slub.c 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <trace/events/kmem.h>
  31. /*
  32. * Lock order:
  33. * 1. slub_lock (Global Semaphore)
  34. * 2. node->list_lock
  35. * 3. slab_lock(page) (Only on some arches and for debugging)
  36. *
  37. * slub_lock
  38. *
  39. * The role of the slub_lock is to protect the list of all the slabs
  40. * and to synchronize major metadata changes to slab cache structures.
  41. *
  42. * The slab_lock is only used for debugging and on arches that do not
  43. * have the ability to do a cmpxchg_double. It only protects the second
  44. * double word in the page struct. Meaning
  45. * A. page->freelist -> List of object free in a page
  46. * B. page->counters -> Counters of objects
  47. * C. page->frozen -> frozen state
  48. *
  49. * If a slab is frozen then it is exempt from list management. It is not
  50. * on any list. The processor that froze the slab is the one who can
  51. * perform list operations on the page. Other processors may put objects
  52. * onto the freelist but the processor that froze the slab is the only
  53. * one that can retrieve the objects from the page's freelist.
  54. *
  55. * The list_lock protects the partial and full list on each node and
  56. * the partial slab counter. If taken then no new slabs may be added or
  57. * removed from the lists nor make the number of partial slabs be modified.
  58. * (Note that the total number of slabs is an atomic value that may be
  59. * modified without taking the list lock).
  60. *
  61. * The list_lock is a centralized lock and thus we avoid taking it as
  62. * much as possible. As long as SLUB does not have to handle partial
  63. * slabs, operations can continue without any centralized lock. F.e.
  64. * allocating a long series of objects that fill up slabs does not require
  65. * the list lock.
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /* Enable to log cmpxchg failures */
  126. #undef SLUB_DEBUG_CMPXCHG
  127. /*
  128. * Mininum number of partial slabs. These will be left on the partial
  129. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  130. */
  131. #define MIN_PARTIAL 5
  132. /*
  133. * Maximum number of desirable partial slabs.
  134. * The existence of more partial slabs makes kmem_cache_shrink
  135. * sort the partial list by the number of objects in the.
  136. */
  137. #define MAX_PARTIAL 10
  138. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  139. SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Debugging flags that require metadata to be stored in the slab. These get
  142. * disabled when slub_debug=O is used and a cache's min order increases with
  143. * metadata.
  144. */
  145. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  146. /*
  147. * Set of flags that will prevent slab merging
  148. */
  149. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  150. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  151. SLAB_FAILSLAB)
  152. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  153. SLAB_CACHE_DMA | SLAB_NOTRACK)
  154. #define OO_SHIFT 16
  155. #define OO_MASK ((1 << OO_SHIFT) - 1)
  156. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  157. /* Internal SLUB flags */
  158. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  159. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  160. static int kmem_size = sizeof(struct kmem_cache);
  161. #ifdef CONFIG_SMP
  162. static struct notifier_block slab_notifier;
  163. #endif
  164. static enum {
  165. DOWN, /* No slab functionality available */
  166. PARTIAL, /* Kmem_cache_node works */
  167. UP, /* Everything works but does not show up in sysfs */
  168. SYSFS /* Sysfs up */
  169. } slab_state = DOWN;
  170. /* A list of all slab caches on the system */
  171. static DECLARE_RWSEM(slub_lock);
  172. static LIST_HEAD(slab_caches);
  173. /*
  174. * Tracking user of a slab.
  175. */
  176. struct track {
  177. unsigned long addr; /* Called from address */
  178. int cpu; /* Was running on cpu */
  179. int pid; /* Pid context */
  180. unsigned long when; /* When did the operation occur */
  181. };
  182. enum track_item { TRACK_ALLOC, TRACK_FREE };
  183. #ifdef CONFIG_SYSFS
  184. static int sysfs_slab_add(struct kmem_cache *);
  185. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  186. static void sysfs_slab_remove(struct kmem_cache *);
  187. #else
  188. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  189. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  190. { return 0; }
  191. static inline void sysfs_slab_remove(struct kmem_cache *s)
  192. {
  193. kfree(s->name);
  194. kfree(s);
  195. }
  196. #endif
  197. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  198. {
  199. #ifdef CONFIG_SLUB_STATS
  200. __this_cpu_inc(s->cpu_slab->stat[si]);
  201. #endif
  202. }
  203. /********************************************************************
  204. * Core slab cache functions
  205. *******************************************************************/
  206. int slab_is_available(void)
  207. {
  208. return slab_state >= UP;
  209. }
  210. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  211. {
  212. return s->node[node];
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  233. {
  234. void *p;
  235. #ifdef CONFIG_DEBUG_PAGEALLOC
  236. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  237. #else
  238. p = get_freepointer(s, object);
  239. #endif
  240. return p;
  241. }
  242. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  243. {
  244. *(void **)(object + s->offset) = fp;
  245. }
  246. /* Loop over all objects in a slab */
  247. #define for_each_object(__p, __s, __addr, __objects) \
  248. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  249. __p += (__s)->size)
  250. /* Determine object index from a given position */
  251. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  252. {
  253. return (p - addr) / s->size;
  254. }
  255. static inline size_t slab_ksize(const struct kmem_cache *s)
  256. {
  257. #ifdef CONFIG_SLUB_DEBUG
  258. /*
  259. * Debugging requires use of the padding between object
  260. * and whatever may come after it.
  261. */
  262. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  263. return s->objsize;
  264. #endif
  265. /*
  266. * If we have the need to store the freelist pointer
  267. * back there or track user information then we can
  268. * only use the space before that information.
  269. */
  270. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  271. return s->inuse;
  272. /*
  273. * Else we can use all the padding etc for the allocation
  274. */
  275. return s->size;
  276. }
  277. static inline int order_objects(int order, unsigned long size, int reserved)
  278. {
  279. return ((PAGE_SIZE << order) - reserved) / size;
  280. }
  281. static inline struct kmem_cache_order_objects oo_make(int order,
  282. unsigned long size, int reserved)
  283. {
  284. struct kmem_cache_order_objects x = {
  285. (order << OO_SHIFT) + order_objects(order, size, reserved)
  286. };
  287. return x;
  288. }
  289. static inline int oo_order(struct kmem_cache_order_objects x)
  290. {
  291. return x.x >> OO_SHIFT;
  292. }
  293. static inline int oo_objects(struct kmem_cache_order_objects x)
  294. {
  295. return x.x & OO_MASK;
  296. }
  297. /*
  298. * Per slab locking using the pagelock
  299. */
  300. static __always_inline void slab_lock(struct page *page)
  301. {
  302. bit_spin_lock(PG_locked, &page->flags);
  303. }
  304. static __always_inline void slab_unlock(struct page *page)
  305. {
  306. __bit_spin_unlock(PG_locked, &page->flags);
  307. }
  308. /* Interrupts must be disabled (for the fallback code to work right) */
  309. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  310. void *freelist_old, unsigned long counters_old,
  311. void *freelist_new, unsigned long counters_new,
  312. const char *n)
  313. {
  314. VM_BUG_ON(!irqs_disabled());
  315. #ifdef CONFIG_CMPXCHG_DOUBLE
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #ifdef CONFIG_CMPXCHG_DOUBLE
  346. if (s->flags & __CMPXCHG_DOUBLE) {
  347. if (cmpxchg_double(&page->freelist,
  348. freelist_old, counters_old,
  349. freelist_new, counters_new))
  350. return 1;
  351. } else
  352. #endif
  353. {
  354. unsigned long flags;
  355. local_irq_save(flags);
  356. slab_lock(page);
  357. if (page->freelist == freelist_old && page->counters == counters_old) {
  358. page->freelist = freelist_new;
  359. page->counters = counters_new;
  360. slab_unlock(page);
  361. local_irq_restore(flags);
  362. return 1;
  363. }
  364. slab_unlock(page);
  365. local_irq_restore(flags);
  366. }
  367. cpu_relax();
  368. stat(s, CMPXCHG_DOUBLE_FAIL);
  369. #ifdef SLUB_DEBUG_CMPXCHG
  370. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  371. #endif
  372. return 0;
  373. }
  374. #ifdef CONFIG_SLUB_DEBUG
  375. /*
  376. * Determine a map of object in use on a page.
  377. *
  378. * Node listlock must be held to guarantee that the page does
  379. * not vanish from under us.
  380. */
  381. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  382. {
  383. void *p;
  384. void *addr = page_address(page);
  385. for (p = page->freelist; p; p = get_freepointer(s, p))
  386. set_bit(slab_index(p, s, addr), map);
  387. }
  388. /*
  389. * Debug settings:
  390. */
  391. #ifdef CONFIG_SLUB_DEBUG_ON
  392. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  393. #else
  394. static int slub_debug;
  395. #endif
  396. static char *slub_debug_slabs;
  397. static int disable_higher_order_debug;
  398. /*
  399. * Object debugging
  400. */
  401. static void print_section(char *text, u8 *addr, unsigned int length)
  402. {
  403. int i, offset;
  404. int newline = 1;
  405. char ascii[17];
  406. ascii[16] = 0;
  407. for (i = 0; i < length; i++) {
  408. if (newline) {
  409. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  410. newline = 0;
  411. }
  412. printk(KERN_CONT " %02x", addr[i]);
  413. offset = i % 16;
  414. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  415. if (offset == 15) {
  416. printk(KERN_CONT " %s\n", ascii);
  417. newline = 1;
  418. }
  419. }
  420. if (!newline) {
  421. i %= 16;
  422. while (i < 16) {
  423. printk(KERN_CONT " ");
  424. ascii[i] = ' ';
  425. i++;
  426. }
  427. printk(KERN_CONT " %s\n", ascii);
  428. }
  429. }
  430. static struct track *get_track(struct kmem_cache *s, void *object,
  431. enum track_item alloc)
  432. {
  433. struct track *p;
  434. if (s->offset)
  435. p = object + s->offset + sizeof(void *);
  436. else
  437. p = object + s->inuse;
  438. return p + alloc;
  439. }
  440. static void set_track(struct kmem_cache *s, void *object,
  441. enum track_item alloc, unsigned long addr)
  442. {
  443. struct track *p = get_track(s, object, alloc);
  444. if (addr) {
  445. p->addr = addr;
  446. p->cpu = smp_processor_id();
  447. p->pid = current->pid;
  448. p->when = jiffies;
  449. } else
  450. memset(p, 0, sizeof(struct track));
  451. }
  452. static void init_tracking(struct kmem_cache *s, void *object)
  453. {
  454. if (!(s->flags & SLAB_STORE_USER))
  455. return;
  456. set_track(s, object, TRACK_FREE, 0UL);
  457. set_track(s, object, TRACK_ALLOC, 0UL);
  458. }
  459. static void print_track(const char *s, struct track *t)
  460. {
  461. if (!t->addr)
  462. return;
  463. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  464. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  465. }
  466. static void print_tracking(struct kmem_cache *s, void *object)
  467. {
  468. if (!(s->flags & SLAB_STORE_USER))
  469. return;
  470. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  471. print_track("Freed", get_track(s, object, TRACK_FREE));
  472. }
  473. static void print_page_info(struct page *page)
  474. {
  475. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  476. page, page->objects, page->inuse, page->freelist, page->flags);
  477. }
  478. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  479. {
  480. va_list args;
  481. char buf[100];
  482. va_start(args, fmt);
  483. vsnprintf(buf, sizeof(buf), fmt, args);
  484. va_end(args);
  485. printk(KERN_ERR "========================================"
  486. "=====================================\n");
  487. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  488. printk(KERN_ERR "----------------------------------------"
  489. "-------------------------------------\n\n");
  490. }
  491. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  492. {
  493. va_list args;
  494. char buf[100];
  495. va_start(args, fmt);
  496. vsnprintf(buf, sizeof(buf), fmt, args);
  497. va_end(args);
  498. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  499. }
  500. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  501. {
  502. unsigned int off; /* Offset of last byte */
  503. u8 *addr = page_address(page);
  504. print_tracking(s, p);
  505. print_page_info(page);
  506. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  507. p, p - addr, get_freepointer(s, p));
  508. if (p > addr + 16)
  509. print_section("Bytes b4", p - 16, 16);
  510. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  511. if (s->flags & SLAB_RED_ZONE)
  512. print_section("Redzone", p + s->objsize,
  513. s->inuse - s->objsize);
  514. if (s->offset)
  515. off = s->offset + sizeof(void *);
  516. else
  517. off = s->inuse;
  518. if (s->flags & SLAB_STORE_USER)
  519. off += 2 * sizeof(struct track);
  520. if (off != s->size)
  521. /* Beginning of the filler is the free pointer */
  522. print_section("Padding", p + off, s->size - off);
  523. dump_stack();
  524. }
  525. static void object_err(struct kmem_cache *s, struct page *page,
  526. u8 *object, char *reason)
  527. {
  528. slab_bug(s, "%s", reason);
  529. print_trailer(s, page, object);
  530. }
  531. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  532. {
  533. va_list args;
  534. char buf[100];
  535. va_start(args, fmt);
  536. vsnprintf(buf, sizeof(buf), fmt, args);
  537. va_end(args);
  538. slab_bug(s, "%s", buf);
  539. print_page_info(page);
  540. dump_stack();
  541. }
  542. static void init_object(struct kmem_cache *s, void *object, u8 val)
  543. {
  544. u8 *p = object;
  545. if (s->flags & __OBJECT_POISON) {
  546. memset(p, POISON_FREE, s->objsize - 1);
  547. p[s->objsize - 1] = POISON_END;
  548. }
  549. if (s->flags & SLAB_RED_ZONE)
  550. memset(p + s->objsize, val, s->inuse - s->objsize);
  551. }
  552. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  553. {
  554. while (bytes) {
  555. if (*start != (u8)value)
  556. return start;
  557. start++;
  558. bytes--;
  559. }
  560. return NULL;
  561. }
  562. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  563. void *from, void *to)
  564. {
  565. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  566. memset(from, data, to - from);
  567. }
  568. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  569. u8 *object, char *what,
  570. u8 *start, unsigned int value, unsigned int bytes)
  571. {
  572. u8 *fault;
  573. u8 *end;
  574. fault = check_bytes(start, value, bytes);
  575. if (!fault)
  576. return 1;
  577. end = start + bytes;
  578. while (end > fault && end[-1] == value)
  579. end--;
  580. slab_bug(s, "%s overwritten", what);
  581. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  582. fault, end - 1, fault[0], value);
  583. print_trailer(s, page, object);
  584. restore_bytes(s, what, value, fault, end);
  585. return 0;
  586. }
  587. /*
  588. * Object layout:
  589. *
  590. * object address
  591. * Bytes of the object to be managed.
  592. * If the freepointer may overlay the object then the free
  593. * pointer is the first word of the object.
  594. *
  595. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  596. * 0xa5 (POISON_END)
  597. *
  598. * object + s->objsize
  599. * Padding to reach word boundary. This is also used for Redzoning.
  600. * Padding is extended by another word if Redzoning is enabled and
  601. * objsize == inuse.
  602. *
  603. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  604. * 0xcc (RED_ACTIVE) for objects in use.
  605. *
  606. * object + s->inuse
  607. * Meta data starts here.
  608. *
  609. * A. Free pointer (if we cannot overwrite object on free)
  610. * B. Tracking data for SLAB_STORE_USER
  611. * C. Padding to reach required alignment boundary or at mininum
  612. * one word if debugging is on to be able to detect writes
  613. * before the word boundary.
  614. *
  615. * Padding is done using 0x5a (POISON_INUSE)
  616. *
  617. * object + s->size
  618. * Nothing is used beyond s->size.
  619. *
  620. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  621. * ignored. And therefore no slab options that rely on these boundaries
  622. * may be used with merged slabcaches.
  623. */
  624. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  625. {
  626. unsigned long off = s->inuse; /* The end of info */
  627. if (s->offset)
  628. /* Freepointer is placed after the object. */
  629. off += sizeof(void *);
  630. if (s->flags & SLAB_STORE_USER)
  631. /* We also have user information there */
  632. off += 2 * sizeof(struct track);
  633. if (s->size == off)
  634. return 1;
  635. return check_bytes_and_report(s, page, p, "Object padding",
  636. p + off, POISON_INUSE, s->size - off);
  637. }
  638. /* Check the pad bytes at the end of a slab page */
  639. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  640. {
  641. u8 *start;
  642. u8 *fault;
  643. u8 *end;
  644. int length;
  645. int remainder;
  646. if (!(s->flags & SLAB_POISON))
  647. return 1;
  648. start = page_address(page);
  649. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  650. end = start + length;
  651. remainder = length % s->size;
  652. if (!remainder)
  653. return 1;
  654. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  655. if (!fault)
  656. return 1;
  657. while (end > fault && end[-1] == POISON_INUSE)
  658. end--;
  659. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  660. print_section("Padding", end - remainder, remainder);
  661. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  662. return 0;
  663. }
  664. static int check_object(struct kmem_cache *s, struct page *page,
  665. void *object, u8 val)
  666. {
  667. u8 *p = object;
  668. u8 *endobject = object + s->objsize;
  669. if (s->flags & SLAB_RED_ZONE) {
  670. if (!check_bytes_and_report(s, page, object, "Redzone",
  671. endobject, val, s->inuse - s->objsize))
  672. return 0;
  673. } else {
  674. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  675. check_bytes_and_report(s, page, p, "Alignment padding",
  676. endobject, POISON_INUSE, s->inuse - s->objsize);
  677. }
  678. }
  679. if (s->flags & SLAB_POISON) {
  680. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  681. (!check_bytes_and_report(s, page, p, "Poison", p,
  682. POISON_FREE, s->objsize - 1) ||
  683. !check_bytes_and_report(s, page, p, "Poison",
  684. p + s->objsize - 1, POISON_END, 1)))
  685. return 0;
  686. /*
  687. * check_pad_bytes cleans up on its own.
  688. */
  689. check_pad_bytes(s, page, p);
  690. }
  691. if (!s->offset && val == SLUB_RED_ACTIVE)
  692. /*
  693. * Object and freepointer overlap. Cannot check
  694. * freepointer while object is allocated.
  695. */
  696. return 1;
  697. /* Check free pointer validity */
  698. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  699. object_err(s, page, p, "Freepointer corrupt");
  700. /*
  701. * No choice but to zap it and thus lose the remainder
  702. * of the free objects in this slab. May cause
  703. * another error because the object count is now wrong.
  704. */
  705. set_freepointer(s, p, NULL);
  706. return 0;
  707. }
  708. return 1;
  709. }
  710. static int check_slab(struct kmem_cache *s, struct page *page)
  711. {
  712. int maxobj;
  713. VM_BUG_ON(!irqs_disabled());
  714. if (!PageSlab(page)) {
  715. slab_err(s, page, "Not a valid slab page");
  716. return 0;
  717. }
  718. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  719. if (page->objects > maxobj) {
  720. slab_err(s, page, "objects %u > max %u",
  721. s->name, page->objects, maxobj);
  722. return 0;
  723. }
  724. if (page->inuse > page->objects) {
  725. slab_err(s, page, "inuse %u > max %u",
  726. s->name, page->inuse, page->objects);
  727. return 0;
  728. }
  729. /* Slab_pad_check fixes things up after itself */
  730. slab_pad_check(s, page);
  731. return 1;
  732. }
  733. /*
  734. * Determine if a certain object on a page is on the freelist. Must hold the
  735. * slab lock to guarantee that the chains are in a consistent state.
  736. */
  737. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  738. {
  739. int nr = 0;
  740. void *fp;
  741. void *object = NULL;
  742. unsigned long max_objects;
  743. fp = page->freelist;
  744. while (fp && nr <= page->objects) {
  745. if (fp == search)
  746. return 1;
  747. if (!check_valid_pointer(s, page, fp)) {
  748. if (object) {
  749. object_err(s, page, object,
  750. "Freechain corrupt");
  751. set_freepointer(s, object, NULL);
  752. break;
  753. } else {
  754. slab_err(s, page, "Freepointer corrupt");
  755. page->freelist = NULL;
  756. page->inuse = page->objects;
  757. slab_fix(s, "Freelist cleared");
  758. return 0;
  759. }
  760. break;
  761. }
  762. object = fp;
  763. fp = get_freepointer(s, object);
  764. nr++;
  765. }
  766. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  767. if (max_objects > MAX_OBJS_PER_PAGE)
  768. max_objects = MAX_OBJS_PER_PAGE;
  769. if (page->objects != max_objects) {
  770. slab_err(s, page, "Wrong number of objects. Found %d but "
  771. "should be %d", page->objects, max_objects);
  772. page->objects = max_objects;
  773. slab_fix(s, "Number of objects adjusted.");
  774. }
  775. if (page->inuse != page->objects - nr) {
  776. slab_err(s, page, "Wrong object count. Counter is %d but "
  777. "counted were %d", page->inuse, page->objects - nr);
  778. page->inuse = page->objects - nr;
  779. slab_fix(s, "Object count adjusted.");
  780. }
  781. return search == NULL;
  782. }
  783. static void trace(struct kmem_cache *s, struct page *page, void *object,
  784. int alloc)
  785. {
  786. if (s->flags & SLAB_TRACE) {
  787. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  788. s->name,
  789. alloc ? "alloc" : "free",
  790. object, page->inuse,
  791. page->freelist);
  792. if (!alloc)
  793. print_section("Object", (void *)object, s->objsize);
  794. dump_stack();
  795. }
  796. }
  797. /*
  798. * Hooks for other subsystems that check memory allocations. In a typical
  799. * production configuration these hooks all should produce no code at all.
  800. */
  801. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  802. {
  803. flags &= gfp_allowed_mask;
  804. lockdep_trace_alloc(flags);
  805. might_sleep_if(flags & __GFP_WAIT);
  806. return should_failslab(s->objsize, flags, s->flags);
  807. }
  808. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  809. {
  810. flags &= gfp_allowed_mask;
  811. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  812. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  813. }
  814. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  815. {
  816. kmemleak_free_recursive(x, s->flags);
  817. /*
  818. * Trouble is that we may no longer disable interupts in the fast path
  819. * So in order to make the debug calls that expect irqs to be
  820. * disabled we need to disable interrupts temporarily.
  821. */
  822. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  823. {
  824. unsigned long flags;
  825. local_irq_save(flags);
  826. kmemcheck_slab_free(s, x, s->objsize);
  827. debug_check_no_locks_freed(x, s->objsize);
  828. local_irq_restore(flags);
  829. }
  830. #endif
  831. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  832. debug_check_no_obj_freed(x, s->objsize);
  833. }
  834. /*
  835. * Tracking of fully allocated slabs for debugging purposes.
  836. *
  837. * list_lock must be held.
  838. */
  839. static void add_full(struct kmem_cache *s,
  840. struct kmem_cache_node *n, struct page *page)
  841. {
  842. if (!(s->flags & SLAB_STORE_USER))
  843. return;
  844. list_add(&page->lru, &n->full);
  845. }
  846. /*
  847. * list_lock must be held.
  848. */
  849. static void remove_full(struct kmem_cache *s, struct page *page)
  850. {
  851. if (!(s->flags & SLAB_STORE_USER))
  852. return;
  853. list_del(&page->lru);
  854. }
  855. /* Tracking of the number of slabs for debugging purposes */
  856. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  857. {
  858. struct kmem_cache_node *n = get_node(s, node);
  859. return atomic_long_read(&n->nr_slabs);
  860. }
  861. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  862. {
  863. return atomic_long_read(&n->nr_slabs);
  864. }
  865. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  866. {
  867. struct kmem_cache_node *n = get_node(s, node);
  868. /*
  869. * May be called early in order to allocate a slab for the
  870. * kmem_cache_node structure. Solve the chicken-egg
  871. * dilemma by deferring the increment of the count during
  872. * bootstrap (see early_kmem_cache_node_alloc).
  873. */
  874. if (n) {
  875. atomic_long_inc(&n->nr_slabs);
  876. atomic_long_add(objects, &n->total_objects);
  877. }
  878. }
  879. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  880. {
  881. struct kmem_cache_node *n = get_node(s, node);
  882. atomic_long_dec(&n->nr_slabs);
  883. atomic_long_sub(objects, &n->total_objects);
  884. }
  885. /* Object debug checks for alloc/free paths */
  886. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  887. void *object)
  888. {
  889. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  890. return;
  891. init_object(s, object, SLUB_RED_INACTIVE);
  892. init_tracking(s, object);
  893. }
  894. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  895. void *object, unsigned long addr)
  896. {
  897. if (!check_slab(s, page))
  898. goto bad;
  899. if (!check_valid_pointer(s, page, object)) {
  900. object_err(s, page, object, "Freelist Pointer check fails");
  901. goto bad;
  902. }
  903. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  904. goto bad;
  905. /* Success perform special debug activities for allocs */
  906. if (s->flags & SLAB_STORE_USER)
  907. set_track(s, object, TRACK_ALLOC, addr);
  908. trace(s, page, object, 1);
  909. init_object(s, object, SLUB_RED_ACTIVE);
  910. return 1;
  911. bad:
  912. if (PageSlab(page)) {
  913. /*
  914. * If this is a slab page then lets do the best we can
  915. * to avoid issues in the future. Marking all objects
  916. * as used avoids touching the remaining objects.
  917. */
  918. slab_fix(s, "Marking all objects used");
  919. page->inuse = page->objects;
  920. page->freelist = NULL;
  921. }
  922. return 0;
  923. }
  924. static noinline int free_debug_processing(struct kmem_cache *s,
  925. struct page *page, void *object, unsigned long addr)
  926. {
  927. unsigned long flags;
  928. int rc = 0;
  929. local_irq_save(flags);
  930. slab_lock(page);
  931. if (!check_slab(s, page))
  932. goto fail;
  933. if (!check_valid_pointer(s, page, object)) {
  934. slab_err(s, page, "Invalid object pointer 0x%p", object);
  935. goto fail;
  936. }
  937. if (on_freelist(s, page, object)) {
  938. object_err(s, page, object, "Object already free");
  939. goto fail;
  940. }
  941. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  942. goto out;
  943. if (unlikely(s != page->slab)) {
  944. if (!PageSlab(page)) {
  945. slab_err(s, page, "Attempt to free object(0x%p) "
  946. "outside of slab", object);
  947. } else if (!page->slab) {
  948. printk(KERN_ERR
  949. "SLUB <none>: no slab for object 0x%p.\n",
  950. object);
  951. dump_stack();
  952. } else
  953. object_err(s, page, object,
  954. "page slab pointer corrupt.");
  955. goto fail;
  956. }
  957. if (s->flags & SLAB_STORE_USER)
  958. set_track(s, object, TRACK_FREE, addr);
  959. trace(s, page, object, 0);
  960. init_object(s, object, SLUB_RED_INACTIVE);
  961. rc = 1;
  962. out:
  963. slab_unlock(page);
  964. local_irq_restore(flags);
  965. return rc;
  966. fail:
  967. slab_fix(s, "Object at 0x%p not freed", object);
  968. goto out;
  969. }
  970. static int __init setup_slub_debug(char *str)
  971. {
  972. slub_debug = DEBUG_DEFAULT_FLAGS;
  973. if (*str++ != '=' || !*str)
  974. /*
  975. * No options specified. Switch on full debugging.
  976. */
  977. goto out;
  978. if (*str == ',')
  979. /*
  980. * No options but restriction on slabs. This means full
  981. * debugging for slabs matching a pattern.
  982. */
  983. goto check_slabs;
  984. if (tolower(*str) == 'o') {
  985. /*
  986. * Avoid enabling debugging on caches if its minimum order
  987. * would increase as a result.
  988. */
  989. disable_higher_order_debug = 1;
  990. goto out;
  991. }
  992. slub_debug = 0;
  993. if (*str == '-')
  994. /*
  995. * Switch off all debugging measures.
  996. */
  997. goto out;
  998. /*
  999. * Determine which debug features should be switched on
  1000. */
  1001. for (; *str && *str != ','; str++) {
  1002. switch (tolower(*str)) {
  1003. case 'f':
  1004. slub_debug |= SLAB_DEBUG_FREE;
  1005. break;
  1006. case 'z':
  1007. slub_debug |= SLAB_RED_ZONE;
  1008. break;
  1009. case 'p':
  1010. slub_debug |= SLAB_POISON;
  1011. break;
  1012. case 'u':
  1013. slub_debug |= SLAB_STORE_USER;
  1014. break;
  1015. case 't':
  1016. slub_debug |= SLAB_TRACE;
  1017. break;
  1018. case 'a':
  1019. slub_debug |= SLAB_FAILSLAB;
  1020. break;
  1021. default:
  1022. printk(KERN_ERR "slub_debug option '%c' "
  1023. "unknown. skipped\n", *str);
  1024. }
  1025. }
  1026. check_slabs:
  1027. if (*str == ',')
  1028. slub_debug_slabs = str + 1;
  1029. out:
  1030. return 1;
  1031. }
  1032. __setup("slub_debug", setup_slub_debug);
  1033. static unsigned long kmem_cache_flags(unsigned long objsize,
  1034. unsigned long flags, const char *name,
  1035. void (*ctor)(void *))
  1036. {
  1037. /*
  1038. * Enable debugging if selected on the kernel commandline.
  1039. */
  1040. if (slub_debug && (!slub_debug_slabs ||
  1041. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1042. flags |= slub_debug;
  1043. return flags;
  1044. }
  1045. #else
  1046. static inline void setup_object_debug(struct kmem_cache *s,
  1047. struct page *page, void *object) {}
  1048. static inline int alloc_debug_processing(struct kmem_cache *s,
  1049. struct page *page, void *object, unsigned long addr) { return 0; }
  1050. static inline int free_debug_processing(struct kmem_cache *s,
  1051. struct page *page, void *object, unsigned long addr) { return 0; }
  1052. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1053. { return 1; }
  1054. static inline int check_object(struct kmem_cache *s, struct page *page,
  1055. void *object, u8 val) { return 1; }
  1056. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1057. struct page *page) {}
  1058. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1059. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1060. unsigned long flags, const char *name,
  1061. void (*ctor)(void *))
  1062. {
  1063. return flags;
  1064. }
  1065. #define slub_debug 0
  1066. #define disable_higher_order_debug 0
  1067. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1068. { return 0; }
  1069. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1070. { return 0; }
  1071. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1072. int objects) {}
  1073. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1074. int objects) {}
  1075. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1076. { return 0; }
  1077. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1078. void *object) {}
  1079. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1080. #endif /* CONFIG_SLUB_DEBUG */
  1081. /*
  1082. * Slab allocation and freeing
  1083. */
  1084. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1085. struct kmem_cache_order_objects oo)
  1086. {
  1087. int order = oo_order(oo);
  1088. flags |= __GFP_NOTRACK;
  1089. if (node == NUMA_NO_NODE)
  1090. return alloc_pages(flags, order);
  1091. else
  1092. return alloc_pages_exact_node(node, flags, order);
  1093. }
  1094. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1095. {
  1096. struct page *page;
  1097. struct kmem_cache_order_objects oo = s->oo;
  1098. gfp_t alloc_gfp;
  1099. flags &= gfp_allowed_mask;
  1100. if (flags & __GFP_WAIT)
  1101. local_irq_enable();
  1102. flags |= s->allocflags;
  1103. /*
  1104. * Let the initial higher-order allocation fail under memory pressure
  1105. * so we fall-back to the minimum order allocation.
  1106. */
  1107. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1108. page = alloc_slab_page(alloc_gfp, node, oo);
  1109. if (unlikely(!page)) {
  1110. oo = s->min;
  1111. /*
  1112. * Allocation may have failed due to fragmentation.
  1113. * Try a lower order alloc if possible
  1114. */
  1115. page = alloc_slab_page(flags, node, oo);
  1116. if (page)
  1117. stat(s, ORDER_FALLBACK);
  1118. }
  1119. if (flags & __GFP_WAIT)
  1120. local_irq_disable();
  1121. if (!page)
  1122. return NULL;
  1123. if (kmemcheck_enabled
  1124. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1125. int pages = 1 << oo_order(oo);
  1126. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1127. /*
  1128. * Objects from caches that have a constructor don't get
  1129. * cleared when they're allocated, so we need to do it here.
  1130. */
  1131. if (s->ctor)
  1132. kmemcheck_mark_uninitialized_pages(page, pages);
  1133. else
  1134. kmemcheck_mark_unallocated_pages(page, pages);
  1135. }
  1136. page->objects = oo_objects(oo);
  1137. mod_zone_page_state(page_zone(page),
  1138. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1139. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1140. 1 << oo_order(oo));
  1141. return page;
  1142. }
  1143. static void setup_object(struct kmem_cache *s, struct page *page,
  1144. void *object)
  1145. {
  1146. setup_object_debug(s, page, object);
  1147. if (unlikely(s->ctor))
  1148. s->ctor(object);
  1149. }
  1150. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1151. {
  1152. struct page *page;
  1153. void *start;
  1154. void *last;
  1155. void *p;
  1156. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1157. page = allocate_slab(s,
  1158. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1159. if (!page)
  1160. goto out;
  1161. inc_slabs_node(s, page_to_nid(page), page->objects);
  1162. page->slab = s;
  1163. page->flags |= 1 << PG_slab;
  1164. start = page_address(page);
  1165. if (unlikely(s->flags & SLAB_POISON))
  1166. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1167. last = start;
  1168. for_each_object(p, s, start, page->objects) {
  1169. setup_object(s, page, last);
  1170. set_freepointer(s, last, p);
  1171. last = p;
  1172. }
  1173. setup_object(s, page, last);
  1174. set_freepointer(s, last, NULL);
  1175. page->freelist = start;
  1176. page->inuse = 0;
  1177. page->frozen = 1;
  1178. out:
  1179. return page;
  1180. }
  1181. static void __free_slab(struct kmem_cache *s, struct page *page)
  1182. {
  1183. int order = compound_order(page);
  1184. int pages = 1 << order;
  1185. if (kmem_cache_debug(s)) {
  1186. void *p;
  1187. slab_pad_check(s, page);
  1188. for_each_object(p, s, page_address(page),
  1189. page->objects)
  1190. check_object(s, page, p, SLUB_RED_INACTIVE);
  1191. }
  1192. kmemcheck_free_shadow(page, compound_order(page));
  1193. mod_zone_page_state(page_zone(page),
  1194. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1195. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1196. -pages);
  1197. __ClearPageSlab(page);
  1198. reset_page_mapcount(page);
  1199. if (current->reclaim_state)
  1200. current->reclaim_state->reclaimed_slab += pages;
  1201. __free_pages(page, order);
  1202. }
  1203. #define need_reserve_slab_rcu \
  1204. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1205. static void rcu_free_slab(struct rcu_head *h)
  1206. {
  1207. struct page *page;
  1208. if (need_reserve_slab_rcu)
  1209. page = virt_to_head_page(h);
  1210. else
  1211. page = container_of((struct list_head *)h, struct page, lru);
  1212. __free_slab(page->slab, page);
  1213. }
  1214. static void free_slab(struct kmem_cache *s, struct page *page)
  1215. {
  1216. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1217. struct rcu_head *head;
  1218. if (need_reserve_slab_rcu) {
  1219. int order = compound_order(page);
  1220. int offset = (PAGE_SIZE << order) - s->reserved;
  1221. VM_BUG_ON(s->reserved != sizeof(*head));
  1222. head = page_address(page) + offset;
  1223. } else {
  1224. /*
  1225. * RCU free overloads the RCU head over the LRU
  1226. */
  1227. head = (void *)&page->lru;
  1228. }
  1229. call_rcu(head, rcu_free_slab);
  1230. } else
  1231. __free_slab(s, page);
  1232. }
  1233. static void discard_slab(struct kmem_cache *s, struct page *page)
  1234. {
  1235. dec_slabs_node(s, page_to_nid(page), page->objects);
  1236. free_slab(s, page);
  1237. }
  1238. /*
  1239. * Management of partially allocated slabs.
  1240. *
  1241. * list_lock must be held.
  1242. */
  1243. static inline void add_partial(struct kmem_cache_node *n,
  1244. struct page *page, int tail)
  1245. {
  1246. n->nr_partial++;
  1247. if (tail)
  1248. list_add_tail(&page->lru, &n->partial);
  1249. else
  1250. list_add(&page->lru, &n->partial);
  1251. }
  1252. /*
  1253. * list_lock must be held.
  1254. */
  1255. static inline void remove_partial(struct kmem_cache_node *n,
  1256. struct page *page)
  1257. {
  1258. list_del(&page->lru);
  1259. n->nr_partial--;
  1260. }
  1261. /*
  1262. * Lock slab, remove from the partial list and put the object into the
  1263. * per cpu freelist.
  1264. *
  1265. * Must hold list_lock.
  1266. */
  1267. static inline int acquire_slab(struct kmem_cache *s,
  1268. struct kmem_cache_node *n, struct page *page)
  1269. {
  1270. void *freelist;
  1271. unsigned long counters;
  1272. struct page new;
  1273. /*
  1274. * Zap the freelist and set the frozen bit.
  1275. * The old freelist is the list of objects for the
  1276. * per cpu allocation list.
  1277. */
  1278. do {
  1279. freelist = page->freelist;
  1280. counters = page->counters;
  1281. new.counters = counters;
  1282. new.inuse = page->objects;
  1283. VM_BUG_ON(new.frozen);
  1284. new.frozen = 1;
  1285. } while (!__cmpxchg_double_slab(s, page,
  1286. freelist, counters,
  1287. NULL, new.counters,
  1288. "lock and freeze"));
  1289. remove_partial(n, page);
  1290. if (freelist) {
  1291. /* Populate the per cpu freelist */
  1292. this_cpu_write(s->cpu_slab->freelist, freelist);
  1293. this_cpu_write(s->cpu_slab->page, page);
  1294. this_cpu_write(s->cpu_slab->node, page_to_nid(page));
  1295. return 1;
  1296. } else {
  1297. /*
  1298. * Slab page came from the wrong list. No object to allocate
  1299. * from. Put it onto the correct list and continue partial
  1300. * scan.
  1301. */
  1302. printk(KERN_ERR "SLUB: %s : Page without available objects on"
  1303. " partial list\n", s->name);
  1304. return 0;
  1305. }
  1306. }
  1307. /*
  1308. * Try to allocate a partial slab from a specific node.
  1309. */
  1310. static struct page *get_partial_node(struct kmem_cache *s,
  1311. struct kmem_cache_node *n)
  1312. {
  1313. struct page *page;
  1314. /*
  1315. * Racy check. If we mistakenly see no partial slabs then we
  1316. * just allocate an empty slab. If we mistakenly try to get a
  1317. * partial slab and there is none available then get_partials()
  1318. * will return NULL.
  1319. */
  1320. if (!n || !n->nr_partial)
  1321. return NULL;
  1322. spin_lock(&n->list_lock);
  1323. list_for_each_entry(page, &n->partial, lru)
  1324. if (acquire_slab(s, n, page))
  1325. goto out;
  1326. page = NULL;
  1327. out:
  1328. spin_unlock(&n->list_lock);
  1329. return page;
  1330. }
  1331. /*
  1332. * Get a page from somewhere. Search in increasing NUMA distances.
  1333. */
  1334. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1335. {
  1336. #ifdef CONFIG_NUMA
  1337. struct zonelist *zonelist;
  1338. struct zoneref *z;
  1339. struct zone *zone;
  1340. enum zone_type high_zoneidx = gfp_zone(flags);
  1341. struct page *page;
  1342. /*
  1343. * The defrag ratio allows a configuration of the tradeoffs between
  1344. * inter node defragmentation and node local allocations. A lower
  1345. * defrag_ratio increases the tendency to do local allocations
  1346. * instead of attempting to obtain partial slabs from other nodes.
  1347. *
  1348. * If the defrag_ratio is set to 0 then kmalloc() always
  1349. * returns node local objects. If the ratio is higher then kmalloc()
  1350. * may return off node objects because partial slabs are obtained
  1351. * from other nodes and filled up.
  1352. *
  1353. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1354. * defrag_ratio = 1000) then every (well almost) allocation will
  1355. * first attempt to defrag slab caches on other nodes. This means
  1356. * scanning over all nodes to look for partial slabs which may be
  1357. * expensive if we do it every time we are trying to find a slab
  1358. * with available objects.
  1359. */
  1360. if (!s->remote_node_defrag_ratio ||
  1361. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1362. return NULL;
  1363. get_mems_allowed();
  1364. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1365. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1366. struct kmem_cache_node *n;
  1367. n = get_node(s, zone_to_nid(zone));
  1368. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1369. n->nr_partial > s->min_partial) {
  1370. page = get_partial_node(s, n);
  1371. if (page) {
  1372. put_mems_allowed();
  1373. return page;
  1374. }
  1375. }
  1376. }
  1377. put_mems_allowed();
  1378. #endif
  1379. return NULL;
  1380. }
  1381. /*
  1382. * Get a partial page, lock it and return it.
  1383. */
  1384. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1385. {
  1386. struct page *page;
  1387. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1388. page = get_partial_node(s, get_node(s, searchnode));
  1389. if (page || node != NUMA_NO_NODE)
  1390. return page;
  1391. return get_any_partial(s, flags);
  1392. }
  1393. #ifdef CONFIG_PREEMPT
  1394. /*
  1395. * Calculate the next globally unique transaction for disambiguiation
  1396. * during cmpxchg. The transactions start with the cpu number and are then
  1397. * incremented by CONFIG_NR_CPUS.
  1398. */
  1399. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1400. #else
  1401. /*
  1402. * No preemption supported therefore also no need to check for
  1403. * different cpus.
  1404. */
  1405. #define TID_STEP 1
  1406. #endif
  1407. static inline unsigned long next_tid(unsigned long tid)
  1408. {
  1409. return tid + TID_STEP;
  1410. }
  1411. static inline unsigned int tid_to_cpu(unsigned long tid)
  1412. {
  1413. return tid % TID_STEP;
  1414. }
  1415. static inline unsigned long tid_to_event(unsigned long tid)
  1416. {
  1417. return tid / TID_STEP;
  1418. }
  1419. static inline unsigned int init_tid(int cpu)
  1420. {
  1421. return cpu;
  1422. }
  1423. static inline void note_cmpxchg_failure(const char *n,
  1424. const struct kmem_cache *s, unsigned long tid)
  1425. {
  1426. #ifdef SLUB_DEBUG_CMPXCHG
  1427. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1428. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1429. #ifdef CONFIG_PREEMPT
  1430. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1431. printk("due to cpu change %d -> %d\n",
  1432. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1433. else
  1434. #endif
  1435. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1436. printk("due to cpu running other code. Event %ld->%ld\n",
  1437. tid_to_event(tid), tid_to_event(actual_tid));
  1438. else
  1439. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1440. actual_tid, tid, next_tid(tid));
  1441. #endif
  1442. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1443. }
  1444. void init_kmem_cache_cpus(struct kmem_cache *s)
  1445. {
  1446. int cpu;
  1447. for_each_possible_cpu(cpu)
  1448. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1449. }
  1450. /*
  1451. * Remove the cpu slab
  1452. */
  1453. /*
  1454. * Remove the cpu slab
  1455. */
  1456. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1457. {
  1458. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1459. struct page *page = c->page;
  1460. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1461. int lock = 0;
  1462. enum slab_modes l = M_NONE, m = M_NONE;
  1463. void *freelist;
  1464. void *nextfree;
  1465. int tail = 0;
  1466. struct page new;
  1467. struct page old;
  1468. if (page->freelist) {
  1469. stat(s, DEACTIVATE_REMOTE_FREES);
  1470. tail = 1;
  1471. }
  1472. c->tid = next_tid(c->tid);
  1473. c->page = NULL;
  1474. freelist = c->freelist;
  1475. c->freelist = NULL;
  1476. /*
  1477. * Stage one: Free all available per cpu objects back
  1478. * to the page freelist while it is still frozen. Leave the
  1479. * last one.
  1480. *
  1481. * There is no need to take the list->lock because the page
  1482. * is still frozen.
  1483. */
  1484. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1485. void *prior;
  1486. unsigned long counters;
  1487. do {
  1488. prior = page->freelist;
  1489. counters = page->counters;
  1490. set_freepointer(s, freelist, prior);
  1491. new.counters = counters;
  1492. new.inuse--;
  1493. VM_BUG_ON(!new.frozen);
  1494. } while (!__cmpxchg_double_slab(s, page,
  1495. prior, counters,
  1496. freelist, new.counters,
  1497. "drain percpu freelist"));
  1498. freelist = nextfree;
  1499. }
  1500. /*
  1501. * Stage two: Ensure that the page is unfrozen while the
  1502. * list presence reflects the actual number of objects
  1503. * during unfreeze.
  1504. *
  1505. * We setup the list membership and then perform a cmpxchg
  1506. * with the count. If there is a mismatch then the page
  1507. * is not unfrozen but the page is on the wrong list.
  1508. *
  1509. * Then we restart the process which may have to remove
  1510. * the page from the list that we just put it on again
  1511. * because the number of objects in the slab may have
  1512. * changed.
  1513. */
  1514. redo:
  1515. old.freelist = page->freelist;
  1516. old.counters = page->counters;
  1517. VM_BUG_ON(!old.frozen);
  1518. /* Determine target state of the slab */
  1519. new.counters = old.counters;
  1520. if (freelist) {
  1521. new.inuse--;
  1522. set_freepointer(s, freelist, old.freelist);
  1523. new.freelist = freelist;
  1524. } else
  1525. new.freelist = old.freelist;
  1526. new.frozen = 0;
  1527. if (!new.inuse && n->nr_partial < s->min_partial)
  1528. m = M_FREE;
  1529. else if (new.freelist) {
  1530. m = M_PARTIAL;
  1531. if (!lock) {
  1532. lock = 1;
  1533. /*
  1534. * Taking the spinlock removes the possiblity
  1535. * that acquire_slab() will see a slab page that
  1536. * is frozen
  1537. */
  1538. spin_lock(&n->list_lock);
  1539. }
  1540. } else {
  1541. m = M_FULL;
  1542. if (kmem_cache_debug(s) && !lock) {
  1543. lock = 1;
  1544. /*
  1545. * This also ensures that the scanning of full
  1546. * slabs from diagnostic functions will not see
  1547. * any frozen slabs.
  1548. */
  1549. spin_lock(&n->list_lock);
  1550. }
  1551. }
  1552. if (l != m) {
  1553. if (l == M_PARTIAL)
  1554. remove_partial(n, page);
  1555. else if (l == M_FULL)
  1556. remove_full(s, page);
  1557. if (m == M_PARTIAL) {
  1558. add_partial(n, page, tail);
  1559. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1560. } else if (m == M_FULL) {
  1561. stat(s, DEACTIVATE_FULL);
  1562. add_full(s, n, page);
  1563. }
  1564. }
  1565. l = m;
  1566. if (!__cmpxchg_double_slab(s, page,
  1567. old.freelist, old.counters,
  1568. new.freelist, new.counters,
  1569. "unfreezing slab"))
  1570. goto redo;
  1571. if (lock)
  1572. spin_unlock(&n->list_lock);
  1573. if (m == M_FREE) {
  1574. stat(s, DEACTIVATE_EMPTY);
  1575. discard_slab(s, page);
  1576. stat(s, FREE_SLAB);
  1577. }
  1578. }
  1579. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1580. {
  1581. stat(s, CPUSLAB_FLUSH);
  1582. deactivate_slab(s, c);
  1583. }
  1584. /*
  1585. * Flush cpu slab.
  1586. *
  1587. * Called from IPI handler with interrupts disabled.
  1588. */
  1589. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1590. {
  1591. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1592. if (likely(c && c->page))
  1593. flush_slab(s, c);
  1594. }
  1595. static void flush_cpu_slab(void *d)
  1596. {
  1597. struct kmem_cache *s = d;
  1598. __flush_cpu_slab(s, smp_processor_id());
  1599. }
  1600. static void flush_all(struct kmem_cache *s)
  1601. {
  1602. on_each_cpu(flush_cpu_slab, s, 1);
  1603. }
  1604. /*
  1605. * Check if the objects in a per cpu structure fit numa
  1606. * locality expectations.
  1607. */
  1608. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1609. {
  1610. #ifdef CONFIG_NUMA
  1611. if (node != NUMA_NO_NODE && c->node != node)
  1612. return 0;
  1613. #endif
  1614. return 1;
  1615. }
  1616. static int count_free(struct page *page)
  1617. {
  1618. return page->objects - page->inuse;
  1619. }
  1620. static unsigned long count_partial(struct kmem_cache_node *n,
  1621. int (*get_count)(struct page *))
  1622. {
  1623. unsigned long flags;
  1624. unsigned long x = 0;
  1625. struct page *page;
  1626. spin_lock_irqsave(&n->list_lock, flags);
  1627. list_for_each_entry(page, &n->partial, lru)
  1628. x += get_count(page);
  1629. spin_unlock_irqrestore(&n->list_lock, flags);
  1630. return x;
  1631. }
  1632. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1633. {
  1634. #ifdef CONFIG_SLUB_DEBUG
  1635. return atomic_long_read(&n->total_objects);
  1636. #else
  1637. return 0;
  1638. #endif
  1639. }
  1640. static noinline void
  1641. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1642. {
  1643. int node;
  1644. printk(KERN_WARNING
  1645. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1646. nid, gfpflags);
  1647. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1648. "default order: %d, min order: %d\n", s->name, s->objsize,
  1649. s->size, oo_order(s->oo), oo_order(s->min));
  1650. if (oo_order(s->min) > get_order(s->objsize))
  1651. printk(KERN_WARNING " %s debugging increased min order, use "
  1652. "slub_debug=O to disable.\n", s->name);
  1653. for_each_online_node(node) {
  1654. struct kmem_cache_node *n = get_node(s, node);
  1655. unsigned long nr_slabs;
  1656. unsigned long nr_objs;
  1657. unsigned long nr_free;
  1658. if (!n)
  1659. continue;
  1660. nr_free = count_partial(n, count_free);
  1661. nr_slabs = node_nr_slabs(n);
  1662. nr_objs = node_nr_objs(n);
  1663. printk(KERN_WARNING
  1664. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1665. node, nr_slabs, nr_objs, nr_free);
  1666. }
  1667. }
  1668. /*
  1669. * Slow path. The lockless freelist is empty or we need to perform
  1670. * debugging duties.
  1671. *
  1672. * Interrupts are disabled.
  1673. *
  1674. * Processing is still very fast if new objects have been freed to the
  1675. * regular freelist. In that case we simply take over the regular freelist
  1676. * as the lockless freelist and zap the regular freelist.
  1677. *
  1678. * If that is not working then we fall back to the partial lists. We take the
  1679. * first element of the freelist as the object to allocate now and move the
  1680. * rest of the freelist to the lockless freelist.
  1681. *
  1682. * And if we were unable to get a new slab from the partial slab lists then
  1683. * we need to allocate a new slab. This is the slowest path since it involves
  1684. * a call to the page allocator and the setup of a new slab.
  1685. */
  1686. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1687. unsigned long addr, struct kmem_cache_cpu *c)
  1688. {
  1689. void **object;
  1690. struct page *page;
  1691. unsigned long flags;
  1692. struct page new;
  1693. unsigned long counters;
  1694. local_irq_save(flags);
  1695. #ifdef CONFIG_PREEMPT
  1696. /*
  1697. * We may have been preempted and rescheduled on a different
  1698. * cpu before disabling interrupts. Need to reload cpu area
  1699. * pointer.
  1700. */
  1701. c = this_cpu_ptr(s->cpu_slab);
  1702. #endif
  1703. /* We handle __GFP_ZERO in the caller */
  1704. gfpflags &= ~__GFP_ZERO;
  1705. page = c->page;
  1706. if (!page)
  1707. goto new_slab;
  1708. if (unlikely(!node_match(c, node))) {
  1709. stat(s, ALLOC_NODE_MISMATCH);
  1710. deactivate_slab(s, c);
  1711. goto new_slab;
  1712. }
  1713. stat(s, ALLOC_SLOWPATH);
  1714. do {
  1715. object = page->freelist;
  1716. counters = page->counters;
  1717. new.counters = counters;
  1718. VM_BUG_ON(!new.frozen);
  1719. /*
  1720. * If there is no object left then we use this loop to
  1721. * deactivate the slab which is simple since no objects
  1722. * are left in the slab and therefore we do not need to
  1723. * put the page back onto the partial list.
  1724. *
  1725. * If there are objects left then we retrieve them
  1726. * and use them to refill the per cpu queue.
  1727. */
  1728. new.inuse = page->objects;
  1729. new.frozen = object != NULL;
  1730. } while (!__cmpxchg_double_slab(s, page,
  1731. object, counters,
  1732. NULL, new.counters,
  1733. "__slab_alloc"));
  1734. if (unlikely(!object)) {
  1735. c->page = NULL;
  1736. stat(s, DEACTIVATE_BYPASS);
  1737. goto new_slab;
  1738. }
  1739. stat(s, ALLOC_REFILL);
  1740. load_freelist:
  1741. VM_BUG_ON(!page->frozen);
  1742. c->freelist = get_freepointer(s, object);
  1743. c->tid = next_tid(c->tid);
  1744. local_irq_restore(flags);
  1745. return object;
  1746. new_slab:
  1747. page = get_partial(s, gfpflags, node);
  1748. if (page) {
  1749. stat(s, ALLOC_FROM_PARTIAL);
  1750. object = c->freelist;
  1751. if (kmem_cache_debug(s))
  1752. goto debug;
  1753. goto load_freelist;
  1754. }
  1755. page = new_slab(s, gfpflags, node);
  1756. if (page) {
  1757. c = __this_cpu_ptr(s->cpu_slab);
  1758. if (c->page)
  1759. flush_slab(s, c);
  1760. /*
  1761. * No other reference to the page yet so we can
  1762. * muck around with it freely without cmpxchg
  1763. */
  1764. object = page->freelist;
  1765. page->freelist = NULL;
  1766. page->inuse = page->objects;
  1767. stat(s, ALLOC_SLAB);
  1768. c->node = page_to_nid(page);
  1769. c->page = page;
  1770. goto load_freelist;
  1771. }
  1772. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1773. slab_out_of_memory(s, gfpflags, node);
  1774. local_irq_restore(flags);
  1775. return NULL;
  1776. debug:
  1777. if (!object || !alloc_debug_processing(s, page, object, addr))
  1778. goto new_slab;
  1779. c->freelist = get_freepointer(s, object);
  1780. deactivate_slab(s, c);
  1781. c->page = NULL;
  1782. c->node = NUMA_NO_NODE;
  1783. local_irq_restore(flags);
  1784. return object;
  1785. }
  1786. /*
  1787. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1788. * have the fastpath folded into their functions. So no function call
  1789. * overhead for requests that can be satisfied on the fastpath.
  1790. *
  1791. * The fastpath works by first checking if the lockless freelist can be used.
  1792. * If not then __slab_alloc is called for slow processing.
  1793. *
  1794. * Otherwise we can simply pick the next object from the lockless free list.
  1795. */
  1796. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1797. gfp_t gfpflags, int node, unsigned long addr)
  1798. {
  1799. void **object;
  1800. struct kmem_cache_cpu *c;
  1801. unsigned long tid;
  1802. if (slab_pre_alloc_hook(s, gfpflags))
  1803. return NULL;
  1804. redo:
  1805. /*
  1806. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1807. * enabled. We may switch back and forth between cpus while
  1808. * reading from one cpu area. That does not matter as long
  1809. * as we end up on the original cpu again when doing the cmpxchg.
  1810. */
  1811. c = __this_cpu_ptr(s->cpu_slab);
  1812. /*
  1813. * The transaction ids are globally unique per cpu and per operation on
  1814. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1815. * occurs on the right processor and that there was no operation on the
  1816. * linked list in between.
  1817. */
  1818. tid = c->tid;
  1819. barrier();
  1820. object = c->freelist;
  1821. if (unlikely(!object || !node_match(c, node)))
  1822. object = __slab_alloc(s, gfpflags, node, addr, c);
  1823. else {
  1824. /*
  1825. * The cmpxchg will only match if there was no additional
  1826. * operation and if we are on the right processor.
  1827. *
  1828. * The cmpxchg does the following atomically (without lock semantics!)
  1829. * 1. Relocate first pointer to the current per cpu area.
  1830. * 2. Verify that tid and freelist have not been changed
  1831. * 3. If they were not changed replace tid and freelist
  1832. *
  1833. * Since this is without lock semantics the protection is only against
  1834. * code executing on this cpu *not* from access by other cpus.
  1835. */
  1836. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1837. s->cpu_slab->freelist, s->cpu_slab->tid,
  1838. object, tid,
  1839. get_freepointer_safe(s, object), next_tid(tid)))) {
  1840. note_cmpxchg_failure("slab_alloc", s, tid);
  1841. goto redo;
  1842. }
  1843. stat(s, ALLOC_FASTPATH);
  1844. }
  1845. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1846. memset(object, 0, s->objsize);
  1847. slab_post_alloc_hook(s, gfpflags, object);
  1848. return object;
  1849. }
  1850. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1851. {
  1852. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1853. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1854. return ret;
  1855. }
  1856. EXPORT_SYMBOL(kmem_cache_alloc);
  1857. #ifdef CONFIG_TRACING
  1858. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1859. {
  1860. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1861. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1862. return ret;
  1863. }
  1864. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1865. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1866. {
  1867. void *ret = kmalloc_order(size, flags, order);
  1868. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1869. return ret;
  1870. }
  1871. EXPORT_SYMBOL(kmalloc_order_trace);
  1872. #endif
  1873. #ifdef CONFIG_NUMA
  1874. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1875. {
  1876. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1877. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1878. s->objsize, s->size, gfpflags, node);
  1879. return ret;
  1880. }
  1881. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1882. #ifdef CONFIG_TRACING
  1883. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1884. gfp_t gfpflags,
  1885. int node, size_t size)
  1886. {
  1887. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1888. trace_kmalloc_node(_RET_IP_, ret,
  1889. size, s->size, gfpflags, node);
  1890. return ret;
  1891. }
  1892. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1893. #endif
  1894. #endif
  1895. /*
  1896. * Slow patch handling. This may still be called frequently since objects
  1897. * have a longer lifetime than the cpu slabs in most processing loads.
  1898. *
  1899. * So we still attempt to reduce cache line usage. Just take the slab
  1900. * lock and free the item. If there is no additional partial page
  1901. * handling required then we can return immediately.
  1902. */
  1903. static void __slab_free(struct kmem_cache *s, struct page *page,
  1904. void *x, unsigned long addr)
  1905. {
  1906. void *prior;
  1907. void **object = (void *)x;
  1908. int was_frozen;
  1909. int inuse;
  1910. struct page new;
  1911. unsigned long counters;
  1912. struct kmem_cache_node *n = NULL;
  1913. unsigned long uninitialized_var(flags);
  1914. stat(s, FREE_SLOWPATH);
  1915. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  1916. return;
  1917. do {
  1918. prior = page->freelist;
  1919. counters = page->counters;
  1920. set_freepointer(s, object, prior);
  1921. new.counters = counters;
  1922. was_frozen = new.frozen;
  1923. new.inuse--;
  1924. if ((!new.inuse || !prior) && !was_frozen && !n) {
  1925. n = get_node(s, page_to_nid(page));
  1926. /*
  1927. * Speculatively acquire the list_lock.
  1928. * If the cmpxchg does not succeed then we may
  1929. * drop the list_lock without any processing.
  1930. *
  1931. * Otherwise the list_lock will synchronize with
  1932. * other processors updating the list of slabs.
  1933. */
  1934. spin_lock_irqsave(&n->list_lock, flags);
  1935. }
  1936. inuse = new.inuse;
  1937. } while (!cmpxchg_double_slab(s, page,
  1938. prior, counters,
  1939. object, new.counters,
  1940. "__slab_free"));
  1941. if (likely(!n)) {
  1942. /*
  1943. * The list lock was not taken therefore no list
  1944. * activity can be necessary.
  1945. */
  1946. if (was_frozen)
  1947. stat(s, FREE_FROZEN);
  1948. return;
  1949. }
  1950. /*
  1951. * was_frozen may have been set after we acquired the list_lock in
  1952. * an earlier loop. So we need to check it here again.
  1953. */
  1954. if (was_frozen)
  1955. stat(s, FREE_FROZEN);
  1956. else {
  1957. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  1958. goto slab_empty;
  1959. /*
  1960. * Objects left in the slab. If it was not on the partial list before
  1961. * then add it.
  1962. */
  1963. if (unlikely(!prior)) {
  1964. remove_full(s, page);
  1965. add_partial(n, page, 0);
  1966. stat(s, FREE_ADD_PARTIAL);
  1967. }
  1968. }
  1969. spin_unlock_irqrestore(&n->list_lock, flags);
  1970. return;
  1971. slab_empty:
  1972. if (prior) {
  1973. /*
  1974. * Slab still on the partial list.
  1975. */
  1976. remove_partial(n, page);
  1977. stat(s, FREE_REMOVE_PARTIAL);
  1978. }
  1979. spin_unlock_irqrestore(&n->list_lock, flags);
  1980. stat(s, FREE_SLAB);
  1981. discard_slab(s, page);
  1982. }
  1983. /*
  1984. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1985. * can perform fastpath freeing without additional function calls.
  1986. *
  1987. * The fastpath is only possible if we are freeing to the current cpu slab
  1988. * of this processor. This typically the case if we have just allocated
  1989. * the item before.
  1990. *
  1991. * If fastpath is not possible then fall back to __slab_free where we deal
  1992. * with all sorts of special processing.
  1993. */
  1994. static __always_inline void slab_free(struct kmem_cache *s,
  1995. struct page *page, void *x, unsigned long addr)
  1996. {
  1997. void **object = (void *)x;
  1998. struct kmem_cache_cpu *c;
  1999. unsigned long tid;
  2000. slab_free_hook(s, x);
  2001. redo:
  2002. /*
  2003. * Determine the currently cpus per cpu slab.
  2004. * The cpu may change afterward. However that does not matter since
  2005. * data is retrieved via this pointer. If we are on the same cpu
  2006. * during the cmpxchg then the free will succedd.
  2007. */
  2008. c = __this_cpu_ptr(s->cpu_slab);
  2009. tid = c->tid;
  2010. barrier();
  2011. if (likely(page == c->page)) {
  2012. set_freepointer(s, object, c->freelist);
  2013. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  2014. s->cpu_slab->freelist, s->cpu_slab->tid,
  2015. c->freelist, tid,
  2016. object, next_tid(tid)))) {
  2017. note_cmpxchg_failure("slab_free", s, tid);
  2018. goto redo;
  2019. }
  2020. stat(s, FREE_FASTPATH);
  2021. } else
  2022. __slab_free(s, page, x, addr);
  2023. }
  2024. void kmem_cache_free(struct kmem_cache *s, void *x)
  2025. {
  2026. struct page *page;
  2027. page = virt_to_head_page(x);
  2028. slab_free(s, page, x, _RET_IP_);
  2029. trace_kmem_cache_free(_RET_IP_, x);
  2030. }
  2031. EXPORT_SYMBOL(kmem_cache_free);
  2032. /*
  2033. * Object placement in a slab is made very easy because we always start at
  2034. * offset 0. If we tune the size of the object to the alignment then we can
  2035. * get the required alignment by putting one properly sized object after
  2036. * another.
  2037. *
  2038. * Notice that the allocation order determines the sizes of the per cpu
  2039. * caches. Each processor has always one slab available for allocations.
  2040. * Increasing the allocation order reduces the number of times that slabs
  2041. * must be moved on and off the partial lists and is therefore a factor in
  2042. * locking overhead.
  2043. */
  2044. /*
  2045. * Mininum / Maximum order of slab pages. This influences locking overhead
  2046. * and slab fragmentation. A higher order reduces the number of partial slabs
  2047. * and increases the number of allocations possible without having to
  2048. * take the list_lock.
  2049. */
  2050. static int slub_min_order;
  2051. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2052. static int slub_min_objects;
  2053. /*
  2054. * Merge control. If this is set then no merging of slab caches will occur.
  2055. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2056. */
  2057. static int slub_nomerge;
  2058. /*
  2059. * Calculate the order of allocation given an slab object size.
  2060. *
  2061. * The order of allocation has significant impact on performance and other
  2062. * system components. Generally order 0 allocations should be preferred since
  2063. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2064. * be problematic to put into order 0 slabs because there may be too much
  2065. * unused space left. We go to a higher order if more than 1/16th of the slab
  2066. * would be wasted.
  2067. *
  2068. * In order to reach satisfactory performance we must ensure that a minimum
  2069. * number of objects is in one slab. Otherwise we may generate too much
  2070. * activity on the partial lists which requires taking the list_lock. This is
  2071. * less a concern for large slabs though which are rarely used.
  2072. *
  2073. * slub_max_order specifies the order where we begin to stop considering the
  2074. * number of objects in a slab as critical. If we reach slub_max_order then
  2075. * we try to keep the page order as low as possible. So we accept more waste
  2076. * of space in favor of a small page order.
  2077. *
  2078. * Higher order allocations also allow the placement of more objects in a
  2079. * slab and thereby reduce object handling overhead. If the user has
  2080. * requested a higher mininum order then we start with that one instead of
  2081. * the smallest order which will fit the object.
  2082. */
  2083. static inline int slab_order(int size, int min_objects,
  2084. int max_order, int fract_leftover, int reserved)
  2085. {
  2086. int order;
  2087. int rem;
  2088. int min_order = slub_min_order;
  2089. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2090. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2091. for (order = max(min_order,
  2092. fls(min_objects * size - 1) - PAGE_SHIFT);
  2093. order <= max_order; order++) {
  2094. unsigned long slab_size = PAGE_SIZE << order;
  2095. if (slab_size < min_objects * size + reserved)
  2096. continue;
  2097. rem = (slab_size - reserved) % size;
  2098. if (rem <= slab_size / fract_leftover)
  2099. break;
  2100. }
  2101. return order;
  2102. }
  2103. static inline int calculate_order(int size, int reserved)
  2104. {
  2105. int order;
  2106. int min_objects;
  2107. int fraction;
  2108. int max_objects;
  2109. /*
  2110. * Attempt to find best configuration for a slab. This
  2111. * works by first attempting to generate a layout with
  2112. * the best configuration and backing off gradually.
  2113. *
  2114. * First we reduce the acceptable waste in a slab. Then
  2115. * we reduce the minimum objects required in a slab.
  2116. */
  2117. min_objects = slub_min_objects;
  2118. if (!min_objects)
  2119. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2120. max_objects = order_objects(slub_max_order, size, reserved);
  2121. min_objects = min(min_objects, max_objects);
  2122. while (min_objects > 1) {
  2123. fraction = 16;
  2124. while (fraction >= 4) {
  2125. order = slab_order(size, min_objects,
  2126. slub_max_order, fraction, reserved);
  2127. if (order <= slub_max_order)
  2128. return order;
  2129. fraction /= 2;
  2130. }
  2131. min_objects--;
  2132. }
  2133. /*
  2134. * We were unable to place multiple objects in a slab. Now
  2135. * lets see if we can place a single object there.
  2136. */
  2137. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2138. if (order <= slub_max_order)
  2139. return order;
  2140. /*
  2141. * Doh this slab cannot be placed using slub_max_order.
  2142. */
  2143. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2144. if (order < MAX_ORDER)
  2145. return order;
  2146. return -ENOSYS;
  2147. }
  2148. /*
  2149. * Figure out what the alignment of the objects will be.
  2150. */
  2151. static unsigned long calculate_alignment(unsigned long flags,
  2152. unsigned long align, unsigned long size)
  2153. {
  2154. /*
  2155. * If the user wants hardware cache aligned objects then follow that
  2156. * suggestion if the object is sufficiently large.
  2157. *
  2158. * The hardware cache alignment cannot override the specified
  2159. * alignment though. If that is greater then use it.
  2160. */
  2161. if (flags & SLAB_HWCACHE_ALIGN) {
  2162. unsigned long ralign = cache_line_size();
  2163. while (size <= ralign / 2)
  2164. ralign /= 2;
  2165. align = max(align, ralign);
  2166. }
  2167. if (align < ARCH_SLAB_MINALIGN)
  2168. align = ARCH_SLAB_MINALIGN;
  2169. return ALIGN(align, sizeof(void *));
  2170. }
  2171. static void
  2172. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2173. {
  2174. n->nr_partial = 0;
  2175. spin_lock_init(&n->list_lock);
  2176. INIT_LIST_HEAD(&n->partial);
  2177. #ifdef CONFIG_SLUB_DEBUG
  2178. atomic_long_set(&n->nr_slabs, 0);
  2179. atomic_long_set(&n->total_objects, 0);
  2180. INIT_LIST_HEAD(&n->full);
  2181. #endif
  2182. }
  2183. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2184. {
  2185. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2186. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2187. /*
  2188. * Must align to double word boundary for the double cmpxchg
  2189. * instructions to work; see __pcpu_double_call_return_bool().
  2190. */
  2191. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2192. 2 * sizeof(void *));
  2193. if (!s->cpu_slab)
  2194. return 0;
  2195. init_kmem_cache_cpus(s);
  2196. return 1;
  2197. }
  2198. static struct kmem_cache *kmem_cache_node;
  2199. /*
  2200. * No kmalloc_node yet so do it by hand. We know that this is the first
  2201. * slab on the node for this slabcache. There are no concurrent accesses
  2202. * possible.
  2203. *
  2204. * Note that this function only works on the kmalloc_node_cache
  2205. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2206. * memory on a fresh node that has no slab structures yet.
  2207. */
  2208. static void early_kmem_cache_node_alloc(int node)
  2209. {
  2210. struct page *page;
  2211. struct kmem_cache_node *n;
  2212. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2213. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2214. BUG_ON(!page);
  2215. if (page_to_nid(page) != node) {
  2216. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2217. "node %d\n", node);
  2218. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2219. "in order to be able to continue\n");
  2220. }
  2221. n = page->freelist;
  2222. BUG_ON(!n);
  2223. page->freelist = get_freepointer(kmem_cache_node, n);
  2224. page->inuse++;
  2225. page->frozen = 0;
  2226. kmem_cache_node->node[node] = n;
  2227. #ifdef CONFIG_SLUB_DEBUG
  2228. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2229. init_tracking(kmem_cache_node, n);
  2230. #endif
  2231. init_kmem_cache_node(n, kmem_cache_node);
  2232. inc_slabs_node(kmem_cache_node, node, page->objects);
  2233. add_partial(n, page, 0);
  2234. }
  2235. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2236. {
  2237. int node;
  2238. for_each_node_state(node, N_NORMAL_MEMORY) {
  2239. struct kmem_cache_node *n = s->node[node];
  2240. if (n)
  2241. kmem_cache_free(kmem_cache_node, n);
  2242. s->node[node] = NULL;
  2243. }
  2244. }
  2245. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2246. {
  2247. int node;
  2248. for_each_node_state(node, N_NORMAL_MEMORY) {
  2249. struct kmem_cache_node *n;
  2250. if (slab_state == DOWN) {
  2251. early_kmem_cache_node_alloc(node);
  2252. continue;
  2253. }
  2254. n = kmem_cache_alloc_node(kmem_cache_node,
  2255. GFP_KERNEL, node);
  2256. if (!n) {
  2257. free_kmem_cache_nodes(s);
  2258. return 0;
  2259. }
  2260. s->node[node] = n;
  2261. init_kmem_cache_node(n, s);
  2262. }
  2263. return 1;
  2264. }
  2265. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2266. {
  2267. if (min < MIN_PARTIAL)
  2268. min = MIN_PARTIAL;
  2269. else if (min > MAX_PARTIAL)
  2270. min = MAX_PARTIAL;
  2271. s->min_partial = min;
  2272. }
  2273. /*
  2274. * calculate_sizes() determines the order and the distribution of data within
  2275. * a slab object.
  2276. */
  2277. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2278. {
  2279. unsigned long flags = s->flags;
  2280. unsigned long size = s->objsize;
  2281. unsigned long align = s->align;
  2282. int order;
  2283. /*
  2284. * Round up object size to the next word boundary. We can only
  2285. * place the free pointer at word boundaries and this determines
  2286. * the possible location of the free pointer.
  2287. */
  2288. size = ALIGN(size, sizeof(void *));
  2289. #ifdef CONFIG_SLUB_DEBUG
  2290. /*
  2291. * Determine if we can poison the object itself. If the user of
  2292. * the slab may touch the object after free or before allocation
  2293. * then we should never poison the object itself.
  2294. */
  2295. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2296. !s->ctor)
  2297. s->flags |= __OBJECT_POISON;
  2298. else
  2299. s->flags &= ~__OBJECT_POISON;
  2300. /*
  2301. * If we are Redzoning then check if there is some space between the
  2302. * end of the object and the free pointer. If not then add an
  2303. * additional word to have some bytes to store Redzone information.
  2304. */
  2305. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2306. size += sizeof(void *);
  2307. #endif
  2308. /*
  2309. * With that we have determined the number of bytes in actual use
  2310. * by the object. This is the potential offset to the free pointer.
  2311. */
  2312. s->inuse = size;
  2313. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2314. s->ctor)) {
  2315. /*
  2316. * Relocate free pointer after the object if it is not
  2317. * permitted to overwrite the first word of the object on
  2318. * kmem_cache_free.
  2319. *
  2320. * This is the case if we do RCU, have a constructor or
  2321. * destructor or are poisoning the objects.
  2322. */
  2323. s->offset = size;
  2324. size += sizeof(void *);
  2325. }
  2326. #ifdef CONFIG_SLUB_DEBUG
  2327. if (flags & SLAB_STORE_USER)
  2328. /*
  2329. * Need to store information about allocs and frees after
  2330. * the object.
  2331. */
  2332. size += 2 * sizeof(struct track);
  2333. if (flags & SLAB_RED_ZONE)
  2334. /*
  2335. * Add some empty padding so that we can catch
  2336. * overwrites from earlier objects rather than let
  2337. * tracking information or the free pointer be
  2338. * corrupted if a user writes before the start
  2339. * of the object.
  2340. */
  2341. size += sizeof(void *);
  2342. #endif
  2343. /*
  2344. * Determine the alignment based on various parameters that the
  2345. * user specified and the dynamic determination of cache line size
  2346. * on bootup.
  2347. */
  2348. align = calculate_alignment(flags, align, s->objsize);
  2349. s->align = align;
  2350. /*
  2351. * SLUB stores one object immediately after another beginning from
  2352. * offset 0. In order to align the objects we have to simply size
  2353. * each object to conform to the alignment.
  2354. */
  2355. size = ALIGN(size, align);
  2356. s->size = size;
  2357. if (forced_order >= 0)
  2358. order = forced_order;
  2359. else
  2360. order = calculate_order(size, s->reserved);
  2361. if (order < 0)
  2362. return 0;
  2363. s->allocflags = 0;
  2364. if (order)
  2365. s->allocflags |= __GFP_COMP;
  2366. if (s->flags & SLAB_CACHE_DMA)
  2367. s->allocflags |= SLUB_DMA;
  2368. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2369. s->allocflags |= __GFP_RECLAIMABLE;
  2370. /*
  2371. * Determine the number of objects per slab
  2372. */
  2373. s->oo = oo_make(order, size, s->reserved);
  2374. s->min = oo_make(get_order(size), size, s->reserved);
  2375. if (oo_objects(s->oo) > oo_objects(s->max))
  2376. s->max = s->oo;
  2377. return !!oo_objects(s->oo);
  2378. }
  2379. static int kmem_cache_open(struct kmem_cache *s,
  2380. const char *name, size_t size,
  2381. size_t align, unsigned long flags,
  2382. void (*ctor)(void *))
  2383. {
  2384. memset(s, 0, kmem_size);
  2385. s->name = name;
  2386. s->ctor = ctor;
  2387. s->objsize = size;
  2388. s->align = align;
  2389. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2390. s->reserved = 0;
  2391. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2392. s->reserved = sizeof(struct rcu_head);
  2393. if (!calculate_sizes(s, -1))
  2394. goto error;
  2395. if (disable_higher_order_debug) {
  2396. /*
  2397. * Disable debugging flags that store metadata if the min slab
  2398. * order increased.
  2399. */
  2400. if (get_order(s->size) > get_order(s->objsize)) {
  2401. s->flags &= ~DEBUG_METADATA_FLAGS;
  2402. s->offset = 0;
  2403. if (!calculate_sizes(s, -1))
  2404. goto error;
  2405. }
  2406. }
  2407. #ifdef CONFIG_CMPXCHG_DOUBLE
  2408. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2409. /* Enable fast mode */
  2410. s->flags |= __CMPXCHG_DOUBLE;
  2411. #endif
  2412. /*
  2413. * The larger the object size is, the more pages we want on the partial
  2414. * list to avoid pounding the page allocator excessively.
  2415. */
  2416. set_min_partial(s, ilog2(s->size));
  2417. s->refcount = 1;
  2418. #ifdef CONFIG_NUMA
  2419. s->remote_node_defrag_ratio = 1000;
  2420. #endif
  2421. if (!init_kmem_cache_nodes(s))
  2422. goto error;
  2423. if (alloc_kmem_cache_cpus(s))
  2424. return 1;
  2425. free_kmem_cache_nodes(s);
  2426. error:
  2427. if (flags & SLAB_PANIC)
  2428. panic("Cannot create slab %s size=%lu realsize=%u "
  2429. "order=%u offset=%u flags=%lx\n",
  2430. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2431. s->offset, flags);
  2432. return 0;
  2433. }
  2434. /*
  2435. * Determine the size of a slab object
  2436. */
  2437. unsigned int kmem_cache_size(struct kmem_cache *s)
  2438. {
  2439. return s->objsize;
  2440. }
  2441. EXPORT_SYMBOL(kmem_cache_size);
  2442. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2443. const char *text)
  2444. {
  2445. #ifdef CONFIG_SLUB_DEBUG
  2446. void *addr = page_address(page);
  2447. void *p;
  2448. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2449. sizeof(long), GFP_ATOMIC);
  2450. if (!map)
  2451. return;
  2452. slab_err(s, page, "%s", text);
  2453. slab_lock(page);
  2454. get_map(s, page, map);
  2455. for_each_object(p, s, addr, page->objects) {
  2456. if (!test_bit(slab_index(p, s, addr), map)) {
  2457. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2458. p, p - addr);
  2459. print_tracking(s, p);
  2460. }
  2461. }
  2462. slab_unlock(page);
  2463. kfree(map);
  2464. #endif
  2465. }
  2466. /*
  2467. * Attempt to free all partial slabs on a node.
  2468. */
  2469. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2470. {
  2471. unsigned long flags;
  2472. struct page *page, *h;
  2473. spin_lock_irqsave(&n->list_lock, flags);
  2474. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2475. if (!page->inuse) {
  2476. remove_partial(n, page);
  2477. discard_slab(s, page);
  2478. } else {
  2479. list_slab_objects(s, page,
  2480. "Objects remaining on kmem_cache_close()");
  2481. }
  2482. }
  2483. spin_unlock_irqrestore(&n->list_lock, flags);
  2484. }
  2485. /*
  2486. * Release all resources used by a slab cache.
  2487. */
  2488. static inline int kmem_cache_close(struct kmem_cache *s)
  2489. {
  2490. int node;
  2491. flush_all(s);
  2492. free_percpu(s->cpu_slab);
  2493. /* Attempt to free all objects */
  2494. for_each_node_state(node, N_NORMAL_MEMORY) {
  2495. struct kmem_cache_node *n = get_node(s, node);
  2496. free_partial(s, n);
  2497. if (n->nr_partial || slabs_node(s, node))
  2498. return 1;
  2499. }
  2500. free_kmem_cache_nodes(s);
  2501. return 0;
  2502. }
  2503. /*
  2504. * Close a cache and release the kmem_cache structure
  2505. * (must be used for caches created using kmem_cache_create)
  2506. */
  2507. void kmem_cache_destroy(struct kmem_cache *s)
  2508. {
  2509. down_write(&slub_lock);
  2510. s->refcount--;
  2511. if (!s->refcount) {
  2512. list_del(&s->list);
  2513. if (kmem_cache_close(s)) {
  2514. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2515. "still has objects.\n", s->name, __func__);
  2516. dump_stack();
  2517. }
  2518. if (s->flags & SLAB_DESTROY_BY_RCU)
  2519. rcu_barrier();
  2520. sysfs_slab_remove(s);
  2521. }
  2522. up_write(&slub_lock);
  2523. }
  2524. EXPORT_SYMBOL(kmem_cache_destroy);
  2525. /********************************************************************
  2526. * Kmalloc subsystem
  2527. *******************************************************************/
  2528. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2529. EXPORT_SYMBOL(kmalloc_caches);
  2530. static struct kmem_cache *kmem_cache;
  2531. #ifdef CONFIG_ZONE_DMA
  2532. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2533. #endif
  2534. static int __init setup_slub_min_order(char *str)
  2535. {
  2536. get_option(&str, &slub_min_order);
  2537. return 1;
  2538. }
  2539. __setup("slub_min_order=", setup_slub_min_order);
  2540. static int __init setup_slub_max_order(char *str)
  2541. {
  2542. get_option(&str, &slub_max_order);
  2543. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2544. return 1;
  2545. }
  2546. __setup("slub_max_order=", setup_slub_max_order);
  2547. static int __init setup_slub_min_objects(char *str)
  2548. {
  2549. get_option(&str, &slub_min_objects);
  2550. return 1;
  2551. }
  2552. __setup("slub_min_objects=", setup_slub_min_objects);
  2553. static int __init setup_slub_nomerge(char *str)
  2554. {
  2555. slub_nomerge = 1;
  2556. return 1;
  2557. }
  2558. __setup("slub_nomerge", setup_slub_nomerge);
  2559. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2560. int size, unsigned int flags)
  2561. {
  2562. struct kmem_cache *s;
  2563. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2564. /*
  2565. * This function is called with IRQs disabled during early-boot on
  2566. * single CPU so there's no need to take slub_lock here.
  2567. */
  2568. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2569. flags, NULL))
  2570. goto panic;
  2571. list_add(&s->list, &slab_caches);
  2572. return s;
  2573. panic:
  2574. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2575. return NULL;
  2576. }
  2577. /*
  2578. * Conversion table for small slabs sizes / 8 to the index in the
  2579. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2580. * of two cache sizes there. The size of larger slabs can be determined using
  2581. * fls.
  2582. */
  2583. static s8 size_index[24] = {
  2584. 3, /* 8 */
  2585. 4, /* 16 */
  2586. 5, /* 24 */
  2587. 5, /* 32 */
  2588. 6, /* 40 */
  2589. 6, /* 48 */
  2590. 6, /* 56 */
  2591. 6, /* 64 */
  2592. 1, /* 72 */
  2593. 1, /* 80 */
  2594. 1, /* 88 */
  2595. 1, /* 96 */
  2596. 7, /* 104 */
  2597. 7, /* 112 */
  2598. 7, /* 120 */
  2599. 7, /* 128 */
  2600. 2, /* 136 */
  2601. 2, /* 144 */
  2602. 2, /* 152 */
  2603. 2, /* 160 */
  2604. 2, /* 168 */
  2605. 2, /* 176 */
  2606. 2, /* 184 */
  2607. 2 /* 192 */
  2608. };
  2609. static inline int size_index_elem(size_t bytes)
  2610. {
  2611. return (bytes - 1) / 8;
  2612. }
  2613. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2614. {
  2615. int index;
  2616. if (size <= 192) {
  2617. if (!size)
  2618. return ZERO_SIZE_PTR;
  2619. index = size_index[size_index_elem(size)];
  2620. } else
  2621. index = fls(size - 1);
  2622. #ifdef CONFIG_ZONE_DMA
  2623. if (unlikely((flags & SLUB_DMA)))
  2624. return kmalloc_dma_caches[index];
  2625. #endif
  2626. return kmalloc_caches[index];
  2627. }
  2628. void *__kmalloc(size_t size, gfp_t flags)
  2629. {
  2630. struct kmem_cache *s;
  2631. void *ret;
  2632. if (unlikely(size > SLUB_MAX_SIZE))
  2633. return kmalloc_large(size, flags);
  2634. s = get_slab(size, flags);
  2635. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2636. return s;
  2637. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2638. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2639. return ret;
  2640. }
  2641. EXPORT_SYMBOL(__kmalloc);
  2642. #ifdef CONFIG_NUMA
  2643. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2644. {
  2645. struct page *page;
  2646. void *ptr = NULL;
  2647. flags |= __GFP_COMP | __GFP_NOTRACK;
  2648. page = alloc_pages_node(node, flags, get_order(size));
  2649. if (page)
  2650. ptr = page_address(page);
  2651. kmemleak_alloc(ptr, size, 1, flags);
  2652. return ptr;
  2653. }
  2654. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2655. {
  2656. struct kmem_cache *s;
  2657. void *ret;
  2658. if (unlikely(size > SLUB_MAX_SIZE)) {
  2659. ret = kmalloc_large_node(size, flags, node);
  2660. trace_kmalloc_node(_RET_IP_, ret,
  2661. size, PAGE_SIZE << get_order(size),
  2662. flags, node);
  2663. return ret;
  2664. }
  2665. s = get_slab(size, flags);
  2666. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2667. return s;
  2668. ret = slab_alloc(s, flags, node, _RET_IP_);
  2669. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2670. return ret;
  2671. }
  2672. EXPORT_SYMBOL(__kmalloc_node);
  2673. #endif
  2674. size_t ksize(const void *object)
  2675. {
  2676. struct page *page;
  2677. if (unlikely(object == ZERO_SIZE_PTR))
  2678. return 0;
  2679. page = virt_to_head_page(object);
  2680. if (unlikely(!PageSlab(page))) {
  2681. WARN_ON(!PageCompound(page));
  2682. return PAGE_SIZE << compound_order(page);
  2683. }
  2684. return slab_ksize(page->slab);
  2685. }
  2686. EXPORT_SYMBOL(ksize);
  2687. void kfree(const void *x)
  2688. {
  2689. struct page *page;
  2690. void *object = (void *)x;
  2691. trace_kfree(_RET_IP_, x);
  2692. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2693. return;
  2694. page = virt_to_head_page(x);
  2695. if (unlikely(!PageSlab(page))) {
  2696. BUG_ON(!PageCompound(page));
  2697. kmemleak_free(x);
  2698. put_page(page);
  2699. return;
  2700. }
  2701. slab_free(page->slab, page, object, _RET_IP_);
  2702. }
  2703. EXPORT_SYMBOL(kfree);
  2704. /*
  2705. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2706. * the remaining slabs by the number of items in use. The slabs with the
  2707. * most items in use come first. New allocations will then fill those up
  2708. * and thus they can be removed from the partial lists.
  2709. *
  2710. * The slabs with the least items are placed last. This results in them
  2711. * being allocated from last increasing the chance that the last objects
  2712. * are freed in them.
  2713. */
  2714. int kmem_cache_shrink(struct kmem_cache *s)
  2715. {
  2716. int node;
  2717. int i;
  2718. struct kmem_cache_node *n;
  2719. struct page *page;
  2720. struct page *t;
  2721. int objects = oo_objects(s->max);
  2722. struct list_head *slabs_by_inuse =
  2723. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2724. unsigned long flags;
  2725. if (!slabs_by_inuse)
  2726. return -ENOMEM;
  2727. flush_all(s);
  2728. for_each_node_state(node, N_NORMAL_MEMORY) {
  2729. n = get_node(s, node);
  2730. if (!n->nr_partial)
  2731. continue;
  2732. for (i = 0; i < objects; i++)
  2733. INIT_LIST_HEAD(slabs_by_inuse + i);
  2734. spin_lock_irqsave(&n->list_lock, flags);
  2735. /*
  2736. * Build lists indexed by the items in use in each slab.
  2737. *
  2738. * Note that concurrent frees may occur while we hold the
  2739. * list_lock. page->inuse here is the upper limit.
  2740. */
  2741. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2742. if (!page->inuse) {
  2743. remove_partial(n, page);
  2744. discard_slab(s, page);
  2745. } else {
  2746. list_move(&page->lru,
  2747. slabs_by_inuse + page->inuse);
  2748. }
  2749. }
  2750. /*
  2751. * Rebuild the partial list with the slabs filled up most
  2752. * first and the least used slabs at the end.
  2753. */
  2754. for (i = objects - 1; i >= 0; i--)
  2755. list_splice(slabs_by_inuse + i, n->partial.prev);
  2756. spin_unlock_irqrestore(&n->list_lock, flags);
  2757. }
  2758. kfree(slabs_by_inuse);
  2759. return 0;
  2760. }
  2761. EXPORT_SYMBOL(kmem_cache_shrink);
  2762. #if defined(CONFIG_MEMORY_HOTPLUG)
  2763. static int slab_mem_going_offline_callback(void *arg)
  2764. {
  2765. struct kmem_cache *s;
  2766. down_read(&slub_lock);
  2767. list_for_each_entry(s, &slab_caches, list)
  2768. kmem_cache_shrink(s);
  2769. up_read(&slub_lock);
  2770. return 0;
  2771. }
  2772. static void slab_mem_offline_callback(void *arg)
  2773. {
  2774. struct kmem_cache_node *n;
  2775. struct kmem_cache *s;
  2776. struct memory_notify *marg = arg;
  2777. int offline_node;
  2778. offline_node = marg->status_change_nid;
  2779. /*
  2780. * If the node still has available memory. we need kmem_cache_node
  2781. * for it yet.
  2782. */
  2783. if (offline_node < 0)
  2784. return;
  2785. down_read(&slub_lock);
  2786. list_for_each_entry(s, &slab_caches, list) {
  2787. n = get_node(s, offline_node);
  2788. if (n) {
  2789. /*
  2790. * if n->nr_slabs > 0, slabs still exist on the node
  2791. * that is going down. We were unable to free them,
  2792. * and offline_pages() function shouldn't call this
  2793. * callback. So, we must fail.
  2794. */
  2795. BUG_ON(slabs_node(s, offline_node));
  2796. s->node[offline_node] = NULL;
  2797. kmem_cache_free(kmem_cache_node, n);
  2798. }
  2799. }
  2800. up_read(&slub_lock);
  2801. }
  2802. static int slab_mem_going_online_callback(void *arg)
  2803. {
  2804. struct kmem_cache_node *n;
  2805. struct kmem_cache *s;
  2806. struct memory_notify *marg = arg;
  2807. int nid = marg->status_change_nid;
  2808. int ret = 0;
  2809. /*
  2810. * If the node's memory is already available, then kmem_cache_node is
  2811. * already created. Nothing to do.
  2812. */
  2813. if (nid < 0)
  2814. return 0;
  2815. /*
  2816. * We are bringing a node online. No memory is available yet. We must
  2817. * allocate a kmem_cache_node structure in order to bring the node
  2818. * online.
  2819. */
  2820. down_read(&slub_lock);
  2821. list_for_each_entry(s, &slab_caches, list) {
  2822. /*
  2823. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2824. * since memory is not yet available from the node that
  2825. * is brought up.
  2826. */
  2827. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2828. if (!n) {
  2829. ret = -ENOMEM;
  2830. goto out;
  2831. }
  2832. init_kmem_cache_node(n, s);
  2833. s->node[nid] = n;
  2834. }
  2835. out:
  2836. up_read(&slub_lock);
  2837. return ret;
  2838. }
  2839. static int slab_memory_callback(struct notifier_block *self,
  2840. unsigned long action, void *arg)
  2841. {
  2842. int ret = 0;
  2843. switch (action) {
  2844. case MEM_GOING_ONLINE:
  2845. ret = slab_mem_going_online_callback(arg);
  2846. break;
  2847. case MEM_GOING_OFFLINE:
  2848. ret = slab_mem_going_offline_callback(arg);
  2849. break;
  2850. case MEM_OFFLINE:
  2851. case MEM_CANCEL_ONLINE:
  2852. slab_mem_offline_callback(arg);
  2853. break;
  2854. case MEM_ONLINE:
  2855. case MEM_CANCEL_OFFLINE:
  2856. break;
  2857. }
  2858. if (ret)
  2859. ret = notifier_from_errno(ret);
  2860. else
  2861. ret = NOTIFY_OK;
  2862. return ret;
  2863. }
  2864. #endif /* CONFIG_MEMORY_HOTPLUG */
  2865. /********************************************************************
  2866. * Basic setup of slabs
  2867. *******************************************************************/
  2868. /*
  2869. * Used for early kmem_cache structures that were allocated using
  2870. * the page allocator
  2871. */
  2872. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2873. {
  2874. int node;
  2875. list_add(&s->list, &slab_caches);
  2876. s->refcount = -1;
  2877. for_each_node_state(node, N_NORMAL_MEMORY) {
  2878. struct kmem_cache_node *n = get_node(s, node);
  2879. struct page *p;
  2880. if (n) {
  2881. list_for_each_entry(p, &n->partial, lru)
  2882. p->slab = s;
  2883. #ifdef CONFIG_SLUB_DEBUG
  2884. list_for_each_entry(p, &n->full, lru)
  2885. p->slab = s;
  2886. #endif
  2887. }
  2888. }
  2889. }
  2890. void __init kmem_cache_init(void)
  2891. {
  2892. int i;
  2893. int caches = 0;
  2894. struct kmem_cache *temp_kmem_cache;
  2895. int order;
  2896. struct kmem_cache *temp_kmem_cache_node;
  2897. unsigned long kmalloc_size;
  2898. kmem_size = offsetof(struct kmem_cache, node) +
  2899. nr_node_ids * sizeof(struct kmem_cache_node *);
  2900. /* Allocate two kmem_caches from the page allocator */
  2901. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2902. order = get_order(2 * kmalloc_size);
  2903. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2904. /*
  2905. * Must first have the slab cache available for the allocations of the
  2906. * struct kmem_cache_node's. There is special bootstrap code in
  2907. * kmem_cache_open for slab_state == DOWN.
  2908. */
  2909. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2910. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2911. sizeof(struct kmem_cache_node),
  2912. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2913. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2914. /* Able to allocate the per node structures */
  2915. slab_state = PARTIAL;
  2916. temp_kmem_cache = kmem_cache;
  2917. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2918. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2919. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2920. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2921. /*
  2922. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2923. * kmem_cache_node is separately allocated so no need to
  2924. * update any list pointers.
  2925. */
  2926. temp_kmem_cache_node = kmem_cache_node;
  2927. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2928. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2929. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2930. caches++;
  2931. kmem_cache_bootstrap_fixup(kmem_cache);
  2932. caches++;
  2933. /* Free temporary boot structure */
  2934. free_pages((unsigned long)temp_kmem_cache, order);
  2935. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2936. /*
  2937. * Patch up the size_index table if we have strange large alignment
  2938. * requirements for the kmalloc array. This is only the case for
  2939. * MIPS it seems. The standard arches will not generate any code here.
  2940. *
  2941. * Largest permitted alignment is 256 bytes due to the way we
  2942. * handle the index determination for the smaller caches.
  2943. *
  2944. * Make sure that nothing crazy happens if someone starts tinkering
  2945. * around with ARCH_KMALLOC_MINALIGN
  2946. */
  2947. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2948. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2949. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2950. int elem = size_index_elem(i);
  2951. if (elem >= ARRAY_SIZE(size_index))
  2952. break;
  2953. size_index[elem] = KMALLOC_SHIFT_LOW;
  2954. }
  2955. if (KMALLOC_MIN_SIZE == 64) {
  2956. /*
  2957. * The 96 byte size cache is not used if the alignment
  2958. * is 64 byte.
  2959. */
  2960. for (i = 64 + 8; i <= 96; i += 8)
  2961. size_index[size_index_elem(i)] = 7;
  2962. } else if (KMALLOC_MIN_SIZE == 128) {
  2963. /*
  2964. * The 192 byte sized cache is not used if the alignment
  2965. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2966. * instead.
  2967. */
  2968. for (i = 128 + 8; i <= 192; i += 8)
  2969. size_index[size_index_elem(i)] = 8;
  2970. }
  2971. /* Caches that are not of the two-to-the-power-of size */
  2972. if (KMALLOC_MIN_SIZE <= 32) {
  2973. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2974. caches++;
  2975. }
  2976. if (KMALLOC_MIN_SIZE <= 64) {
  2977. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2978. caches++;
  2979. }
  2980. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2981. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2982. caches++;
  2983. }
  2984. slab_state = UP;
  2985. /* Provide the correct kmalloc names now that the caches are up */
  2986. if (KMALLOC_MIN_SIZE <= 32) {
  2987. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2988. BUG_ON(!kmalloc_caches[1]->name);
  2989. }
  2990. if (KMALLOC_MIN_SIZE <= 64) {
  2991. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2992. BUG_ON(!kmalloc_caches[2]->name);
  2993. }
  2994. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2995. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2996. BUG_ON(!s);
  2997. kmalloc_caches[i]->name = s;
  2998. }
  2999. #ifdef CONFIG_SMP
  3000. register_cpu_notifier(&slab_notifier);
  3001. #endif
  3002. #ifdef CONFIG_ZONE_DMA
  3003. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3004. struct kmem_cache *s = kmalloc_caches[i];
  3005. if (s && s->size) {
  3006. char *name = kasprintf(GFP_NOWAIT,
  3007. "dma-kmalloc-%d", s->objsize);
  3008. BUG_ON(!name);
  3009. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3010. s->objsize, SLAB_CACHE_DMA);
  3011. }
  3012. }
  3013. #endif
  3014. printk(KERN_INFO
  3015. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3016. " CPUs=%d, Nodes=%d\n",
  3017. caches, cache_line_size(),
  3018. slub_min_order, slub_max_order, slub_min_objects,
  3019. nr_cpu_ids, nr_node_ids);
  3020. }
  3021. void __init kmem_cache_init_late(void)
  3022. {
  3023. }
  3024. /*
  3025. * Find a mergeable slab cache
  3026. */
  3027. static int slab_unmergeable(struct kmem_cache *s)
  3028. {
  3029. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3030. return 1;
  3031. if (s->ctor)
  3032. return 1;
  3033. /*
  3034. * We may have set a slab to be unmergeable during bootstrap.
  3035. */
  3036. if (s->refcount < 0)
  3037. return 1;
  3038. return 0;
  3039. }
  3040. static struct kmem_cache *find_mergeable(size_t size,
  3041. size_t align, unsigned long flags, const char *name,
  3042. void (*ctor)(void *))
  3043. {
  3044. struct kmem_cache *s;
  3045. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3046. return NULL;
  3047. if (ctor)
  3048. return NULL;
  3049. size = ALIGN(size, sizeof(void *));
  3050. align = calculate_alignment(flags, align, size);
  3051. size = ALIGN(size, align);
  3052. flags = kmem_cache_flags(size, flags, name, NULL);
  3053. list_for_each_entry(s, &slab_caches, list) {
  3054. if (slab_unmergeable(s))
  3055. continue;
  3056. if (size > s->size)
  3057. continue;
  3058. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3059. continue;
  3060. /*
  3061. * Check if alignment is compatible.
  3062. * Courtesy of Adrian Drzewiecki
  3063. */
  3064. if ((s->size & ~(align - 1)) != s->size)
  3065. continue;
  3066. if (s->size - size >= sizeof(void *))
  3067. continue;
  3068. return s;
  3069. }
  3070. return NULL;
  3071. }
  3072. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3073. size_t align, unsigned long flags, void (*ctor)(void *))
  3074. {
  3075. struct kmem_cache *s;
  3076. char *n;
  3077. if (WARN_ON(!name))
  3078. return NULL;
  3079. down_write(&slub_lock);
  3080. s = find_mergeable(size, align, flags, name, ctor);
  3081. if (s) {
  3082. s->refcount++;
  3083. /*
  3084. * Adjust the object sizes so that we clear
  3085. * the complete object on kzalloc.
  3086. */
  3087. s->objsize = max(s->objsize, (int)size);
  3088. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3089. if (sysfs_slab_alias(s, name)) {
  3090. s->refcount--;
  3091. goto err;
  3092. }
  3093. up_write(&slub_lock);
  3094. return s;
  3095. }
  3096. n = kstrdup(name, GFP_KERNEL);
  3097. if (!n)
  3098. goto err;
  3099. s = kmalloc(kmem_size, GFP_KERNEL);
  3100. if (s) {
  3101. if (kmem_cache_open(s, n,
  3102. size, align, flags, ctor)) {
  3103. list_add(&s->list, &slab_caches);
  3104. if (sysfs_slab_add(s)) {
  3105. list_del(&s->list);
  3106. kfree(n);
  3107. kfree(s);
  3108. goto err;
  3109. }
  3110. up_write(&slub_lock);
  3111. return s;
  3112. }
  3113. kfree(n);
  3114. kfree(s);
  3115. }
  3116. err:
  3117. up_write(&slub_lock);
  3118. if (flags & SLAB_PANIC)
  3119. panic("Cannot create slabcache %s\n", name);
  3120. else
  3121. s = NULL;
  3122. return s;
  3123. }
  3124. EXPORT_SYMBOL(kmem_cache_create);
  3125. #ifdef CONFIG_SMP
  3126. /*
  3127. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3128. * necessary.
  3129. */
  3130. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3131. unsigned long action, void *hcpu)
  3132. {
  3133. long cpu = (long)hcpu;
  3134. struct kmem_cache *s;
  3135. unsigned long flags;
  3136. switch (action) {
  3137. case CPU_UP_CANCELED:
  3138. case CPU_UP_CANCELED_FROZEN:
  3139. case CPU_DEAD:
  3140. case CPU_DEAD_FROZEN:
  3141. down_read(&slub_lock);
  3142. list_for_each_entry(s, &slab_caches, list) {
  3143. local_irq_save(flags);
  3144. __flush_cpu_slab(s, cpu);
  3145. local_irq_restore(flags);
  3146. }
  3147. up_read(&slub_lock);
  3148. break;
  3149. default:
  3150. break;
  3151. }
  3152. return NOTIFY_OK;
  3153. }
  3154. static struct notifier_block __cpuinitdata slab_notifier = {
  3155. .notifier_call = slab_cpuup_callback
  3156. };
  3157. #endif
  3158. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3159. {
  3160. struct kmem_cache *s;
  3161. void *ret;
  3162. if (unlikely(size > SLUB_MAX_SIZE))
  3163. return kmalloc_large(size, gfpflags);
  3164. s = get_slab(size, gfpflags);
  3165. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3166. return s;
  3167. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3168. /* Honor the call site pointer we received. */
  3169. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3170. return ret;
  3171. }
  3172. #ifdef CONFIG_NUMA
  3173. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3174. int node, unsigned long caller)
  3175. {
  3176. struct kmem_cache *s;
  3177. void *ret;
  3178. if (unlikely(size > SLUB_MAX_SIZE)) {
  3179. ret = kmalloc_large_node(size, gfpflags, node);
  3180. trace_kmalloc_node(caller, ret,
  3181. size, PAGE_SIZE << get_order(size),
  3182. gfpflags, node);
  3183. return ret;
  3184. }
  3185. s = get_slab(size, gfpflags);
  3186. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3187. return s;
  3188. ret = slab_alloc(s, gfpflags, node, caller);
  3189. /* Honor the call site pointer we received. */
  3190. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3191. return ret;
  3192. }
  3193. #endif
  3194. #ifdef CONFIG_SYSFS
  3195. static int count_inuse(struct page *page)
  3196. {
  3197. return page->inuse;
  3198. }
  3199. static int count_total(struct page *page)
  3200. {
  3201. return page->objects;
  3202. }
  3203. #endif
  3204. #ifdef CONFIG_SLUB_DEBUG
  3205. static int validate_slab(struct kmem_cache *s, struct page *page,
  3206. unsigned long *map)
  3207. {
  3208. void *p;
  3209. void *addr = page_address(page);
  3210. if (!check_slab(s, page) ||
  3211. !on_freelist(s, page, NULL))
  3212. return 0;
  3213. /* Now we know that a valid freelist exists */
  3214. bitmap_zero(map, page->objects);
  3215. get_map(s, page, map);
  3216. for_each_object(p, s, addr, page->objects) {
  3217. if (test_bit(slab_index(p, s, addr), map))
  3218. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3219. return 0;
  3220. }
  3221. for_each_object(p, s, addr, page->objects)
  3222. if (!test_bit(slab_index(p, s, addr), map))
  3223. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3224. return 0;
  3225. return 1;
  3226. }
  3227. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3228. unsigned long *map)
  3229. {
  3230. slab_lock(page);
  3231. validate_slab(s, page, map);
  3232. slab_unlock(page);
  3233. }
  3234. static int validate_slab_node(struct kmem_cache *s,
  3235. struct kmem_cache_node *n, unsigned long *map)
  3236. {
  3237. unsigned long count = 0;
  3238. struct page *page;
  3239. unsigned long flags;
  3240. spin_lock_irqsave(&n->list_lock, flags);
  3241. list_for_each_entry(page, &n->partial, lru) {
  3242. validate_slab_slab(s, page, map);
  3243. count++;
  3244. }
  3245. if (count != n->nr_partial)
  3246. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3247. "counter=%ld\n", s->name, count, n->nr_partial);
  3248. if (!(s->flags & SLAB_STORE_USER))
  3249. goto out;
  3250. list_for_each_entry(page, &n->full, lru) {
  3251. validate_slab_slab(s, page, map);
  3252. count++;
  3253. }
  3254. if (count != atomic_long_read(&n->nr_slabs))
  3255. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3256. "counter=%ld\n", s->name, count,
  3257. atomic_long_read(&n->nr_slabs));
  3258. out:
  3259. spin_unlock_irqrestore(&n->list_lock, flags);
  3260. return count;
  3261. }
  3262. static long validate_slab_cache(struct kmem_cache *s)
  3263. {
  3264. int node;
  3265. unsigned long count = 0;
  3266. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3267. sizeof(unsigned long), GFP_KERNEL);
  3268. if (!map)
  3269. return -ENOMEM;
  3270. flush_all(s);
  3271. for_each_node_state(node, N_NORMAL_MEMORY) {
  3272. struct kmem_cache_node *n = get_node(s, node);
  3273. count += validate_slab_node(s, n, map);
  3274. }
  3275. kfree(map);
  3276. return count;
  3277. }
  3278. /*
  3279. * Generate lists of code addresses where slabcache objects are allocated
  3280. * and freed.
  3281. */
  3282. struct location {
  3283. unsigned long count;
  3284. unsigned long addr;
  3285. long long sum_time;
  3286. long min_time;
  3287. long max_time;
  3288. long min_pid;
  3289. long max_pid;
  3290. DECLARE_BITMAP(cpus, NR_CPUS);
  3291. nodemask_t nodes;
  3292. };
  3293. struct loc_track {
  3294. unsigned long max;
  3295. unsigned long count;
  3296. struct location *loc;
  3297. };
  3298. static void free_loc_track(struct loc_track *t)
  3299. {
  3300. if (t->max)
  3301. free_pages((unsigned long)t->loc,
  3302. get_order(sizeof(struct location) * t->max));
  3303. }
  3304. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3305. {
  3306. struct location *l;
  3307. int order;
  3308. order = get_order(sizeof(struct location) * max);
  3309. l = (void *)__get_free_pages(flags, order);
  3310. if (!l)
  3311. return 0;
  3312. if (t->count) {
  3313. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3314. free_loc_track(t);
  3315. }
  3316. t->max = max;
  3317. t->loc = l;
  3318. return 1;
  3319. }
  3320. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3321. const struct track *track)
  3322. {
  3323. long start, end, pos;
  3324. struct location *l;
  3325. unsigned long caddr;
  3326. unsigned long age = jiffies - track->when;
  3327. start = -1;
  3328. end = t->count;
  3329. for ( ; ; ) {
  3330. pos = start + (end - start + 1) / 2;
  3331. /*
  3332. * There is nothing at "end". If we end up there
  3333. * we need to add something to before end.
  3334. */
  3335. if (pos == end)
  3336. break;
  3337. caddr = t->loc[pos].addr;
  3338. if (track->addr == caddr) {
  3339. l = &t->loc[pos];
  3340. l->count++;
  3341. if (track->when) {
  3342. l->sum_time += age;
  3343. if (age < l->min_time)
  3344. l->min_time = age;
  3345. if (age > l->max_time)
  3346. l->max_time = age;
  3347. if (track->pid < l->min_pid)
  3348. l->min_pid = track->pid;
  3349. if (track->pid > l->max_pid)
  3350. l->max_pid = track->pid;
  3351. cpumask_set_cpu(track->cpu,
  3352. to_cpumask(l->cpus));
  3353. }
  3354. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3355. return 1;
  3356. }
  3357. if (track->addr < caddr)
  3358. end = pos;
  3359. else
  3360. start = pos;
  3361. }
  3362. /*
  3363. * Not found. Insert new tracking element.
  3364. */
  3365. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3366. return 0;
  3367. l = t->loc + pos;
  3368. if (pos < t->count)
  3369. memmove(l + 1, l,
  3370. (t->count - pos) * sizeof(struct location));
  3371. t->count++;
  3372. l->count = 1;
  3373. l->addr = track->addr;
  3374. l->sum_time = age;
  3375. l->min_time = age;
  3376. l->max_time = age;
  3377. l->min_pid = track->pid;
  3378. l->max_pid = track->pid;
  3379. cpumask_clear(to_cpumask(l->cpus));
  3380. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3381. nodes_clear(l->nodes);
  3382. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3383. return 1;
  3384. }
  3385. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3386. struct page *page, enum track_item alloc,
  3387. unsigned long *map)
  3388. {
  3389. void *addr = page_address(page);
  3390. void *p;
  3391. bitmap_zero(map, page->objects);
  3392. get_map(s, page, map);
  3393. for_each_object(p, s, addr, page->objects)
  3394. if (!test_bit(slab_index(p, s, addr), map))
  3395. add_location(t, s, get_track(s, p, alloc));
  3396. }
  3397. static int list_locations(struct kmem_cache *s, char *buf,
  3398. enum track_item alloc)
  3399. {
  3400. int len = 0;
  3401. unsigned long i;
  3402. struct loc_track t = { 0, 0, NULL };
  3403. int node;
  3404. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3405. sizeof(unsigned long), GFP_KERNEL);
  3406. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3407. GFP_TEMPORARY)) {
  3408. kfree(map);
  3409. return sprintf(buf, "Out of memory\n");
  3410. }
  3411. /* Push back cpu slabs */
  3412. flush_all(s);
  3413. for_each_node_state(node, N_NORMAL_MEMORY) {
  3414. struct kmem_cache_node *n = get_node(s, node);
  3415. unsigned long flags;
  3416. struct page *page;
  3417. if (!atomic_long_read(&n->nr_slabs))
  3418. continue;
  3419. spin_lock_irqsave(&n->list_lock, flags);
  3420. list_for_each_entry(page, &n->partial, lru)
  3421. process_slab(&t, s, page, alloc, map);
  3422. list_for_each_entry(page, &n->full, lru)
  3423. process_slab(&t, s, page, alloc, map);
  3424. spin_unlock_irqrestore(&n->list_lock, flags);
  3425. }
  3426. for (i = 0; i < t.count; i++) {
  3427. struct location *l = &t.loc[i];
  3428. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3429. break;
  3430. len += sprintf(buf + len, "%7ld ", l->count);
  3431. if (l->addr)
  3432. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3433. else
  3434. len += sprintf(buf + len, "<not-available>");
  3435. if (l->sum_time != l->min_time) {
  3436. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3437. l->min_time,
  3438. (long)div_u64(l->sum_time, l->count),
  3439. l->max_time);
  3440. } else
  3441. len += sprintf(buf + len, " age=%ld",
  3442. l->min_time);
  3443. if (l->min_pid != l->max_pid)
  3444. len += sprintf(buf + len, " pid=%ld-%ld",
  3445. l->min_pid, l->max_pid);
  3446. else
  3447. len += sprintf(buf + len, " pid=%ld",
  3448. l->min_pid);
  3449. if (num_online_cpus() > 1 &&
  3450. !cpumask_empty(to_cpumask(l->cpus)) &&
  3451. len < PAGE_SIZE - 60) {
  3452. len += sprintf(buf + len, " cpus=");
  3453. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3454. to_cpumask(l->cpus));
  3455. }
  3456. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3457. len < PAGE_SIZE - 60) {
  3458. len += sprintf(buf + len, " nodes=");
  3459. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3460. l->nodes);
  3461. }
  3462. len += sprintf(buf + len, "\n");
  3463. }
  3464. free_loc_track(&t);
  3465. kfree(map);
  3466. if (!t.count)
  3467. len += sprintf(buf, "No data\n");
  3468. return len;
  3469. }
  3470. #endif
  3471. #ifdef SLUB_RESILIENCY_TEST
  3472. static void resiliency_test(void)
  3473. {
  3474. u8 *p;
  3475. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3476. printk(KERN_ERR "SLUB resiliency testing\n");
  3477. printk(KERN_ERR "-----------------------\n");
  3478. printk(KERN_ERR "A. Corruption after allocation\n");
  3479. p = kzalloc(16, GFP_KERNEL);
  3480. p[16] = 0x12;
  3481. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3482. " 0x12->0x%p\n\n", p + 16);
  3483. validate_slab_cache(kmalloc_caches[4]);
  3484. /* Hmmm... The next two are dangerous */
  3485. p = kzalloc(32, GFP_KERNEL);
  3486. p[32 + sizeof(void *)] = 0x34;
  3487. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3488. " 0x34 -> -0x%p\n", p);
  3489. printk(KERN_ERR
  3490. "If allocated object is overwritten then not detectable\n\n");
  3491. validate_slab_cache(kmalloc_caches[5]);
  3492. p = kzalloc(64, GFP_KERNEL);
  3493. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3494. *p = 0x56;
  3495. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3496. p);
  3497. printk(KERN_ERR
  3498. "If allocated object is overwritten then not detectable\n\n");
  3499. validate_slab_cache(kmalloc_caches[6]);
  3500. printk(KERN_ERR "\nB. Corruption after free\n");
  3501. p = kzalloc(128, GFP_KERNEL);
  3502. kfree(p);
  3503. *p = 0x78;
  3504. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3505. validate_slab_cache(kmalloc_caches[7]);
  3506. p = kzalloc(256, GFP_KERNEL);
  3507. kfree(p);
  3508. p[50] = 0x9a;
  3509. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3510. p);
  3511. validate_slab_cache(kmalloc_caches[8]);
  3512. p = kzalloc(512, GFP_KERNEL);
  3513. kfree(p);
  3514. p[512] = 0xab;
  3515. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3516. validate_slab_cache(kmalloc_caches[9]);
  3517. }
  3518. #else
  3519. #ifdef CONFIG_SYSFS
  3520. static void resiliency_test(void) {};
  3521. #endif
  3522. #endif
  3523. #ifdef CONFIG_SYSFS
  3524. enum slab_stat_type {
  3525. SL_ALL, /* All slabs */
  3526. SL_PARTIAL, /* Only partially allocated slabs */
  3527. SL_CPU, /* Only slabs used for cpu caches */
  3528. SL_OBJECTS, /* Determine allocated objects not slabs */
  3529. SL_TOTAL /* Determine object capacity not slabs */
  3530. };
  3531. #define SO_ALL (1 << SL_ALL)
  3532. #define SO_PARTIAL (1 << SL_PARTIAL)
  3533. #define SO_CPU (1 << SL_CPU)
  3534. #define SO_OBJECTS (1 << SL_OBJECTS)
  3535. #define SO_TOTAL (1 << SL_TOTAL)
  3536. static ssize_t show_slab_objects(struct kmem_cache *s,
  3537. char *buf, unsigned long flags)
  3538. {
  3539. unsigned long total = 0;
  3540. int node;
  3541. int x;
  3542. unsigned long *nodes;
  3543. unsigned long *per_cpu;
  3544. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3545. if (!nodes)
  3546. return -ENOMEM;
  3547. per_cpu = nodes + nr_node_ids;
  3548. if (flags & SO_CPU) {
  3549. int cpu;
  3550. for_each_possible_cpu(cpu) {
  3551. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3552. if (!c || c->node < 0)
  3553. continue;
  3554. if (c->page) {
  3555. if (flags & SO_TOTAL)
  3556. x = c->page->objects;
  3557. else if (flags & SO_OBJECTS)
  3558. x = c->page->inuse;
  3559. else
  3560. x = 1;
  3561. total += x;
  3562. nodes[c->node] += x;
  3563. }
  3564. per_cpu[c->node]++;
  3565. }
  3566. }
  3567. lock_memory_hotplug();
  3568. #ifdef CONFIG_SLUB_DEBUG
  3569. if (flags & SO_ALL) {
  3570. for_each_node_state(node, N_NORMAL_MEMORY) {
  3571. struct kmem_cache_node *n = get_node(s, node);
  3572. if (flags & SO_TOTAL)
  3573. x = atomic_long_read(&n->total_objects);
  3574. else if (flags & SO_OBJECTS)
  3575. x = atomic_long_read(&n->total_objects) -
  3576. count_partial(n, count_free);
  3577. else
  3578. x = atomic_long_read(&n->nr_slabs);
  3579. total += x;
  3580. nodes[node] += x;
  3581. }
  3582. } else
  3583. #endif
  3584. if (flags & SO_PARTIAL) {
  3585. for_each_node_state(node, N_NORMAL_MEMORY) {
  3586. struct kmem_cache_node *n = get_node(s, node);
  3587. if (flags & SO_TOTAL)
  3588. x = count_partial(n, count_total);
  3589. else if (flags & SO_OBJECTS)
  3590. x = count_partial(n, count_inuse);
  3591. else
  3592. x = n->nr_partial;
  3593. total += x;
  3594. nodes[node] += x;
  3595. }
  3596. }
  3597. x = sprintf(buf, "%lu", total);
  3598. #ifdef CONFIG_NUMA
  3599. for_each_node_state(node, N_NORMAL_MEMORY)
  3600. if (nodes[node])
  3601. x += sprintf(buf + x, " N%d=%lu",
  3602. node, nodes[node]);
  3603. #endif
  3604. unlock_memory_hotplug();
  3605. kfree(nodes);
  3606. return x + sprintf(buf + x, "\n");
  3607. }
  3608. #ifdef CONFIG_SLUB_DEBUG
  3609. static int any_slab_objects(struct kmem_cache *s)
  3610. {
  3611. int node;
  3612. for_each_online_node(node) {
  3613. struct kmem_cache_node *n = get_node(s, node);
  3614. if (!n)
  3615. continue;
  3616. if (atomic_long_read(&n->total_objects))
  3617. return 1;
  3618. }
  3619. return 0;
  3620. }
  3621. #endif
  3622. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3623. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3624. struct slab_attribute {
  3625. struct attribute attr;
  3626. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3627. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3628. };
  3629. #define SLAB_ATTR_RO(_name) \
  3630. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3631. #define SLAB_ATTR(_name) \
  3632. static struct slab_attribute _name##_attr = \
  3633. __ATTR(_name, 0644, _name##_show, _name##_store)
  3634. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3635. {
  3636. return sprintf(buf, "%d\n", s->size);
  3637. }
  3638. SLAB_ATTR_RO(slab_size);
  3639. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3640. {
  3641. return sprintf(buf, "%d\n", s->align);
  3642. }
  3643. SLAB_ATTR_RO(align);
  3644. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3645. {
  3646. return sprintf(buf, "%d\n", s->objsize);
  3647. }
  3648. SLAB_ATTR_RO(object_size);
  3649. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3650. {
  3651. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3652. }
  3653. SLAB_ATTR_RO(objs_per_slab);
  3654. static ssize_t order_store(struct kmem_cache *s,
  3655. const char *buf, size_t length)
  3656. {
  3657. unsigned long order;
  3658. int err;
  3659. err = strict_strtoul(buf, 10, &order);
  3660. if (err)
  3661. return err;
  3662. if (order > slub_max_order || order < slub_min_order)
  3663. return -EINVAL;
  3664. calculate_sizes(s, order);
  3665. return length;
  3666. }
  3667. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3668. {
  3669. return sprintf(buf, "%d\n", oo_order(s->oo));
  3670. }
  3671. SLAB_ATTR(order);
  3672. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3673. {
  3674. return sprintf(buf, "%lu\n", s->min_partial);
  3675. }
  3676. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3677. size_t length)
  3678. {
  3679. unsigned long min;
  3680. int err;
  3681. err = strict_strtoul(buf, 10, &min);
  3682. if (err)
  3683. return err;
  3684. set_min_partial(s, min);
  3685. return length;
  3686. }
  3687. SLAB_ATTR(min_partial);
  3688. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3689. {
  3690. if (!s->ctor)
  3691. return 0;
  3692. return sprintf(buf, "%pS\n", s->ctor);
  3693. }
  3694. SLAB_ATTR_RO(ctor);
  3695. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3696. {
  3697. return sprintf(buf, "%d\n", s->refcount - 1);
  3698. }
  3699. SLAB_ATTR_RO(aliases);
  3700. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3701. {
  3702. return show_slab_objects(s, buf, SO_PARTIAL);
  3703. }
  3704. SLAB_ATTR_RO(partial);
  3705. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3706. {
  3707. return show_slab_objects(s, buf, SO_CPU);
  3708. }
  3709. SLAB_ATTR_RO(cpu_slabs);
  3710. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3711. {
  3712. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3713. }
  3714. SLAB_ATTR_RO(objects);
  3715. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3716. {
  3717. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3718. }
  3719. SLAB_ATTR_RO(objects_partial);
  3720. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3721. {
  3722. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3723. }
  3724. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3725. const char *buf, size_t length)
  3726. {
  3727. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3728. if (buf[0] == '1')
  3729. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3730. return length;
  3731. }
  3732. SLAB_ATTR(reclaim_account);
  3733. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3734. {
  3735. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3736. }
  3737. SLAB_ATTR_RO(hwcache_align);
  3738. #ifdef CONFIG_ZONE_DMA
  3739. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3740. {
  3741. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3742. }
  3743. SLAB_ATTR_RO(cache_dma);
  3744. #endif
  3745. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3746. {
  3747. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3748. }
  3749. SLAB_ATTR_RO(destroy_by_rcu);
  3750. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3751. {
  3752. return sprintf(buf, "%d\n", s->reserved);
  3753. }
  3754. SLAB_ATTR_RO(reserved);
  3755. #ifdef CONFIG_SLUB_DEBUG
  3756. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3757. {
  3758. return show_slab_objects(s, buf, SO_ALL);
  3759. }
  3760. SLAB_ATTR_RO(slabs);
  3761. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3762. {
  3763. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3764. }
  3765. SLAB_ATTR_RO(total_objects);
  3766. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3767. {
  3768. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3769. }
  3770. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3771. const char *buf, size_t length)
  3772. {
  3773. s->flags &= ~SLAB_DEBUG_FREE;
  3774. if (buf[0] == '1') {
  3775. s->flags &= ~__CMPXCHG_DOUBLE;
  3776. s->flags |= SLAB_DEBUG_FREE;
  3777. }
  3778. return length;
  3779. }
  3780. SLAB_ATTR(sanity_checks);
  3781. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3782. {
  3783. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3784. }
  3785. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3786. size_t length)
  3787. {
  3788. s->flags &= ~SLAB_TRACE;
  3789. if (buf[0] == '1') {
  3790. s->flags &= ~__CMPXCHG_DOUBLE;
  3791. s->flags |= SLAB_TRACE;
  3792. }
  3793. return length;
  3794. }
  3795. SLAB_ATTR(trace);
  3796. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3797. {
  3798. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3799. }
  3800. static ssize_t red_zone_store(struct kmem_cache *s,
  3801. const char *buf, size_t length)
  3802. {
  3803. if (any_slab_objects(s))
  3804. return -EBUSY;
  3805. s->flags &= ~SLAB_RED_ZONE;
  3806. if (buf[0] == '1') {
  3807. s->flags &= ~__CMPXCHG_DOUBLE;
  3808. s->flags |= SLAB_RED_ZONE;
  3809. }
  3810. calculate_sizes(s, -1);
  3811. return length;
  3812. }
  3813. SLAB_ATTR(red_zone);
  3814. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3815. {
  3816. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3817. }
  3818. static ssize_t poison_store(struct kmem_cache *s,
  3819. const char *buf, size_t length)
  3820. {
  3821. if (any_slab_objects(s))
  3822. return -EBUSY;
  3823. s->flags &= ~SLAB_POISON;
  3824. if (buf[0] == '1') {
  3825. s->flags &= ~__CMPXCHG_DOUBLE;
  3826. s->flags |= SLAB_POISON;
  3827. }
  3828. calculate_sizes(s, -1);
  3829. return length;
  3830. }
  3831. SLAB_ATTR(poison);
  3832. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3833. {
  3834. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3835. }
  3836. static ssize_t store_user_store(struct kmem_cache *s,
  3837. const char *buf, size_t length)
  3838. {
  3839. if (any_slab_objects(s))
  3840. return -EBUSY;
  3841. s->flags &= ~SLAB_STORE_USER;
  3842. if (buf[0] == '1') {
  3843. s->flags &= ~__CMPXCHG_DOUBLE;
  3844. s->flags |= SLAB_STORE_USER;
  3845. }
  3846. calculate_sizes(s, -1);
  3847. return length;
  3848. }
  3849. SLAB_ATTR(store_user);
  3850. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3851. {
  3852. return 0;
  3853. }
  3854. static ssize_t validate_store(struct kmem_cache *s,
  3855. const char *buf, size_t length)
  3856. {
  3857. int ret = -EINVAL;
  3858. if (buf[0] == '1') {
  3859. ret = validate_slab_cache(s);
  3860. if (ret >= 0)
  3861. ret = length;
  3862. }
  3863. return ret;
  3864. }
  3865. SLAB_ATTR(validate);
  3866. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3867. {
  3868. if (!(s->flags & SLAB_STORE_USER))
  3869. return -ENOSYS;
  3870. return list_locations(s, buf, TRACK_ALLOC);
  3871. }
  3872. SLAB_ATTR_RO(alloc_calls);
  3873. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3874. {
  3875. if (!(s->flags & SLAB_STORE_USER))
  3876. return -ENOSYS;
  3877. return list_locations(s, buf, TRACK_FREE);
  3878. }
  3879. SLAB_ATTR_RO(free_calls);
  3880. #endif /* CONFIG_SLUB_DEBUG */
  3881. #ifdef CONFIG_FAILSLAB
  3882. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3883. {
  3884. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3885. }
  3886. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3887. size_t length)
  3888. {
  3889. s->flags &= ~SLAB_FAILSLAB;
  3890. if (buf[0] == '1')
  3891. s->flags |= SLAB_FAILSLAB;
  3892. return length;
  3893. }
  3894. SLAB_ATTR(failslab);
  3895. #endif
  3896. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3897. {
  3898. return 0;
  3899. }
  3900. static ssize_t shrink_store(struct kmem_cache *s,
  3901. const char *buf, size_t length)
  3902. {
  3903. if (buf[0] == '1') {
  3904. int rc = kmem_cache_shrink(s);
  3905. if (rc)
  3906. return rc;
  3907. } else
  3908. return -EINVAL;
  3909. return length;
  3910. }
  3911. SLAB_ATTR(shrink);
  3912. #ifdef CONFIG_NUMA
  3913. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3914. {
  3915. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3916. }
  3917. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3918. const char *buf, size_t length)
  3919. {
  3920. unsigned long ratio;
  3921. int err;
  3922. err = strict_strtoul(buf, 10, &ratio);
  3923. if (err)
  3924. return err;
  3925. if (ratio <= 100)
  3926. s->remote_node_defrag_ratio = ratio * 10;
  3927. return length;
  3928. }
  3929. SLAB_ATTR(remote_node_defrag_ratio);
  3930. #endif
  3931. #ifdef CONFIG_SLUB_STATS
  3932. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3933. {
  3934. unsigned long sum = 0;
  3935. int cpu;
  3936. int len;
  3937. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3938. if (!data)
  3939. return -ENOMEM;
  3940. for_each_online_cpu(cpu) {
  3941. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3942. data[cpu] = x;
  3943. sum += x;
  3944. }
  3945. len = sprintf(buf, "%lu", sum);
  3946. #ifdef CONFIG_SMP
  3947. for_each_online_cpu(cpu) {
  3948. if (data[cpu] && len < PAGE_SIZE - 20)
  3949. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3950. }
  3951. #endif
  3952. kfree(data);
  3953. return len + sprintf(buf + len, "\n");
  3954. }
  3955. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3956. {
  3957. int cpu;
  3958. for_each_online_cpu(cpu)
  3959. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3960. }
  3961. #define STAT_ATTR(si, text) \
  3962. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3963. { \
  3964. return show_stat(s, buf, si); \
  3965. } \
  3966. static ssize_t text##_store(struct kmem_cache *s, \
  3967. const char *buf, size_t length) \
  3968. { \
  3969. if (buf[0] != '0') \
  3970. return -EINVAL; \
  3971. clear_stat(s, si); \
  3972. return length; \
  3973. } \
  3974. SLAB_ATTR(text); \
  3975. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3976. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3977. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3978. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3979. STAT_ATTR(FREE_FROZEN, free_frozen);
  3980. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3981. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3982. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3983. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3984. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3985. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  3986. STAT_ATTR(FREE_SLAB, free_slab);
  3987. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3988. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3989. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3990. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3991. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3992. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3993. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  3994. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3995. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  3996. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  3997. #endif
  3998. static struct attribute *slab_attrs[] = {
  3999. &slab_size_attr.attr,
  4000. &object_size_attr.attr,
  4001. &objs_per_slab_attr.attr,
  4002. &order_attr.attr,
  4003. &min_partial_attr.attr,
  4004. &objects_attr.attr,
  4005. &objects_partial_attr.attr,
  4006. &partial_attr.attr,
  4007. &cpu_slabs_attr.attr,
  4008. &ctor_attr.attr,
  4009. &aliases_attr.attr,
  4010. &align_attr.attr,
  4011. &hwcache_align_attr.attr,
  4012. &reclaim_account_attr.attr,
  4013. &destroy_by_rcu_attr.attr,
  4014. &shrink_attr.attr,
  4015. &reserved_attr.attr,
  4016. #ifdef CONFIG_SLUB_DEBUG
  4017. &total_objects_attr.attr,
  4018. &slabs_attr.attr,
  4019. &sanity_checks_attr.attr,
  4020. &trace_attr.attr,
  4021. &red_zone_attr.attr,
  4022. &poison_attr.attr,
  4023. &store_user_attr.attr,
  4024. &validate_attr.attr,
  4025. &alloc_calls_attr.attr,
  4026. &free_calls_attr.attr,
  4027. #endif
  4028. #ifdef CONFIG_ZONE_DMA
  4029. &cache_dma_attr.attr,
  4030. #endif
  4031. #ifdef CONFIG_NUMA
  4032. &remote_node_defrag_ratio_attr.attr,
  4033. #endif
  4034. #ifdef CONFIG_SLUB_STATS
  4035. &alloc_fastpath_attr.attr,
  4036. &alloc_slowpath_attr.attr,
  4037. &free_fastpath_attr.attr,
  4038. &free_slowpath_attr.attr,
  4039. &free_frozen_attr.attr,
  4040. &free_add_partial_attr.attr,
  4041. &free_remove_partial_attr.attr,
  4042. &alloc_from_partial_attr.attr,
  4043. &alloc_slab_attr.attr,
  4044. &alloc_refill_attr.attr,
  4045. &alloc_node_mismatch_attr.attr,
  4046. &free_slab_attr.attr,
  4047. &cpuslab_flush_attr.attr,
  4048. &deactivate_full_attr.attr,
  4049. &deactivate_empty_attr.attr,
  4050. &deactivate_to_head_attr.attr,
  4051. &deactivate_to_tail_attr.attr,
  4052. &deactivate_remote_frees_attr.attr,
  4053. &deactivate_bypass_attr.attr,
  4054. &order_fallback_attr.attr,
  4055. &cmpxchg_double_fail_attr.attr,
  4056. &cmpxchg_double_cpu_fail_attr.attr,
  4057. #endif
  4058. #ifdef CONFIG_FAILSLAB
  4059. &failslab_attr.attr,
  4060. #endif
  4061. NULL
  4062. };
  4063. static struct attribute_group slab_attr_group = {
  4064. .attrs = slab_attrs,
  4065. };
  4066. static ssize_t slab_attr_show(struct kobject *kobj,
  4067. struct attribute *attr,
  4068. char *buf)
  4069. {
  4070. struct slab_attribute *attribute;
  4071. struct kmem_cache *s;
  4072. int err;
  4073. attribute = to_slab_attr(attr);
  4074. s = to_slab(kobj);
  4075. if (!attribute->show)
  4076. return -EIO;
  4077. err = attribute->show(s, buf);
  4078. return err;
  4079. }
  4080. static ssize_t slab_attr_store(struct kobject *kobj,
  4081. struct attribute *attr,
  4082. const char *buf, size_t len)
  4083. {
  4084. struct slab_attribute *attribute;
  4085. struct kmem_cache *s;
  4086. int err;
  4087. attribute = to_slab_attr(attr);
  4088. s = to_slab(kobj);
  4089. if (!attribute->store)
  4090. return -EIO;
  4091. err = attribute->store(s, buf, len);
  4092. return err;
  4093. }
  4094. static void kmem_cache_release(struct kobject *kobj)
  4095. {
  4096. struct kmem_cache *s = to_slab(kobj);
  4097. kfree(s->name);
  4098. kfree(s);
  4099. }
  4100. static const struct sysfs_ops slab_sysfs_ops = {
  4101. .show = slab_attr_show,
  4102. .store = slab_attr_store,
  4103. };
  4104. static struct kobj_type slab_ktype = {
  4105. .sysfs_ops = &slab_sysfs_ops,
  4106. .release = kmem_cache_release
  4107. };
  4108. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4109. {
  4110. struct kobj_type *ktype = get_ktype(kobj);
  4111. if (ktype == &slab_ktype)
  4112. return 1;
  4113. return 0;
  4114. }
  4115. static const struct kset_uevent_ops slab_uevent_ops = {
  4116. .filter = uevent_filter,
  4117. };
  4118. static struct kset *slab_kset;
  4119. #define ID_STR_LENGTH 64
  4120. /* Create a unique string id for a slab cache:
  4121. *
  4122. * Format :[flags-]size
  4123. */
  4124. static char *create_unique_id(struct kmem_cache *s)
  4125. {
  4126. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4127. char *p = name;
  4128. BUG_ON(!name);
  4129. *p++ = ':';
  4130. /*
  4131. * First flags affecting slabcache operations. We will only
  4132. * get here for aliasable slabs so we do not need to support
  4133. * too many flags. The flags here must cover all flags that
  4134. * are matched during merging to guarantee that the id is
  4135. * unique.
  4136. */
  4137. if (s->flags & SLAB_CACHE_DMA)
  4138. *p++ = 'd';
  4139. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4140. *p++ = 'a';
  4141. if (s->flags & SLAB_DEBUG_FREE)
  4142. *p++ = 'F';
  4143. if (!(s->flags & SLAB_NOTRACK))
  4144. *p++ = 't';
  4145. if (p != name + 1)
  4146. *p++ = '-';
  4147. p += sprintf(p, "%07d", s->size);
  4148. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4149. return name;
  4150. }
  4151. static int sysfs_slab_add(struct kmem_cache *s)
  4152. {
  4153. int err;
  4154. const char *name;
  4155. int unmergeable;
  4156. if (slab_state < SYSFS)
  4157. /* Defer until later */
  4158. return 0;
  4159. unmergeable = slab_unmergeable(s);
  4160. if (unmergeable) {
  4161. /*
  4162. * Slabcache can never be merged so we can use the name proper.
  4163. * This is typically the case for debug situations. In that
  4164. * case we can catch duplicate names easily.
  4165. */
  4166. sysfs_remove_link(&slab_kset->kobj, s->name);
  4167. name = s->name;
  4168. } else {
  4169. /*
  4170. * Create a unique name for the slab as a target
  4171. * for the symlinks.
  4172. */
  4173. name = create_unique_id(s);
  4174. }
  4175. s->kobj.kset = slab_kset;
  4176. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4177. if (err) {
  4178. kobject_put(&s->kobj);
  4179. return err;
  4180. }
  4181. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4182. if (err) {
  4183. kobject_del(&s->kobj);
  4184. kobject_put(&s->kobj);
  4185. return err;
  4186. }
  4187. kobject_uevent(&s->kobj, KOBJ_ADD);
  4188. if (!unmergeable) {
  4189. /* Setup first alias */
  4190. sysfs_slab_alias(s, s->name);
  4191. kfree(name);
  4192. }
  4193. return 0;
  4194. }
  4195. static void sysfs_slab_remove(struct kmem_cache *s)
  4196. {
  4197. if (slab_state < SYSFS)
  4198. /*
  4199. * Sysfs has not been setup yet so no need to remove the
  4200. * cache from sysfs.
  4201. */
  4202. return;
  4203. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4204. kobject_del(&s->kobj);
  4205. kobject_put(&s->kobj);
  4206. }
  4207. /*
  4208. * Need to buffer aliases during bootup until sysfs becomes
  4209. * available lest we lose that information.
  4210. */
  4211. struct saved_alias {
  4212. struct kmem_cache *s;
  4213. const char *name;
  4214. struct saved_alias *next;
  4215. };
  4216. static struct saved_alias *alias_list;
  4217. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4218. {
  4219. struct saved_alias *al;
  4220. if (slab_state == SYSFS) {
  4221. /*
  4222. * If we have a leftover link then remove it.
  4223. */
  4224. sysfs_remove_link(&slab_kset->kobj, name);
  4225. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4226. }
  4227. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4228. if (!al)
  4229. return -ENOMEM;
  4230. al->s = s;
  4231. al->name = name;
  4232. al->next = alias_list;
  4233. alias_list = al;
  4234. return 0;
  4235. }
  4236. static int __init slab_sysfs_init(void)
  4237. {
  4238. struct kmem_cache *s;
  4239. int err;
  4240. down_write(&slub_lock);
  4241. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4242. if (!slab_kset) {
  4243. up_write(&slub_lock);
  4244. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4245. return -ENOSYS;
  4246. }
  4247. slab_state = SYSFS;
  4248. list_for_each_entry(s, &slab_caches, list) {
  4249. err = sysfs_slab_add(s);
  4250. if (err)
  4251. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4252. " to sysfs\n", s->name);
  4253. }
  4254. while (alias_list) {
  4255. struct saved_alias *al = alias_list;
  4256. alias_list = alias_list->next;
  4257. err = sysfs_slab_alias(al->s, al->name);
  4258. if (err)
  4259. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4260. " %s to sysfs\n", s->name);
  4261. kfree(al);
  4262. }
  4263. up_write(&slub_lock);
  4264. resiliency_test();
  4265. return 0;
  4266. }
  4267. __initcall(slab_sysfs_init);
  4268. #endif /* CONFIG_SYSFS */
  4269. /*
  4270. * The /proc/slabinfo ABI
  4271. */
  4272. #ifdef CONFIG_SLABINFO
  4273. static void print_slabinfo_header(struct seq_file *m)
  4274. {
  4275. seq_puts(m, "slabinfo - version: 2.1\n");
  4276. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4277. "<objperslab> <pagesperslab>");
  4278. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4279. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4280. seq_putc(m, '\n');
  4281. }
  4282. static void *s_start(struct seq_file *m, loff_t *pos)
  4283. {
  4284. loff_t n = *pos;
  4285. down_read(&slub_lock);
  4286. if (!n)
  4287. print_slabinfo_header(m);
  4288. return seq_list_start(&slab_caches, *pos);
  4289. }
  4290. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4291. {
  4292. return seq_list_next(p, &slab_caches, pos);
  4293. }
  4294. static void s_stop(struct seq_file *m, void *p)
  4295. {
  4296. up_read(&slub_lock);
  4297. }
  4298. static int s_show(struct seq_file *m, void *p)
  4299. {
  4300. unsigned long nr_partials = 0;
  4301. unsigned long nr_slabs = 0;
  4302. unsigned long nr_inuse = 0;
  4303. unsigned long nr_objs = 0;
  4304. unsigned long nr_free = 0;
  4305. struct kmem_cache *s;
  4306. int node;
  4307. s = list_entry(p, struct kmem_cache, list);
  4308. for_each_online_node(node) {
  4309. struct kmem_cache_node *n = get_node(s, node);
  4310. if (!n)
  4311. continue;
  4312. nr_partials += n->nr_partial;
  4313. nr_slabs += atomic_long_read(&n->nr_slabs);
  4314. nr_objs += atomic_long_read(&n->total_objects);
  4315. nr_free += count_partial(n, count_free);
  4316. }
  4317. nr_inuse = nr_objs - nr_free;
  4318. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4319. nr_objs, s->size, oo_objects(s->oo),
  4320. (1 << oo_order(s->oo)));
  4321. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4322. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4323. 0UL);
  4324. seq_putc(m, '\n');
  4325. return 0;
  4326. }
  4327. static const struct seq_operations slabinfo_op = {
  4328. .start = s_start,
  4329. .next = s_next,
  4330. .stop = s_stop,
  4331. .show = s_show,
  4332. };
  4333. static int slabinfo_open(struct inode *inode, struct file *file)
  4334. {
  4335. return seq_open(file, &slabinfo_op);
  4336. }
  4337. static const struct file_operations proc_slabinfo_operations = {
  4338. .open = slabinfo_open,
  4339. .read = seq_read,
  4340. .llseek = seq_lseek,
  4341. .release = seq_release,
  4342. };
  4343. static int __init slab_proc_init(void)
  4344. {
  4345. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  4346. return 0;
  4347. }
  4348. module_init(slab_proc_init);
  4349. #endif /* CONFIG_SLABINFO */