time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <linux/clocksource.h>
  22. #include <asm/machvec.h>
  23. #include <asm/delay.h>
  24. #include <asm/hw_irq.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/sal.h>
  27. #include <asm/sections.h>
  28. #include <asm/system.h>
  29. #include "fsyscall_gtod_data.h"
  30. static cycle_t itc_get_cycles(void);
  31. struct fsyscall_gtod_data_t fsyscall_gtod_data = {
  32. .lock = SEQLOCK_UNLOCKED,
  33. };
  34. struct itc_jitter_data_t itc_jitter_data;
  35. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  36. #ifdef CONFIG_IA64_DEBUG_IRQ
  37. unsigned long last_cli_ip;
  38. EXPORT_SYMBOL(last_cli_ip);
  39. #endif
  40. static struct clocksource clocksource_itc = {
  41. .name = "itc",
  42. .rating = 350,
  43. .read = itc_get_cycles,
  44. .mask = CLOCKSOURCE_MASK(64),
  45. .mult = 0, /*to be calculated*/
  46. .shift = 16,
  47. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  48. };
  49. static struct clocksource *itc_clocksource;
  50. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  51. #include <linux/kernel_stat.h>
  52. extern cputime_t cycle_to_cputime(u64 cyc);
  53. /*
  54. * Called from the context switch with interrupts disabled, to charge all
  55. * accumulated times to the current process, and to prepare accounting on
  56. * the next process.
  57. */
  58. void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
  59. {
  60. struct thread_info *pi = task_thread_info(prev);
  61. struct thread_info *ni = task_thread_info(next);
  62. cputime_t delta_stime, delta_utime;
  63. __u64 now;
  64. now = ia64_get_itc();
  65. delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
  66. account_system_time(prev, 0, delta_stime);
  67. account_system_time_scaled(prev, delta_stime);
  68. if (pi->ac_utime) {
  69. delta_utime = cycle_to_cputime(pi->ac_utime);
  70. account_user_time(prev, delta_utime);
  71. account_user_time_scaled(prev, delta_utime);
  72. }
  73. pi->ac_stamp = ni->ac_stamp = now;
  74. ni->ac_stime = ni->ac_utime = 0;
  75. }
  76. /*
  77. * Account time for a transition between system, hard irq or soft irq state.
  78. * Note that this function is called with interrupts enabled.
  79. */
  80. void account_system_vtime(struct task_struct *tsk)
  81. {
  82. struct thread_info *ti = task_thread_info(tsk);
  83. unsigned long flags;
  84. cputime_t delta_stime;
  85. __u64 now;
  86. local_irq_save(flags);
  87. now = ia64_get_itc();
  88. delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
  89. account_system_time(tsk, 0, delta_stime);
  90. account_system_time_scaled(tsk, delta_stime);
  91. ti->ac_stime = 0;
  92. ti->ac_stamp = now;
  93. local_irq_restore(flags);
  94. }
  95. EXPORT_SYMBOL_GPL(account_system_vtime);
  96. /*
  97. * Called from the timer interrupt handler to charge accumulated user time
  98. * to the current process. Must be called with interrupts disabled.
  99. */
  100. void account_process_tick(struct task_struct *p, int user_tick)
  101. {
  102. struct thread_info *ti = task_thread_info(p);
  103. cputime_t delta_utime;
  104. if (ti->ac_utime) {
  105. delta_utime = cycle_to_cputime(ti->ac_utime);
  106. account_user_time(p, delta_utime);
  107. account_user_time_scaled(p, delta_utime);
  108. ti->ac_utime = 0;
  109. }
  110. }
  111. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  112. static irqreturn_t
  113. timer_interrupt (int irq, void *dev_id)
  114. {
  115. unsigned long new_itm;
  116. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  117. return IRQ_HANDLED;
  118. }
  119. platform_timer_interrupt(irq, dev_id);
  120. new_itm = local_cpu_data->itm_next;
  121. if (!time_after(ia64_get_itc(), new_itm))
  122. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  123. ia64_get_itc(), new_itm);
  124. profile_tick(CPU_PROFILING);
  125. while (1) {
  126. update_process_times(user_mode(get_irq_regs()));
  127. new_itm += local_cpu_data->itm_delta;
  128. if (smp_processor_id() == time_keeper_id) {
  129. /*
  130. * Here we are in the timer irq handler. We have irqs locally
  131. * disabled, but we don't know if the timer_bh is running on
  132. * another CPU. We need to avoid to SMP race by acquiring the
  133. * xtime_lock.
  134. */
  135. write_seqlock(&xtime_lock);
  136. do_timer(1);
  137. local_cpu_data->itm_next = new_itm;
  138. write_sequnlock(&xtime_lock);
  139. } else
  140. local_cpu_data->itm_next = new_itm;
  141. if (time_after(new_itm, ia64_get_itc()))
  142. break;
  143. /*
  144. * Allow IPIs to interrupt the timer loop.
  145. */
  146. local_irq_enable();
  147. local_irq_disable();
  148. }
  149. do {
  150. /*
  151. * If we're too close to the next clock tick for
  152. * comfort, we increase the safety margin by
  153. * intentionally dropping the next tick(s). We do NOT
  154. * update itm.next because that would force us to call
  155. * do_timer() which in turn would let our clock run
  156. * too fast (with the potentially devastating effect
  157. * of losing monotony of time).
  158. */
  159. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  160. new_itm += local_cpu_data->itm_delta;
  161. ia64_set_itm(new_itm);
  162. /* double check, in case we got hit by a (slow) PMI: */
  163. } while (time_after_eq(ia64_get_itc(), new_itm));
  164. return IRQ_HANDLED;
  165. }
  166. /*
  167. * Encapsulate access to the itm structure for SMP.
  168. */
  169. void
  170. ia64_cpu_local_tick (void)
  171. {
  172. int cpu = smp_processor_id();
  173. unsigned long shift = 0, delta;
  174. /* arrange for the cycle counter to generate a timer interrupt: */
  175. ia64_set_itv(IA64_TIMER_VECTOR);
  176. delta = local_cpu_data->itm_delta;
  177. /*
  178. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  179. * same time:
  180. */
  181. if (cpu) {
  182. unsigned long hi = 1UL << ia64_fls(cpu);
  183. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  184. }
  185. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  186. ia64_set_itm(local_cpu_data->itm_next);
  187. }
  188. static int nojitter;
  189. static int __init nojitter_setup(char *str)
  190. {
  191. nojitter = 1;
  192. printk("Jitter checking for ITC timers disabled\n");
  193. return 1;
  194. }
  195. __setup("nojitter", nojitter_setup);
  196. void __devinit
  197. ia64_init_itm (void)
  198. {
  199. unsigned long platform_base_freq, itc_freq;
  200. struct pal_freq_ratio itc_ratio, proc_ratio;
  201. long status, platform_base_drift, itc_drift;
  202. /*
  203. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  204. * frequency and then a PAL call to determine the frequency ratio between the ITC
  205. * and the base frequency.
  206. */
  207. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  208. &platform_base_freq, &platform_base_drift);
  209. if (status != 0) {
  210. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  211. } else {
  212. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  213. if (status != 0)
  214. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  215. }
  216. if (status != 0) {
  217. /* invent "random" values */
  218. printk(KERN_ERR
  219. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  220. platform_base_freq = 100000000;
  221. platform_base_drift = -1; /* no drift info */
  222. itc_ratio.num = 3;
  223. itc_ratio.den = 1;
  224. }
  225. if (platform_base_freq < 40000000) {
  226. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  227. platform_base_freq);
  228. platform_base_freq = 75000000;
  229. platform_base_drift = -1;
  230. }
  231. if (!proc_ratio.den)
  232. proc_ratio.den = 1; /* avoid division by zero */
  233. if (!itc_ratio.den)
  234. itc_ratio.den = 1; /* avoid division by zero */
  235. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  236. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  237. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  238. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  239. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  240. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  241. if (platform_base_drift != -1) {
  242. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  243. printk("+/-%ldppm\n", itc_drift);
  244. } else {
  245. itc_drift = -1;
  246. printk("\n");
  247. }
  248. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  249. local_cpu_data->itc_freq = itc_freq;
  250. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  251. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  252. + itc_freq/2)/itc_freq;
  253. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  254. #ifdef CONFIG_SMP
  255. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  256. * Jitter compensation requires a cmpxchg which may limit
  257. * the scalability of the syscalls for retrieving time.
  258. * The ITC synchronization is usually successful to within a few
  259. * ITC ticks but this is not a sure thing. If you need to improve
  260. * timer performance in SMP situations then boot the kernel with the
  261. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  262. * even going backward) if the ITC offsets between the individual CPUs
  263. * are too large.
  264. */
  265. if (!nojitter)
  266. itc_jitter_data.itc_jitter = 1;
  267. #endif
  268. } else
  269. /*
  270. * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
  271. * ITC values may fluctuate significantly between processors.
  272. * Clock should not be used for hrtimers. Mark itc as only
  273. * useful for boot and testing.
  274. *
  275. * Note that jitter compensation is off! There is no point of
  276. * synchronizing ITCs since they may be large differentials
  277. * that change over time.
  278. *
  279. * The only way to fix this would be to repeatedly sync the
  280. * ITCs. Until that time we have to avoid ITC.
  281. */
  282. clocksource_itc.rating = 50;
  283. /* Setup the CPU local timer tick */
  284. ia64_cpu_local_tick();
  285. if (!itc_clocksource) {
  286. /* Sort out mult/shift values: */
  287. clocksource_itc.mult =
  288. clocksource_hz2mult(local_cpu_data->itc_freq,
  289. clocksource_itc.shift);
  290. clocksource_register(&clocksource_itc);
  291. itc_clocksource = &clocksource_itc;
  292. }
  293. }
  294. static cycle_t itc_get_cycles(void)
  295. {
  296. u64 lcycle, now, ret;
  297. if (!itc_jitter_data.itc_jitter)
  298. return get_cycles();
  299. lcycle = itc_jitter_data.itc_lastcycle;
  300. now = get_cycles();
  301. if (lcycle && time_after(lcycle, now))
  302. return lcycle;
  303. /*
  304. * Keep track of the last timer value returned.
  305. * In an SMP environment, you could lose out in contention of
  306. * cmpxchg. If so, your cmpxchg returns new value which the
  307. * winner of contention updated to. Use the new value instead.
  308. */
  309. ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
  310. if (unlikely(ret != lcycle))
  311. return ret;
  312. return now;
  313. }
  314. static struct irqaction timer_irqaction = {
  315. .handler = timer_interrupt,
  316. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  317. .name = "timer"
  318. };
  319. void __init
  320. time_init (void)
  321. {
  322. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  323. efi_gettimeofday(&xtime);
  324. ia64_init_itm();
  325. /*
  326. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  327. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  328. */
  329. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  330. }
  331. /*
  332. * Generic udelay assumes that if preemption is allowed and the thread
  333. * migrates to another CPU, that the ITC values are synchronized across
  334. * all CPUs.
  335. */
  336. static void
  337. ia64_itc_udelay (unsigned long usecs)
  338. {
  339. unsigned long start = ia64_get_itc();
  340. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  341. while (time_before(ia64_get_itc(), end))
  342. cpu_relax();
  343. }
  344. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  345. void
  346. udelay (unsigned long usecs)
  347. {
  348. (*ia64_udelay)(usecs);
  349. }
  350. EXPORT_SYMBOL(udelay);
  351. /* IA64 doesn't cache the timezone */
  352. void update_vsyscall_tz(void)
  353. {
  354. }
  355. void update_vsyscall(struct timespec *wall, struct clocksource *c)
  356. {
  357. unsigned long flags;
  358. write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
  359. /* copy fsyscall clock data */
  360. fsyscall_gtod_data.clk_mask = c->mask;
  361. fsyscall_gtod_data.clk_mult = c->mult;
  362. fsyscall_gtod_data.clk_shift = c->shift;
  363. fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
  364. fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
  365. /* copy kernel time structures */
  366. fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
  367. fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
  368. fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
  369. + wall->tv_sec;
  370. fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
  371. + wall->tv_nsec;
  372. /* normalize */
  373. while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
  374. fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
  375. fsyscall_gtod_data.monotonic_time.tv_sec++;
  376. }
  377. write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
  378. }