as-iosched.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. * Anticipatory & deadline i/o scheduler.
  3. *
  4. * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
  5. * Nick Piggin <nickpiggin@yahoo.com.au>
  6. *
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/fs.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/bio.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/init.h>
  16. #include <linux/compiler.h>
  17. #include <linux/rbtree.h>
  18. #include <linux/interrupt.h>
  19. #define REQ_SYNC 1
  20. #define REQ_ASYNC 0
  21. /*
  22. * See Documentation/block/as-iosched.txt
  23. */
  24. /*
  25. * max time before a read is submitted.
  26. */
  27. #define default_read_expire (HZ / 8)
  28. /*
  29. * ditto for writes, these limits are not hard, even
  30. * if the disk is capable of satisfying them.
  31. */
  32. #define default_write_expire (HZ / 4)
  33. /*
  34. * read_batch_expire describes how long we will allow a stream of reads to
  35. * persist before looking to see whether it is time to switch over to writes.
  36. */
  37. #define default_read_batch_expire (HZ / 2)
  38. /*
  39. * write_batch_expire describes how long we want a stream of writes to run for.
  40. * This is not a hard limit, but a target we set for the auto-tuning thingy.
  41. * See, the problem is: we can send a lot of writes to disk cache / TCQ in
  42. * a short amount of time...
  43. */
  44. #define default_write_batch_expire (HZ / 8)
  45. /*
  46. * max time we may wait to anticipate a read (default around 6ms)
  47. */
  48. #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
  49. /*
  50. * Keep track of up to 20ms thinktimes. We can go as big as we like here,
  51. * however huge values tend to interfere and not decay fast enough. A program
  52. * might be in a non-io phase of operation. Waiting on user input for example,
  53. * or doing a lengthy computation. A small penalty can be justified there, and
  54. * will still catch out those processes that constantly have large thinktimes.
  55. */
  56. #define MAX_THINKTIME (HZ/50UL)
  57. /* Bits in as_io_context.state */
  58. enum as_io_states {
  59. AS_TASK_RUNNING=0, /* Process has not exited */
  60. AS_TASK_IOSTARTED, /* Process has started some IO */
  61. AS_TASK_IORUNNING, /* Process has completed some IO */
  62. };
  63. enum anticipation_status {
  64. ANTIC_OFF=0, /* Not anticipating (normal operation) */
  65. ANTIC_WAIT_REQ, /* The last read has not yet completed */
  66. ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
  67. last read (which has completed) */
  68. ANTIC_FINISHED, /* Anticipating but have found a candidate
  69. * or timed out */
  70. };
  71. struct as_data {
  72. /*
  73. * run time data
  74. */
  75. struct request_queue *q; /* the "owner" queue */
  76. /*
  77. * requests (as_rq s) are present on both sort_list and fifo_list
  78. */
  79. struct rb_root sort_list[2];
  80. struct list_head fifo_list[2];
  81. struct request *next_rq[2]; /* next in sort order */
  82. sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
  83. unsigned long exit_prob; /* probability a task will exit while
  84. being waited on */
  85. unsigned long exit_no_coop; /* probablility an exited task will
  86. not be part of a later cooperating
  87. request */
  88. unsigned long new_ttime_total; /* mean thinktime on new proc */
  89. unsigned long new_ttime_mean;
  90. u64 new_seek_total; /* mean seek on new proc */
  91. sector_t new_seek_mean;
  92. unsigned long current_batch_expires;
  93. unsigned long last_check_fifo[2];
  94. int changed_batch; /* 1: waiting for old batch to end */
  95. int new_batch; /* 1: waiting on first read complete */
  96. int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
  97. int write_batch_count; /* max # of reqs in a write batch */
  98. int current_write_count; /* how many requests left this batch */
  99. int write_batch_idled; /* has the write batch gone idle? */
  100. enum anticipation_status antic_status;
  101. unsigned long antic_start; /* jiffies: when it started */
  102. struct timer_list antic_timer; /* anticipatory scheduling timer */
  103. struct work_struct antic_work; /* Deferred unplugging */
  104. struct io_context *io_context; /* Identify the expected process */
  105. int ioc_finished; /* IO associated with io_context is finished */
  106. int nr_dispatched;
  107. /*
  108. * settings that change how the i/o scheduler behaves
  109. */
  110. unsigned long fifo_expire[2];
  111. unsigned long batch_expire[2];
  112. unsigned long antic_expire;
  113. };
  114. /*
  115. * per-request data.
  116. */
  117. enum arq_state {
  118. AS_RQ_NEW=0, /* New - not referenced and not on any lists */
  119. AS_RQ_QUEUED, /* In the request queue. It belongs to the
  120. scheduler */
  121. AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
  122. driver now */
  123. AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
  124. AS_RQ_REMOVED,
  125. AS_RQ_MERGED,
  126. AS_RQ_POSTSCHED, /* when they shouldn't be */
  127. };
  128. #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
  129. #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
  130. #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
  131. static DEFINE_PER_CPU(unsigned long, ioc_count);
  132. static struct completion *ioc_gone;
  133. static DEFINE_SPINLOCK(ioc_gone_lock);
  134. static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
  135. static void as_antic_stop(struct as_data *ad);
  136. /*
  137. * IO Context helper functions
  138. */
  139. /* Called to deallocate the as_io_context */
  140. static void free_as_io_context(struct as_io_context *aic)
  141. {
  142. kfree(aic);
  143. elv_ioc_count_dec(ioc_count);
  144. if (ioc_gone) {
  145. /*
  146. * AS scheduler is exiting, grab exit lock and check
  147. * the pending io context count. If it hits zero,
  148. * complete ioc_gone and set it back to NULL.
  149. */
  150. spin_lock(&ioc_gone_lock);
  151. if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
  152. complete(ioc_gone);
  153. ioc_gone = NULL;
  154. }
  155. spin_unlock(&ioc_gone_lock);
  156. }
  157. }
  158. static void as_trim(struct io_context *ioc)
  159. {
  160. spin_lock_irq(&ioc->lock);
  161. if (ioc->aic)
  162. free_as_io_context(ioc->aic);
  163. ioc->aic = NULL;
  164. spin_unlock_irq(&ioc->lock);
  165. }
  166. /* Called when the task exits */
  167. static void exit_as_io_context(struct as_io_context *aic)
  168. {
  169. WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
  170. clear_bit(AS_TASK_RUNNING, &aic->state);
  171. }
  172. static struct as_io_context *alloc_as_io_context(void)
  173. {
  174. struct as_io_context *ret;
  175. ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
  176. if (ret) {
  177. ret->dtor = free_as_io_context;
  178. ret->exit = exit_as_io_context;
  179. ret->state = 1 << AS_TASK_RUNNING;
  180. atomic_set(&ret->nr_queued, 0);
  181. atomic_set(&ret->nr_dispatched, 0);
  182. spin_lock_init(&ret->lock);
  183. ret->ttime_total = 0;
  184. ret->ttime_samples = 0;
  185. ret->ttime_mean = 0;
  186. ret->seek_total = 0;
  187. ret->seek_samples = 0;
  188. ret->seek_mean = 0;
  189. elv_ioc_count_inc(ioc_count);
  190. }
  191. return ret;
  192. }
  193. /*
  194. * If the current task has no AS IO context then create one and initialise it.
  195. * Then take a ref on the task's io context and return it.
  196. */
  197. static struct io_context *as_get_io_context(int node)
  198. {
  199. struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
  200. if (ioc && !ioc->aic) {
  201. ioc->aic = alloc_as_io_context();
  202. if (!ioc->aic) {
  203. put_io_context(ioc);
  204. ioc = NULL;
  205. }
  206. }
  207. return ioc;
  208. }
  209. static void as_put_io_context(struct request *rq)
  210. {
  211. struct as_io_context *aic;
  212. if (unlikely(!RQ_IOC(rq)))
  213. return;
  214. aic = RQ_IOC(rq)->aic;
  215. if (rq_is_sync(rq) && aic) {
  216. unsigned long flags;
  217. spin_lock_irqsave(&aic->lock, flags);
  218. set_bit(AS_TASK_IORUNNING, &aic->state);
  219. aic->last_end_request = jiffies;
  220. spin_unlock_irqrestore(&aic->lock, flags);
  221. }
  222. put_io_context(RQ_IOC(rq));
  223. }
  224. /*
  225. * rb tree support functions
  226. */
  227. #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
  228. static void as_add_rq_rb(struct as_data *ad, struct request *rq)
  229. {
  230. struct request *alias;
  231. while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
  232. as_move_to_dispatch(ad, alias);
  233. as_antic_stop(ad);
  234. }
  235. }
  236. static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
  237. {
  238. elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
  239. }
  240. /*
  241. * IO Scheduler proper
  242. */
  243. #define MAXBACK (1024 * 1024) /*
  244. * Maximum distance the disk will go backward
  245. * for a request.
  246. */
  247. #define BACK_PENALTY 2
  248. /*
  249. * as_choose_req selects the preferred one of two requests of the same data_dir
  250. * ignoring time - eg. timeouts, which is the job of as_dispatch_request
  251. */
  252. static struct request *
  253. as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
  254. {
  255. int data_dir;
  256. sector_t last, s1, s2, d1, d2;
  257. int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
  258. const sector_t maxback = MAXBACK;
  259. if (rq1 == NULL || rq1 == rq2)
  260. return rq2;
  261. if (rq2 == NULL)
  262. return rq1;
  263. data_dir = rq_is_sync(rq1);
  264. last = ad->last_sector[data_dir];
  265. s1 = rq1->sector;
  266. s2 = rq2->sector;
  267. BUG_ON(data_dir != rq_is_sync(rq2));
  268. /*
  269. * Strict one way elevator _except_ in the case where we allow
  270. * short backward seeks which are biased as twice the cost of a
  271. * similar forward seek.
  272. */
  273. if (s1 >= last)
  274. d1 = s1 - last;
  275. else if (s1+maxback >= last)
  276. d1 = (last - s1)*BACK_PENALTY;
  277. else {
  278. r1_wrap = 1;
  279. d1 = 0; /* shut up, gcc */
  280. }
  281. if (s2 >= last)
  282. d2 = s2 - last;
  283. else if (s2+maxback >= last)
  284. d2 = (last - s2)*BACK_PENALTY;
  285. else {
  286. r2_wrap = 1;
  287. d2 = 0;
  288. }
  289. /* Found required data */
  290. if (!r1_wrap && r2_wrap)
  291. return rq1;
  292. else if (!r2_wrap && r1_wrap)
  293. return rq2;
  294. else if (r1_wrap && r2_wrap) {
  295. /* both behind the head */
  296. if (s1 <= s2)
  297. return rq1;
  298. else
  299. return rq2;
  300. }
  301. /* Both requests in front of the head */
  302. if (d1 < d2)
  303. return rq1;
  304. else if (d2 < d1)
  305. return rq2;
  306. else {
  307. if (s1 >= s2)
  308. return rq1;
  309. else
  310. return rq2;
  311. }
  312. }
  313. /*
  314. * as_find_next_rq finds the next request after @prev in elevator order.
  315. * this with as_choose_req form the basis for how the scheduler chooses
  316. * what request to process next. Anticipation works on top of this.
  317. */
  318. static struct request *
  319. as_find_next_rq(struct as_data *ad, struct request *last)
  320. {
  321. struct rb_node *rbnext = rb_next(&last->rb_node);
  322. struct rb_node *rbprev = rb_prev(&last->rb_node);
  323. struct request *next = NULL, *prev = NULL;
  324. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  325. if (rbprev)
  326. prev = rb_entry_rq(rbprev);
  327. if (rbnext)
  328. next = rb_entry_rq(rbnext);
  329. else {
  330. const int data_dir = rq_is_sync(last);
  331. rbnext = rb_first(&ad->sort_list[data_dir]);
  332. if (rbnext && rbnext != &last->rb_node)
  333. next = rb_entry_rq(rbnext);
  334. }
  335. return as_choose_req(ad, next, prev);
  336. }
  337. /*
  338. * anticipatory scheduling functions follow
  339. */
  340. /*
  341. * as_antic_expired tells us when we have anticipated too long.
  342. * The funny "absolute difference" math on the elapsed time is to handle
  343. * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
  344. */
  345. static int as_antic_expired(struct as_data *ad)
  346. {
  347. long delta_jif;
  348. delta_jif = jiffies - ad->antic_start;
  349. if (unlikely(delta_jif < 0))
  350. delta_jif = -delta_jif;
  351. if (delta_jif < ad->antic_expire)
  352. return 0;
  353. return 1;
  354. }
  355. /*
  356. * as_antic_waitnext starts anticipating that a nice request will soon be
  357. * submitted. See also as_antic_waitreq
  358. */
  359. static void as_antic_waitnext(struct as_data *ad)
  360. {
  361. unsigned long timeout;
  362. BUG_ON(ad->antic_status != ANTIC_OFF
  363. && ad->antic_status != ANTIC_WAIT_REQ);
  364. timeout = ad->antic_start + ad->antic_expire;
  365. mod_timer(&ad->antic_timer, timeout);
  366. ad->antic_status = ANTIC_WAIT_NEXT;
  367. }
  368. /*
  369. * as_antic_waitreq starts anticipating. We don't start timing the anticipation
  370. * until the request that we're anticipating on has finished. This means we
  371. * are timing from when the candidate process wakes up hopefully.
  372. */
  373. static void as_antic_waitreq(struct as_data *ad)
  374. {
  375. BUG_ON(ad->antic_status == ANTIC_FINISHED);
  376. if (ad->antic_status == ANTIC_OFF) {
  377. if (!ad->io_context || ad->ioc_finished)
  378. as_antic_waitnext(ad);
  379. else
  380. ad->antic_status = ANTIC_WAIT_REQ;
  381. }
  382. }
  383. /*
  384. * This is called directly by the functions in this file to stop anticipation.
  385. * We kill the timer and schedule a call to the request_fn asap.
  386. */
  387. static void as_antic_stop(struct as_data *ad)
  388. {
  389. int status = ad->antic_status;
  390. if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
  391. if (status == ANTIC_WAIT_NEXT)
  392. del_timer(&ad->antic_timer);
  393. ad->antic_status = ANTIC_FINISHED;
  394. /* see as_work_handler */
  395. kblockd_schedule_work(&ad->antic_work);
  396. }
  397. }
  398. /*
  399. * as_antic_timeout is the timer function set by as_antic_waitnext.
  400. */
  401. static void as_antic_timeout(unsigned long data)
  402. {
  403. struct request_queue *q = (struct request_queue *)data;
  404. struct as_data *ad = q->elevator->elevator_data;
  405. unsigned long flags;
  406. spin_lock_irqsave(q->queue_lock, flags);
  407. if (ad->antic_status == ANTIC_WAIT_REQ
  408. || ad->antic_status == ANTIC_WAIT_NEXT) {
  409. struct as_io_context *aic;
  410. spin_lock(&ad->io_context->lock);
  411. aic = ad->io_context->aic;
  412. ad->antic_status = ANTIC_FINISHED;
  413. kblockd_schedule_work(&ad->antic_work);
  414. if (aic->ttime_samples == 0) {
  415. /* process anticipated on has exited or timed out*/
  416. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  417. }
  418. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  419. /* process not "saved" by a cooperating request */
  420. ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
  421. }
  422. spin_unlock(&ad->io_context->lock);
  423. }
  424. spin_unlock_irqrestore(q->queue_lock, flags);
  425. }
  426. static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
  427. unsigned long ttime)
  428. {
  429. /* fixed point: 1.0 == 1<<8 */
  430. if (aic->ttime_samples == 0) {
  431. ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
  432. ad->new_ttime_mean = ad->new_ttime_total / 256;
  433. ad->exit_prob = (7*ad->exit_prob)/8;
  434. }
  435. aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
  436. aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
  437. aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
  438. }
  439. static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
  440. sector_t sdist)
  441. {
  442. u64 total;
  443. if (aic->seek_samples == 0) {
  444. ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
  445. ad->new_seek_mean = ad->new_seek_total / 256;
  446. }
  447. /*
  448. * Don't allow the seek distance to get too large from the
  449. * odd fragment, pagein, etc
  450. */
  451. if (aic->seek_samples <= 60) /* second&third seek */
  452. sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
  453. else
  454. sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
  455. aic->seek_samples = (7*aic->seek_samples + 256) / 8;
  456. aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
  457. total = aic->seek_total + (aic->seek_samples/2);
  458. do_div(total, aic->seek_samples);
  459. aic->seek_mean = (sector_t)total;
  460. }
  461. /*
  462. * as_update_iohist keeps a decaying histogram of IO thinktimes, and
  463. * updates @aic->ttime_mean based on that. It is called when a new
  464. * request is queued.
  465. */
  466. static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
  467. struct request *rq)
  468. {
  469. int data_dir = rq_is_sync(rq);
  470. unsigned long thinktime = 0;
  471. sector_t seek_dist;
  472. if (aic == NULL)
  473. return;
  474. if (data_dir == REQ_SYNC) {
  475. unsigned long in_flight = atomic_read(&aic->nr_queued)
  476. + atomic_read(&aic->nr_dispatched);
  477. spin_lock(&aic->lock);
  478. if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
  479. test_bit(AS_TASK_IOSTARTED, &aic->state)) {
  480. /* Calculate read -> read thinktime */
  481. if (test_bit(AS_TASK_IORUNNING, &aic->state)
  482. && in_flight == 0) {
  483. thinktime = jiffies - aic->last_end_request;
  484. thinktime = min(thinktime, MAX_THINKTIME-1);
  485. }
  486. as_update_thinktime(ad, aic, thinktime);
  487. /* Calculate read -> read seek distance */
  488. if (aic->last_request_pos < rq->sector)
  489. seek_dist = rq->sector - aic->last_request_pos;
  490. else
  491. seek_dist = aic->last_request_pos - rq->sector;
  492. as_update_seekdist(ad, aic, seek_dist);
  493. }
  494. aic->last_request_pos = rq->sector + rq->nr_sectors;
  495. set_bit(AS_TASK_IOSTARTED, &aic->state);
  496. spin_unlock(&aic->lock);
  497. }
  498. }
  499. /*
  500. * as_close_req decides if one request is considered "close" to the
  501. * previous one issued.
  502. */
  503. static int as_close_req(struct as_data *ad, struct as_io_context *aic,
  504. struct request *rq)
  505. {
  506. unsigned long delay; /* jiffies */
  507. sector_t last = ad->last_sector[ad->batch_data_dir];
  508. sector_t next = rq->sector;
  509. sector_t delta; /* acceptable close offset (in sectors) */
  510. sector_t s;
  511. if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
  512. delay = 0;
  513. else
  514. delay = jiffies - ad->antic_start;
  515. if (delay == 0)
  516. delta = 8192;
  517. else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
  518. delta = 8192 << delay;
  519. else
  520. return 1;
  521. if ((last <= next + (delta>>1)) && (next <= last + delta))
  522. return 1;
  523. if (last < next)
  524. s = next - last;
  525. else
  526. s = last - next;
  527. if (aic->seek_samples == 0) {
  528. /*
  529. * Process has just started IO. Use past statistics to
  530. * gauge success possibility
  531. */
  532. if (ad->new_seek_mean > s) {
  533. /* this request is better than what we're expecting */
  534. return 1;
  535. }
  536. } else {
  537. if (aic->seek_mean > s) {
  538. /* this request is better than what we're expecting */
  539. return 1;
  540. }
  541. }
  542. return 0;
  543. }
  544. /*
  545. * as_can_break_anticipation returns true if we have been anticipating this
  546. * request.
  547. *
  548. * It also returns true if the process against which we are anticipating
  549. * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
  550. * dispatch it ASAP, because we know that application will not be submitting
  551. * any new reads.
  552. *
  553. * If the task which has submitted the request has exited, break anticipation.
  554. *
  555. * If this task has queued some other IO, do not enter enticipation.
  556. */
  557. static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
  558. {
  559. struct io_context *ioc;
  560. struct as_io_context *aic;
  561. ioc = ad->io_context;
  562. BUG_ON(!ioc);
  563. spin_lock(&ioc->lock);
  564. if (rq && ioc == RQ_IOC(rq)) {
  565. /* request from same process */
  566. spin_unlock(&ioc->lock);
  567. return 1;
  568. }
  569. if (ad->ioc_finished && as_antic_expired(ad)) {
  570. /*
  571. * In this situation status should really be FINISHED,
  572. * however the timer hasn't had the chance to run yet.
  573. */
  574. spin_unlock(&ioc->lock);
  575. return 1;
  576. }
  577. aic = ioc->aic;
  578. if (!aic) {
  579. spin_unlock(&ioc->lock);
  580. return 0;
  581. }
  582. if (atomic_read(&aic->nr_queued) > 0) {
  583. /* process has more requests queued */
  584. spin_unlock(&ioc->lock);
  585. return 1;
  586. }
  587. if (atomic_read(&aic->nr_dispatched) > 0) {
  588. /* process has more requests dispatched */
  589. spin_unlock(&ioc->lock);
  590. return 1;
  591. }
  592. if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
  593. /*
  594. * Found a close request that is not one of ours.
  595. *
  596. * This makes close requests from another process update
  597. * our IO history. Is generally useful when there are
  598. * two or more cooperating processes working in the same
  599. * area.
  600. */
  601. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  602. if (aic->ttime_samples == 0)
  603. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  604. ad->exit_no_coop = (7*ad->exit_no_coop)/8;
  605. }
  606. as_update_iohist(ad, aic, rq);
  607. spin_unlock(&ioc->lock);
  608. return 1;
  609. }
  610. if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
  611. /* process anticipated on has exited */
  612. if (aic->ttime_samples == 0)
  613. ad->exit_prob = (7*ad->exit_prob + 256)/8;
  614. if (ad->exit_no_coop > 128) {
  615. spin_unlock(&ioc->lock);
  616. return 1;
  617. }
  618. }
  619. if (aic->ttime_samples == 0) {
  620. if (ad->new_ttime_mean > ad->antic_expire) {
  621. spin_unlock(&ioc->lock);
  622. return 1;
  623. }
  624. if (ad->exit_prob * ad->exit_no_coop > 128*256) {
  625. spin_unlock(&ioc->lock);
  626. return 1;
  627. }
  628. } else if (aic->ttime_mean > ad->antic_expire) {
  629. /* the process thinks too much between requests */
  630. spin_unlock(&ioc->lock);
  631. return 1;
  632. }
  633. spin_unlock(&ioc->lock);
  634. return 0;
  635. }
  636. /*
  637. * as_can_anticipate indicates whether we should either run rq
  638. * or keep anticipating a better request.
  639. */
  640. static int as_can_anticipate(struct as_data *ad, struct request *rq)
  641. {
  642. if (!ad->io_context)
  643. /*
  644. * Last request submitted was a write
  645. */
  646. return 0;
  647. if (ad->antic_status == ANTIC_FINISHED)
  648. /*
  649. * Don't restart if we have just finished. Run the next request
  650. */
  651. return 0;
  652. if (as_can_break_anticipation(ad, rq))
  653. /*
  654. * This request is a good candidate. Don't keep anticipating,
  655. * run it.
  656. */
  657. return 0;
  658. /*
  659. * OK from here, we haven't finished, and don't have a decent request!
  660. * Status is either ANTIC_OFF so start waiting,
  661. * ANTIC_WAIT_REQ so continue waiting for request to finish
  662. * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
  663. */
  664. return 1;
  665. }
  666. /*
  667. * as_update_rq must be called whenever a request (rq) is added to
  668. * the sort_list. This function keeps caches up to date, and checks if the
  669. * request might be one we are "anticipating"
  670. */
  671. static void as_update_rq(struct as_data *ad, struct request *rq)
  672. {
  673. const int data_dir = rq_is_sync(rq);
  674. /* keep the next_rq cache up to date */
  675. ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
  676. /*
  677. * have we been anticipating this request?
  678. * or does it come from the same process as the one we are anticipating
  679. * for?
  680. */
  681. if (ad->antic_status == ANTIC_WAIT_REQ
  682. || ad->antic_status == ANTIC_WAIT_NEXT) {
  683. if (as_can_break_anticipation(ad, rq))
  684. as_antic_stop(ad);
  685. }
  686. }
  687. /*
  688. * Gathers timings and resizes the write batch automatically
  689. */
  690. static void update_write_batch(struct as_data *ad)
  691. {
  692. unsigned long batch = ad->batch_expire[REQ_ASYNC];
  693. long write_time;
  694. write_time = (jiffies - ad->current_batch_expires) + batch;
  695. if (write_time < 0)
  696. write_time = 0;
  697. if (write_time > batch && !ad->write_batch_idled) {
  698. if (write_time > batch * 3)
  699. ad->write_batch_count /= 2;
  700. else
  701. ad->write_batch_count--;
  702. } else if (write_time < batch && ad->current_write_count == 0) {
  703. if (batch > write_time * 3)
  704. ad->write_batch_count *= 2;
  705. else
  706. ad->write_batch_count++;
  707. }
  708. if (ad->write_batch_count < 1)
  709. ad->write_batch_count = 1;
  710. }
  711. /*
  712. * as_completed_request is to be called when a request has completed and
  713. * returned something to the requesting process, be it an error or data.
  714. */
  715. static void as_completed_request(struct request_queue *q, struct request *rq)
  716. {
  717. struct as_data *ad = q->elevator->elevator_data;
  718. WARN_ON(!list_empty(&rq->queuelist));
  719. if (RQ_STATE(rq) != AS_RQ_REMOVED) {
  720. printk("rq->state %d\n", RQ_STATE(rq));
  721. WARN_ON(1);
  722. goto out;
  723. }
  724. if (ad->changed_batch && ad->nr_dispatched == 1) {
  725. ad->current_batch_expires = jiffies +
  726. ad->batch_expire[ad->batch_data_dir];
  727. kblockd_schedule_work(&ad->antic_work);
  728. ad->changed_batch = 0;
  729. if (ad->batch_data_dir == REQ_SYNC)
  730. ad->new_batch = 1;
  731. }
  732. WARN_ON(ad->nr_dispatched == 0);
  733. ad->nr_dispatched--;
  734. /*
  735. * Start counting the batch from when a request of that direction is
  736. * actually serviced. This should help devices with big TCQ windows
  737. * and writeback caches
  738. */
  739. if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
  740. update_write_batch(ad);
  741. ad->current_batch_expires = jiffies +
  742. ad->batch_expire[REQ_SYNC];
  743. ad->new_batch = 0;
  744. }
  745. if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
  746. ad->antic_start = jiffies;
  747. ad->ioc_finished = 1;
  748. if (ad->antic_status == ANTIC_WAIT_REQ) {
  749. /*
  750. * We were waiting on this request, now anticipate
  751. * the next one
  752. */
  753. as_antic_waitnext(ad);
  754. }
  755. }
  756. as_put_io_context(rq);
  757. out:
  758. RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
  759. }
  760. /*
  761. * as_remove_queued_request removes a request from the pre dispatch queue
  762. * without updating refcounts. It is expected the caller will drop the
  763. * reference unless it replaces the request at somepart of the elevator
  764. * (ie. the dispatch queue)
  765. */
  766. static void as_remove_queued_request(struct request_queue *q,
  767. struct request *rq)
  768. {
  769. const int data_dir = rq_is_sync(rq);
  770. struct as_data *ad = q->elevator->elevator_data;
  771. struct io_context *ioc;
  772. WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
  773. ioc = RQ_IOC(rq);
  774. if (ioc && ioc->aic) {
  775. BUG_ON(!atomic_read(&ioc->aic->nr_queued));
  776. atomic_dec(&ioc->aic->nr_queued);
  777. }
  778. /*
  779. * Update the "next_rq" cache if we are about to remove its
  780. * entry
  781. */
  782. if (ad->next_rq[data_dir] == rq)
  783. ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
  784. rq_fifo_clear(rq);
  785. as_del_rq_rb(ad, rq);
  786. }
  787. /*
  788. * as_fifo_expired returns 0 if there are no expired requests on the fifo,
  789. * 1 otherwise. It is ratelimited so that we only perform the check once per
  790. * `fifo_expire' interval. Otherwise a large number of expired requests
  791. * would create a hopeless seekstorm.
  792. *
  793. * See as_antic_expired comment.
  794. */
  795. static int as_fifo_expired(struct as_data *ad, int adir)
  796. {
  797. struct request *rq;
  798. long delta_jif;
  799. delta_jif = jiffies - ad->last_check_fifo[adir];
  800. if (unlikely(delta_jif < 0))
  801. delta_jif = -delta_jif;
  802. if (delta_jif < ad->fifo_expire[adir])
  803. return 0;
  804. ad->last_check_fifo[adir] = jiffies;
  805. if (list_empty(&ad->fifo_list[adir]))
  806. return 0;
  807. rq = rq_entry_fifo(ad->fifo_list[adir].next);
  808. return time_after(jiffies, rq_fifo_time(rq));
  809. }
  810. /*
  811. * as_batch_expired returns true if the current batch has expired. A batch
  812. * is a set of reads or a set of writes.
  813. */
  814. static inline int as_batch_expired(struct as_data *ad)
  815. {
  816. if (ad->changed_batch || ad->new_batch)
  817. return 0;
  818. if (ad->batch_data_dir == REQ_SYNC)
  819. /* TODO! add a check so a complete fifo gets written? */
  820. return time_after(jiffies, ad->current_batch_expires);
  821. return time_after(jiffies, ad->current_batch_expires)
  822. || ad->current_write_count == 0;
  823. }
  824. /*
  825. * move an entry to dispatch queue
  826. */
  827. static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
  828. {
  829. const int data_dir = rq_is_sync(rq);
  830. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  831. as_antic_stop(ad);
  832. ad->antic_status = ANTIC_OFF;
  833. /*
  834. * This has to be set in order to be correctly updated by
  835. * as_find_next_rq
  836. */
  837. ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
  838. if (data_dir == REQ_SYNC) {
  839. struct io_context *ioc = RQ_IOC(rq);
  840. /* In case we have to anticipate after this */
  841. copy_io_context(&ad->io_context, &ioc);
  842. } else {
  843. if (ad->io_context) {
  844. put_io_context(ad->io_context);
  845. ad->io_context = NULL;
  846. }
  847. if (ad->current_write_count != 0)
  848. ad->current_write_count--;
  849. }
  850. ad->ioc_finished = 0;
  851. ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
  852. /*
  853. * take it off the sort and fifo list, add to dispatch queue
  854. */
  855. as_remove_queued_request(ad->q, rq);
  856. WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
  857. elv_dispatch_sort(ad->q, rq);
  858. RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
  859. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  860. atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
  861. ad->nr_dispatched++;
  862. }
  863. /*
  864. * as_dispatch_request selects the best request according to
  865. * read/write expire, batch expire, etc, and moves it to the dispatch
  866. * queue. Returns 1 if a request was found, 0 otherwise.
  867. */
  868. static int as_dispatch_request(struct request_queue *q, int force)
  869. {
  870. struct as_data *ad = q->elevator->elevator_data;
  871. const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
  872. const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
  873. struct request *rq;
  874. if (unlikely(force)) {
  875. /*
  876. * Forced dispatch, accounting is useless. Reset
  877. * accounting states and dump fifo_lists. Note that
  878. * batch_data_dir is reset to REQ_SYNC to avoid
  879. * screwing write batch accounting as write batch
  880. * accounting occurs on W->R transition.
  881. */
  882. int dispatched = 0;
  883. ad->batch_data_dir = REQ_SYNC;
  884. ad->changed_batch = 0;
  885. ad->new_batch = 0;
  886. while (ad->next_rq[REQ_SYNC]) {
  887. as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
  888. dispatched++;
  889. }
  890. ad->last_check_fifo[REQ_SYNC] = jiffies;
  891. while (ad->next_rq[REQ_ASYNC]) {
  892. as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
  893. dispatched++;
  894. }
  895. ad->last_check_fifo[REQ_ASYNC] = jiffies;
  896. return dispatched;
  897. }
  898. /* Signal that the write batch was uncontended, so we can't time it */
  899. if (ad->batch_data_dir == REQ_ASYNC && !reads) {
  900. if (ad->current_write_count == 0 || !writes)
  901. ad->write_batch_idled = 1;
  902. }
  903. if (!(reads || writes)
  904. || ad->antic_status == ANTIC_WAIT_REQ
  905. || ad->antic_status == ANTIC_WAIT_NEXT
  906. || ad->changed_batch)
  907. return 0;
  908. if (!(reads && writes && as_batch_expired(ad))) {
  909. /*
  910. * batch is still running or no reads or no writes
  911. */
  912. rq = ad->next_rq[ad->batch_data_dir];
  913. if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
  914. if (as_fifo_expired(ad, REQ_SYNC))
  915. goto fifo_expired;
  916. if (as_can_anticipate(ad, rq)) {
  917. as_antic_waitreq(ad);
  918. return 0;
  919. }
  920. }
  921. if (rq) {
  922. /* we have a "next request" */
  923. if (reads && !writes)
  924. ad->current_batch_expires =
  925. jiffies + ad->batch_expire[REQ_SYNC];
  926. goto dispatch_request;
  927. }
  928. }
  929. /*
  930. * at this point we are not running a batch. select the appropriate
  931. * data direction (read / write)
  932. */
  933. if (reads) {
  934. BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
  935. if (writes && ad->batch_data_dir == REQ_SYNC)
  936. /*
  937. * Last batch was a read, switch to writes
  938. */
  939. goto dispatch_writes;
  940. if (ad->batch_data_dir == REQ_ASYNC) {
  941. WARN_ON(ad->new_batch);
  942. ad->changed_batch = 1;
  943. }
  944. ad->batch_data_dir = REQ_SYNC;
  945. rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
  946. ad->last_check_fifo[ad->batch_data_dir] = jiffies;
  947. goto dispatch_request;
  948. }
  949. /*
  950. * the last batch was a read
  951. */
  952. if (writes) {
  953. dispatch_writes:
  954. BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
  955. if (ad->batch_data_dir == REQ_SYNC) {
  956. ad->changed_batch = 1;
  957. /*
  958. * new_batch might be 1 when the queue runs out of
  959. * reads. A subsequent submission of a write might
  960. * cause a change of batch before the read is finished.
  961. */
  962. ad->new_batch = 0;
  963. }
  964. ad->batch_data_dir = REQ_ASYNC;
  965. ad->current_write_count = ad->write_batch_count;
  966. ad->write_batch_idled = 0;
  967. rq = rq_entry_fifo(ad->fifo_list[REQ_ASYNC].next);
  968. ad->last_check_fifo[REQ_ASYNC] = jiffies;
  969. goto dispatch_request;
  970. }
  971. BUG();
  972. return 0;
  973. dispatch_request:
  974. /*
  975. * If a request has expired, service it.
  976. */
  977. if (as_fifo_expired(ad, ad->batch_data_dir)) {
  978. fifo_expired:
  979. rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
  980. }
  981. if (ad->changed_batch) {
  982. WARN_ON(ad->new_batch);
  983. if (ad->nr_dispatched)
  984. return 0;
  985. if (ad->batch_data_dir == REQ_ASYNC)
  986. ad->current_batch_expires = jiffies +
  987. ad->batch_expire[REQ_ASYNC];
  988. else
  989. ad->new_batch = 1;
  990. ad->changed_batch = 0;
  991. }
  992. /*
  993. * rq is the selected appropriate request.
  994. */
  995. as_move_to_dispatch(ad, rq);
  996. return 1;
  997. }
  998. /*
  999. * add rq to rbtree and fifo
  1000. */
  1001. static void as_add_request(struct request_queue *q, struct request *rq)
  1002. {
  1003. struct as_data *ad = q->elevator->elevator_data;
  1004. int data_dir;
  1005. RQ_SET_STATE(rq, AS_RQ_NEW);
  1006. data_dir = rq_is_sync(rq);
  1007. rq->elevator_private = as_get_io_context(q->node);
  1008. if (RQ_IOC(rq)) {
  1009. as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
  1010. atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
  1011. }
  1012. as_add_rq_rb(ad, rq);
  1013. /*
  1014. * set expire time and add to fifo list
  1015. */
  1016. rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
  1017. list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
  1018. as_update_rq(ad, rq); /* keep state machine up to date */
  1019. RQ_SET_STATE(rq, AS_RQ_QUEUED);
  1020. }
  1021. static void as_activate_request(struct request_queue *q, struct request *rq)
  1022. {
  1023. WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
  1024. RQ_SET_STATE(rq, AS_RQ_REMOVED);
  1025. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  1026. atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
  1027. }
  1028. static void as_deactivate_request(struct request_queue *q, struct request *rq)
  1029. {
  1030. WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
  1031. RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
  1032. if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
  1033. atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
  1034. }
  1035. /*
  1036. * as_queue_empty tells us if there are requests left in the device. It may
  1037. * not be the case that a driver can get the next request even if the queue
  1038. * is not empty - it is used in the block layer to check for plugging and
  1039. * merging opportunities
  1040. */
  1041. static int as_queue_empty(struct request_queue *q)
  1042. {
  1043. struct as_data *ad = q->elevator->elevator_data;
  1044. return list_empty(&ad->fifo_list[REQ_ASYNC])
  1045. && list_empty(&ad->fifo_list[REQ_SYNC]);
  1046. }
  1047. static int
  1048. as_merge(struct request_queue *q, struct request **req, struct bio *bio)
  1049. {
  1050. struct as_data *ad = q->elevator->elevator_data;
  1051. sector_t rb_key = bio->bi_sector + bio_sectors(bio);
  1052. struct request *__rq;
  1053. /*
  1054. * check for front merge
  1055. */
  1056. __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
  1057. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1058. *req = __rq;
  1059. return ELEVATOR_FRONT_MERGE;
  1060. }
  1061. return ELEVATOR_NO_MERGE;
  1062. }
  1063. static void as_merged_request(struct request_queue *q, struct request *req,
  1064. int type)
  1065. {
  1066. struct as_data *ad = q->elevator->elevator_data;
  1067. /*
  1068. * if the merge was a front merge, we need to reposition request
  1069. */
  1070. if (type == ELEVATOR_FRONT_MERGE) {
  1071. as_del_rq_rb(ad, req);
  1072. as_add_rq_rb(ad, req);
  1073. /*
  1074. * Note! At this stage of this and the next function, our next
  1075. * request may not be optimal - eg the request may have "grown"
  1076. * behind the disk head. We currently don't bother adjusting.
  1077. */
  1078. }
  1079. }
  1080. static void as_merged_requests(struct request_queue *q, struct request *req,
  1081. struct request *next)
  1082. {
  1083. /*
  1084. * if next expires before rq, assign its expire time to arq
  1085. * and move into next position (next will be deleted) in fifo
  1086. */
  1087. if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
  1088. if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
  1089. list_move(&req->queuelist, &next->queuelist);
  1090. rq_set_fifo_time(req, rq_fifo_time(next));
  1091. }
  1092. }
  1093. /*
  1094. * kill knowledge of next, this one is a goner
  1095. */
  1096. as_remove_queued_request(q, next);
  1097. as_put_io_context(next);
  1098. RQ_SET_STATE(next, AS_RQ_MERGED);
  1099. }
  1100. /*
  1101. * This is executed in a "deferred" process context, by kblockd. It calls the
  1102. * driver's request_fn so the driver can submit that request.
  1103. *
  1104. * IMPORTANT! This guy will reenter the elevator, so set up all queue global
  1105. * state before calling, and don't rely on any state over calls.
  1106. *
  1107. * FIXME! dispatch queue is not a queue at all!
  1108. */
  1109. static void as_work_handler(struct work_struct *work)
  1110. {
  1111. struct as_data *ad = container_of(work, struct as_data, antic_work);
  1112. struct request_queue *q = ad->q;
  1113. unsigned long flags;
  1114. spin_lock_irqsave(q->queue_lock, flags);
  1115. blk_start_queueing(q);
  1116. spin_unlock_irqrestore(q->queue_lock, flags);
  1117. }
  1118. static int as_may_queue(struct request_queue *q, int rw)
  1119. {
  1120. int ret = ELV_MQUEUE_MAY;
  1121. struct as_data *ad = q->elevator->elevator_data;
  1122. struct io_context *ioc;
  1123. if (ad->antic_status == ANTIC_WAIT_REQ ||
  1124. ad->antic_status == ANTIC_WAIT_NEXT) {
  1125. ioc = as_get_io_context(q->node);
  1126. if (ad->io_context == ioc)
  1127. ret = ELV_MQUEUE_MUST;
  1128. put_io_context(ioc);
  1129. }
  1130. return ret;
  1131. }
  1132. static void as_exit_queue(elevator_t *e)
  1133. {
  1134. struct as_data *ad = e->elevator_data;
  1135. del_timer_sync(&ad->antic_timer);
  1136. kblockd_flush_work(&ad->antic_work);
  1137. BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
  1138. BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
  1139. put_io_context(ad->io_context);
  1140. kfree(ad);
  1141. }
  1142. /*
  1143. * initialize elevator private data (as_data).
  1144. */
  1145. static void *as_init_queue(struct request_queue *q)
  1146. {
  1147. struct as_data *ad;
  1148. ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
  1149. if (!ad)
  1150. return NULL;
  1151. ad->q = q; /* Identify what queue the data belongs to */
  1152. /* anticipatory scheduling helpers */
  1153. ad->antic_timer.function = as_antic_timeout;
  1154. ad->antic_timer.data = (unsigned long)q;
  1155. init_timer(&ad->antic_timer);
  1156. INIT_WORK(&ad->antic_work, as_work_handler);
  1157. INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
  1158. INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
  1159. ad->sort_list[REQ_SYNC] = RB_ROOT;
  1160. ad->sort_list[REQ_ASYNC] = RB_ROOT;
  1161. ad->fifo_expire[REQ_SYNC] = default_read_expire;
  1162. ad->fifo_expire[REQ_ASYNC] = default_write_expire;
  1163. ad->antic_expire = default_antic_expire;
  1164. ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
  1165. ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
  1166. ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
  1167. ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
  1168. if (ad->write_batch_count < 2)
  1169. ad->write_batch_count = 2;
  1170. return ad;
  1171. }
  1172. /*
  1173. * sysfs parts below
  1174. */
  1175. static ssize_t
  1176. as_var_show(unsigned int var, char *page)
  1177. {
  1178. return sprintf(page, "%d\n", var);
  1179. }
  1180. static ssize_t
  1181. as_var_store(unsigned long *var, const char *page, size_t count)
  1182. {
  1183. char *p = (char *) page;
  1184. *var = simple_strtoul(p, &p, 10);
  1185. return count;
  1186. }
  1187. static ssize_t est_time_show(elevator_t *e, char *page)
  1188. {
  1189. struct as_data *ad = e->elevator_data;
  1190. int pos = 0;
  1191. pos += sprintf(page+pos, "%lu %% exit probability\n",
  1192. 100*ad->exit_prob/256);
  1193. pos += sprintf(page+pos, "%lu %% probability of exiting without a "
  1194. "cooperating process submitting IO\n",
  1195. 100*ad->exit_no_coop/256);
  1196. pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
  1197. pos += sprintf(page+pos, "%llu sectors new seek distance\n",
  1198. (unsigned long long)ad->new_seek_mean);
  1199. return pos;
  1200. }
  1201. #define SHOW_FUNCTION(__FUNC, __VAR) \
  1202. static ssize_t __FUNC(elevator_t *e, char *page) \
  1203. { \
  1204. struct as_data *ad = e->elevator_data; \
  1205. return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
  1206. }
  1207. SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
  1208. SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
  1209. SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
  1210. SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
  1211. SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
  1212. #undef SHOW_FUNCTION
  1213. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
  1214. static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
  1215. { \
  1216. struct as_data *ad = e->elevator_data; \
  1217. int ret = as_var_store(__PTR, (page), count); \
  1218. if (*(__PTR) < (MIN)) \
  1219. *(__PTR) = (MIN); \
  1220. else if (*(__PTR) > (MAX)) \
  1221. *(__PTR) = (MAX); \
  1222. *(__PTR) = msecs_to_jiffies(*(__PTR)); \
  1223. return ret; \
  1224. }
  1225. STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
  1226. STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
  1227. STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
  1228. STORE_FUNCTION(as_read_batch_expire_store,
  1229. &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
  1230. STORE_FUNCTION(as_write_batch_expire_store,
  1231. &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
  1232. #undef STORE_FUNCTION
  1233. #define AS_ATTR(name) \
  1234. __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
  1235. static struct elv_fs_entry as_attrs[] = {
  1236. __ATTR_RO(est_time),
  1237. AS_ATTR(read_expire),
  1238. AS_ATTR(write_expire),
  1239. AS_ATTR(antic_expire),
  1240. AS_ATTR(read_batch_expire),
  1241. AS_ATTR(write_batch_expire),
  1242. __ATTR_NULL
  1243. };
  1244. static struct elevator_type iosched_as = {
  1245. .ops = {
  1246. .elevator_merge_fn = as_merge,
  1247. .elevator_merged_fn = as_merged_request,
  1248. .elevator_merge_req_fn = as_merged_requests,
  1249. .elevator_dispatch_fn = as_dispatch_request,
  1250. .elevator_add_req_fn = as_add_request,
  1251. .elevator_activate_req_fn = as_activate_request,
  1252. .elevator_deactivate_req_fn = as_deactivate_request,
  1253. .elevator_queue_empty_fn = as_queue_empty,
  1254. .elevator_completed_req_fn = as_completed_request,
  1255. .elevator_former_req_fn = elv_rb_former_request,
  1256. .elevator_latter_req_fn = elv_rb_latter_request,
  1257. .elevator_may_queue_fn = as_may_queue,
  1258. .elevator_init_fn = as_init_queue,
  1259. .elevator_exit_fn = as_exit_queue,
  1260. .trim = as_trim,
  1261. },
  1262. .elevator_attrs = as_attrs,
  1263. .elevator_name = "anticipatory",
  1264. .elevator_owner = THIS_MODULE,
  1265. };
  1266. static int __init as_init(void)
  1267. {
  1268. elv_register(&iosched_as);
  1269. return 0;
  1270. }
  1271. static void __exit as_exit(void)
  1272. {
  1273. DECLARE_COMPLETION_ONSTACK(all_gone);
  1274. elv_unregister(&iosched_as);
  1275. ioc_gone = &all_gone;
  1276. /* ioc_gone's update must be visible before reading ioc_count */
  1277. smp_wmb();
  1278. if (elv_ioc_count_read(ioc_count))
  1279. wait_for_completion(&all_gone);
  1280. synchronize_rcu();
  1281. }
  1282. module_init(as_init);
  1283. module_exit(as_exit);
  1284. MODULE_AUTHOR("Nick Piggin");
  1285. MODULE_LICENSE("GPL");
  1286. MODULE_DESCRIPTION("anticipatory IO scheduler");