svm.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "x86.h"
  17. #include "kvm_svm.h"
  18. #include "x86_emulate.h"
  19. #include "irq.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <asm/desc.h>
  26. MODULE_AUTHOR("Qumranet");
  27. MODULE_LICENSE("GPL");
  28. #define IOPM_ALLOC_ORDER 2
  29. #define MSRPM_ALLOC_ORDER 1
  30. #define DB_VECTOR 1
  31. #define UD_VECTOR 6
  32. #define GP_VECTOR 13
  33. #define DR7_GD_MASK (1 << 13)
  34. #define DR6_BD_MASK (1 << 13)
  35. #define SEG_TYPE_LDT 2
  36. #define SEG_TYPE_BUSY_TSS16 3
  37. #define SVM_FEATURE_NPT (1 << 0)
  38. #define SVM_FEATURE_LBRV (1 << 1)
  39. #define SVM_DEATURE_SVML (1 << 2)
  40. static void kvm_reput_irq(struct vcpu_svm *svm);
  41. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  42. {
  43. return container_of(vcpu, struct vcpu_svm, vcpu);
  44. }
  45. unsigned long iopm_base;
  46. unsigned long msrpm_base;
  47. struct kvm_ldttss_desc {
  48. u16 limit0;
  49. u16 base0;
  50. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  51. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  52. u32 base3;
  53. u32 zero1;
  54. } __attribute__((packed));
  55. struct svm_cpu_data {
  56. int cpu;
  57. u64 asid_generation;
  58. u32 max_asid;
  59. u32 next_asid;
  60. struct kvm_ldttss_desc *tss_desc;
  61. struct page *save_area;
  62. };
  63. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  64. static uint32_t svm_features;
  65. struct svm_init_data {
  66. int cpu;
  67. int r;
  68. };
  69. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  70. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  71. #define MSRS_RANGE_SIZE 2048
  72. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  73. #define MAX_INST_SIZE 15
  74. static inline u32 svm_has(u32 feat)
  75. {
  76. return svm_features & feat;
  77. }
  78. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  79. {
  80. int word_index = __ffs(vcpu->irq_summary);
  81. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  82. int irq = word_index * BITS_PER_LONG + bit_index;
  83. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  84. if (!vcpu->irq_pending[word_index])
  85. clear_bit(word_index, &vcpu->irq_summary);
  86. return irq;
  87. }
  88. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  89. {
  90. set_bit(irq, vcpu->irq_pending);
  91. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  92. }
  93. static inline void clgi(void)
  94. {
  95. asm volatile (SVM_CLGI);
  96. }
  97. static inline void stgi(void)
  98. {
  99. asm volatile (SVM_STGI);
  100. }
  101. static inline void invlpga(unsigned long addr, u32 asid)
  102. {
  103. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  104. }
  105. static inline unsigned long kvm_read_cr2(void)
  106. {
  107. unsigned long cr2;
  108. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  109. return cr2;
  110. }
  111. static inline void kvm_write_cr2(unsigned long val)
  112. {
  113. asm volatile ("mov %0, %%cr2" :: "r" (val));
  114. }
  115. static inline unsigned long read_dr6(void)
  116. {
  117. unsigned long dr6;
  118. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  119. return dr6;
  120. }
  121. static inline void write_dr6(unsigned long val)
  122. {
  123. asm volatile ("mov %0, %%dr6" :: "r" (val));
  124. }
  125. static inline unsigned long read_dr7(void)
  126. {
  127. unsigned long dr7;
  128. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  129. return dr7;
  130. }
  131. static inline void write_dr7(unsigned long val)
  132. {
  133. asm volatile ("mov %0, %%dr7" :: "r" (val));
  134. }
  135. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  136. {
  137. to_svm(vcpu)->asid_generation--;
  138. }
  139. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  140. {
  141. force_new_asid(vcpu);
  142. }
  143. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  144. {
  145. if (!(efer & EFER_LMA))
  146. efer &= ~EFER_LME;
  147. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  148. vcpu->shadow_efer = efer;
  149. }
  150. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  151. bool has_error_code, u32 error_code)
  152. {
  153. struct vcpu_svm *svm = to_svm(vcpu);
  154. svm->vmcb->control.event_inj = nr
  155. | SVM_EVTINJ_VALID
  156. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  157. | SVM_EVTINJ_TYPE_EXEPT;
  158. svm->vmcb->control.event_inj_err = error_code;
  159. }
  160. static bool svm_exception_injected(struct kvm_vcpu *vcpu)
  161. {
  162. struct vcpu_svm *svm = to_svm(vcpu);
  163. return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
  164. }
  165. static int is_external_interrupt(u32 info)
  166. {
  167. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  168. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  169. }
  170. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  171. {
  172. struct vcpu_svm *svm = to_svm(vcpu);
  173. if (!svm->next_rip) {
  174. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  175. return;
  176. }
  177. if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
  178. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  179. __FUNCTION__,
  180. svm->vmcb->save.rip,
  181. svm->next_rip);
  182. vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
  183. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  184. vcpu->interrupt_window_open = 1;
  185. }
  186. static int has_svm(void)
  187. {
  188. uint32_t eax, ebx, ecx, edx;
  189. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  190. printk(KERN_INFO "has_svm: not amd\n");
  191. return 0;
  192. }
  193. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  194. if (eax < SVM_CPUID_FUNC) {
  195. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  196. return 0;
  197. }
  198. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  199. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  200. printk(KERN_DEBUG "has_svm: svm not available\n");
  201. return 0;
  202. }
  203. return 1;
  204. }
  205. static void svm_hardware_disable(void *garbage)
  206. {
  207. struct svm_cpu_data *svm_data
  208. = per_cpu(svm_data, raw_smp_processor_id());
  209. if (svm_data) {
  210. uint64_t efer;
  211. wrmsrl(MSR_VM_HSAVE_PA, 0);
  212. rdmsrl(MSR_EFER, efer);
  213. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  214. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  215. __free_page(svm_data->save_area);
  216. kfree(svm_data);
  217. }
  218. }
  219. static void svm_hardware_enable(void *garbage)
  220. {
  221. struct svm_cpu_data *svm_data;
  222. uint64_t efer;
  223. #ifdef CONFIG_X86_64
  224. struct desc_ptr gdt_descr;
  225. #else
  226. struct desc_ptr gdt_descr;
  227. #endif
  228. struct desc_struct *gdt;
  229. int me = raw_smp_processor_id();
  230. if (!has_svm()) {
  231. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  232. return;
  233. }
  234. svm_data = per_cpu(svm_data, me);
  235. if (!svm_data) {
  236. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  237. me);
  238. return;
  239. }
  240. svm_data->asid_generation = 1;
  241. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  242. svm_data->next_asid = svm_data->max_asid + 1;
  243. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  244. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  245. gdt = (struct desc_struct *)gdt_descr.address;
  246. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  247. rdmsrl(MSR_EFER, efer);
  248. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  249. wrmsrl(MSR_VM_HSAVE_PA,
  250. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  251. }
  252. static int svm_cpu_init(int cpu)
  253. {
  254. struct svm_cpu_data *svm_data;
  255. int r;
  256. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  257. if (!svm_data)
  258. return -ENOMEM;
  259. svm_data->cpu = cpu;
  260. svm_data->save_area = alloc_page(GFP_KERNEL);
  261. r = -ENOMEM;
  262. if (!svm_data->save_area)
  263. goto err_1;
  264. per_cpu(svm_data, cpu) = svm_data;
  265. return 0;
  266. err_1:
  267. kfree(svm_data);
  268. return r;
  269. }
  270. static void set_msr_interception(u32 *msrpm, unsigned msr,
  271. int read, int write)
  272. {
  273. int i;
  274. for (i = 0; i < NUM_MSR_MAPS; i++) {
  275. if (msr >= msrpm_ranges[i] &&
  276. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  277. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  278. msrpm_ranges[i]) * 2;
  279. u32 *base = msrpm + (msr_offset / 32);
  280. u32 msr_shift = msr_offset % 32;
  281. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  282. *base = (*base & ~(0x3 << msr_shift)) |
  283. (mask << msr_shift);
  284. return;
  285. }
  286. }
  287. BUG();
  288. }
  289. static __init int svm_hardware_setup(void)
  290. {
  291. int cpu;
  292. struct page *iopm_pages;
  293. struct page *msrpm_pages;
  294. void *iopm_va, *msrpm_va;
  295. int r;
  296. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  297. if (!iopm_pages)
  298. return -ENOMEM;
  299. iopm_va = page_address(iopm_pages);
  300. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  301. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  302. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  303. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  304. r = -ENOMEM;
  305. if (!msrpm_pages)
  306. goto err_1;
  307. msrpm_va = page_address(msrpm_pages);
  308. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  309. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  310. #ifdef CONFIG_X86_64
  311. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  312. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  313. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  314. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  315. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  316. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  317. #endif
  318. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  319. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  320. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  322. for_each_online_cpu(cpu) {
  323. r = svm_cpu_init(cpu);
  324. if (r)
  325. goto err_2;
  326. }
  327. return 0;
  328. err_2:
  329. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  330. msrpm_base = 0;
  331. err_1:
  332. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  333. iopm_base = 0;
  334. return r;
  335. }
  336. static __exit void svm_hardware_unsetup(void)
  337. {
  338. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  339. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  340. iopm_base = msrpm_base = 0;
  341. }
  342. static void init_seg(struct vmcb_seg *seg)
  343. {
  344. seg->selector = 0;
  345. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  346. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  347. seg->limit = 0xffff;
  348. seg->base = 0;
  349. }
  350. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  351. {
  352. seg->selector = 0;
  353. seg->attrib = SVM_SELECTOR_P_MASK | type;
  354. seg->limit = 0xffff;
  355. seg->base = 0;
  356. }
  357. static void init_vmcb(struct vmcb *vmcb)
  358. {
  359. struct vmcb_control_area *control = &vmcb->control;
  360. struct vmcb_save_area *save = &vmcb->save;
  361. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  362. INTERCEPT_CR3_MASK |
  363. INTERCEPT_CR4_MASK |
  364. INTERCEPT_CR8_MASK;
  365. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  366. INTERCEPT_CR3_MASK |
  367. INTERCEPT_CR4_MASK |
  368. INTERCEPT_CR8_MASK;
  369. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  370. INTERCEPT_DR1_MASK |
  371. INTERCEPT_DR2_MASK |
  372. INTERCEPT_DR3_MASK;
  373. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  374. INTERCEPT_DR1_MASK |
  375. INTERCEPT_DR2_MASK |
  376. INTERCEPT_DR3_MASK |
  377. INTERCEPT_DR5_MASK |
  378. INTERCEPT_DR7_MASK;
  379. control->intercept_exceptions = (1 << PF_VECTOR) |
  380. (1 << UD_VECTOR);
  381. control->intercept = (1ULL << INTERCEPT_INTR) |
  382. (1ULL << INTERCEPT_NMI) |
  383. (1ULL << INTERCEPT_SMI) |
  384. /*
  385. * selective cr0 intercept bug?
  386. * 0: 0f 22 d8 mov %eax,%cr3
  387. * 3: 0f 20 c0 mov %cr0,%eax
  388. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  389. * b: 0f 22 c0 mov %eax,%cr0
  390. * set cr3 ->interception
  391. * get cr0 ->interception
  392. * set cr0 -> no interception
  393. */
  394. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  395. (1ULL << INTERCEPT_CPUID) |
  396. (1ULL << INTERCEPT_INVD) |
  397. (1ULL << INTERCEPT_HLT) |
  398. (1ULL << INTERCEPT_INVLPGA) |
  399. (1ULL << INTERCEPT_IOIO_PROT) |
  400. (1ULL << INTERCEPT_MSR_PROT) |
  401. (1ULL << INTERCEPT_TASK_SWITCH) |
  402. (1ULL << INTERCEPT_SHUTDOWN) |
  403. (1ULL << INTERCEPT_VMRUN) |
  404. (1ULL << INTERCEPT_VMMCALL) |
  405. (1ULL << INTERCEPT_VMLOAD) |
  406. (1ULL << INTERCEPT_VMSAVE) |
  407. (1ULL << INTERCEPT_STGI) |
  408. (1ULL << INTERCEPT_CLGI) |
  409. (1ULL << INTERCEPT_SKINIT) |
  410. (1ULL << INTERCEPT_WBINVD) |
  411. (1ULL << INTERCEPT_MONITOR) |
  412. (1ULL << INTERCEPT_MWAIT);
  413. control->iopm_base_pa = iopm_base;
  414. control->msrpm_base_pa = msrpm_base;
  415. control->tsc_offset = 0;
  416. control->int_ctl = V_INTR_MASKING_MASK;
  417. init_seg(&save->es);
  418. init_seg(&save->ss);
  419. init_seg(&save->ds);
  420. init_seg(&save->fs);
  421. init_seg(&save->gs);
  422. save->cs.selector = 0xf000;
  423. /* Executable/Readable Code Segment */
  424. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  425. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  426. save->cs.limit = 0xffff;
  427. /*
  428. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  429. * be consistent with it.
  430. *
  431. * Replace when we have real mode working for vmx.
  432. */
  433. save->cs.base = 0xf0000;
  434. save->gdtr.limit = 0xffff;
  435. save->idtr.limit = 0xffff;
  436. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  437. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  438. save->efer = MSR_EFER_SVME_MASK;
  439. save->dr6 = 0xffff0ff0;
  440. save->dr7 = 0x400;
  441. save->rflags = 2;
  442. save->rip = 0x0000fff0;
  443. /*
  444. * cr0 val on cpu init should be 0x60000010, we enable cpu
  445. * cache by default. the orderly way is to enable cache in bios.
  446. */
  447. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  448. save->cr4 = X86_CR4_PAE;
  449. /* rdx = ?? */
  450. }
  451. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  452. {
  453. struct vcpu_svm *svm = to_svm(vcpu);
  454. init_vmcb(svm->vmcb);
  455. if (vcpu->vcpu_id != 0) {
  456. svm->vmcb->save.rip = 0;
  457. svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
  458. svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
  459. }
  460. return 0;
  461. }
  462. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  463. {
  464. struct vcpu_svm *svm;
  465. struct page *page;
  466. int err;
  467. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  468. if (!svm) {
  469. err = -ENOMEM;
  470. goto out;
  471. }
  472. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  473. if (err)
  474. goto free_svm;
  475. page = alloc_page(GFP_KERNEL);
  476. if (!page) {
  477. err = -ENOMEM;
  478. goto uninit;
  479. }
  480. svm->vmcb = page_address(page);
  481. clear_page(svm->vmcb);
  482. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  483. svm->asid_generation = 0;
  484. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  485. init_vmcb(svm->vmcb);
  486. fx_init(&svm->vcpu);
  487. svm->vcpu.fpu_active = 1;
  488. svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  489. if (svm->vcpu.vcpu_id == 0)
  490. svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
  491. return &svm->vcpu;
  492. uninit:
  493. kvm_vcpu_uninit(&svm->vcpu);
  494. free_svm:
  495. kmem_cache_free(kvm_vcpu_cache, svm);
  496. out:
  497. return ERR_PTR(err);
  498. }
  499. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  500. {
  501. struct vcpu_svm *svm = to_svm(vcpu);
  502. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  503. kvm_vcpu_uninit(vcpu);
  504. kmem_cache_free(kvm_vcpu_cache, svm);
  505. }
  506. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  507. {
  508. struct vcpu_svm *svm = to_svm(vcpu);
  509. int i;
  510. if (unlikely(cpu != vcpu->cpu)) {
  511. u64 tsc_this, delta;
  512. /*
  513. * Make sure that the guest sees a monotonically
  514. * increasing TSC.
  515. */
  516. rdtscll(tsc_this);
  517. delta = vcpu->host_tsc - tsc_this;
  518. svm->vmcb->control.tsc_offset += delta;
  519. vcpu->cpu = cpu;
  520. kvm_migrate_apic_timer(vcpu);
  521. }
  522. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  523. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  524. }
  525. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  526. {
  527. struct vcpu_svm *svm = to_svm(vcpu);
  528. int i;
  529. ++vcpu->stat.host_state_reload;
  530. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  531. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  532. rdtscll(vcpu->host_tsc);
  533. }
  534. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  535. {
  536. }
  537. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  538. {
  539. struct vcpu_svm *svm = to_svm(vcpu);
  540. vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  541. vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  542. vcpu->rip = svm->vmcb->save.rip;
  543. }
  544. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  545. {
  546. struct vcpu_svm *svm = to_svm(vcpu);
  547. svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  548. svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  549. svm->vmcb->save.rip = vcpu->rip;
  550. }
  551. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  552. {
  553. return to_svm(vcpu)->vmcb->save.rflags;
  554. }
  555. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  556. {
  557. to_svm(vcpu)->vmcb->save.rflags = rflags;
  558. }
  559. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  560. {
  561. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  562. switch (seg) {
  563. case VCPU_SREG_CS: return &save->cs;
  564. case VCPU_SREG_DS: return &save->ds;
  565. case VCPU_SREG_ES: return &save->es;
  566. case VCPU_SREG_FS: return &save->fs;
  567. case VCPU_SREG_GS: return &save->gs;
  568. case VCPU_SREG_SS: return &save->ss;
  569. case VCPU_SREG_TR: return &save->tr;
  570. case VCPU_SREG_LDTR: return &save->ldtr;
  571. }
  572. BUG();
  573. return NULL;
  574. }
  575. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  576. {
  577. struct vmcb_seg *s = svm_seg(vcpu, seg);
  578. return s->base;
  579. }
  580. static void svm_get_segment(struct kvm_vcpu *vcpu,
  581. struct kvm_segment *var, int seg)
  582. {
  583. struct vmcb_seg *s = svm_seg(vcpu, seg);
  584. var->base = s->base;
  585. var->limit = s->limit;
  586. var->selector = s->selector;
  587. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  588. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  589. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  590. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  591. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  592. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  593. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  594. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  595. var->unusable = !var->present;
  596. }
  597. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  598. {
  599. struct vcpu_svm *svm = to_svm(vcpu);
  600. dt->limit = svm->vmcb->save.idtr.limit;
  601. dt->base = svm->vmcb->save.idtr.base;
  602. }
  603. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  604. {
  605. struct vcpu_svm *svm = to_svm(vcpu);
  606. svm->vmcb->save.idtr.limit = dt->limit;
  607. svm->vmcb->save.idtr.base = dt->base ;
  608. }
  609. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  610. {
  611. struct vcpu_svm *svm = to_svm(vcpu);
  612. dt->limit = svm->vmcb->save.gdtr.limit;
  613. dt->base = svm->vmcb->save.gdtr.base;
  614. }
  615. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  616. {
  617. struct vcpu_svm *svm = to_svm(vcpu);
  618. svm->vmcb->save.gdtr.limit = dt->limit;
  619. svm->vmcb->save.gdtr.base = dt->base ;
  620. }
  621. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  622. {
  623. }
  624. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  625. {
  626. struct vcpu_svm *svm = to_svm(vcpu);
  627. #ifdef CONFIG_X86_64
  628. if (vcpu->shadow_efer & EFER_LME) {
  629. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  630. vcpu->shadow_efer |= EFER_LMA;
  631. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  632. }
  633. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  634. vcpu->shadow_efer &= ~EFER_LMA;
  635. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  636. }
  637. }
  638. #endif
  639. if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  640. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  641. vcpu->fpu_active = 1;
  642. }
  643. vcpu->cr0 = cr0;
  644. cr0 |= X86_CR0_PG | X86_CR0_WP;
  645. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  646. svm->vmcb->save.cr0 = cr0;
  647. }
  648. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  649. {
  650. vcpu->cr4 = cr4;
  651. to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
  652. }
  653. static void svm_set_segment(struct kvm_vcpu *vcpu,
  654. struct kvm_segment *var, int seg)
  655. {
  656. struct vcpu_svm *svm = to_svm(vcpu);
  657. struct vmcb_seg *s = svm_seg(vcpu, seg);
  658. s->base = var->base;
  659. s->limit = var->limit;
  660. s->selector = var->selector;
  661. if (var->unusable)
  662. s->attrib = 0;
  663. else {
  664. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  665. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  666. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  667. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  668. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  669. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  670. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  671. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  672. }
  673. if (seg == VCPU_SREG_CS)
  674. svm->vmcb->save.cpl
  675. = (svm->vmcb->save.cs.attrib
  676. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  677. }
  678. /* FIXME:
  679. svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
  680. svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  681. */
  682. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  683. {
  684. return -EOPNOTSUPP;
  685. }
  686. static int svm_get_irq(struct kvm_vcpu *vcpu)
  687. {
  688. struct vcpu_svm *svm = to_svm(vcpu);
  689. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  690. if (is_external_interrupt(exit_int_info))
  691. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  692. return -1;
  693. }
  694. static void load_host_msrs(struct kvm_vcpu *vcpu)
  695. {
  696. #ifdef CONFIG_X86_64
  697. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  698. #endif
  699. }
  700. static void save_host_msrs(struct kvm_vcpu *vcpu)
  701. {
  702. #ifdef CONFIG_X86_64
  703. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  704. #endif
  705. }
  706. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  707. {
  708. if (svm_data->next_asid > svm_data->max_asid) {
  709. ++svm_data->asid_generation;
  710. svm_data->next_asid = 1;
  711. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  712. }
  713. svm->vcpu.cpu = svm_data->cpu;
  714. svm->asid_generation = svm_data->asid_generation;
  715. svm->vmcb->control.asid = svm_data->next_asid++;
  716. }
  717. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  718. {
  719. return to_svm(vcpu)->db_regs[dr];
  720. }
  721. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  722. int *exception)
  723. {
  724. struct vcpu_svm *svm = to_svm(vcpu);
  725. *exception = 0;
  726. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  727. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  728. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  729. *exception = DB_VECTOR;
  730. return;
  731. }
  732. switch (dr) {
  733. case 0 ... 3:
  734. svm->db_regs[dr] = value;
  735. return;
  736. case 4 ... 5:
  737. if (vcpu->cr4 & X86_CR4_DE) {
  738. *exception = UD_VECTOR;
  739. return;
  740. }
  741. case 7: {
  742. if (value & ~((1ULL << 32) - 1)) {
  743. *exception = GP_VECTOR;
  744. return;
  745. }
  746. svm->vmcb->save.dr7 = value;
  747. return;
  748. }
  749. default:
  750. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  751. __FUNCTION__, dr);
  752. *exception = UD_VECTOR;
  753. return;
  754. }
  755. }
  756. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  757. {
  758. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  759. struct kvm *kvm = svm->vcpu.kvm;
  760. u64 fault_address;
  761. u32 error_code;
  762. if (!irqchip_in_kernel(kvm) &&
  763. is_external_interrupt(exit_int_info))
  764. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  765. fault_address = svm->vmcb->control.exit_info_2;
  766. error_code = svm->vmcb->control.exit_info_1;
  767. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  768. }
  769. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  770. {
  771. int er;
  772. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
  773. if (er != EMULATE_DONE)
  774. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  775. return 1;
  776. }
  777. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  778. {
  779. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  780. if (!(svm->vcpu.cr0 & X86_CR0_TS))
  781. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  782. svm->vcpu.fpu_active = 1;
  783. return 1;
  784. }
  785. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  786. {
  787. /*
  788. * VMCB is undefined after a SHUTDOWN intercept
  789. * so reinitialize it.
  790. */
  791. clear_page(svm->vmcb);
  792. init_vmcb(svm->vmcb);
  793. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  794. return 0;
  795. }
  796. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  797. {
  798. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  799. int size, down, in, string, rep;
  800. unsigned port;
  801. ++svm->vcpu.stat.io_exits;
  802. svm->next_rip = svm->vmcb->control.exit_info_2;
  803. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  804. if (string) {
  805. if (emulate_instruction(&svm->vcpu,
  806. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  807. return 0;
  808. return 1;
  809. }
  810. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  811. port = io_info >> 16;
  812. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  813. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  814. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  815. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  816. }
  817. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  818. {
  819. return 1;
  820. }
  821. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  822. {
  823. svm->next_rip = svm->vmcb->save.rip + 1;
  824. skip_emulated_instruction(&svm->vcpu);
  825. return kvm_emulate_halt(&svm->vcpu);
  826. }
  827. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  828. {
  829. svm->next_rip = svm->vmcb->save.rip + 3;
  830. skip_emulated_instruction(&svm->vcpu);
  831. kvm_emulate_hypercall(&svm->vcpu);
  832. return 1;
  833. }
  834. static int invalid_op_interception(struct vcpu_svm *svm,
  835. struct kvm_run *kvm_run)
  836. {
  837. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  838. return 1;
  839. }
  840. static int task_switch_interception(struct vcpu_svm *svm,
  841. struct kvm_run *kvm_run)
  842. {
  843. pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
  844. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  845. return 0;
  846. }
  847. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  848. {
  849. svm->next_rip = svm->vmcb->save.rip + 2;
  850. kvm_emulate_cpuid(&svm->vcpu);
  851. return 1;
  852. }
  853. static int emulate_on_interception(struct vcpu_svm *svm,
  854. struct kvm_run *kvm_run)
  855. {
  856. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  857. pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
  858. return 1;
  859. }
  860. static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  861. {
  862. emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
  863. if (irqchip_in_kernel(svm->vcpu.kvm))
  864. return 1;
  865. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  866. return 0;
  867. }
  868. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  869. {
  870. struct vcpu_svm *svm = to_svm(vcpu);
  871. switch (ecx) {
  872. case MSR_IA32_TIME_STAMP_COUNTER: {
  873. u64 tsc;
  874. rdtscll(tsc);
  875. *data = svm->vmcb->control.tsc_offset + tsc;
  876. break;
  877. }
  878. case MSR_K6_STAR:
  879. *data = svm->vmcb->save.star;
  880. break;
  881. #ifdef CONFIG_X86_64
  882. case MSR_LSTAR:
  883. *data = svm->vmcb->save.lstar;
  884. break;
  885. case MSR_CSTAR:
  886. *data = svm->vmcb->save.cstar;
  887. break;
  888. case MSR_KERNEL_GS_BASE:
  889. *data = svm->vmcb->save.kernel_gs_base;
  890. break;
  891. case MSR_SYSCALL_MASK:
  892. *data = svm->vmcb->save.sfmask;
  893. break;
  894. #endif
  895. case MSR_IA32_SYSENTER_CS:
  896. *data = svm->vmcb->save.sysenter_cs;
  897. break;
  898. case MSR_IA32_SYSENTER_EIP:
  899. *data = svm->vmcb->save.sysenter_eip;
  900. break;
  901. case MSR_IA32_SYSENTER_ESP:
  902. *data = svm->vmcb->save.sysenter_esp;
  903. break;
  904. default:
  905. return kvm_get_msr_common(vcpu, ecx, data);
  906. }
  907. return 0;
  908. }
  909. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  910. {
  911. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  912. u64 data;
  913. if (svm_get_msr(&svm->vcpu, ecx, &data))
  914. kvm_inject_gp(&svm->vcpu, 0);
  915. else {
  916. svm->vmcb->save.rax = data & 0xffffffff;
  917. svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
  918. svm->next_rip = svm->vmcb->save.rip + 2;
  919. skip_emulated_instruction(&svm->vcpu);
  920. }
  921. return 1;
  922. }
  923. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  924. {
  925. struct vcpu_svm *svm = to_svm(vcpu);
  926. switch (ecx) {
  927. case MSR_IA32_TIME_STAMP_COUNTER: {
  928. u64 tsc;
  929. rdtscll(tsc);
  930. svm->vmcb->control.tsc_offset = data - tsc;
  931. break;
  932. }
  933. case MSR_K6_STAR:
  934. svm->vmcb->save.star = data;
  935. break;
  936. #ifdef CONFIG_X86_64
  937. case MSR_LSTAR:
  938. svm->vmcb->save.lstar = data;
  939. break;
  940. case MSR_CSTAR:
  941. svm->vmcb->save.cstar = data;
  942. break;
  943. case MSR_KERNEL_GS_BASE:
  944. svm->vmcb->save.kernel_gs_base = data;
  945. break;
  946. case MSR_SYSCALL_MASK:
  947. svm->vmcb->save.sfmask = data;
  948. break;
  949. #endif
  950. case MSR_IA32_SYSENTER_CS:
  951. svm->vmcb->save.sysenter_cs = data;
  952. break;
  953. case MSR_IA32_SYSENTER_EIP:
  954. svm->vmcb->save.sysenter_eip = data;
  955. break;
  956. case MSR_IA32_SYSENTER_ESP:
  957. svm->vmcb->save.sysenter_esp = data;
  958. break;
  959. default:
  960. return kvm_set_msr_common(vcpu, ecx, data);
  961. }
  962. return 0;
  963. }
  964. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  965. {
  966. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  967. u64 data = (svm->vmcb->save.rax & -1u)
  968. | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
  969. svm->next_rip = svm->vmcb->save.rip + 2;
  970. if (svm_set_msr(&svm->vcpu, ecx, data))
  971. kvm_inject_gp(&svm->vcpu, 0);
  972. else
  973. skip_emulated_instruction(&svm->vcpu);
  974. return 1;
  975. }
  976. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  977. {
  978. if (svm->vmcb->control.exit_info_1)
  979. return wrmsr_interception(svm, kvm_run);
  980. else
  981. return rdmsr_interception(svm, kvm_run);
  982. }
  983. static int interrupt_window_interception(struct vcpu_svm *svm,
  984. struct kvm_run *kvm_run)
  985. {
  986. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  987. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  988. /*
  989. * If the user space waits to inject interrupts, exit as soon as
  990. * possible
  991. */
  992. if (kvm_run->request_interrupt_window &&
  993. !svm->vcpu.irq_summary) {
  994. ++svm->vcpu.stat.irq_window_exits;
  995. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  996. return 0;
  997. }
  998. return 1;
  999. }
  1000. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1001. struct kvm_run *kvm_run) = {
  1002. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1003. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1004. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1005. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1006. /* for now: */
  1007. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1008. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1009. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1010. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1011. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1012. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1013. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1014. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1015. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1016. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1017. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1018. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1019. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1020. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1021. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1022. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1023. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1024. [SVM_EXIT_INTR] = nop_on_interception,
  1025. [SVM_EXIT_NMI] = nop_on_interception,
  1026. [SVM_EXIT_SMI] = nop_on_interception,
  1027. [SVM_EXIT_INIT] = nop_on_interception,
  1028. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1029. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1030. [SVM_EXIT_CPUID] = cpuid_interception,
  1031. [SVM_EXIT_INVD] = emulate_on_interception,
  1032. [SVM_EXIT_HLT] = halt_interception,
  1033. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1034. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1035. [SVM_EXIT_IOIO] = io_interception,
  1036. [SVM_EXIT_MSR] = msr_interception,
  1037. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1038. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1039. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1040. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1041. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1042. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1043. [SVM_EXIT_STGI] = invalid_op_interception,
  1044. [SVM_EXIT_CLGI] = invalid_op_interception,
  1045. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1046. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1047. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1048. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1049. };
  1050. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1051. {
  1052. struct vcpu_svm *svm = to_svm(vcpu);
  1053. u32 exit_code = svm->vmcb->control.exit_code;
  1054. kvm_reput_irq(svm);
  1055. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1056. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1057. kvm_run->fail_entry.hardware_entry_failure_reason
  1058. = svm->vmcb->control.exit_code;
  1059. return 0;
  1060. }
  1061. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1062. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1063. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1064. "exit_code 0x%x\n",
  1065. __FUNCTION__, svm->vmcb->control.exit_int_info,
  1066. exit_code);
  1067. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1068. || !svm_exit_handlers[exit_code]) {
  1069. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1070. kvm_run->hw.hardware_exit_reason = exit_code;
  1071. return 0;
  1072. }
  1073. return svm_exit_handlers[exit_code](svm, kvm_run);
  1074. }
  1075. static void reload_tss(struct kvm_vcpu *vcpu)
  1076. {
  1077. int cpu = raw_smp_processor_id();
  1078. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1079. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1080. load_TR_desc();
  1081. }
  1082. static void pre_svm_run(struct vcpu_svm *svm)
  1083. {
  1084. int cpu = raw_smp_processor_id();
  1085. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1086. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1087. if (svm->vcpu.cpu != cpu ||
  1088. svm->asid_generation != svm_data->asid_generation)
  1089. new_asid(svm, svm_data);
  1090. }
  1091. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1092. {
  1093. struct vmcb_control_area *control;
  1094. control = &svm->vmcb->control;
  1095. control->int_vector = irq;
  1096. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1097. control->int_ctl |= V_IRQ_MASK |
  1098. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1099. }
  1100. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1101. {
  1102. struct vcpu_svm *svm = to_svm(vcpu);
  1103. svm_inject_irq(svm, irq);
  1104. }
  1105. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1106. {
  1107. struct vcpu_svm *svm = to_svm(vcpu);
  1108. struct vmcb *vmcb = svm->vmcb;
  1109. int intr_vector = -1;
  1110. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1111. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1112. intr_vector = vmcb->control.exit_int_info &
  1113. SVM_EVTINJ_VEC_MASK;
  1114. vmcb->control.exit_int_info = 0;
  1115. svm_inject_irq(svm, intr_vector);
  1116. return;
  1117. }
  1118. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1119. return;
  1120. if (!kvm_cpu_has_interrupt(vcpu))
  1121. return;
  1122. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1123. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1124. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1125. /* unable to deliver irq, set pending irq */
  1126. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1127. svm_inject_irq(svm, 0x0);
  1128. return;
  1129. }
  1130. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1131. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1132. svm_inject_irq(svm, intr_vector);
  1133. kvm_timer_intr_post(vcpu, intr_vector);
  1134. }
  1135. static void kvm_reput_irq(struct vcpu_svm *svm)
  1136. {
  1137. struct vmcb_control_area *control = &svm->vmcb->control;
  1138. if ((control->int_ctl & V_IRQ_MASK)
  1139. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1140. control->int_ctl &= ~V_IRQ_MASK;
  1141. push_irq(&svm->vcpu, control->int_vector);
  1142. }
  1143. svm->vcpu.interrupt_window_open =
  1144. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1145. }
  1146. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1147. {
  1148. struct kvm_vcpu *vcpu = &svm->vcpu;
  1149. int word_index = __ffs(vcpu->irq_summary);
  1150. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1151. int irq = word_index * BITS_PER_LONG + bit_index;
  1152. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1153. if (!vcpu->irq_pending[word_index])
  1154. clear_bit(word_index, &vcpu->irq_summary);
  1155. svm_inject_irq(svm, irq);
  1156. }
  1157. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1158. struct kvm_run *kvm_run)
  1159. {
  1160. struct vcpu_svm *svm = to_svm(vcpu);
  1161. struct vmcb_control_area *control = &svm->vmcb->control;
  1162. svm->vcpu.interrupt_window_open =
  1163. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1164. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1165. if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
  1166. /*
  1167. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1168. */
  1169. svm_do_inject_vector(svm);
  1170. /*
  1171. * Interrupts blocked. Wait for unblock.
  1172. */
  1173. if (!svm->vcpu.interrupt_window_open &&
  1174. (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
  1175. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1176. else
  1177. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1178. }
  1179. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1180. {
  1181. return 0;
  1182. }
  1183. static void save_db_regs(unsigned long *db_regs)
  1184. {
  1185. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1186. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1187. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1188. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1189. }
  1190. static void load_db_regs(unsigned long *db_regs)
  1191. {
  1192. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1193. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1194. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1195. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1196. }
  1197. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1198. {
  1199. force_new_asid(vcpu);
  1200. }
  1201. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  1202. {
  1203. }
  1204. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1205. {
  1206. struct vcpu_svm *svm = to_svm(vcpu);
  1207. u16 fs_selector;
  1208. u16 gs_selector;
  1209. u16 ldt_selector;
  1210. pre_svm_run(svm);
  1211. save_host_msrs(vcpu);
  1212. fs_selector = read_fs();
  1213. gs_selector = read_gs();
  1214. ldt_selector = read_ldt();
  1215. svm->host_cr2 = kvm_read_cr2();
  1216. svm->host_dr6 = read_dr6();
  1217. svm->host_dr7 = read_dr7();
  1218. svm->vmcb->save.cr2 = vcpu->cr2;
  1219. if (svm->vmcb->save.dr7 & 0xff) {
  1220. write_dr7(0);
  1221. save_db_regs(svm->host_db_regs);
  1222. load_db_regs(svm->db_regs);
  1223. }
  1224. clgi();
  1225. local_irq_enable();
  1226. asm volatile (
  1227. #ifdef CONFIG_X86_64
  1228. "push %%rbp; \n\t"
  1229. #else
  1230. "push %%ebp; \n\t"
  1231. #endif
  1232. #ifdef CONFIG_X86_64
  1233. "mov %c[rbx](%[svm]), %%rbx \n\t"
  1234. "mov %c[rcx](%[svm]), %%rcx \n\t"
  1235. "mov %c[rdx](%[svm]), %%rdx \n\t"
  1236. "mov %c[rsi](%[svm]), %%rsi \n\t"
  1237. "mov %c[rdi](%[svm]), %%rdi \n\t"
  1238. "mov %c[rbp](%[svm]), %%rbp \n\t"
  1239. "mov %c[r8](%[svm]), %%r8 \n\t"
  1240. "mov %c[r9](%[svm]), %%r9 \n\t"
  1241. "mov %c[r10](%[svm]), %%r10 \n\t"
  1242. "mov %c[r11](%[svm]), %%r11 \n\t"
  1243. "mov %c[r12](%[svm]), %%r12 \n\t"
  1244. "mov %c[r13](%[svm]), %%r13 \n\t"
  1245. "mov %c[r14](%[svm]), %%r14 \n\t"
  1246. "mov %c[r15](%[svm]), %%r15 \n\t"
  1247. #else
  1248. "mov %c[rbx](%[svm]), %%ebx \n\t"
  1249. "mov %c[rcx](%[svm]), %%ecx \n\t"
  1250. "mov %c[rdx](%[svm]), %%edx \n\t"
  1251. "mov %c[rsi](%[svm]), %%esi \n\t"
  1252. "mov %c[rdi](%[svm]), %%edi \n\t"
  1253. "mov %c[rbp](%[svm]), %%ebp \n\t"
  1254. #endif
  1255. #ifdef CONFIG_X86_64
  1256. /* Enter guest mode */
  1257. "push %%rax \n\t"
  1258. "mov %c[vmcb](%[svm]), %%rax \n\t"
  1259. SVM_VMLOAD "\n\t"
  1260. SVM_VMRUN "\n\t"
  1261. SVM_VMSAVE "\n\t"
  1262. "pop %%rax \n\t"
  1263. #else
  1264. /* Enter guest mode */
  1265. "push %%eax \n\t"
  1266. "mov %c[vmcb](%[svm]), %%eax \n\t"
  1267. SVM_VMLOAD "\n\t"
  1268. SVM_VMRUN "\n\t"
  1269. SVM_VMSAVE "\n\t"
  1270. "pop %%eax \n\t"
  1271. #endif
  1272. /* Save guest registers, load host registers */
  1273. #ifdef CONFIG_X86_64
  1274. "mov %%rbx, %c[rbx](%[svm]) \n\t"
  1275. "mov %%rcx, %c[rcx](%[svm]) \n\t"
  1276. "mov %%rdx, %c[rdx](%[svm]) \n\t"
  1277. "mov %%rsi, %c[rsi](%[svm]) \n\t"
  1278. "mov %%rdi, %c[rdi](%[svm]) \n\t"
  1279. "mov %%rbp, %c[rbp](%[svm]) \n\t"
  1280. "mov %%r8, %c[r8](%[svm]) \n\t"
  1281. "mov %%r9, %c[r9](%[svm]) \n\t"
  1282. "mov %%r10, %c[r10](%[svm]) \n\t"
  1283. "mov %%r11, %c[r11](%[svm]) \n\t"
  1284. "mov %%r12, %c[r12](%[svm]) \n\t"
  1285. "mov %%r13, %c[r13](%[svm]) \n\t"
  1286. "mov %%r14, %c[r14](%[svm]) \n\t"
  1287. "mov %%r15, %c[r15](%[svm]) \n\t"
  1288. "pop %%rbp; \n\t"
  1289. #else
  1290. "mov %%ebx, %c[rbx](%[svm]) \n\t"
  1291. "mov %%ecx, %c[rcx](%[svm]) \n\t"
  1292. "mov %%edx, %c[rdx](%[svm]) \n\t"
  1293. "mov %%esi, %c[rsi](%[svm]) \n\t"
  1294. "mov %%edi, %c[rdi](%[svm]) \n\t"
  1295. "mov %%ebp, %c[rbp](%[svm]) \n\t"
  1296. "pop %%ebp; \n\t"
  1297. #endif
  1298. :
  1299. : [svm]"a"(svm),
  1300. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1301. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
  1302. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
  1303. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
  1304. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
  1305. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
  1306. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
  1307. #ifdef CONFIG_X86_64
  1308. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
  1309. [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
  1310. [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
  1311. [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
  1312. [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
  1313. [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
  1314. [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
  1315. [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
  1316. #endif
  1317. : "cc", "memory"
  1318. #ifdef CONFIG_X86_64
  1319. , "rbx", "rcx", "rdx", "rsi", "rdi"
  1320. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  1321. #else
  1322. , "ebx", "ecx", "edx" , "esi", "edi"
  1323. #endif
  1324. );
  1325. if ((svm->vmcb->save.dr7 & 0xff))
  1326. load_db_regs(svm->host_db_regs);
  1327. vcpu->cr2 = svm->vmcb->save.cr2;
  1328. write_dr6(svm->host_dr6);
  1329. write_dr7(svm->host_dr7);
  1330. kvm_write_cr2(svm->host_cr2);
  1331. load_fs(fs_selector);
  1332. load_gs(gs_selector);
  1333. load_ldt(ldt_selector);
  1334. load_host_msrs(vcpu);
  1335. reload_tss(vcpu);
  1336. local_irq_disable();
  1337. stgi();
  1338. svm->next_rip = 0;
  1339. }
  1340. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1341. {
  1342. struct vcpu_svm *svm = to_svm(vcpu);
  1343. svm->vmcb->save.cr3 = root;
  1344. force_new_asid(vcpu);
  1345. if (vcpu->fpu_active) {
  1346. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1347. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1348. vcpu->fpu_active = 0;
  1349. }
  1350. }
  1351. static int is_disabled(void)
  1352. {
  1353. u64 vm_cr;
  1354. rdmsrl(MSR_VM_CR, vm_cr);
  1355. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1356. return 1;
  1357. return 0;
  1358. }
  1359. static void
  1360. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1361. {
  1362. /*
  1363. * Patch in the VMMCALL instruction:
  1364. */
  1365. hypercall[0] = 0x0f;
  1366. hypercall[1] = 0x01;
  1367. hypercall[2] = 0xd9;
  1368. }
  1369. static void svm_check_processor_compat(void *rtn)
  1370. {
  1371. *(int *)rtn = 0;
  1372. }
  1373. static struct kvm_x86_ops svm_x86_ops = {
  1374. .cpu_has_kvm_support = has_svm,
  1375. .disabled_by_bios = is_disabled,
  1376. .hardware_setup = svm_hardware_setup,
  1377. .hardware_unsetup = svm_hardware_unsetup,
  1378. .check_processor_compatibility = svm_check_processor_compat,
  1379. .hardware_enable = svm_hardware_enable,
  1380. .hardware_disable = svm_hardware_disable,
  1381. .vcpu_create = svm_create_vcpu,
  1382. .vcpu_free = svm_free_vcpu,
  1383. .vcpu_reset = svm_vcpu_reset,
  1384. .prepare_guest_switch = svm_prepare_guest_switch,
  1385. .vcpu_load = svm_vcpu_load,
  1386. .vcpu_put = svm_vcpu_put,
  1387. .vcpu_decache = svm_vcpu_decache,
  1388. .set_guest_debug = svm_guest_debug,
  1389. .get_msr = svm_get_msr,
  1390. .set_msr = svm_set_msr,
  1391. .get_segment_base = svm_get_segment_base,
  1392. .get_segment = svm_get_segment,
  1393. .set_segment = svm_set_segment,
  1394. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  1395. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1396. .set_cr0 = svm_set_cr0,
  1397. .set_cr3 = svm_set_cr3,
  1398. .set_cr4 = svm_set_cr4,
  1399. .set_efer = svm_set_efer,
  1400. .get_idt = svm_get_idt,
  1401. .set_idt = svm_set_idt,
  1402. .get_gdt = svm_get_gdt,
  1403. .set_gdt = svm_set_gdt,
  1404. .get_dr = svm_get_dr,
  1405. .set_dr = svm_set_dr,
  1406. .cache_regs = svm_cache_regs,
  1407. .decache_regs = svm_decache_regs,
  1408. .get_rflags = svm_get_rflags,
  1409. .set_rflags = svm_set_rflags,
  1410. .tlb_flush = svm_flush_tlb,
  1411. .run = svm_vcpu_run,
  1412. .handle_exit = handle_exit,
  1413. .skip_emulated_instruction = skip_emulated_instruction,
  1414. .patch_hypercall = svm_patch_hypercall,
  1415. .get_irq = svm_get_irq,
  1416. .set_irq = svm_set_irq,
  1417. .queue_exception = svm_queue_exception,
  1418. .exception_injected = svm_exception_injected,
  1419. .inject_pending_irq = svm_intr_assist,
  1420. .inject_pending_vectors = do_interrupt_requests,
  1421. .set_tss_addr = svm_set_tss_addr,
  1422. };
  1423. static int __init svm_init(void)
  1424. {
  1425. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  1426. THIS_MODULE);
  1427. }
  1428. static void __exit svm_exit(void)
  1429. {
  1430. kvm_exit();
  1431. }
  1432. module_init(svm_init)
  1433. module_exit(svm_exit)