cur_addr += tc;
  1298. cur_len -= tc;
  1299. ++table;
  1300. }
  1301. sg = sg_next(sg);
  1302. i--;
  1303. }
  1304. /* convert the last command to an input/output last command */
  1305. if (count) {
  1306. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1307. /* add the stop command to the end of the list */
  1308. memset(table, 0, sizeof(struct dbdma_cmd));
  1309. st_le16(&table->command, DBDMA_STOP);
  1310. mb();
  1311. writel(hwif->dmatable_dma, &dma->cmdptr);
  1312. return 1;
  1313. }
  1314. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1315. use_pio_instead:
  1316. ide_destroy_dmatable(drive);
  1317. return 0; /* revert to PIO for this request */
  1318. }
  1319. /* Teardown mappings after DMA has completed. */
  1320. static void
  1321. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1322. {
  1323. ide_hwif_t *hwif = drive->hwif;
  1324. if (hwif->sg_nents) {
  1325. ide_destroy_dmatable(drive);
  1326. hwif->sg_nents = 0;
  1327. }
  1328. }
  1329. /*
  1330. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1331. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1332. */
  1333. static int
  1334. pmac_ide_dma_setup(ide_drive_t *drive)
  1335. {
  1336. ide_hwif_t *hwif = HWIF(drive);
  1337. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1338. struct request *rq = HWGROUP(drive)->rq;
  1339. u8 unit = (drive->select.b.unit & 0x01);
  1340. u8 ata4;
  1341. if (pmif == NULL)
  1342. return 1;
  1343. ata4 = (pmif->kind == controller_kl_ata4);
  1344. if (!pmac_ide_build_dmatable(drive, rq)) {
  1345. ide_map_sg(drive, rq);
  1346. return 1;
  1347. }
  1348. /* Apple adds 60ns to wrDataSetup on reads */
  1349. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1350. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1351. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1352. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1353. }
  1354. drive->waiting_for_dma = 1;
  1355. return 0;
  1356. }
  1357. static void
  1358. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1359. {
  1360. /* issue cmd to drive */
  1361. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1362. }
  1363. /*
  1364. * Kick the DMA controller into life after the DMA command has been issued
  1365. * to the drive.
  1366. */
  1367. static void
  1368. pmac_ide_dma_start(ide_drive_t *drive)
  1369. {
  1370. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1371. volatile struct dbdma_regs __iomem *dma;
  1372. dma = pmif->dma_regs;
  1373. writel((RUN << 16) | RUN, &dma->control);
  1374. /* Make sure it gets to the controller right now */
  1375. (void)readl(&dma->control);
  1376. }
  1377. /*
  1378. * After a DMA transfer, make sure the controller is stopped
  1379. */
  1380. static int
  1381. pmac_ide_dma_end (ide_drive_t *drive)
  1382. {
  1383. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1384. volatile struct dbdma_regs __iomem *dma;
  1385. u32 dstat;
  1386. if (pmif == NULL)
  1387. return 0;
  1388. dma = pmif->dma_regs;
  1389. drive->waiting_for_dma = 0;
  1390. dstat = readl(&dma->status);
  1391. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1392. pmac_ide_destroy_dmatable(drive);
  1393. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1394. * in theory, but with ATAPI decices doing buffer underruns, that would
  1395. * cause us to disable DMA, which isn't what we want
  1396. */
  1397. return (dstat & (RUN|DEAD)) != RUN;
  1398. }
  1399. /*
  1400. * Check out that the interrupt we got was for us. We can't always know this
  1401. * for sure with those Apple interfaces (well, we could on the recent ones but
  1402. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1403. * so it's not really a problem
  1404. */
  1405. static int
  1406. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1407. {
  1408. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1409. volatile struct dbdma_regs __iomem *dma;
  1410. unsigned long status, timeout;
  1411. if (pmif == NULL)
  1412. return 0;
  1413. dma = pmif->dma_regs;
  1414. /* We have to things to deal with here:
  1415. *
  1416. * - The dbdma won't stop if the command was started
  1417. * but completed with an error without transferring all
  1418. * datas. This happens when bad blocks are met during
  1419. * a multi-block transfer.
  1420. *
  1421. * - The dbdma fifo hasn't yet finished flushing to
  1422. * to system memory when the disk interrupt occurs.
  1423. *
  1424. */
  1425. /* If ACTIVE is cleared, the STOP command have passed and
  1426. * transfer is complete.
  1427. */
  1428. status = readl(&dma->status);
  1429. if (!(status & ACTIVE))
  1430. return 1;
  1431. if (!drive->waiting_for_dma)
  1432. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1433. called while not waiting\n", HWIF(drive)->index);
  1434. /* If dbdma didn't execute the STOP command yet, the
  1435. * active bit is still set. We consider that we aren't
  1436. * sharing interrupts (which is hopefully the case with
  1437. * those controllers) and so we just try to flush the
  1438. * channel for pending data in the fifo
  1439. */
  1440. udelay(1);
  1441. writel((FLUSH << 16) | FLUSH, &dma->control);
  1442. timeout = 0;
  1443. for (;;) {
  1444. udelay(1);
  1445. status = readl(&dma->status);
  1446. if ((status & FLUSH) == 0)
  1447. break;
  1448. if (++timeout > 100) {
  1449. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1450. timeout flushing channel\n", HWIF(drive)->index);
  1451. break;
  1452. }
  1453. }
  1454. return 1;
  1455. }
  1456. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1457. {
  1458. }
  1459. static void
  1460. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1461. {
  1462. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1463. volatile struct dbdma_regs __iomem *dma;
  1464. unsigned long status;
  1465. if (pmif == NULL)
  1466. return;
  1467. dma = pmif->dma_regs;
  1468. status = readl(&dma->status);
  1469. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1470. }
  1471. static const struct ide_dma_ops pmac_dma_ops = {
  1472. .dma_host_set = pmac_ide_dma_host_set,
  1473. .dma_setup = pmac_ide_dma_setup,
  1474. .dma_exec_cmd = pmac_ide_dma_exec_cmd,
  1475. .dma_start = pmac_ide_dma_start,
  1476. .dma_end = pmac_ide_dma_end,
  1477. .dma_test_irq = pmac_ide_dma_test_irq,
  1478. .dma_timeout = ide_dma_timeout,
  1479. .dma_lost_irq = pmac_ide_dma_lost_irq,
  1480. };
  1481. /*
  1482. * Allocate the data structures needed for using DMA with an interface
  1483. * and fill the proper list of functions pointers
  1484. */
  1485. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1486. const struct ide_port_info *d)
  1487. {
  1488. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1489. struct pci_dev *dev = to_pci_dev(hwif->dev);
  1490. /* We won't need pci_dev if we switch to generic consistent
  1491. * DMA routines ...
  1492. */
  1493. if (dev == NULL || pmif->dma_regs == 0)
  1494. return -ENODEV;
  1495. /*
  1496. * Allocate space for the DBDMA commands.
  1497. * The +2 is +1 for the stop command and +1 to allow for
  1498. * aligning the start address to a multiple of 16 bytes.
  1499. */
  1500. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1501. dev,
  1502. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1503. &hwif->dmatable_dma);
  1504. if (pmif->dma_table_cpu == NULL) {
  1505. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1506. hwif->name);
  1507. return -ENOMEM;
  1508. }
  1509. hwif->sg_max_nents = MAX_DCMDS;
  1510. return 0;
  1511. }
  1512. #else
  1513. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1514. const struct ide_port_info *d)
  1515. {
  1516. return -EOPNOTSUPP;
  1517. }
  1518. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1519. module_init(pmac_ide_probe);
  1520. MODULE_LICENSE("GPL");