mmtimer.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. /*
  2. * Timer device implementation for SGI SN platforms.
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
  9. *
  10. * This driver exports an API that should be supportable by any HPET or IA-PC
  11. * multimedia timer. The code below is currently specific to the SGI Altix
  12. * SHub RTC, however.
  13. *
  14. * 11/01/01 - jbarnes - initial revision
  15. * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
  16. * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
  17. * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
  18. * support via the posix timer interface
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/ioctl.h>
  23. #include <linux/module.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/mm.h>
  27. #include <linux/fs.h>
  28. #include <linux/mmtimer.h>
  29. #include <linux/miscdevice.h>
  30. #include <linux/posix-timers.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/time.h>
  33. #include <linux/math64.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/sn/addrs.h>
  36. #include <asm/sn/intr.h>
  37. #include <asm/sn/shub_mmr.h>
  38. #include <asm/sn/nodepda.h>
  39. #include <asm/sn/shubio.h>
  40. MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
  41. MODULE_DESCRIPTION("SGI Altix RTC Timer");
  42. MODULE_LICENSE("GPL");
  43. /* name of the device, usually in /dev */
  44. #define MMTIMER_NAME "mmtimer"
  45. #define MMTIMER_DESC "SGI Altix RTC Timer"
  46. #define MMTIMER_VERSION "2.1"
  47. #define RTC_BITS 55 /* 55 bits for this implementation */
  48. extern unsigned long sn_rtc_cycles_per_second;
  49. #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
  50. #define rtc_time() (*RTC_COUNTER_ADDR)
  51. static int mmtimer_ioctl(struct inode *inode, struct file *file,
  52. unsigned int cmd, unsigned long arg);
  53. static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
  54. /*
  55. * Period in femtoseconds (10^-15 s)
  56. */
  57. static unsigned long mmtimer_femtoperiod = 0;
  58. static const struct file_operations mmtimer_fops = {
  59. .owner = THIS_MODULE,
  60. .mmap = mmtimer_mmap,
  61. .ioctl = mmtimer_ioctl,
  62. };
  63. /*
  64. * We only have comparison registers RTC1-4 currently available per
  65. * node. RTC0 is used by SAL.
  66. */
  67. /* Check for an RTC interrupt pending */
  68. static int mmtimer_int_pending(int comparator)
  69. {
  70. if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
  71. SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
  72. return 1;
  73. else
  74. return 0;
  75. }
  76. /* Clear the RTC interrupt pending bit */
  77. static void mmtimer_clr_int_pending(int comparator)
  78. {
  79. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
  80. SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
  81. }
  82. /* Setup timer on comparator RTC1 */
  83. static void mmtimer_setup_int_0(int cpu, u64 expires)
  84. {
  85. u64 val;
  86. /* Disable interrupt */
  87. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
  88. /* Initialize comparator value */
  89. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
  90. /* Clear pending bit */
  91. mmtimer_clr_int_pending(0);
  92. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
  93. ((u64)cpu_physical_id(cpu) <<
  94. SH_RTC1_INT_CONFIG_PID_SHFT);
  95. /* Set configuration */
  96. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
  97. /* Enable RTC interrupts */
  98. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
  99. /* Initialize comparator value */
  100. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
  101. }
  102. /* Setup timer on comparator RTC2 */
  103. static void mmtimer_setup_int_1(int cpu, u64 expires)
  104. {
  105. u64 val;
  106. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
  107. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
  108. mmtimer_clr_int_pending(1);
  109. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
  110. ((u64)cpu_physical_id(cpu) <<
  111. SH_RTC2_INT_CONFIG_PID_SHFT);
  112. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
  113. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
  114. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
  115. }
  116. /* Setup timer on comparator RTC3 */
  117. static void mmtimer_setup_int_2(int cpu, u64 expires)
  118. {
  119. u64 val;
  120. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
  121. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
  122. mmtimer_clr_int_pending(2);
  123. val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
  124. ((u64)cpu_physical_id(cpu) <<
  125. SH_RTC3_INT_CONFIG_PID_SHFT);
  126. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
  127. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
  128. HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
  129. }
  130. /*
  131. * This function must be called with interrupts disabled and preemption off
  132. * in order to insure that the setup succeeds in a deterministic time frame.
  133. * It will check if the interrupt setup succeeded.
  134. */
  135. static int mmtimer_setup(int cpu, int comparator, unsigned long expires)
  136. {
  137. switch (comparator) {
  138. case 0:
  139. mmtimer_setup_int_0(cpu, expires);
  140. break;
  141. case 1:
  142. mmtimer_setup_int_1(cpu, expires);
  143. break;
  144. case 2:
  145. mmtimer_setup_int_2(cpu, expires);
  146. break;
  147. }
  148. /* We might've missed our expiration time */
  149. if (rtc_time() <= expires)
  150. return 1;
  151. /*
  152. * If an interrupt is already pending then its okay
  153. * if not then we failed
  154. */
  155. return mmtimer_int_pending(comparator);
  156. }
  157. static int mmtimer_disable_int(long nasid, int comparator)
  158. {
  159. switch (comparator) {
  160. case 0:
  161. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
  162. 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
  163. break;
  164. case 1:
  165. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
  166. 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
  167. break;
  168. case 2:
  169. nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
  170. 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
  171. break;
  172. default:
  173. return -EFAULT;
  174. }
  175. return 0;
  176. }
  177. #define COMPARATOR 1 /* The comparator to use */
  178. #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
  179. #define TIMER_SET 0 /* Comparator is set for this timer */
  180. /* There is one of these for each timer */
  181. struct mmtimer {
  182. struct rb_node list;
  183. struct k_itimer *timer;
  184. int cpu;
  185. };
  186. struct mmtimer_node {
  187. spinlock_t lock ____cacheline_aligned;
  188. struct rb_root timer_head;
  189. struct rb_node *next;
  190. struct tasklet_struct tasklet;
  191. };
  192. static struct mmtimer_node *timers;
  193. /*
  194. * Add a new mmtimer struct to the node's mmtimer list.
  195. * This function assumes the struct mmtimer_node is locked.
  196. */
  197. static void mmtimer_add_list(struct mmtimer *n)
  198. {
  199. int nodeid = n->timer->it.mmtimer.node;
  200. unsigned long expires = n->timer->it.mmtimer.expires;
  201. struct rb_node **link = &timers[nodeid].timer_head.rb_node;
  202. struct rb_node *parent = NULL;
  203. struct mmtimer *x;
  204. /*
  205. * Find the right place in the rbtree:
  206. */
  207. while (*link) {
  208. parent = *link;
  209. x = rb_entry(parent, struct mmtimer, list);
  210. if (expires < x->timer->it.mmtimer.expires)
  211. link = &(*link)->rb_left;
  212. else
  213. link = &(*link)->rb_right;
  214. }
  215. /*
  216. * Insert the timer to the rbtree and check whether it
  217. * replaces the first pending timer
  218. */
  219. rb_link_node(&n->list, parent, link);
  220. rb_insert_color(&n->list, &timers[nodeid].timer_head);
  221. if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
  222. struct mmtimer, list)->timer->it.mmtimer.expires)
  223. timers[nodeid].next = &n->list;
  224. }
  225. /*
  226. * Set the comparator for the next timer.
  227. * This function assumes the struct mmtimer_node is locked.
  228. */
  229. static void mmtimer_set_next_timer(int nodeid)
  230. {
  231. struct mmtimer_node *n = &timers[nodeid];
  232. struct mmtimer *x;
  233. struct k_itimer *t;
  234. int o;
  235. restart:
  236. if (n->next == NULL)
  237. return;
  238. x = rb_entry(n->next, struct mmtimer, list);
  239. t = x->timer;
  240. if (!t->it.mmtimer.incr) {
  241. /* Not an interval timer */
  242. if (!mmtimer_setup(x->cpu, COMPARATOR,
  243. t->it.mmtimer.expires)) {
  244. /* Late setup, fire now */
  245. tasklet_schedule(&n->tasklet);
  246. }
  247. return;
  248. }
  249. /* Interval timer */
  250. o = 0;
  251. while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) {
  252. unsigned long e, e1;
  253. struct rb_node *next;
  254. t->it.mmtimer.expires += t->it.mmtimer.incr << o;
  255. t->it_overrun += 1 << o;
  256. o++;
  257. if (o > 20) {
  258. printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
  259. t->it.mmtimer.clock = TIMER_OFF;
  260. n->next = rb_next(&x->list);
  261. rb_erase(&x->list, &n->timer_head);
  262. kfree(x);
  263. goto restart;
  264. }
  265. e = t->it.mmtimer.expires;
  266. next = rb_next(&x->list);
  267. if (next == NULL)
  268. continue;
  269. e1 = rb_entry(next, struct mmtimer, list)->
  270. timer->it.mmtimer.expires;
  271. if (e > e1) {
  272. n->next = next;
  273. rb_erase(&x->list, &n->timer_head);
  274. mmtimer_add_list(x);
  275. goto restart;
  276. }
  277. }
  278. }
  279. /**
  280. * mmtimer_ioctl - ioctl interface for /dev/mmtimer
  281. * @inode: inode of the device
  282. * @file: file structure for the device
  283. * @cmd: command to execute
  284. * @arg: optional argument to command
  285. *
  286. * Executes the command specified by @cmd. Returns 0 for success, < 0 for
  287. * failure.
  288. *
  289. * Valid commands:
  290. *
  291. * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
  292. * of the page where the registers are mapped) for the counter in question.
  293. *
  294. * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
  295. * seconds
  296. *
  297. * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
  298. * specified by @arg
  299. *
  300. * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
  301. *
  302. * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
  303. *
  304. * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
  305. * in the address specified by @arg.
  306. */
  307. static int mmtimer_ioctl(struct inode *inode, struct file *file,
  308. unsigned int cmd, unsigned long arg)
  309. {
  310. int ret = 0;
  311. switch (cmd) {
  312. case MMTIMER_GETOFFSET: /* offset of the counter */
  313. /*
  314. * SN RTC registers are on their own 64k page
  315. */
  316. if(PAGE_SIZE <= (1 << 16))
  317. ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
  318. else
  319. ret = -ENOSYS;
  320. break;
  321. case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
  322. if(copy_to_user((unsigned long __user *)arg,
  323. &mmtimer_femtoperiod, sizeof(unsigned long)))
  324. return -EFAULT;
  325. break;
  326. case MMTIMER_GETFREQ: /* frequency in Hz */
  327. if(copy_to_user((unsigned long __user *)arg,
  328. &sn_rtc_cycles_per_second,
  329. sizeof(unsigned long)))
  330. return -EFAULT;
  331. ret = 0;
  332. break;
  333. case MMTIMER_GETBITS: /* number of bits in the clock */
  334. ret = RTC_BITS;
  335. break;
  336. case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
  337. ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
  338. break;
  339. case MMTIMER_GETCOUNTER:
  340. if(copy_to_user((unsigned long __user *)arg,
  341. RTC_COUNTER_ADDR, sizeof(unsigned long)))
  342. return -EFAULT;
  343. break;
  344. default:
  345. ret = -ENOSYS;
  346. break;
  347. }
  348. return ret;
  349. }
  350. /**
  351. * mmtimer_mmap - maps the clock's registers into userspace
  352. * @file: file structure for the device
  353. * @vma: VMA to map the registers into
  354. *
  355. * Calls remap_pfn_range() to map the clock's registers into
  356. * the calling process' address space.
  357. */
  358. static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
  359. {
  360. unsigned long mmtimer_addr;
  361. if (vma->vm_end - vma->vm_start != PAGE_SIZE)
  362. return -EINVAL;
  363. if (vma->vm_flags & VM_WRITE)
  364. return -EPERM;
  365. if (PAGE_SIZE > (1 << 16))
  366. return -ENOSYS;
  367. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  368. mmtimer_addr = __pa(RTC_COUNTER_ADDR);
  369. mmtimer_addr &= ~(PAGE_SIZE - 1);
  370. mmtimer_addr &= 0xfffffffffffffffUL;
  371. if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
  372. PAGE_SIZE, vma->vm_page_prot)) {
  373. printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
  374. return -EAGAIN;
  375. }
  376. return 0;
  377. }
  378. static struct miscdevice mmtimer_miscdev = {
  379. SGI_MMTIMER,
  380. MMTIMER_NAME,
  381. &mmtimer_fops
  382. };
  383. static struct timespec sgi_clock_offset;
  384. static int sgi_clock_period;
  385. /*
  386. * Posix Timer Interface
  387. */
  388. static struct timespec sgi_clock_offset;
  389. static int sgi_clock_period;
  390. static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
  391. {
  392. u64 nsec;
  393. nsec = rtc_time() * sgi_clock_period
  394. + sgi_clock_offset.tv_nsec;
  395. *tp = ns_to_timespec(nsec);
  396. tp->tv_sec += sgi_clock_offset.tv_sec;
  397. return 0;
  398. };
  399. static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
  400. {
  401. u64 nsec;
  402. u32 rem;
  403. nsec = rtc_time() * sgi_clock_period;
  404. sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
  405. if (rem <= tp->tv_nsec)
  406. sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
  407. else {
  408. sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
  409. sgi_clock_offset.tv_sec--;
  410. }
  411. return 0;
  412. }
  413. /**
  414. * mmtimer_interrupt - timer interrupt handler
  415. * @irq: irq received
  416. * @dev_id: device the irq came from
  417. *
  418. * Called when one of the comarators matches the counter, This
  419. * routine will send signals to processes that have requested
  420. * them.
  421. *
  422. * This interrupt is run in an interrupt context
  423. * by the SHUB. It is therefore safe to locally access SHub
  424. * registers.
  425. */
  426. static irqreturn_t
  427. mmtimer_interrupt(int irq, void *dev_id)
  428. {
  429. unsigned long expires = 0;
  430. int result = IRQ_NONE;
  431. unsigned indx = cpu_to_node(smp_processor_id());
  432. struct mmtimer *base;
  433. spin_lock(&timers[indx].lock);
  434. base = rb_entry(timers[indx].next, struct mmtimer, list);
  435. if (base == NULL) {
  436. spin_unlock(&timers[indx].lock);
  437. return result;
  438. }
  439. if (base->cpu == smp_processor_id()) {
  440. if (base->timer)
  441. expires = base->timer->it.mmtimer.expires;
  442. /* expires test won't work with shared irqs */
  443. if ((mmtimer_int_pending(COMPARATOR) > 0) ||
  444. (expires && (expires <= rtc_time()))) {
  445. mmtimer_clr_int_pending(COMPARATOR);
  446. tasklet_schedule(&timers[indx].tasklet);
  447. result = IRQ_HANDLED;
  448. }
  449. }
  450. spin_unlock(&timers[indx].lock);
  451. return result;
  452. }
  453. static void mmtimer_tasklet(unsigned long data)
  454. {
  455. int nodeid = data;
  456. struct mmtimer_node *mn = &timers[nodeid];
  457. struct mmtimer *x = rb_entry(mn->next, struct mmtimer, list);
  458. struct k_itimer *t;
  459. unsigned long flags;
  460. /* Send signal and deal with periodic signals */
  461. spin_lock_irqsave(&mn->lock, flags);
  462. if (!mn->next)
  463. goto out;
  464. x = rb_entry(mn->next, struct mmtimer, list);
  465. t = x->timer;
  466. if (t->it.mmtimer.clock == TIMER_OFF)
  467. goto out;
  468. t->it_overrun = 0;
  469. mn->next = rb_next(&x->list);
  470. rb_erase(&x->list, &mn->timer_head);
  471. if (posix_timer_event(t, 0) != 0)
  472. t->it_overrun++;
  473. if(t->it.mmtimer.incr) {
  474. t->it.mmtimer.expires += t->it.mmtimer.incr;
  475. mmtimer_add_list(x);
  476. } else {
  477. /* Ensure we don't false trigger in mmtimer_interrupt */
  478. t->it.mmtimer.clock = TIMER_OFF;
  479. t->it.mmtimer.expires = 0;
  480. kfree(x);
  481. }
  482. /* Set comparator for next timer, if there is one */
  483. mmtimer_set_next_timer(nodeid);
  484. t->it_overrun_last = t->it_overrun;
  485. out:
  486. spin_unlock_irqrestore(&mn->lock, flags);
  487. }
  488. static int sgi_timer_create(struct k_itimer *timer)
  489. {
  490. /* Insure that a newly created timer is off */
  491. timer->it.mmtimer.clock = TIMER_OFF;
  492. return 0;
  493. }
  494. /* This does not really delete a timer. It just insures
  495. * that the timer is not active
  496. *
  497. * Assumption: it_lock is already held with irq's disabled
  498. */
  499. static int sgi_timer_del(struct k_itimer *timr)
  500. {
  501. cnodeid_t nodeid = timr->it.mmtimer.node;
  502. unsigned long irqflags;
  503. spin_lock_irqsave(&timers[nodeid].lock, irqflags);
  504. if (timr->it.mmtimer.clock != TIMER_OFF) {
  505. unsigned long expires = timr->it.mmtimer.expires;
  506. struct rb_node *n = timers[nodeid].timer_head.rb_node;
  507. struct mmtimer *uninitialized_var(t);
  508. int r = 0;
  509. timr->it.mmtimer.clock = TIMER_OFF;
  510. timr->it.mmtimer.expires = 0;
  511. while (n) {
  512. t = rb_entry(n, struct mmtimer, list);
  513. if (t->timer == timr)
  514. break;
  515. if (expires < t->timer->it.mmtimer.expires)
  516. n = n->rb_left;
  517. else
  518. n = n->rb_right;
  519. }
  520. if (!n) {
  521. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  522. return 0;
  523. }
  524. if (timers[nodeid].next == n) {
  525. timers[nodeid].next = rb_next(n);
  526. r = 1;
  527. }
  528. rb_erase(n, &timers[nodeid].timer_head);
  529. kfree(t);
  530. if (r) {
  531. mmtimer_disable_int(cnodeid_to_nasid(nodeid),
  532. COMPARATOR);
  533. mmtimer_set_next_timer(nodeid);
  534. }
  535. }
  536. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  537. return 0;
  538. }
  539. /* Assumption: it_lock is already held with irq's disabled */
  540. static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  541. {
  542. if (timr->it.mmtimer.clock == TIMER_OFF) {
  543. cur_setting->it_interval.tv_nsec = 0;
  544. cur_setting->it_interval.tv_sec = 0;
  545. cur_setting->it_value.tv_nsec = 0;
  546. cur_setting->it_value.tv_sec =0;
  547. return;
  548. }
  549. cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
  550. cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
  551. }
  552. static int sgi_timer_set(struct k_itimer *timr, int flags,
  553. struct itimerspec * new_setting,
  554. struct itimerspec * old_setting)
  555. {
  556. unsigned long when, period, irqflags;
  557. int err = 0;
  558. cnodeid_t nodeid;
  559. struct mmtimer *base;
  560. struct rb_node *n;
  561. if (old_setting)
  562. sgi_timer_get(timr, old_setting);
  563. sgi_timer_del(timr);
  564. when = timespec_to_ns(&new_setting->it_value);
  565. period = timespec_to_ns(&new_setting->it_interval);
  566. if (when == 0)
  567. /* Clear timer */
  568. return 0;
  569. base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
  570. if (base == NULL)
  571. return -ENOMEM;
  572. if (flags & TIMER_ABSTIME) {
  573. struct timespec n;
  574. unsigned long now;
  575. getnstimeofday(&n);
  576. now = timespec_to_ns(&n);
  577. if (when > now)
  578. when -= now;
  579. else
  580. /* Fire the timer immediately */
  581. when = 0;
  582. }
  583. /*
  584. * Convert to sgi clock period. Need to keep rtc_time() as near as possible
  585. * to getnstimeofday() in order to be as faithful as possible to the time
  586. * specified.
  587. */
  588. when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
  589. period = (period + sgi_clock_period - 1) / sgi_clock_period;
  590. /*
  591. * We are allocating a local SHub comparator. If we would be moved to another
  592. * cpu then another SHub may be local to us. Prohibit that by switching off
  593. * preemption.
  594. */
  595. preempt_disable();
  596. nodeid = cpu_to_node(smp_processor_id());
  597. /* Lock the node timer structure */
  598. spin_lock_irqsave(&timers[nodeid].lock, irqflags);
  599. base->timer = timr;
  600. base->cpu = smp_processor_id();
  601. timr->it.mmtimer.clock = TIMER_SET;
  602. timr->it.mmtimer.node = nodeid;
  603. timr->it.mmtimer.incr = period;
  604. timr->it.mmtimer.expires = when;
  605. n = timers[nodeid].next;
  606. /* Add the new struct mmtimer to node's timer list */
  607. mmtimer_add_list(base);
  608. if (timers[nodeid].next == n) {
  609. /* No need to reprogram comparator for now */
  610. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  611. preempt_enable();
  612. return err;
  613. }
  614. /* We need to reprogram the comparator */
  615. if (n)
  616. mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
  617. mmtimer_set_next_timer(nodeid);
  618. /* Unlock the node timer structure */
  619. spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
  620. preempt_enable();
  621. return err;
  622. }
  623. static struct k_clock sgi_clock = {
  624. .res = 0,
  625. .clock_set = sgi_clock_set,
  626. .clock_get = sgi_clock_get,
  627. .timer_create = sgi_timer_create,
  628. .nsleep = do_posix_clock_nonanosleep,
  629. .timer_set = sgi_timer_set,
  630. .timer_del = sgi_timer_del,
  631. .timer_get = sgi_timer_get
  632. };
  633. /**
  634. * mmtimer_init - device initialization routine
  635. *
  636. * Does initial setup for the mmtimer device.
  637. */
  638. static int __init mmtimer_init(void)
  639. {
  640. cnodeid_t node, maxn = -1;
  641. if (!ia64_platform_is("sn2"))
  642. return 0;
  643. /*
  644. * Sanity check the cycles/sec variable
  645. */
  646. if (sn_rtc_cycles_per_second < 100000) {
  647. printk(KERN_ERR "%s: unable to determine clock frequency\n",
  648. MMTIMER_NAME);
  649. goto out1;
  650. }
  651. mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
  652. 2) / sn_rtc_cycles_per_second;
  653. if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
  654. printk(KERN_WARNING "%s: unable to allocate interrupt.",
  655. MMTIMER_NAME);
  656. goto out1;
  657. }
  658. if (misc_register(&mmtimer_miscdev)) {
  659. printk(KERN_ERR "%s: failed to register device\n",
  660. MMTIMER_NAME);
  661. goto out2;
  662. }
  663. /* Get max numbered node, calculate slots needed */
  664. for_each_online_node(node) {
  665. maxn = node;
  666. }
  667. maxn++;
  668. /* Allocate list of node ptrs to mmtimer_t's */
  669. timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
  670. if (timers == NULL) {
  671. printk(KERN_ERR "%s: failed to allocate memory for device\n",
  672. MMTIMER_NAME);
  673. goto out3;
  674. }
  675. /* Initialize struct mmtimer's for each online node */
  676. for_each_online_node(node) {
  677. spin_lock_init(&timers[node].lock);
  678. tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
  679. (unsigned long) node);
  680. }
  681. sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
  682. register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
  683. printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
  684. sn_rtc_cycles_per_second/(unsigned long)1E6);
  685. return 0;
  686. out3:
  687. kfree(timers);
  688. misc_deregister(&mmtimer_miscdev);
  689. out2:
  690. free_irq(SGI_MMTIMER_VECTOR, NULL);
  691. out1:
  692. return -1;
  693. }
  694. module_init(mmtimer_init);