slub.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. /*
  23. * Lock order:
  24. * 1. slab_lock(page)
  25. * 2. slab->list_lock
  26. *
  27. * The slab_lock protects operations on the object of a particular
  28. * slab and its metadata in the page struct. If the slab lock
  29. * has been taken then no allocations nor frees can be performed
  30. * on the objects in the slab nor can the slab be added or removed
  31. * from the partial or full lists since this would mean modifying
  32. * the page_struct of the slab.
  33. *
  34. * The list_lock protects the partial and full list on each node and
  35. * the partial slab counter. If taken then no new slabs may be added or
  36. * removed from the lists nor make the number of partial slabs be modified.
  37. * (Note that the total number of slabs is an atomic value that may be
  38. * modified without taking the list lock).
  39. *
  40. * The list_lock is a centralized lock and thus we avoid taking it as
  41. * much as possible. As long as SLUB does not have to handle partial
  42. * slabs, operations can continue without any centralized lock. F.e.
  43. * allocating a long series of objects that fill up slabs does not require
  44. * the list lock.
  45. *
  46. * The lock order is sometimes inverted when we are trying to get a slab
  47. * off a list. We take the list_lock and then look for a page on the list
  48. * to use. While we do that objects in the slabs may be freed. We can
  49. * only operate on the slab if we have also taken the slab_lock. So we use
  50. * a slab_trylock() on the slab. If trylock was successful then no frees
  51. * can occur anymore and we can use the slab for allocations etc. If the
  52. * slab_trylock() does not succeed then frees are in progress in the slab and
  53. * we must stay away from it for a while since we may cause a bouncing
  54. * cacheline if we try to acquire the lock. So go onto the next slab.
  55. * If all pages are busy then we may allocate a new slab instead of reusing
  56. * a partial slab. A new slab has noone operating on it and thus there is
  57. * no danger of cacheline contention.
  58. *
  59. * Interrupts are disabled during allocation and deallocation in order to
  60. * make the slab allocator safe to use in the context of an irq. In addition
  61. * interrupts are disabled to ensure that the processor does not change
  62. * while handling per_cpu slabs, due to kernel preemption.
  63. *
  64. * SLUB assigns one slab for allocation to each processor.
  65. * Allocations only occur from these slabs called cpu slabs.
  66. *
  67. * Slabs with free elements are kept on a partial list and during regular
  68. * operations no list for full slabs is used. If an object in a full slab is
  69. * freed then the slab will show up again on the partial lists.
  70. * We track full slabs for debugging purposes though because otherwise we
  71. * cannot scan all objects.
  72. *
  73. * Slabs are freed when they become empty. Teardown and setup is
  74. * minimal so we rely on the page allocators per cpu caches for
  75. * fast frees and allocs.
  76. *
  77. * Overloading of page flags that are otherwise used for LRU management.
  78. *
  79. * PageActive The slab is frozen and exempt from list processing.
  80. * This means that the slab is dedicated to a purpose
  81. * such as satisfying allocations for a specific
  82. * processor. Objects may be freed in the slab while
  83. * it is frozen but slab_free will then skip the usual
  84. * list operations. It is up to the processor holding
  85. * the slab to integrate the slab into the slab lists
  86. * when the slab is no longer needed.
  87. *
  88. * One use of this flag is to mark slabs that are
  89. * used for allocations. Then such a slab becomes a cpu
  90. * slab. The cpu slab may be equipped with an additional
  91. * lockless_freelist that allows lockless access to
  92. * free objects in addition to the regular freelist
  93. * that requires the slab lock.
  94. *
  95. * PageError Slab requires special handling due to debug
  96. * options set. This moves slab handling out of
  97. * the fast path and disables lockless freelists.
  98. */
  99. #define FROZEN (1 << PG_active)
  100. #ifdef CONFIG_SLUB_DEBUG
  101. #define SLABDEBUG (1 << PG_error)
  102. #else
  103. #define SLABDEBUG 0
  104. #endif
  105. static inline int SlabFrozen(struct page *page)
  106. {
  107. return page->flags & FROZEN;
  108. }
  109. static inline void SetSlabFrozen(struct page *page)
  110. {
  111. page->flags |= FROZEN;
  112. }
  113. static inline void ClearSlabFrozen(struct page *page)
  114. {
  115. page->flags &= ~FROZEN;
  116. }
  117. static inline int SlabDebug(struct page *page)
  118. {
  119. return page->flags & SLABDEBUG;
  120. }
  121. static inline void SetSlabDebug(struct page *page)
  122. {
  123. page->flags |= SLABDEBUG;
  124. }
  125. static inline void ClearSlabDebug(struct page *page)
  126. {
  127. page->flags &= ~SLABDEBUG;
  128. }
  129. /*
  130. * Issues still to be resolved:
  131. *
  132. * - The per cpu array is updated for each new slab and and is a remote
  133. * cacheline for most nodes. This could become a bouncing cacheline given
  134. * enough frequent updates. There are 16 pointers in a cacheline, so at
  135. * max 16 cpus could compete for the cacheline which may be okay.
  136. *
  137. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  138. *
  139. * - Variable sizing of the per node arrays
  140. */
  141. /* Enable to test recovery from slab corruption on boot */
  142. #undef SLUB_RESILIENCY_TEST
  143. #if PAGE_SHIFT <= 12
  144. /*
  145. * Small page size. Make sure that we do not fragment memory
  146. */
  147. #define DEFAULT_MAX_ORDER 1
  148. #define DEFAULT_MIN_OBJECTS 4
  149. #else
  150. /*
  151. * Large page machines are customarily able to handle larger
  152. * page orders.
  153. */
  154. #define DEFAULT_MAX_ORDER 2
  155. #define DEFAULT_MIN_OBJECTS 8
  156. #endif
  157. /*
  158. * Mininum number of partial slabs. These will be left on the partial
  159. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  160. */
  161. #define MIN_PARTIAL 2
  162. /*
  163. * Maximum number of desirable partial slabs.
  164. * The existence of more partial slabs makes kmem_cache_shrink
  165. * sort the partial list by the number of objects in the.
  166. */
  167. #define MAX_PARTIAL 10
  168. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_STORE_USER)
  170. /*
  171. * Set of flags that will prevent slab merging
  172. */
  173. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  174. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  175. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  176. SLAB_CACHE_DMA)
  177. #ifndef ARCH_KMALLOC_MINALIGN
  178. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  179. #endif
  180. #ifndef ARCH_SLAB_MINALIGN
  181. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  182. #endif
  183. /*
  184. * The page->inuse field is 16 bit thus we have this limitation
  185. */
  186. #define MAX_OBJECTS_PER_SLAB 65535
  187. /* Internal SLUB flags */
  188. #define __OBJECT_POISON 0x80000000 /* Poison object */
  189. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  190. /* Not all arches define cache_line_size */
  191. #ifndef cache_line_size
  192. #define cache_line_size() L1_CACHE_BYTES
  193. #endif
  194. static int kmem_size = sizeof(struct kmem_cache);
  195. #ifdef CONFIG_SMP
  196. static struct notifier_block slab_notifier;
  197. #endif
  198. static enum {
  199. DOWN, /* No slab functionality available */
  200. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  201. UP, /* Everything works but does not show up in sysfs */
  202. SYSFS /* Sysfs up */
  203. } slab_state = DOWN;
  204. /* A list of all slab caches on the system */
  205. static DECLARE_RWSEM(slub_lock);
  206. static LIST_HEAD(slab_caches);
  207. /*
  208. * Tracking user of a slab.
  209. */
  210. struct track {
  211. void *addr; /* Called from address */
  212. int cpu; /* Was running on cpu */
  213. int pid; /* Pid context */
  214. unsigned long when; /* When did the operation occur */
  215. };
  216. enum track_item { TRACK_ALLOC, TRACK_FREE };
  217. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  218. static int sysfs_slab_add(struct kmem_cache *);
  219. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  220. static void sysfs_slab_remove(struct kmem_cache *);
  221. #else
  222. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  223. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  224. { return 0; }
  225. static inline void sysfs_slab_remove(struct kmem_cache *s) {}
  226. #endif
  227. /********************************************************************
  228. * Core slab cache functions
  229. *******************************************************************/
  230. int slab_is_available(void)
  231. {
  232. return slab_state >= UP;
  233. }
  234. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  235. {
  236. #ifdef CONFIG_NUMA
  237. return s->node[node];
  238. #else
  239. return &s->local_node;
  240. #endif
  241. }
  242. static inline int check_valid_pointer(struct kmem_cache *s,
  243. struct page *page, const void *object)
  244. {
  245. void *base;
  246. if (!object)
  247. return 1;
  248. base = page_address(page);
  249. if (object < base || object >= base + s->objects * s->size ||
  250. (object - base) % s->size) {
  251. return 0;
  252. }
  253. return 1;
  254. }
  255. /*
  256. * Slow version of get and set free pointer.
  257. *
  258. * This version requires touching the cache lines of kmem_cache which
  259. * we avoid to do in the fast alloc free paths. There we obtain the offset
  260. * from the page struct.
  261. */
  262. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  263. {
  264. return *(void **)(object + s->offset);
  265. }
  266. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  267. {
  268. *(void **)(object + s->offset) = fp;
  269. }
  270. /* Loop over all objects in a slab */
  271. #define for_each_object(__p, __s, __addr) \
  272. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  273. __p += (__s)->size)
  274. /* Scan freelist */
  275. #define for_each_free_object(__p, __s, __free) \
  276. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  277. /* Determine object index from a given position */
  278. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  279. {
  280. return (p - addr) / s->size;
  281. }
  282. #ifdef CONFIG_SLUB_DEBUG
  283. /*
  284. * Debug settings:
  285. */
  286. #ifdef CONFIG_SLUB_DEBUG_ON
  287. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  288. #else
  289. static int slub_debug;
  290. #endif
  291. static char *slub_debug_slabs;
  292. /*
  293. * Object debugging
  294. */
  295. static void print_section(char *text, u8 *addr, unsigned int length)
  296. {
  297. int i, offset;
  298. int newline = 1;
  299. char ascii[17];
  300. ascii[16] = 0;
  301. for (i = 0; i < length; i++) {
  302. if (newline) {
  303. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  304. newline = 0;
  305. }
  306. printk(" %02x", addr[i]);
  307. offset = i % 16;
  308. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  309. if (offset == 15) {
  310. printk(" %s\n",ascii);
  311. newline = 1;
  312. }
  313. }
  314. if (!newline) {
  315. i %= 16;
  316. while (i < 16) {
  317. printk(" ");
  318. ascii[i] = ' ';
  319. i++;
  320. }
  321. printk(" %s\n", ascii);
  322. }
  323. }
  324. static struct track *get_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. return p + alloc;
  333. }
  334. static void set_track(struct kmem_cache *s, void *object,
  335. enum track_item alloc, void *addr)
  336. {
  337. struct track *p;
  338. if (s->offset)
  339. p = object + s->offset + sizeof(void *);
  340. else
  341. p = object + s->inuse;
  342. p += alloc;
  343. if (addr) {
  344. p->addr = addr;
  345. p->cpu = smp_processor_id();
  346. p->pid = current ? current->pid : -1;
  347. p->when = jiffies;
  348. } else
  349. memset(p, 0, sizeof(struct track));
  350. }
  351. static void init_tracking(struct kmem_cache *s, void *object)
  352. {
  353. if (!(s->flags & SLAB_STORE_USER))
  354. return;
  355. set_track(s, object, TRACK_FREE, NULL);
  356. set_track(s, object, TRACK_ALLOC, NULL);
  357. }
  358. static void print_track(const char *s, struct track *t)
  359. {
  360. if (!t->addr)
  361. return;
  362. printk(KERN_ERR "INFO: %s in ", s);
  363. __print_symbol("%s", (unsigned long)t->addr);
  364. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  365. }
  366. static void print_tracking(struct kmem_cache *s, void *object)
  367. {
  368. if (!(s->flags & SLAB_STORE_USER))
  369. return;
  370. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  371. print_track("Freed", get_track(s, object, TRACK_FREE));
  372. }
  373. static void print_page_info(struct page *page)
  374. {
  375. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  376. page, page->inuse, page->freelist, page->flags);
  377. }
  378. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  379. {
  380. va_list args;
  381. char buf[100];
  382. va_start(args, fmt);
  383. vsnprintf(buf, sizeof(buf), fmt, args);
  384. va_end(args);
  385. printk(KERN_ERR "========================================"
  386. "=====================================\n");
  387. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  388. printk(KERN_ERR "----------------------------------------"
  389. "-------------------------------------\n\n");
  390. }
  391. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  392. {
  393. va_list args;
  394. char buf[100];
  395. va_start(args, fmt);
  396. vsnprintf(buf, sizeof(buf), fmt, args);
  397. va_end(args);
  398. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  399. }
  400. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  401. {
  402. unsigned int off; /* Offset of last byte */
  403. u8 *addr = page_address(page);
  404. print_tracking(s, p);
  405. print_page_info(page);
  406. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  407. p, p - addr, get_freepointer(s, p));
  408. if (p > addr + 16)
  409. print_section("Bytes b4", p - 16, 16);
  410. print_section("Object", p, min(s->objsize, 128));
  411. if (s->flags & SLAB_RED_ZONE)
  412. print_section("Redzone", p + s->objsize,
  413. s->inuse - s->objsize);
  414. if (s->offset)
  415. off = s->offset + sizeof(void *);
  416. else
  417. off = s->inuse;
  418. if (s->flags & SLAB_STORE_USER)
  419. off += 2 * sizeof(struct track);
  420. if (off != s->size)
  421. /* Beginning of the filler is the free pointer */
  422. print_section("Padding", p + off, s->size - off);
  423. dump_stack();
  424. }
  425. static void object_err(struct kmem_cache *s, struct page *page,
  426. u8 *object, char *reason)
  427. {
  428. slab_bug(s, reason);
  429. print_trailer(s, page, object);
  430. }
  431. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  432. {
  433. va_list args;
  434. char buf[100];
  435. va_start(args, fmt);
  436. vsnprintf(buf, sizeof(buf), fmt, args);
  437. va_end(args);
  438. slab_bug(s, fmt);
  439. print_page_info(page);
  440. dump_stack();
  441. }
  442. static void init_object(struct kmem_cache *s, void *object, int active)
  443. {
  444. u8 *p = object;
  445. if (s->flags & __OBJECT_POISON) {
  446. memset(p, POISON_FREE, s->objsize - 1);
  447. p[s->objsize -1] = POISON_END;
  448. }
  449. if (s->flags & SLAB_RED_ZONE)
  450. memset(p + s->objsize,
  451. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  452. s->inuse - s->objsize);
  453. }
  454. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  455. {
  456. while (bytes) {
  457. if (*start != (u8)value)
  458. return start;
  459. start++;
  460. bytes--;
  461. }
  462. return NULL;
  463. }
  464. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  465. void *from, void *to)
  466. {
  467. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  468. memset(from, data, to - from);
  469. }
  470. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  471. u8 *object, char *what,
  472. u8* start, unsigned int value, unsigned int bytes)
  473. {
  474. u8 *fault;
  475. u8 *end;
  476. fault = check_bytes(start, value, bytes);
  477. if (!fault)
  478. return 1;
  479. end = start + bytes;
  480. while (end > fault && end[-1] == value)
  481. end--;
  482. slab_bug(s, "%s overwritten", what);
  483. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  484. fault, end - 1, fault[0], value);
  485. print_trailer(s, page, object);
  486. restore_bytes(s, what, value, fault, end);
  487. return 0;
  488. }
  489. /*
  490. * Object layout:
  491. *
  492. * object address
  493. * Bytes of the object to be managed.
  494. * If the freepointer may overlay the object then the free
  495. * pointer is the first word of the object.
  496. *
  497. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  498. * 0xa5 (POISON_END)
  499. *
  500. * object + s->objsize
  501. * Padding to reach word boundary. This is also used for Redzoning.
  502. * Padding is extended by another word if Redzoning is enabled and
  503. * objsize == inuse.
  504. *
  505. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  506. * 0xcc (RED_ACTIVE) for objects in use.
  507. *
  508. * object + s->inuse
  509. * Meta data starts here.
  510. *
  511. * A. Free pointer (if we cannot overwrite object on free)
  512. * B. Tracking data for SLAB_STORE_USER
  513. * C. Padding to reach required alignment boundary or at mininum
  514. * one word if debuggin is on to be able to detect writes
  515. * before the word boundary.
  516. *
  517. * Padding is done using 0x5a (POISON_INUSE)
  518. *
  519. * object + s->size
  520. * Nothing is used beyond s->size.
  521. *
  522. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  523. * ignored. And therefore no slab options that rely on these boundaries
  524. * may be used with merged slabcaches.
  525. */
  526. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  527. {
  528. unsigned long off = s->inuse; /* The end of info */
  529. if (s->offset)
  530. /* Freepointer is placed after the object. */
  531. off += sizeof(void *);
  532. if (s->flags & SLAB_STORE_USER)
  533. /* We also have user information there */
  534. off += 2 * sizeof(struct track);
  535. if (s->size == off)
  536. return 1;
  537. return check_bytes_and_report(s, page, p, "Object padding",
  538. p + off, POISON_INUSE, s->size - off);
  539. }
  540. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  541. {
  542. u8 *start;
  543. u8 *fault;
  544. u8 *end;
  545. int length;
  546. int remainder;
  547. if (!(s->flags & SLAB_POISON))
  548. return 1;
  549. start = page_address(page);
  550. end = start + (PAGE_SIZE << s->order);
  551. length = s->objects * s->size;
  552. remainder = end - (start + length);
  553. if (!remainder)
  554. return 1;
  555. fault = check_bytes(start + length, POISON_INUSE, remainder);
  556. if (!fault)
  557. return 1;
  558. while (end > fault && end[-1] == POISON_INUSE)
  559. end--;
  560. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  561. print_section("Padding", start, length);
  562. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  563. return 0;
  564. }
  565. static int check_object(struct kmem_cache *s, struct page *page,
  566. void *object, int active)
  567. {
  568. u8 *p = object;
  569. u8 *endobject = object + s->objsize;
  570. if (s->flags & SLAB_RED_ZONE) {
  571. unsigned int red =
  572. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  573. if (!check_bytes_and_report(s, page, object, "Redzone",
  574. endobject, red, s->inuse - s->objsize))
  575. return 0;
  576. } else {
  577. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
  578. check_bytes_and_report(s, page, p, "Alignment padding", endobject,
  579. POISON_INUSE, s->inuse - s->objsize);
  580. }
  581. if (s->flags & SLAB_POISON) {
  582. if (!active && (s->flags & __OBJECT_POISON) &&
  583. (!check_bytes_and_report(s, page, p, "Poison", p,
  584. POISON_FREE, s->objsize - 1) ||
  585. !check_bytes_and_report(s, page, p, "Poison",
  586. p + s->objsize -1, POISON_END, 1)))
  587. return 0;
  588. /*
  589. * check_pad_bytes cleans up on its own.
  590. */
  591. check_pad_bytes(s, page, p);
  592. }
  593. if (!s->offset && active)
  594. /*
  595. * Object and freepointer overlap. Cannot check
  596. * freepointer while object is allocated.
  597. */
  598. return 1;
  599. /* Check free pointer validity */
  600. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  601. object_err(s, page, p, "Freepointer corrupt");
  602. /*
  603. * No choice but to zap it and thus loose the remainder
  604. * of the free objects in this slab. May cause
  605. * another error because the object count is now wrong.
  606. */
  607. set_freepointer(s, p, NULL);
  608. return 0;
  609. }
  610. return 1;
  611. }
  612. static int check_slab(struct kmem_cache *s, struct page *page)
  613. {
  614. VM_BUG_ON(!irqs_disabled());
  615. if (!PageSlab(page)) {
  616. slab_err(s, page, "Not a valid slab page");
  617. return 0;
  618. }
  619. if (page->offset * sizeof(void *) != s->offset) {
  620. slab_err(s, page, "Corrupted offset %lu",
  621. (unsigned long)(page->offset * sizeof(void *)));
  622. return 0;
  623. }
  624. if (page->inuse > s->objects) {
  625. slab_err(s, page, "inuse %u > max %u",
  626. s->name, page->inuse, s->objects);
  627. return 0;
  628. }
  629. /* Slab_pad_check fixes things up after itself */
  630. slab_pad_check(s, page);
  631. return 1;
  632. }
  633. /*
  634. * Determine if a certain object on a page is on the freelist. Must hold the
  635. * slab lock to guarantee that the chains are in a consistent state.
  636. */
  637. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  638. {
  639. int nr = 0;
  640. void *fp = page->freelist;
  641. void *object = NULL;
  642. while (fp && nr <= s->objects) {
  643. if (fp == search)
  644. return 1;
  645. if (!check_valid_pointer(s, page, fp)) {
  646. if (object) {
  647. object_err(s, page, object,
  648. "Freechain corrupt");
  649. set_freepointer(s, object, NULL);
  650. break;
  651. } else {
  652. slab_err(s, page, "Freepointer corrupt");
  653. page->freelist = NULL;
  654. page->inuse = s->objects;
  655. slab_fix(s, "Freelist cleared");
  656. return 0;
  657. }
  658. break;
  659. }
  660. object = fp;
  661. fp = get_freepointer(s, object);
  662. nr++;
  663. }
  664. if (page->inuse != s->objects - nr) {
  665. slab_err(s, page, "Wrong object count. Counter is %d but "
  666. "counted were %d", page->inuse, s->objects - nr);
  667. page->inuse = s->objects - nr;
  668. slab_fix(s, "Object count adjusted.");
  669. }
  670. return search == NULL;
  671. }
  672. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  673. {
  674. if (s->flags & SLAB_TRACE) {
  675. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  676. s->name,
  677. alloc ? "alloc" : "free",
  678. object, page->inuse,
  679. page->freelist);
  680. if (!alloc)
  681. print_section("Object", (void *)object, s->objsize);
  682. dump_stack();
  683. }
  684. }
  685. /*
  686. * Tracking of fully allocated slabs for debugging purposes.
  687. */
  688. static void add_full(struct kmem_cache_node *n, struct page *page)
  689. {
  690. spin_lock(&n->list_lock);
  691. list_add(&page->lru, &n->full);
  692. spin_unlock(&n->list_lock);
  693. }
  694. static void remove_full(struct kmem_cache *s, struct page *page)
  695. {
  696. struct kmem_cache_node *n;
  697. if (!(s->flags & SLAB_STORE_USER))
  698. return;
  699. n = get_node(s, page_to_nid(page));
  700. spin_lock(&n->list_lock);
  701. list_del(&page->lru);
  702. spin_unlock(&n->list_lock);
  703. }
  704. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  705. void *object)
  706. {
  707. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  708. return;
  709. init_object(s, object, 0);
  710. init_tracking(s, object);
  711. }
  712. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  713. void *object, void *addr)
  714. {
  715. if (!check_slab(s, page))
  716. goto bad;
  717. if (object && !on_freelist(s, page, object)) {
  718. object_err(s, page, object, "Object already allocated");
  719. goto bad;
  720. }
  721. if (!check_valid_pointer(s, page, object)) {
  722. object_err(s, page, object, "Freelist Pointer check fails");
  723. goto bad;
  724. }
  725. if (object && !check_object(s, page, object, 0))
  726. goto bad;
  727. /* Success perform special debug activities for allocs */
  728. if (s->flags & SLAB_STORE_USER)
  729. set_track(s, object, TRACK_ALLOC, addr);
  730. trace(s, page, object, 1);
  731. init_object(s, object, 1);
  732. return 1;
  733. bad:
  734. if (PageSlab(page)) {
  735. /*
  736. * If this is a slab page then lets do the best we can
  737. * to avoid issues in the future. Marking all objects
  738. * as used avoids touching the remaining objects.
  739. */
  740. slab_fix(s, "Marking all objects used");
  741. page->inuse = s->objects;
  742. page->freelist = NULL;
  743. /* Fix up fields that may be corrupted */
  744. page->offset = s->offset / sizeof(void *);
  745. }
  746. return 0;
  747. }
  748. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  749. void *object, void *addr)
  750. {
  751. if (!check_slab(s, page))
  752. goto fail;
  753. if (!check_valid_pointer(s, page, object)) {
  754. slab_err(s, page, "Invalid object pointer 0x%p", object);
  755. goto fail;
  756. }
  757. if (on_freelist(s, page, object)) {
  758. object_err(s, page, object, "Object already free");
  759. goto fail;
  760. }
  761. if (!check_object(s, page, object, 1))
  762. return 0;
  763. if (unlikely(s != page->slab)) {
  764. if (!PageSlab(page))
  765. slab_err(s, page, "Attempt to free object(0x%p) "
  766. "outside of slab", object);
  767. else
  768. if (!page->slab) {
  769. printk(KERN_ERR
  770. "SLUB <none>: no slab for object 0x%p.\n",
  771. object);
  772. dump_stack();
  773. }
  774. else
  775. object_err(s, page, object,
  776. "page slab pointer corrupt.");
  777. goto fail;
  778. }
  779. /* Special debug activities for freeing objects */
  780. if (!SlabFrozen(page) && !page->freelist)
  781. remove_full(s, page);
  782. if (s->flags & SLAB_STORE_USER)
  783. set_track(s, object, TRACK_FREE, addr);
  784. trace(s, page, object, 0);
  785. init_object(s, object, 0);
  786. return 1;
  787. fail:
  788. slab_fix(s, "Object at 0x%p not freed", object);
  789. return 0;
  790. }
  791. static int __init setup_slub_debug(char *str)
  792. {
  793. slub_debug = DEBUG_DEFAULT_FLAGS;
  794. if (*str++ != '=' || !*str)
  795. /*
  796. * No options specified. Switch on full debugging.
  797. */
  798. goto out;
  799. if (*str == ',')
  800. /*
  801. * No options but restriction on slabs. This means full
  802. * debugging for slabs matching a pattern.
  803. */
  804. goto check_slabs;
  805. slub_debug = 0;
  806. if (*str == '-')
  807. /*
  808. * Switch off all debugging measures.
  809. */
  810. goto out;
  811. /*
  812. * Determine which debug features should be switched on
  813. */
  814. for ( ;*str && *str != ','; str++) {
  815. switch (tolower(*str)) {
  816. case 'f':
  817. slub_debug |= SLAB_DEBUG_FREE;
  818. break;
  819. case 'z':
  820. slub_debug |= SLAB_RED_ZONE;
  821. break;
  822. case 'p':
  823. slub_debug |= SLAB_POISON;
  824. break;
  825. case 'u':
  826. slub_debug |= SLAB_STORE_USER;
  827. break;
  828. case 't':
  829. slub_debug |= SLAB_TRACE;
  830. break;
  831. default:
  832. printk(KERN_ERR "slub_debug option '%c' "
  833. "unknown. skipped\n",*str);
  834. }
  835. }
  836. check_slabs:
  837. if (*str == ',')
  838. slub_debug_slabs = str + 1;
  839. out:
  840. return 1;
  841. }
  842. __setup("slub_debug", setup_slub_debug);
  843. static void kmem_cache_open_debug_check(struct kmem_cache *s)
  844. {
  845. /*
  846. * The page->offset field is only 16 bit wide. This is an offset
  847. * in units of words from the beginning of an object. If the slab
  848. * size is bigger then we cannot move the free pointer behind the
  849. * object anymore.
  850. *
  851. * On 32 bit platforms the limit is 256k. On 64bit platforms
  852. * the limit is 512k.
  853. *
  854. * Debugging or ctor may create a need to move the free
  855. * pointer. Fail if this happens.
  856. */
  857. if (s->objsize >= 65535 * sizeof(void *)) {
  858. BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
  859. SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
  860. BUG_ON(s->ctor);
  861. }
  862. else
  863. /*
  864. * Enable debugging if selected on the kernel commandline.
  865. */
  866. if (slub_debug && (!slub_debug_slabs ||
  867. strncmp(slub_debug_slabs, s->name,
  868. strlen(slub_debug_slabs)) == 0))
  869. s->flags |= slub_debug;
  870. }
  871. #else
  872. static inline void setup_object_debug(struct kmem_cache *s,
  873. struct page *page, void *object) {}
  874. static inline int alloc_debug_processing(struct kmem_cache *s,
  875. struct page *page, void *object, void *addr) { return 0; }
  876. static inline int free_debug_processing(struct kmem_cache *s,
  877. struct page *page, void *object, void *addr) { return 0; }
  878. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  879. { return 1; }
  880. static inline int check_object(struct kmem_cache *s, struct page *page,
  881. void *object, int active) { return 1; }
  882. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  883. static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
  884. #define slub_debug 0
  885. #endif
  886. /*
  887. * Slab allocation and freeing
  888. */
  889. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  890. {
  891. struct page * page;
  892. int pages = 1 << s->order;
  893. if (s->order)
  894. flags |= __GFP_COMP;
  895. if (s->flags & SLAB_CACHE_DMA)
  896. flags |= SLUB_DMA;
  897. if (node == -1)
  898. page = alloc_pages(flags, s->order);
  899. else
  900. page = alloc_pages_node(node, flags, s->order);
  901. if (!page)
  902. return NULL;
  903. mod_zone_page_state(page_zone(page),
  904. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  905. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  906. pages);
  907. return page;
  908. }
  909. static void setup_object(struct kmem_cache *s, struct page *page,
  910. void *object)
  911. {
  912. setup_object_debug(s, page, object);
  913. if (unlikely(s->ctor))
  914. s->ctor(object, s, 0);
  915. }
  916. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  917. {
  918. struct page *page;
  919. struct kmem_cache_node *n;
  920. void *start;
  921. void *end;
  922. void *last;
  923. void *p;
  924. BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
  925. if (flags & __GFP_WAIT)
  926. local_irq_enable();
  927. page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
  928. if (!page)
  929. goto out;
  930. n = get_node(s, page_to_nid(page));
  931. if (n)
  932. atomic_long_inc(&n->nr_slabs);
  933. page->offset = s->offset / sizeof(void *);
  934. page->slab = s;
  935. page->flags |= 1 << PG_slab;
  936. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  937. SLAB_STORE_USER | SLAB_TRACE))
  938. SetSlabDebug(page);
  939. start = page_address(page);
  940. end = start + s->objects * s->size;
  941. if (unlikely(s->flags & SLAB_POISON))
  942. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  943. last = start;
  944. for_each_object(p, s, start) {
  945. setup_object(s, page, last);
  946. set_freepointer(s, last, p);
  947. last = p;
  948. }
  949. setup_object(s, page, last);
  950. set_freepointer(s, last, NULL);
  951. page->freelist = start;
  952. page->lockless_freelist = NULL;
  953. page->inuse = 0;
  954. out:
  955. if (flags & __GFP_WAIT)
  956. local_irq_disable();
  957. return page;
  958. }
  959. static void __free_slab(struct kmem_cache *s, struct page *page)
  960. {
  961. int pages = 1 << s->order;
  962. if (unlikely(SlabDebug(page))) {
  963. void *p;
  964. slab_pad_check(s, page);
  965. for_each_object(p, s, page_address(page))
  966. check_object(s, page, p, 0);
  967. ClearSlabDebug(page);
  968. }
  969. mod_zone_page_state(page_zone(page),
  970. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  971. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  972. - pages);
  973. page->mapping = NULL;
  974. __free_pages(page, s->order);
  975. }
  976. static void rcu_free_slab(struct rcu_head *h)
  977. {
  978. struct page *page;
  979. page = container_of((struct list_head *)h, struct page, lru);
  980. __free_slab(page->slab, page);
  981. }
  982. static void free_slab(struct kmem_cache *s, struct page *page)
  983. {
  984. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  985. /*
  986. * RCU free overloads the RCU head over the LRU
  987. */
  988. struct rcu_head *head = (void *)&page->lru;
  989. call_rcu(head, rcu_free_slab);
  990. } else
  991. __free_slab(s, page);
  992. }
  993. static void discard_slab(struct kmem_cache *s, struct page *page)
  994. {
  995. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  996. atomic_long_dec(&n->nr_slabs);
  997. reset_page_mapcount(page);
  998. __ClearPageSlab(page);
  999. free_slab(s, page);
  1000. }
  1001. /*
  1002. * Per slab locking using the pagelock
  1003. */
  1004. static __always_inline void slab_lock(struct page *page)
  1005. {
  1006. bit_spin_lock(PG_locked, &page->flags);
  1007. }
  1008. static __always_inline void slab_unlock(struct page *page)
  1009. {
  1010. bit_spin_unlock(PG_locked, &page->flags);
  1011. }
  1012. static __always_inline int slab_trylock(struct page *page)
  1013. {
  1014. int rc = 1;
  1015. rc = bit_spin_trylock(PG_locked, &page->flags);
  1016. return rc;
  1017. }
  1018. /*
  1019. * Management of partially allocated slabs
  1020. */
  1021. static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
  1022. {
  1023. spin_lock(&n->list_lock);
  1024. n->nr_partial++;
  1025. list_add_tail(&page->lru, &n->partial);
  1026. spin_unlock(&n->list_lock);
  1027. }
  1028. static void add_partial(struct kmem_cache_node *n, struct page *page)
  1029. {
  1030. spin_lock(&n->list_lock);
  1031. n->nr_partial++;
  1032. list_add(&page->lru, &n->partial);
  1033. spin_unlock(&n->list_lock);
  1034. }
  1035. static void remove_partial(struct kmem_cache *s,
  1036. struct page *page)
  1037. {
  1038. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1039. spin_lock(&n->list_lock);
  1040. list_del(&page->lru);
  1041. n->nr_partial--;
  1042. spin_unlock(&n->list_lock);
  1043. }
  1044. /*
  1045. * Lock slab and remove from the partial list.
  1046. *
  1047. * Must hold list_lock.
  1048. */
  1049. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1050. {
  1051. if (slab_trylock(page)) {
  1052. list_del(&page->lru);
  1053. n->nr_partial--;
  1054. SetSlabFrozen(page);
  1055. return 1;
  1056. }
  1057. return 0;
  1058. }
  1059. /*
  1060. * Try to allocate a partial slab from a specific node.
  1061. */
  1062. static struct page *get_partial_node(struct kmem_cache_node *n)
  1063. {
  1064. struct page *page;
  1065. /*
  1066. * Racy check. If we mistakenly see no partial slabs then we
  1067. * just allocate an empty slab. If we mistakenly try to get a
  1068. * partial slab and there is none available then get_partials()
  1069. * will return NULL.
  1070. */
  1071. if (!n || !n->nr_partial)
  1072. return NULL;
  1073. spin_lock(&n->list_lock);
  1074. list_for_each_entry(page, &n->partial, lru)
  1075. if (lock_and_freeze_slab(n, page))
  1076. goto out;
  1077. page = NULL;
  1078. out:
  1079. spin_unlock(&n->list_lock);
  1080. return page;
  1081. }
  1082. /*
  1083. * Get a page from somewhere. Search in increasing NUMA distances.
  1084. */
  1085. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1086. {
  1087. #ifdef CONFIG_NUMA
  1088. struct zonelist *zonelist;
  1089. struct zone **z;
  1090. struct page *page;
  1091. /*
  1092. * The defrag ratio allows a configuration of the tradeoffs between
  1093. * inter node defragmentation and node local allocations. A lower
  1094. * defrag_ratio increases the tendency to do local allocations
  1095. * instead of attempting to obtain partial slabs from other nodes.
  1096. *
  1097. * If the defrag_ratio is set to 0 then kmalloc() always
  1098. * returns node local objects. If the ratio is higher then kmalloc()
  1099. * may return off node objects because partial slabs are obtained
  1100. * from other nodes and filled up.
  1101. *
  1102. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1103. * defrag_ratio = 1000) then every (well almost) allocation will
  1104. * first attempt to defrag slab caches on other nodes. This means
  1105. * scanning over all nodes to look for partial slabs which may be
  1106. * expensive if we do it every time we are trying to find a slab
  1107. * with available objects.
  1108. */
  1109. if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
  1110. return NULL;
  1111. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  1112. ->node_zonelists[gfp_zone(flags)];
  1113. for (z = zonelist->zones; *z; z++) {
  1114. struct kmem_cache_node *n;
  1115. n = get_node(s, zone_to_nid(*z));
  1116. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1117. n->nr_partial > MIN_PARTIAL) {
  1118. page = get_partial_node(n);
  1119. if (page)
  1120. return page;
  1121. }
  1122. }
  1123. #endif
  1124. return NULL;
  1125. }
  1126. /*
  1127. * Get a partial page, lock it and return it.
  1128. */
  1129. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1130. {
  1131. struct page *page;
  1132. int searchnode = (node == -1) ? numa_node_id() : node;
  1133. page = get_partial_node(get_node(s, searchnode));
  1134. if (page || (flags & __GFP_THISNODE))
  1135. return page;
  1136. return get_any_partial(s, flags);
  1137. }
  1138. /*
  1139. * Move a page back to the lists.
  1140. *
  1141. * Must be called with the slab lock held.
  1142. *
  1143. * On exit the slab lock will have been dropped.
  1144. */
  1145. static void unfreeze_slab(struct kmem_cache *s, struct page *page)
  1146. {
  1147. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1148. ClearSlabFrozen(page);
  1149. if (page->inuse) {
  1150. if (page->freelist)
  1151. add_partial(n, page);
  1152. else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1153. add_full(n, page);
  1154. slab_unlock(page);
  1155. } else {
  1156. if (n->nr_partial < MIN_PARTIAL) {
  1157. /*
  1158. * Adding an empty slab to the partial slabs in order
  1159. * to avoid page allocator overhead. This slab needs
  1160. * to come after the other slabs with objects in
  1161. * order to fill them up. That way the size of the
  1162. * partial list stays small. kmem_cache_shrink can
  1163. * reclaim empty slabs from the partial list.
  1164. */
  1165. add_partial_tail(n, page);
  1166. slab_unlock(page);
  1167. } else {
  1168. slab_unlock(page);
  1169. discard_slab(s, page);
  1170. }
  1171. }
  1172. }
  1173. /*
  1174. * Remove the cpu slab
  1175. */
  1176. static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
  1177. {
  1178. /*
  1179. * Merge cpu freelist into freelist. Typically we get here
  1180. * because both freelists are empty. So this is unlikely
  1181. * to occur.
  1182. */
  1183. while (unlikely(page->lockless_freelist)) {
  1184. void **object;
  1185. /* Retrieve object from cpu_freelist */
  1186. object = page->lockless_freelist;
  1187. page->lockless_freelist = page->lockless_freelist[page->offset];
  1188. /* And put onto the regular freelist */
  1189. object[page->offset] = page->freelist;
  1190. page->freelist = object;
  1191. page->inuse--;
  1192. }
  1193. s->cpu_slab[cpu] = NULL;
  1194. unfreeze_slab(s, page);
  1195. }
  1196. static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
  1197. {
  1198. slab_lock(page);
  1199. deactivate_slab(s, page, cpu);
  1200. }
  1201. /*
  1202. * Flush cpu slab.
  1203. * Called from IPI handler with interrupts disabled.
  1204. */
  1205. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1206. {
  1207. struct page *page = s->cpu_slab[cpu];
  1208. if (likely(page))
  1209. flush_slab(s, page, cpu);
  1210. }
  1211. static void flush_cpu_slab(void *d)
  1212. {
  1213. struct kmem_cache *s = d;
  1214. int cpu = smp_processor_id();
  1215. __flush_cpu_slab(s, cpu);
  1216. }
  1217. static void flush_all(struct kmem_cache *s)
  1218. {
  1219. #ifdef CONFIG_SMP
  1220. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1221. #else
  1222. unsigned long flags;
  1223. local_irq_save(flags);
  1224. flush_cpu_slab(s);
  1225. local_irq_restore(flags);
  1226. #endif
  1227. }
  1228. /*
  1229. * Slow path. The lockless freelist is empty or we need to perform
  1230. * debugging duties.
  1231. *
  1232. * Interrupts are disabled.
  1233. *
  1234. * Processing is still very fast if new objects have been freed to the
  1235. * regular freelist. In that case we simply take over the regular freelist
  1236. * as the lockless freelist and zap the regular freelist.
  1237. *
  1238. * If that is not working then we fall back to the partial lists. We take the
  1239. * first element of the freelist as the object to allocate now and move the
  1240. * rest of the freelist to the lockless freelist.
  1241. *
  1242. * And if we were unable to get a new slab from the partial slab lists then
  1243. * we need to allocate a new slab. This is slowest path since we may sleep.
  1244. */
  1245. static void *__slab_alloc(struct kmem_cache *s,
  1246. gfp_t gfpflags, int node, void *addr, struct page *page)
  1247. {
  1248. void **object;
  1249. int cpu = smp_processor_id();
  1250. if (!page)
  1251. goto new_slab;
  1252. slab_lock(page);
  1253. if (unlikely(node != -1 && page_to_nid(page) != node))
  1254. goto another_slab;
  1255. load_freelist:
  1256. object = page->freelist;
  1257. if (unlikely(!object))
  1258. goto another_slab;
  1259. if (unlikely(SlabDebug(page)))
  1260. goto debug;
  1261. object = page->freelist;
  1262. page->lockless_freelist = object[page->offset];
  1263. page->inuse = s->objects;
  1264. page->freelist = NULL;
  1265. slab_unlock(page);
  1266. return object;
  1267. another_slab:
  1268. deactivate_slab(s, page, cpu);
  1269. new_slab:
  1270. page = get_partial(s, gfpflags, node);
  1271. if (page) {
  1272. s->cpu_slab[cpu] = page;
  1273. goto load_freelist;
  1274. }
  1275. page = new_slab(s, gfpflags, node);
  1276. if (page) {
  1277. cpu = smp_processor_id();
  1278. if (s->cpu_slab[cpu]) {
  1279. /*
  1280. * Someone else populated the cpu_slab while we
  1281. * enabled interrupts, or we have gotten scheduled
  1282. * on another cpu. The page may not be on the
  1283. * requested node even if __GFP_THISNODE was
  1284. * specified. So we need to recheck.
  1285. */
  1286. if (node == -1 ||
  1287. page_to_nid(s->cpu_slab[cpu]) == node) {
  1288. /*
  1289. * Current cpuslab is acceptable and we
  1290. * want the current one since its cache hot
  1291. */
  1292. discard_slab(s, page);
  1293. page = s->cpu_slab[cpu];
  1294. slab_lock(page);
  1295. goto load_freelist;
  1296. }
  1297. /* New slab does not fit our expectations */
  1298. flush_slab(s, s->cpu_slab[cpu], cpu);
  1299. }
  1300. slab_lock(page);
  1301. SetSlabFrozen(page);
  1302. s->cpu_slab[cpu] = page;
  1303. goto load_freelist;
  1304. }
  1305. return NULL;
  1306. debug:
  1307. object = page->freelist;
  1308. if (!alloc_debug_processing(s, page, object, addr))
  1309. goto another_slab;
  1310. page->inuse++;
  1311. page->freelist = object[page->offset];
  1312. slab_unlock(page);
  1313. return object;
  1314. }
  1315. /*
  1316. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1317. * have the fastpath folded into their functions. So no function call
  1318. * overhead for requests that can be satisfied on the fastpath.
  1319. *
  1320. * The fastpath works by first checking if the lockless freelist can be used.
  1321. * If not then __slab_alloc is called for slow processing.
  1322. *
  1323. * Otherwise we can simply pick the next object from the lockless free list.
  1324. */
  1325. static void __always_inline *slab_alloc(struct kmem_cache *s,
  1326. gfp_t gfpflags, int node, void *addr)
  1327. {
  1328. struct page *page;
  1329. void **object;
  1330. unsigned long flags;
  1331. local_irq_save(flags);
  1332. page = s->cpu_slab[smp_processor_id()];
  1333. if (unlikely(!page || !page->lockless_freelist ||
  1334. (node != -1 && page_to_nid(page) != node)))
  1335. object = __slab_alloc(s, gfpflags, node, addr, page);
  1336. else {
  1337. object = page->lockless_freelist;
  1338. page->lockless_freelist = object[page->offset];
  1339. }
  1340. local_irq_restore(flags);
  1341. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1342. memset(object, 0, s->objsize);
  1343. return object;
  1344. }
  1345. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1346. {
  1347. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1348. }
  1349. EXPORT_SYMBOL(kmem_cache_alloc);
  1350. #ifdef CONFIG_NUMA
  1351. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1352. {
  1353. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1354. }
  1355. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1356. #endif
  1357. /*
  1358. * Slow patch handling. This may still be called frequently since objects
  1359. * have a longer lifetime than the cpu slabs in most processing loads.
  1360. *
  1361. * So we still attempt to reduce cache line usage. Just take the slab
  1362. * lock and free the item. If there is no additional partial page
  1363. * handling required then we can return immediately.
  1364. */
  1365. static void __slab_free(struct kmem_cache *s, struct page *page,
  1366. void *x, void *addr)
  1367. {
  1368. void *prior;
  1369. void **object = (void *)x;
  1370. slab_lock(page);
  1371. if (unlikely(SlabDebug(page)))
  1372. goto debug;
  1373. checks_ok:
  1374. prior = object[page->offset] = page->freelist;
  1375. page->freelist = object;
  1376. page->inuse--;
  1377. if (unlikely(SlabFrozen(page)))
  1378. goto out_unlock;
  1379. if (unlikely(!page->inuse))
  1380. goto slab_empty;
  1381. /*
  1382. * Objects left in the slab. If it
  1383. * was not on the partial list before
  1384. * then add it.
  1385. */
  1386. if (unlikely(!prior))
  1387. add_partial(get_node(s, page_to_nid(page)), page);
  1388. out_unlock:
  1389. slab_unlock(page);
  1390. return;
  1391. slab_empty:
  1392. if (prior)
  1393. /*
  1394. * Slab still on the partial list.
  1395. */
  1396. remove_partial(s, page);
  1397. slab_unlock(page);
  1398. discard_slab(s, page);
  1399. return;
  1400. debug:
  1401. if (!free_debug_processing(s, page, x, addr))
  1402. goto out_unlock;
  1403. goto checks_ok;
  1404. }
  1405. /*
  1406. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1407. * can perform fastpath freeing without additional function calls.
  1408. *
  1409. * The fastpath is only possible if we are freeing to the current cpu slab
  1410. * of this processor. This typically the case if we have just allocated
  1411. * the item before.
  1412. *
  1413. * If fastpath is not possible then fall back to __slab_free where we deal
  1414. * with all sorts of special processing.
  1415. */
  1416. static void __always_inline slab_free(struct kmem_cache *s,
  1417. struct page *page, void *x, void *addr)
  1418. {
  1419. void **object = (void *)x;
  1420. unsigned long flags;
  1421. local_irq_save(flags);
  1422. debug_check_no_locks_freed(object, s->objsize);
  1423. if (likely(page == s->cpu_slab[smp_processor_id()] &&
  1424. !SlabDebug(page))) {
  1425. object[page->offset] = page->lockless_freelist;
  1426. page->lockless_freelist = object;
  1427. } else
  1428. __slab_free(s, page, x, addr);
  1429. local_irq_restore(flags);
  1430. }
  1431. void kmem_cache_free(struct kmem_cache *s, void *x)
  1432. {
  1433. struct page *page;
  1434. page = virt_to_head_page(x);
  1435. slab_free(s, page, x, __builtin_return_address(0));
  1436. }
  1437. EXPORT_SYMBOL(kmem_cache_free);
  1438. /* Figure out on which slab object the object resides */
  1439. static struct page *get_object_page(const void *x)
  1440. {
  1441. struct page *page = virt_to_head_page(x);
  1442. if (!PageSlab(page))
  1443. return NULL;
  1444. return page;
  1445. }
  1446. /*
  1447. * Object placement in a slab is made very easy because we always start at
  1448. * offset 0. If we tune the size of the object to the alignment then we can
  1449. * get the required alignment by putting one properly sized object after
  1450. * another.
  1451. *
  1452. * Notice that the allocation order determines the sizes of the per cpu
  1453. * caches. Each processor has always one slab available for allocations.
  1454. * Increasing the allocation order reduces the number of times that slabs
  1455. * must be moved on and off the partial lists and is therefore a factor in
  1456. * locking overhead.
  1457. */
  1458. /*
  1459. * Mininum / Maximum order of slab pages. This influences locking overhead
  1460. * and slab fragmentation. A higher order reduces the number of partial slabs
  1461. * and increases the number of allocations possible without having to
  1462. * take the list_lock.
  1463. */
  1464. static int slub_min_order;
  1465. static int slub_max_order = DEFAULT_MAX_ORDER;
  1466. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1467. /*
  1468. * Merge control. If this is set then no merging of slab caches will occur.
  1469. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1470. */
  1471. static int slub_nomerge;
  1472. /*
  1473. * Calculate the order of allocation given an slab object size.
  1474. *
  1475. * The order of allocation has significant impact on performance and other
  1476. * system components. Generally order 0 allocations should be preferred since
  1477. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1478. * be problematic to put into order 0 slabs because there may be too much
  1479. * unused space left. We go to a higher order if more than 1/8th of the slab
  1480. * would be wasted.
  1481. *
  1482. * In order to reach satisfactory performance we must ensure that a minimum
  1483. * number of objects is in one slab. Otherwise we may generate too much
  1484. * activity on the partial lists which requires taking the list_lock. This is
  1485. * less a concern for large slabs though which are rarely used.
  1486. *
  1487. * slub_max_order specifies the order where we begin to stop considering the
  1488. * number of objects in a slab as critical. If we reach slub_max_order then
  1489. * we try to keep the page order as low as possible. So we accept more waste
  1490. * of space in favor of a small page order.
  1491. *
  1492. * Higher order allocations also allow the placement of more objects in a
  1493. * slab and thereby reduce object handling overhead. If the user has
  1494. * requested a higher mininum order then we start with that one instead of
  1495. * the smallest order which will fit the object.
  1496. */
  1497. static inline int slab_order(int size, int min_objects,
  1498. int max_order, int fract_leftover)
  1499. {
  1500. int order;
  1501. int rem;
  1502. int min_order = slub_min_order;
  1503. /*
  1504. * If we would create too many object per slab then reduce
  1505. * the slab order even if it goes below slub_min_order.
  1506. */
  1507. while (min_order > 0 &&
  1508. (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
  1509. min_order--;
  1510. for (order = max(min_order,
  1511. fls(min_objects * size - 1) - PAGE_SHIFT);
  1512. order <= max_order; order++) {
  1513. unsigned long slab_size = PAGE_SIZE << order;
  1514. if (slab_size < min_objects * size)
  1515. continue;
  1516. rem = slab_size % size;
  1517. if (rem <= slab_size / fract_leftover)
  1518. break;
  1519. /* If the next size is too high then exit now */
  1520. if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
  1521. break;
  1522. }
  1523. return order;
  1524. }
  1525. static inline int calculate_order(int size)
  1526. {
  1527. int order;
  1528. int min_objects;
  1529. int fraction;
  1530. /*
  1531. * Attempt to find best configuration for a slab. This
  1532. * works by first attempting to generate a layout with
  1533. * the best configuration and backing off gradually.
  1534. *
  1535. * First we reduce the acceptable waste in a slab. Then
  1536. * we reduce the minimum objects required in a slab.
  1537. */
  1538. min_objects = slub_min_objects;
  1539. while (min_objects > 1) {
  1540. fraction = 8;
  1541. while (fraction >= 4) {
  1542. order = slab_order(size, min_objects,
  1543. slub_max_order, fraction);
  1544. if (order <= slub_max_order)
  1545. return order;
  1546. fraction /= 2;
  1547. }
  1548. min_objects /= 2;
  1549. }
  1550. /*
  1551. * We were unable to place multiple objects in a slab. Now
  1552. * lets see if we can place a single object there.
  1553. */
  1554. order = slab_order(size, 1, slub_max_order, 1);
  1555. if (order <= slub_max_order)
  1556. return order;
  1557. /*
  1558. * Doh this slab cannot be placed using slub_max_order.
  1559. */
  1560. order = slab_order(size, 1, MAX_ORDER, 1);
  1561. if (order <= MAX_ORDER)
  1562. return order;
  1563. return -ENOSYS;
  1564. }
  1565. /*
  1566. * Figure out what the alignment of the objects will be.
  1567. */
  1568. static unsigned long calculate_alignment(unsigned long flags,
  1569. unsigned long align, unsigned long size)
  1570. {
  1571. /*
  1572. * If the user wants hardware cache aligned objects then
  1573. * follow that suggestion if the object is sufficiently
  1574. * large.
  1575. *
  1576. * The hardware cache alignment cannot override the
  1577. * specified alignment though. If that is greater
  1578. * then use it.
  1579. */
  1580. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1581. size > cache_line_size() / 2)
  1582. return max_t(unsigned long, align, cache_line_size());
  1583. if (align < ARCH_SLAB_MINALIGN)
  1584. return ARCH_SLAB_MINALIGN;
  1585. return ALIGN(align, sizeof(void *));
  1586. }
  1587. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1588. {
  1589. n->nr_partial = 0;
  1590. atomic_long_set(&n->nr_slabs, 0);
  1591. spin_lock_init(&n->list_lock);
  1592. INIT_LIST_HEAD(&n->partial);
  1593. #ifdef CONFIG_SLUB_DEBUG
  1594. INIT_LIST_HEAD(&n->full);
  1595. #endif
  1596. }
  1597. #ifdef CONFIG_NUMA
  1598. /*
  1599. * No kmalloc_node yet so do it by hand. We know that this is the first
  1600. * slab on the node for this slabcache. There are no concurrent accesses
  1601. * possible.
  1602. *
  1603. * Note that this function only works on the kmalloc_node_cache
  1604. * when allocating for the kmalloc_node_cache.
  1605. */
  1606. static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
  1607. int node)
  1608. {
  1609. struct page *page;
  1610. struct kmem_cache_node *n;
  1611. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1612. page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
  1613. BUG_ON(!page);
  1614. n = page->freelist;
  1615. BUG_ON(!n);
  1616. page->freelist = get_freepointer(kmalloc_caches, n);
  1617. page->inuse++;
  1618. kmalloc_caches->node[node] = n;
  1619. #ifdef CONFIG_SLUB_DEBUG
  1620. init_object(kmalloc_caches, n, 1);
  1621. init_tracking(kmalloc_caches, n);
  1622. #endif
  1623. init_kmem_cache_node(n);
  1624. atomic_long_inc(&n->nr_slabs);
  1625. add_partial(n, page);
  1626. /*
  1627. * new_slab() disables interupts. If we do not reenable interrupts here
  1628. * then bootup would continue with interrupts disabled.
  1629. */
  1630. local_irq_enable();
  1631. return n;
  1632. }
  1633. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1634. {
  1635. int node;
  1636. for_each_online_node(node) {
  1637. struct kmem_cache_node *n = s->node[node];
  1638. if (n && n != &s->local_node)
  1639. kmem_cache_free(kmalloc_caches, n);
  1640. s->node[node] = NULL;
  1641. }
  1642. }
  1643. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1644. {
  1645. int node;
  1646. int local_node;
  1647. if (slab_state >= UP)
  1648. local_node = page_to_nid(virt_to_page(s));
  1649. else
  1650. local_node = 0;
  1651. for_each_online_node(node) {
  1652. struct kmem_cache_node *n;
  1653. if (local_node == node)
  1654. n = &s->local_node;
  1655. else {
  1656. if (slab_state == DOWN) {
  1657. n = early_kmem_cache_node_alloc(gfpflags,
  1658. node);
  1659. continue;
  1660. }
  1661. n = kmem_cache_alloc_node(kmalloc_caches,
  1662. gfpflags, node);
  1663. if (!n) {
  1664. free_kmem_cache_nodes(s);
  1665. return 0;
  1666. }
  1667. }
  1668. s->node[node] = n;
  1669. init_kmem_cache_node(n);
  1670. }
  1671. return 1;
  1672. }
  1673. #else
  1674. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1675. {
  1676. }
  1677. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1678. {
  1679. init_kmem_cache_node(&s->local_node);
  1680. return 1;
  1681. }
  1682. #endif
  1683. /*
  1684. * calculate_sizes() determines the order and the distribution of data within
  1685. * a slab object.
  1686. */
  1687. static int calculate_sizes(struct kmem_cache *s)
  1688. {
  1689. unsigned long flags = s->flags;
  1690. unsigned long size = s->objsize;
  1691. unsigned long align = s->align;
  1692. /*
  1693. * Determine if we can poison the object itself. If the user of
  1694. * the slab may touch the object after free or before allocation
  1695. * then we should never poison the object itself.
  1696. */
  1697. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1698. !s->ctor)
  1699. s->flags |= __OBJECT_POISON;
  1700. else
  1701. s->flags &= ~__OBJECT_POISON;
  1702. /*
  1703. * Round up object size to the next word boundary. We can only
  1704. * place the free pointer at word boundaries and this determines
  1705. * the possible location of the free pointer.
  1706. */
  1707. size = ALIGN(size, sizeof(void *));
  1708. #ifdef CONFIG_SLUB_DEBUG
  1709. /*
  1710. * If we are Redzoning then check if there is some space between the
  1711. * end of the object and the free pointer. If not then add an
  1712. * additional word to have some bytes to store Redzone information.
  1713. */
  1714. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1715. size += sizeof(void *);
  1716. #endif
  1717. /*
  1718. * With that we have determined the number of bytes in actual use
  1719. * by the object. This is the potential offset to the free pointer.
  1720. */
  1721. s->inuse = size;
  1722. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1723. s->ctor)) {
  1724. /*
  1725. * Relocate free pointer after the object if it is not
  1726. * permitted to overwrite the first word of the object on
  1727. * kmem_cache_free.
  1728. *
  1729. * This is the case if we do RCU, have a constructor or
  1730. * destructor or are poisoning the objects.
  1731. */
  1732. s->offset = size;
  1733. size += sizeof(void *);
  1734. }
  1735. #ifdef CONFIG_SLUB_DEBUG
  1736. if (flags & SLAB_STORE_USER)
  1737. /*
  1738. * Need to store information about allocs and frees after
  1739. * the object.
  1740. */
  1741. size += 2 * sizeof(struct track);
  1742. if (flags & SLAB_RED_ZONE)
  1743. /*
  1744. * Add some empty padding so that we can catch
  1745. * overwrites from earlier objects rather than let
  1746. * tracking information or the free pointer be
  1747. * corrupted if an user writes before the start
  1748. * of the object.
  1749. */
  1750. size += sizeof(void *);
  1751. #endif
  1752. /*
  1753. * Determine the alignment based on various parameters that the
  1754. * user specified and the dynamic determination of cache line size
  1755. * on bootup.
  1756. */
  1757. align = calculate_alignment(flags, align, s->objsize);
  1758. /*
  1759. * SLUB stores one object immediately after another beginning from
  1760. * offset 0. In order to align the objects we have to simply size
  1761. * each object to conform to the alignment.
  1762. */
  1763. size = ALIGN(size, align);
  1764. s->size = size;
  1765. s->order = calculate_order(size);
  1766. if (s->order < 0)
  1767. return 0;
  1768. /*
  1769. * Determine the number of objects per slab
  1770. */
  1771. s->objects = (PAGE_SIZE << s->order) / size;
  1772. /*
  1773. * Verify that the number of objects is within permitted limits.
  1774. * The page->inuse field is only 16 bit wide! So we cannot have
  1775. * more than 64k objects per slab.
  1776. */
  1777. if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
  1778. return 0;
  1779. return 1;
  1780. }
  1781. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1782. const char *name, size_t size,
  1783. size_t align, unsigned long flags,
  1784. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  1785. {
  1786. memset(s, 0, kmem_size);
  1787. s->name = name;
  1788. s->ctor = ctor;
  1789. s->objsize = size;
  1790. s->flags = flags;
  1791. s->align = align;
  1792. kmem_cache_open_debug_check(s);
  1793. if (!calculate_sizes(s))
  1794. goto error;
  1795. s->refcount = 1;
  1796. #ifdef CONFIG_NUMA
  1797. s->defrag_ratio = 100;
  1798. #endif
  1799. if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1800. return 1;
  1801. error:
  1802. if (flags & SLAB_PANIC)
  1803. panic("Cannot create slab %s size=%lu realsize=%u "
  1804. "order=%u offset=%u flags=%lx\n",
  1805. s->name, (unsigned long)size, s->size, s->order,
  1806. s->offset, flags);
  1807. return 0;
  1808. }
  1809. /*
  1810. * Check if a given pointer is valid
  1811. */
  1812. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1813. {
  1814. struct page * page;
  1815. page = get_object_page(object);
  1816. if (!page || s != page->slab)
  1817. /* No slab or wrong slab */
  1818. return 0;
  1819. if (!check_valid_pointer(s, page, object))
  1820. return 0;
  1821. /*
  1822. * We could also check if the object is on the slabs freelist.
  1823. * But this would be too expensive and it seems that the main
  1824. * purpose of kmem_ptr_valid is to check if the object belongs
  1825. * to a certain slab.
  1826. */
  1827. return 1;
  1828. }
  1829. EXPORT_SYMBOL(kmem_ptr_validate);
  1830. /*
  1831. * Determine the size of a slab object
  1832. */
  1833. unsigned int kmem_cache_size(struct kmem_cache *s)
  1834. {
  1835. return s->objsize;
  1836. }
  1837. EXPORT_SYMBOL(kmem_cache_size);
  1838. const char *kmem_cache_name(struct kmem_cache *s)
  1839. {
  1840. return s->name;
  1841. }
  1842. EXPORT_SYMBOL(kmem_cache_name);
  1843. /*
  1844. * Attempt to free all slabs on a node. Return the number of slabs we
  1845. * were unable to free.
  1846. */
  1847. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1848. struct list_head *list)
  1849. {
  1850. int slabs_inuse = 0;
  1851. unsigned long flags;
  1852. struct page *page, *h;
  1853. spin_lock_irqsave(&n->list_lock, flags);
  1854. list_for_each_entry_safe(page, h, list, lru)
  1855. if (!page->inuse) {
  1856. list_del(&page->lru);
  1857. discard_slab(s, page);
  1858. } else
  1859. slabs_inuse++;
  1860. spin_unlock_irqrestore(&n->list_lock, flags);
  1861. return slabs_inuse;
  1862. }
  1863. /*
  1864. * Release all resources used by a slab cache.
  1865. */
  1866. static inline int kmem_cache_close(struct kmem_cache *s)
  1867. {
  1868. int node;
  1869. flush_all(s);
  1870. /* Attempt to free all objects */
  1871. for_each_online_node(node) {
  1872. struct kmem_cache_node *n = get_node(s, node);
  1873. n->nr_partial -= free_list(s, n, &n->partial);
  1874. if (atomic_long_read(&n->nr_slabs))
  1875. return 1;
  1876. }
  1877. free_kmem_cache_nodes(s);
  1878. return 0;
  1879. }
  1880. /*
  1881. * Close a cache and release the kmem_cache structure
  1882. * (must be used for caches created using kmem_cache_create)
  1883. */
  1884. void kmem_cache_destroy(struct kmem_cache *s)
  1885. {
  1886. down_write(&slub_lock);
  1887. s->refcount--;
  1888. if (!s->refcount) {
  1889. list_del(&s->list);
  1890. up_write(&slub_lock);
  1891. if (kmem_cache_close(s))
  1892. WARN_ON(1);
  1893. sysfs_slab_remove(s);
  1894. kfree(s);
  1895. } else
  1896. up_write(&slub_lock);
  1897. }
  1898. EXPORT_SYMBOL(kmem_cache_destroy);
  1899. /********************************************************************
  1900. * Kmalloc subsystem
  1901. *******************************************************************/
  1902. struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
  1903. EXPORT_SYMBOL(kmalloc_caches);
  1904. #ifdef CONFIG_ZONE_DMA
  1905. static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
  1906. #endif
  1907. static int __init setup_slub_min_order(char *str)
  1908. {
  1909. get_option (&str, &slub_min_order);
  1910. return 1;
  1911. }
  1912. __setup("slub_min_order=", setup_slub_min_order);
  1913. static int __init setup_slub_max_order(char *str)
  1914. {
  1915. get_option (&str, &slub_max_order);
  1916. return 1;
  1917. }
  1918. __setup("slub_max_order=", setup_slub_max_order);
  1919. static int __init setup_slub_min_objects(char *str)
  1920. {
  1921. get_option (&str, &slub_min_objects);
  1922. return 1;
  1923. }
  1924. __setup("slub_min_objects=", setup_slub_min_objects);
  1925. static int __init setup_slub_nomerge(char *str)
  1926. {
  1927. slub_nomerge = 1;
  1928. return 1;
  1929. }
  1930. __setup("slub_nomerge", setup_slub_nomerge);
  1931. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  1932. const char *name, int size, gfp_t gfp_flags)
  1933. {
  1934. unsigned int flags = 0;
  1935. if (gfp_flags & SLUB_DMA)
  1936. flags = SLAB_CACHE_DMA;
  1937. down_write(&slub_lock);
  1938. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  1939. flags, NULL))
  1940. goto panic;
  1941. list_add(&s->list, &slab_caches);
  1942. up_write(&slub_lock);
  1943. if (sysfs_slab_add(s))
  1944. goto panic;
  1945. return s;
  1946. panic:
  1947. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  1948. }
  1949. #ifdef CONFIG_ZONE_DMA
  1950. static void sysfs_add_func(struct work_struct *w)
  1951. {
  1952. struct kmem_cache *s;
  1953. down_write(&slub_lock);
  1954. list_for_each_entry(s, &slab_caches, list) {
  1955. if (s->flags & __SYSFS_ADD_DEFERRED) {
  1956. s->flags &= ~__SYSFS_ADD_DEFERRED;
  1957. sysfs_slab_add(s);
  1958. }
  1959. }
  1960. up_write(&slub_lock);
  1961. }
  1962. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  1963. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  1964. {
  1965. struct kmem_cache *s;
  1966. char *text;
  1967. size_t realsize;
  1968. s = kmalloc_caches_dma[index];
  1969. if (s)
  1970. return s;
  1971. /* Dynamically create dma cache */
  1972. if (flags & __GFP_WAIT)
  1973. down_write(&slub_lock);
  1974. else {
  1975. if (!down_write_trylock(&slub_lock))
  1976. goto out;
  1977. }
  1978. if (kmalloc_caches_dma[index])
  1979. goto unlock_out;
  1980. realsize = kmalloc_caches[index].objsize;
  1981. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
  1982. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  1983. if (!s || !text || !kmem_cache_open(s, flags, text,
  1984. realsize, ARCH_KMALLOC_MINALIGN,
  1985. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  1986. kfree(s);
  1987. kfree(text);
  1988. goto unlock_out;
  1989. }
  1990. list_add(&s->list, &slab_caches);
  1991. kmalloc_caches_dma[index] = s;
  1992. schedule_work(&sysfs_add_work);
  1993. unlock_out:
  1994. up_write(&slub_lock);
  1995. out:
  1996. return kmalloc_caches_dma[index];
  1997. }
  1998. #endif
  1999. /*
  2000. * Conversion table for small slabs sizes / 8 to the index in the
  2001. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2002. * of two cache sizes there. The size of larger slabs can be determined using
  2003. * fls.
  2004. */
  2005. static s8 size_index[24] = {
  2006. 3, /* 8 */
  2007. 4, /* 16 */
  2008. 5, /* 24 */
  2009. 5, /* 32 */
  2010. 6, /* 40 */
  2011. 6, /* 48 */
  2012. 6, /* 56 */
  2013. 6, /* 64 */
  2014. 1, /* 72 */
  2015. 1, /* 80 */
  2016. 1, /* 88 */
  2017. 1, /* 96 */
  2018. 7, /* 104 */
  2019. 7, /* 112 */
  2020. 7, /* 120 */
  2021. 7, /* 128 */
  2022. 2, /* 136 */
  2023. 2, /* 144 */
  2024. 2, /* 152 */
  2025. 2, /* 160 */
  2026. 2, /* 168 */
  2027. 2, /* 176 */
  2028. 2, /* 184 */
  2029. 2 /* 192 */
  2030. };
  2031. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2032. {
  2033. int index;
  2034. if (size <= 192) {
  2035. if (!size)
  2036. return ZERO_SIZE_PTR;
  2037. index = size_index[(size - 1) / 8];
  2038. } else {
  2039. if (size > KMALLOC_MAX_SIZE)
  2040. return NULL;
  2041. index = fls(size - 1);
  2042. }
  2043. #ifdef CONFIG_ZONE_DMA
  2044. if (unlikely((flags & SLUB_DMA)))
  2045. return dma_kmalloc_cache(index, flags);
  2046. #endif
  2047. return &kmalloc_caches[index];
  2048. }
  2049. void *__kmalloc(size_t size, gfp_t flags)
  2050. {
  2051. struct kmem_cache *s = get_slab(size, flags);
  2052. if (ZERO_OR_NULL_PTR(s))
  2053. return s;
  2054. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2055. }
  2056. EXPORT_SYMBOL(__kmalloc);
  2057. #ifdef CONFIG_NUMA
  2058. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2059. {
  2060. struct kmem_cache *s = get_slab(size, flags);
  2061. if (ZERO_OR_NULL_PTR(s))
  2062. return s;
  2063. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2064. }
  2065. EXPORT_SYMBOL(__kmalloc_node);
  2066. #endif
  2067. size_t ksize(const void *object)
  2068. {
  2069. struct page *page;
  2070. struct kmem_cache *s;
  2071. if (ZERO_OR_NULL_PTR(object))
  2072. return 0;
  2073. page = get_object_page(object);
  2074. BUG_ON(!page);
  2075. s = page->slab;
  2076. BUG_ON(!s);
  2077. /*
  2078. * Debugging requires use of the padding between object
  2079. * and whatever may come after it.
  2080. */
  2081. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2082. return s->objsize;
  2083. /*
  2084. * If we have the need to store the freelist pointer
  2085. * back there or track user information then we can
  2086. * only use the space before that information.
  2087. */
  2088. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2089. return s->inuse;
  2090. /*
  2091. * Else we can use all the padding etc for the allocation
  2092. */
  2093. return s->size;
  2094. }
  2095. EXPORT_SYMBOL(ksize);
  2096. void kfree(const void *x)
  2097. {
  2098. struct kmem_cache *s;
  2099. struct page *page;
  2100. /*
  2101. * This has to be an unsigned comparison. According to Linus
  2102. * some gcc version treat a pointer as a signed entity. Then
  2103. * this comparison would be true for all "negative" pointers
  2104. * (which would cover the whole upper half of the address space).
  2105. */
  2106. if (ZERO_OR_NULL_PTR(x))
  2107. return;
  2108. page = virt_to_head_page(x);
  2109. s = page->slab;
  2110. slab_free(s, page, (void *)x, __builtin_return_address(0));
  2111. }
  2112. EXPORT_SYMBOL(kfree);
  2113. /*
  2114. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2115. * the remaining slabs by the number of items in use. The slabs with the
  2116. * most items in use come first. New allocations will then fill those up
  2117. * and thus they can be removed from the partial lists.
  2118. *
  2119. * The slabs with the least items are placed last. This results in them
  2120. * being allocated from last increasing the chance that the last objects
  2121. * are freed in them.
  2122. */
  2123. int kmem_cache_shrink(struct kmem_cache *s)
  2124. {
  2125. int node;
  2126. int i;
  2127. struct kmem_cache_node *n;
  2128. struct page *page;
  2129. struct page *t;
  2130. struct list_head *slabs_by_inuse =
  2131. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2132. unsigned long flags;
  2133. if (!slabs_by_inuse)
  2134. return -ENOMEM;
  2135. flush_all(s);
  2136. for_each_online_node(node) {
  2137. n = get_node(s, node);
  2138. if (!n->nr_partial)
  2139. continue;
  2140. for (i = 0; i < s->objects; i++)
  2141. INIT_LIST_HEAD(slabs_by_inuse + i);
  2142. spin_lock_irqsave(&n->list_lock, flags);
  2143. /*
  2144. * Build lists indexed by the items in use in each slab.
  2145. *
  2146. * Note that concurrent frees may occur while we hold the
  2147. * list_lock. page->inuse here is the upper limit.
  2148. */
  2149. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2150. if (!page->inuse && slab_trylock(page)) {
  2151. /*
  2152. * Must hold slab lock here because slab_free
  2153. * may have freed the last object and be
  2154. * waiting to release the slab.
  2155. */
  2156. list_del(&page->lru);
  2157. n->nr_partial--;
  2158. slab_unlock(page);
  2159. discard_slab(s, page);
  2160. } else {
  2161. list_move(&page->lru,
  2162. slabs_by_inuse + page->inuse);
  2163. }
  2164. }
  2165. /*
  2166. * Rebuild the partial list with the slabs filled up most
  2167. * first and the least used slabs at the end.
  2168. */
  2169. for (i = s->objects - 1; i >= 0; i--)
  2170. list_splice(slabs_by_inuse + i, n->partial.prev);
  2171. spin_unlock_irqrestore(&n->list_lock, flags);
  2172. }
  2173. kfree(slabs_by_inuse);
  2174. return 0;
  2175. }
  2176. EXPORT_SYMBOL(kmem_cache_shrink);
  2177. /********************************************************************
  2178. * Basic setup of slabs
  2179. *******************************************************************/
  2180. void __init kmem_cache_init(void)
  2181. {
  2182. int i;
  2183. int caches = 0;
  2184. #ifdef CONFIG_NUMA
  2185. /*
  2186. * Must first have the slab cache available for the allocations of the
  2187. * struct kmem_cache_node's. There is special bootstrap code in
  2188. * kmem_cache_open for slab_state == DOWN.
  2189. */
  2190. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2191. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2192. kmalloc_caches[0].refcount = -1;
  2193. caches++;
  2194. #endif
  2195. /* Able to allocate the per node structures */
  2196. slab_state = PARTIAL;
  2197. /* Caches that are not of the two-to-the-power-of size */
  2198. if (KMALLOC_MIN_SIZE <= 64) {
  2199. create_kmalloc_cache(&kmalloc_caches[1],
  2200. "kmalloc-96", 96, GFP_KERNEL);
  2201. caches++;
  2202. }
  2203. if (KMALLOC_MIN_SIZE <= 128) {
  2204. create_kmalloc_cache(&kmalloc_caches[2],
  2205. "kmalloc-192", 192, GFP_KERNEL);
  2206. caches++;
  2207. }
  2208. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
  2209. create_kmalloc_cache(&kmalloc_caches[i],
  2210. "kmalloc", 1 << i, GFP_KERNEL);
  2211. caches++;
  2212. }
  2213. /*
  2214. * Patch up the size_index table if we have strange large alignment
  2215. * requirements for the kmalloc array. This is only the case for
  2216. * mips it seems. The standard arches will not generate any code here.
  2217. *
  2218. * Largest permitted alignment is 256 bytes due to the way we
  2219. * handle the index determination for the smaller caches.
  2220. *
  2221. * Make sure that nothing crazy happens if someone starts tinkering
  2222. * around with ARCH_KMALLOC_MINALIGN
  2223. */
  2224. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2225. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2226. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2227. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2228. slab_state = UP;
  2229. /* Provide the correct kmalloc names now that the caches are up */
  2230. for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  2231. kmalloc_caches[i]. name =
  2232. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2233. #ifdef CONFIG_SMP
  2234. register_cpu_notifier(&slab_notifier);
  2235. #endif
  2236. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2237. nr_cpu_ids * sizeof(struct page *);
  2238. printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2239. " CPUs=%d, Nodes=%d\n",
  2240. caches, cache_line_size(),
  2241. slub_min_order, slub_max_order, slub_min_objects,
  2242. nr_cpu_ids, nr_node_ids);
  2243. }
  2244. /*
  2245. * Find a mergeable slab cache
  2246. */
  2247. static int slab_unmergeable(struct kmem_cache *s)
  2248. {
  2249. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2250. return 1;
  2251. if (s->ctor)
  2252. return 1;
  2253. /*
  2254. * We may have set a slab to be unmergeable during bootstrap.
  2255. */
  2256. if (s->refcount < 0)
  2257. return 1;
  2258. return 0;
  2259. }
  2260. static struct kmem_cache *find_mergeable(size_t size,
  2261. size_t align, unsigned long flags,
  2262. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  2263. {
  2264. struct kmem_cache *s;
  2265. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2266. return NULL;
  2267. if (ctor)
  2268. return NULL;
  2269. size = ALIGN(size, sizeof(void *));
  2270. align = calculate_alignment(flags, align, size);
  2271. size = ALIGN(size, align);
  2272. list_for_each_entry(s, &slab_caches, list) {
  2273. if (slab_unmergeable(s))
  2274. continue;
  2275. if (size > s->size)
  2276. continue;
  2277. if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
  2278. (s->flags & SLUB_MERGE_SAME))
  2279. continue;
  2280. /*
  2281. * Check if alignment is compatible.
  2282. * Courtesy of Adrian Drzewiecki
  2283. */
  2284. if ((s->size & ~(align -1)) != s->size)
  2285. continue;
  2286. if (s->size - size >= sizeof(void *))
  2287. continue;
  2288. return s;
  2289. }
  2290. return NULL;
  2291. }
  2292. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2293. size_t align, unsigned long flags,
  2294. void (*ctor)(void *, struct kmem_cache *, unsigned long))
  2295. {
  2296. struct kmem_cache *s;
  2297. down_write(&slub_lock);
  2298. s = find_mergeable(size, align, flags, ctor);
  2299. if (s) {
  2300. s->refcount++;
  2301. /*
  2302. * Adjust the object sizes so that we clear
  2303. * the complete object on kzalloc.
  2304. */
  2305. s->objsize = max(s->objsize, (int)size);
  2306. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2307. up_write(&slub_lock);
  2308. if (sysfs_slab_alias(s, name))
  2309. goto err;
  2310. return s;
  2311. }
  2312. s = kmalloc(kmem_size, GFP_KERNEL);
  2313. if (s) {
  2314. if (kmem_cache_open(s, GFP_KERNEL, name,
  2315. size, align, flags, ctor)) {
  2316. list_add(&s->list, &slab_caches);
  2317. up_write(&slub_lock);
  2318. if (sysfs_slab_add(s))
  2319. goto err;
  2320. return s;
  2321. }
  2322. kfree(s);
  2323. }
  2324. up_write(&slub_lock);
  2325. err:
  2326. if (flags & SLAB_PANIC)
  2327. panic("Cannot create slabcache %s\n", name);
  2328. else
  2329. s = NULL;
  2330. return s;
  2331. }
  2332. EXPORT_SYMBOL(kmem_cache_create);
  2333. #ifdef CONFIG_SMP
  2334. /*
  2335. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2336. * necessary.
  2337. */
  2338. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2339. unsigned long action, void *hcpu)
  2340. {
  2341. long cpu = (long)hcpu;
  2342. struct kmem_cache *s;
  2343. unsigned long flags;
  2344. switch (action) {
  2345. case CPU_UP_CANCELED:
  2346. case CPU_UP_CANCELED_FROZEN:
  2347. case CPU_DEAD:
  2348. case CPU_DEAD_FROZEN:
  2349. down_read(&slub_lock);
  2350. list_for_each_entry(s, &slab_caches, list) {
  2351. local_irq_save(flags);
  2352. __flush_cpu_slab(s, cpu);
  2353. local_irq_restore(flags);
  2354. }
  2355. up_read(&slub_lock);
  2356. break;
  2357. default:
  2358. break;
  2359. }
  2360. return NOTIFY_OK;
  2361. }
  2362. static struct notifier_block __cpuinitdata slab_notifier =
  2363. { &slab_cpuup_callback, NULL, 0 };
  2364. #endif
  2365. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2366. {
  2367. struct kmem_cache *s = get_slab(size, gfpflags);
  2368. if (ZERO_OR_NULL_PTR(s))
  2369. return s;
  2370. return slab_alloc(s, gfpflags, -1, caller);
  2371. }
  2372. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2373. int node, void *caller)
  2374. {
  2375. struct kmem_cache *s = get_slab(size, gfpflags);
  2376. if (ZERO_OR_NULL_PTR(s))
  2377. return s;
  2378. return slab_alloc(s, gfpflags, node, caller);
  2379. }
  2380. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2381. static int validate_slab(struct kmem_cache *s, struct page *page,
  2382. unsigned long *map)
  2383. {
  2384. void *p;
  2385. void *addr = page_address(page);
  2386. if (!check_slab(s, page) ||
  2387. !on_freelist(s, page, NULL))
  2388. return 0;
  2389. /* Now we know that a valid freelist exists */
  2390. bitmap_zero(map, s->objects);
  2391. for_each_free_object(p, s, page->freelist) {
  2392. set_bit(slab_index(p, s, addr), map);
  2393. if (!check_object(s, page, p, 0))
  2394. return 0;
  2395. }
  2396. for_each_object(p, s, addr)
  2397. if (!test_bit(slab_index(p, s, addr), map))
  2398. if (!check_object(s, page, p, 1))
  2399. return 0;
  2400. return 1;
  2401. }
  2402. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2403. unsigned long *map)
  2404. {
  2405. if (slab_trylock(page)) {
  2406. validate_slab(s, page, map);
  2407. slab_unlock(page);
  2408. } else
  2409. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2410. s->name, page);
  2411. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2412. if (!SlabDebug(page))
  2413. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2414. "on slab 0x%p\n", s->name, page);
  2415. } else {
  2416. if (SlabDebug(page))
  2417. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2418. "slab 0x%p\n", s->name, page);
  2419. }
  2420. }
  2421. static int validate_slab_node(struct kmem_cache *s,
  2422. struct kmem_cache_node *n, unsigned long *map)
  2423. {
  2424. unsigned long count = 0;
  2425. struct page *page;
  2426. unsigned long flags;
  2427. spin_lock_irqsave(&n->list_lock, flags);
  2428. list_for_each_entry(page, &n->partial, lru) {
  2429. validate_slab_slab(s, page, map);
  2430. count++;
  2431. }
  2432. if (count != n->nr_partial)
  2433. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2434. "counter=%ld\n", s->name, count, n->nr_partial);
  2435. if (!(s->flags & SLAB_STORE_USER))
  2436. goto out;
  2437. list_for_each_entry(page, &n->full, lru) {
  2438. validate_slab_slab(s, page, map);
  2439. count++;
  2440. }
  2441. if (count != atomic_long_read(&n->nr_slabs))
  2442. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2443. "counter=%ld\n", s->name, count,
  2444. atomic_long_read(&n->nr_slabs));
  2445. out:
  2446. spin_unlock_irqrestore(&n->list_lock, flags);
  2447. return count;
  2448. }
  2449. static long validate_slab_cache(struct kmem_cache *s)
  2450. {
  2451. int node;
  2452. unsigned long count = 0;
  2453. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2454. sizeof(unsigned long), GFP_KERNEL);
  2455. if (!map)
  2456. return -ENOMEM;
  2457. flush_all(s);
  2458. for_each_online_node(node) {
  2459. struct kmem_cache_node *n = get_node(s, node);
  2460. count += validate_slab_node(s, n, map);
  2461. }
  2462. kfree(map);
  2463. return count;
  2464. }
  2465. #ifdef SLUB_RESILIENCY_TEST
  2466. static void resiliency_test(void)
  2467. {
  2468. u8 *p;
  2469. printk(KERN_ERR "SLUB resiliency testing\n");
  2470. printk(KERN_ERR "-----------------------\n");
  2471. printk(KERN_ERR "A. Corruption after allocation\n");
  2472. p = kzalloc(16, GFP_KERNEL);
  2473. p[16] = 0x12;
  2474. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2475. " 0x12->0x%p\n\n", p + 16);
  2476. validate_slab_cache(kmalloc_caches + 4);
  2477. /* Hmmm... The next two are dangerous */
  2478. p = kzalloc(32, GFP_KERNEL);
  2479. p[32 + sizeof(void *)] = 0x34;
  2480. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2481. " 0x34 -> -0x%p\n", p);
  2482. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2483. validate_slab_cache(kmalloc_caches + 5);
  2484. p = kzalloc(64, GFP_KERNEL);
  2485. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2486. *p = 0x56;
  2487. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2488. p);
  2489. printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
  2490. validate_slab_cache(kmalloc_caches + 6);
  2491. printk(KERN_ERR "\nB. Corruption after free\n");
  2492. p = kzalloc(128, GFP_KERNEL);
  2493. kfree(p);
  2494. *p = 0x78;
  2495. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2496. validate_slab_cache(kmalloc_caches + 7);
  2497. p = kzalloc(256, GFP_KERNEL);
  2498. kfree(p);
  2499. p[50] = 0x9a;
  2500. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  2501. validate_slab_cache(kmalloc_caches + 8);
  2502. p = kzalloc(512, GFP_KERNEL);
  2503. kfree(p);
  2504. p[512] = 0xab;
  2505. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2506. validate_slab_cache(kmalloc_caches + 9);
  2507. }
  2508. #else
  2509. static void resiliency_test(void) {};
  2510. #endif
  2511. /*
  2512. * Generate lists of code addresses where slabcache objects are allocated
  2513. * and freed.
  2514. */
  2515. struct location {
  2516. unsigned long count;
  2517. void *addr;
  2518. long long sum_time;
  2519. long min_time;
  2520. long max_time;
  2521. long min_pid;
  2522. long max_pid;
  2523. cpumask_t cpus;
  2524. nodemask_t nodes;
  2525. };
  2526. struct loc_track {
  2527. unsigned long max;
  2528. unsigned long count;
  2529. struct location *loc;
  2530. };
  2531. static void free_loc_track(struct loc_track *t)
  2532. {
  2533. if (t->max)
  2534. free_pages((unsigned long)t->loc,
  2535. get_order(sizeof(struct location) * t->max));
  2536. }
  2537. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2538. {
  2539. struct location *l;
  2540. int order;
  2541. order = get_order(sizeof(struct location) * max);
  2542. l = (void *)__get_free_pages(flags, order);
  2543. if (!l)
  2544. return 0;
  2545. if (t->count) {
  2546. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2547. free_loc_track(t);
  2548. }
  2549. t->max = max;
  2550. t->loc = l;
  2551. return 1;
  2552. }
  2553. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2554. const struct track *track)
  2555. {
  2556. long start, end, pos;
  2557. struct location *l;
  2558. void *caddr;
  2559. unsigned long age = jiffies - track->when;
  2560. start = -1;
  2561. end = t->count;
  2562. for ( ; ; ) {
  2563. pos = start + (end - start + 1) / 2;
  2564. /*
  2565. * There is nothing at "end". If we end up there
  2566. * we need to add something to before end.
  2567. */
  2568. if (pos == end)
  2569. break;
  2570. caddr = t->loc[pos].addr;
  2571. if (track->addr == caddr) {
  2572. l = &t->loc[pos];
  2573. l->count++;
  2574. if (track->when) {
  2575. l->sum_time += age;
  2576. if (age < l->min_time)
  2577. l->min_time = age;
  2578. if (age > l->max_time)
  2579. l->max_time = age;
  2580. if (track->pid < l->min_pid)
  2581. l->min_pid = track->pid;
  2582. if (track->pid > l->max_pid)
  2583. l->max_pid = track->pid;
  2584. cpu_set(track->cpu, l->cpus);
  2585. }
  2586. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2587. return 1;
  2588. }
  2589. if (track->addr < caddr)
  2590. end = pos;
  2591. else
  2592. start = pos;
  2593. }
  2594. /*
  2595. * Not found. Insert new tracking element.
  2596. */
  2597. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2598. return 0;
  2599. l = t->loc + pos;
  2600. if (pos < t->count)
  2601. memmove(l + 1, l,
  2602. (t->count - pos) * sizeof(struct location));
  2603. t->count++;
  2604. l->count = 1;
  2605. l->addr = track->addr;
  2606. l->sum_time = age;
  2607. l->min_time = age;
  2608. l->max_time = age;
  2609. l->min_pid = track->pid;
  2610. l->max_pid = track->pid;
  2611. cpus_clear(l->cpus);
  2612. cpu_set(track->cpu, l->cpus);
  2613. nodes_clear(l->nodes);
  2614. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2615. return 1;
  2616. }
  2617. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2618. struct page *page, enum track_item alloc)
  2619. {
  2620. void *addr = page_address(page);
  2621. DECLARE_BITMAP(map, s->objects);
  2622. void *p;
  2623. bitmap_zero(map, s->objects);
  2624. for_each_free_object(p, s, page->freelist)
  2625. set_bit(slab_index(p, s, addr), map);
  2626. for_each_object(p, s, addr)
  2627. if (!test_bit(slab_index(p, s, addr), map))
  2628. add_location(t, s, get_track(s, p, alloc));
  2629. }
  2630. static int list_locations(struct kmem_cache *s, char *buf,
  2631. enum track_item alloc)
  2632. {
  2633. int n = 0;
  2634. unsigned long i;
  2635. struct loc_track t = { 0, 0, NULL };
  2636. int node;
  2637. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2638. GFP_KERNEL))
  2639. return sprintf(buf, "Out of memory\n");
  2640. /* Push back cpu slabs */
  2641. flush_all(s);
  2642. for_each_online_node(node) {
  2643. struct kmem_cache_node *n = get_node(s, node);
  2644. unsigned long flags;
  2645. struct page *page;
  2646. if (!atomic_read(&n->nr_slabs))
  2647. continue;
  2648. spin_lock_irqsave(&n->list_lock, flags);
  2649. list_for_each_entry(page, &n->partial, lru)
  2650. process_slab(&t, s, page, alloc);
  2651. list_for_each_entry(page, &n->full, lru)
  2652. process_slab(&t, s, page, alloc);
  2653. spin_unlock_irqrestore(&n->list_lock, flags);
  2654. }
  2655. for (i = 0; i < t.count; i++) {
  2656. struct location *l = &t.loc[i];
  2657. if (n > PAGE_SIZE - 100)
  2658. break;
  2659. n += sprintf(buf + n, "%7ld ", l->count);
  2660. if (l->addr)
  2661. n += sprint_symbol(buf + n, (unsigned long)l->addr);
  2662. else
  2663. n += sprintf(buf + n, "<not-available>");
  2664. if (l->sum_time != l->min_time) {
  2665. unsigned long remainder;
  2666. n += sprintf(buf + n, " age=%ld/%ld/%ld",
  2667. l->min_time,
  2668. div_long_long_rem(l->sum_time, l->count, &remainder),
  2669. l->max_time);
  2670. } else
  2671. n += sprintf(buf + n, " age=%ld",
  2672. l->min_time);
  2673. if (l->min_pid != l->max_pid)
  2674. n += sprintf(buf + n, " pid=%ld-%ld",
  2675. l->min_pid, l->max_pid);
  2676. else
  2677. n += sprintf(buf + n, " pid=%ld",
  2678. l->min_pid);
  2679. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2680. n < PAGE_SIZE - 60) {
  2681. n += sprintf(buf + n, " cpus=");
  2682. n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2683. l->cpus);
  2684. }
  2685. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2686. n < PAGE_SIZE - 60) {
  2687. n += sprintf(buf + n, " nodes=");
  2688. n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
  2689. l->nodes);
  2690. }
  2691. n += sprintf(buf + n, "\n");
  2692. }
  2693. free_loc_track(&t);
  2694. if (!t.count)
  2695. n += sprintf(buf, "No data\n");
  2696. return n;
  2697. }
  2698. static unsigned long count_partial(struct kmem_cache_node *n)
  2699. {
  2700. unsigned long flags;
  2701. unsigned long x = 0;
  2702. struct page *page;
  2703. spin_lock_irqsave(&n->list_lock, flags);
  2704. list_for_each_entry(page, &n->partial, lru)
  2705. x += page->inuse;
  2706. spin_unlock_irqrestore(&n->list_lock, flags);
  2707. return x;
  2708. }
  2709. enum slab_stat_type {
  2710. SL_FULL,
  2711. SL_PARTIAL,
  2712. SL_CPU,
  2713. SL_OBJECTS
  2714. };
  2715. #define SO_FULL (1 << SL_FULL)
  2716. #define SO_PARTIAL (1 << SL_PARTIAL)
  2717. #define SO_CPU (1 << SL_CPU)
  2718. #define SO_OBJECTS (1 << SL_OBJECTS)
  2719. static unsigned long slab_objects(struct kmem_cache *s,
  2720. char *buf, unsigned long flags)
  2721. {
  2722. unsigned long total = 0;
  2723. int cpu;
  2724. int node;
  2725. int x;
  2726. unsigned long *nodes;
  2727. unsigned long *per_cpu;
  2728. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  2729. per_cpu = nodes + nr_node_ids;
  2730. for_each_possible_cpu(cpu) {
  2731. struct page *page = s->cpu_slab[cpu];
  2732. int node;
  2733. if (page) {
  2734. node = page_to_nid(page);
  2735. if (flags & SO_CPU) {
  2736. int x = 0;
  2737. if (flags & SO_OBJECTS)
  2738. x = page->inuse;
  2739. else
  2740. x = 1;
  2741. total += x;
  2742. nodes[node] += x;
  2743. }
  2744. per_cpu[node]++;
  2745. }
  2746. }
  2747. for_each_online_node(node) {
  2748. struct kmem_cache_node *n = get_node(s, node);
  2749. if (flags & SO_PARTIAL) {
  2750. if (flags & SO_OBJECTS)
  2751. x = count_partial(n);
  2752. else
  2753. x = n->nr_partial;
  2754. total += x;
  2755. nodes[node] += x;
  2756. }
  2757. if (flags & SO_FULL) {
  2758. int full_slabs = atomic_read(&n->nr_slabs)
  2759. - per_cpu[node]
  2760. - n->nr_partial;
  2761. if (flags & SO_OBJECTS)
  2762. x = full_slabs * s->objects;
  2763. else
  2764. x = full_slabs;
  2765. total += x;
  2766. nodes[node] += x;
  2767. }
  2768. }
  2769. x = sprintf(buf, "%lu", total);
  2770. #ifdef CONFIG_NUMA
  2771. for_each_online_node(node)
  2772. if (nodes[node])
  2773. x += sprintf(buf + x, " N%d=%lu",
  2774. node, nodes[node]);
  2775. #endif
  2776. kfree(nodes);
  2777. return x + sprintf(buf + x, "\n");
  2778. }
  2779. static int any_slab_objects(struct kmem_cache *s)
  2780. {
  2781. int node;
  2782. int cpu;
  2783. for_each_possible_cpu(cpu)
  2784. if (s->cpu_slab[cpu])
  2785. return 1;
  2786. for_each_node(node) {
  2787. struct kmem_cache_node *n = get_node(s, node);
  2788. if (n->nr_partial || atomic_read(&n->nr_slabs))
  2789. return 1;
  2790. }
  2791. return 0;
  2792. }
  2793. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  2794. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  2795. struct slab_attribute {
  2796. struct attribute attr;
  2797. ssize_t (*show)(struct kmem_cache *s, char *buf);
  2798. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  2799. };
  2800. #define SLAB_ATTR_RO(_name) \
  2801. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  2802. #define SLAB_ATTR(_name) \
  2803. static struct slab_attribute _name##_attr = \
  2804. __ATTR(_name, 0644, _name##_show, _name##_store)
  2805. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  2806. {
  2807. return sprintf(buf, "%d\n", s->size);
  2808. }
  2809. SLAB_ATTR_RO(slab_size);
  2810. static ssize_t align_show(struct kmem_cache *s, char *buf)
  2811. {
  2812. return sprintf(buf, "%d\n", s->align);
  2813. }
  2814. SLAB_ATTR_RO(align);
  2815. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  2816. {
  2817. return sprintf(buf, "%d\n", s->objsize);
  2818. }
  2819. SLAB_ATTR_RO(object_size);
  2820. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  2821. {
  2822. return sprintf(buf, "%d\n", s->objects);
  2823. }
  2824. SLAB_ATTR_RO(objs_per_slab);
  2825. static ssize_t order_show(struct kmem_cache *s, char *buf)
  2826. {
  2827. return sprintf(buf, "%d\n", s->order);
  2828. }
  2829. SLAB_ATTR_RO(order);
  2830. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  2831. {
  2832. if (s->ctor) {
  2833. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  2834. return n + sprintf(buf + n, "\n");
  2835. }
  2836. return 0;
  2837. }
  2838. SLAB_ATTR_RO(ctor);
  2839. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  2840. {
  2841. return sprintf(buf, "%d\n", s->refcount - 1);
  2842. }
  2843. SLAB_ATTR_RO(aliases);
  2844. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  2845. {
  2846. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  2847. }
  2848. SLAB_ATTR_RO(slabs);
  2849. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  2850. {
  2851. return slab_objects(s, buf, SO_PARTIAL);
  2852. }
  2853. SLAB_ATTR_RO(partial);
  2854. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  2855. {
  2856. return slab_objects(s, buf, SO_CPU);
  2857. }
  2858. SLAB_ATTR_RO(cpu_slabs);
  2859. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  2860. {
  2861. return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  2862. }
  2863. SLAB_ATTR_RO(objects);
  2864. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  2865. {
  2866. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  2867. }
  2868. static ssize_t sanity_checks_store(struct kmem_cache *s,
  2869. const char *buf, size_t length)
  2870. {
  2871. s->flags &= ~SLAB_DEBUG_FREE;
  2872. if (buf[0] == '1')
  2873. s->flags |= SLAB_DEBUG_FREE;
  2874. return length;
  2875. }
  2876. SLAB_ATTR(sanity_checks);
  2877. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  2878. {
  2879. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  2880. }
  2881. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  2882. size_t length)
  2883. {
  2884. s->flags &= ~SLAB_TRACE;
  2885. if (buf[0] == '1')
  2886. s->flags |= SLAB_TRACE;
  2887. return length;
  2888. }
  2889. SLAB_ATTR(trace);
  2890. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  2891. {
  2892. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  2893. }
  2894. static ssize_t reclaim_account_store(struct kmem_cache *s,
  2895. const char *buf, size_t length)
  2896. {
  2897. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  2898. if (buf[0] == '1')
  2899. s->flags |= SLAB_RECLAIM_ACCOUNT;
  2900. return length;
  2901. }
  2902. SLAB_ATTR(reclaim_account);
  2903. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  2904. {
  2905. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  2906. }
  2907. SLAB_ATTR_RO(hwcache_align);
  2908. #ifdef CONFIG_ZONE_DMA
  2909. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  2910. {
  2911. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  2912. }
  2913. SLAB_ATTR_RO(cache_dma);
  2914. #endif
  2915. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  2916. {
  2917. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  2918. }
  2919. SLAB_ATTR_RO(destroy_by_rcu);
  2920. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  2921. {
  2922. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  2923. }
  2924. static ssize_t red_zone_store(struct kmem_cache *s,
  2925. const char *buf, size_t length)
  2926. {
  2927. if (any_slab_objects(s))
  2928. return -EBUSY;
  2929. s->flags &= ~SLAB_RED_ZONE;
  2930. if (buf[0] == '1')
  2931. s->flags |= SLAB_RED_ZONE;
  2932. calculate_sizes(s);
  2933. return length;
  2934. }
  2935. SLAB_ATTR(red_zone);
  2936. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  2937. {
  2938. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  2939. }
  2940. static ssize_t poison_store(struct kmem_cache *s,
  2941. const char *buf, size_t length)
  2942. {
  2943. if (any_slab_objects(s))
  2944. return -EBUSY;
  2945. s->flags &= ~SLAB_POISON;
  2946. if (buf[0] == '1')
  2947. s->flags |= SLAB_POISON;
  2948. calculate_sizes(s);
  2949. return length;
  2950. }
  2951. SLAB_ATTR(poison);
  2952. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  2953. {
  2954. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  2955. }
  2956. static ssize_t store_user_store(struct kmem_cache *s,
  2957. const char *buf, size_t length)
  2958. {
  2959. if (any_slab_objects(s))
  2960. return -EBUSY;
  2961. s->flags &= ~SLAB_STORE_USER;
  2962. if (buf[0] == '1')
  2963. s->flags |= SLAB_STORE_USER;
  2964. calculate_sizes(s);
  2965. return length;
  2966. }
  2967. SLAB_ATTR(store_user);
  2968. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  2969. {
  2970. return 0;
  2971. }
  2972. static ssize_t validate_store(struct kmem_cache *s,
  2973. const char *buf, size_t length)
  2974. {
  2975. int ret = -EINVAL;
  2976. if (buf[0] == '1') {
  2977. ret = validate_slab_cache(s);
  2978. if (ret >= 0)
  2979. ret = length;
  2980. }
  2981. return ret;
  2982. }
  2983. SLAB_ATTR(validate);
  2984. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  2985. {
  2986. return 0;
  2987. }
  2988. static ssize_t shrink_store(struct kmem_cache *s,
  2989. const char *buf, size_t length)
  2990. {
  2991. if (buf[0] == '1') {
  2992. int rc = kmem_cache_shrink(s);
  2993. if (rc)
  2994. return rc;
  2995. } else
  2996. return -EINVAL;
  2997. return length;
  2998. }
  2999. SLAB_ATTR(shrink);
  3000. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3001. {
  3002. if (!(s->flags & SLAB_STORE_USER))
  3003. return -ENOSYS;
  3004. return list_locations(s, buf, TRACK_ALLOC);
  3005. }
  3006. SLAB_ATTR_RO(alloc_calls);
  3007. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3008. {
  3009. if (!(s->flags & SLAB_STORE_USER))
  3010. return -ENOSYS;
  3011. return list_locations(s, buf, TRACK_FREE);
  3012. }
  3013. SLAB_ATTR_RO(free_calls);
  3014. #ifdef CONFIG_NUMA
  3015. static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
  3016. {
  3017. return sprintf(buf, "%d\n", s->defrag_ratio / 10);
  3018. }
  3019. static ssize_t defrag_ratio_store(struct kmem_cache *s,
  3020. const char *buf, size_t length)
  3021. {
  3022. int n = simple_strtoul(buf, NULL, 10);
  3023. if (n < 100)
  3024. s->defrag_ratio = n * 10;
  3025. return length;
  3026. }
  3027. SLAB_ATTR(defrag_ratio);
  3028. #endif
  3029. static struct attribute * slab_attrs[] = {
  3030. &slab_size_attr.attr,
  3031. &object_size_attr.attr,
  3032. &objs_per_slab_attr.attr,
  3033. &order_attr.attr,
  3034. &objects_attr.attr,
  3035. &slabs_attr.attr,
  3036. &partial_attr.attr,
  3037. &cpu_slabs_attr.attr,
  3038. &ctor_attr.attr,
  3039. &aliases_attr.attr,
  3040. &align_attr.attr,
  3041. &sanity_checks_attr.attr,
  3042. &trace_attr.attr,
  3043. &hwcache_align_attr.attr,
  3044. &reclaim_account_attr.attr,
  3045. &destroy_by_rcu_attr.attr,
  3046. &red_zone_attr.attr,
  3047. &poison_attr.attr,
  3048. &store_user_attr.attr,
  3049. &validate_attr.attr,
  3050. &shrink_attr.attr,
  3051. &alloc_calls_attr.attr,
  3052. &free_calls_attr.attr,
  3053. #ifdef CONFIG_ZONE_DMA
  3054. &cache_dma_attr.attr,
  3055. #endif
  3056. #ifdef CONFIG_NUMA
  3057. &defrag_ratio_attr.attr,
  3058. #endif
  3059. NULL
  3060. };
  3061. static struct attribute_group slab_attr_group = {
  3062. .attrs = slab_attrs,
  3063. };
  3064. static ssize_t slab_attr_show(struct kobject *kobj,
  3065. struct attribute *attr,
  3066. char *buf)
  3067. {
  3068. struct slab_attribute *attribute;
  3069. struct kmem_cache *s;
  3070. int err;
  3071. attribute = to_slab_attr(attr);
  3072. s = to_slab(kobj);
  3073. if (!attribute->show)
  3074. return -EIO;
  3075. err = attribute->show(s, buf);
  3076. return err;
  3077. }
  3078. static ssize_t slab_attr_store(struct kobject *kobj,
  3079. struct attribute *attr,
  3080. const char *buf, size_t len)
  3081. {
  3082. struct slab_attribute *attribute;
  3083. struct kmem_cache *s;
  3084. int err;
  3085. attribute = to_slab_attr(attr);
  3086. s = to_slab(kobj);
  3087. if (!attribute->store)
  3088. return -EIO;
  3089. err = attribute->store(s, buf, len);
  3090. return err;
  3091. }
  3092. static struct sysfs_ops slab_sysfs_ops = {
  3093. .show = slab_attr_show,
  3094. .store = slab_attr_store,
  3095. };
  3096. static struct kobj_type slab_ktype = {
  3097. .sysfs_ops = &slab_sysfs_ops,
  3098. };
  3099. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3100. {
  3101. struct kobj_type *ktype = get_ktype(kobj);
  3102. if (ktype == &slab_ktype)
  3103. return 1;
  3104. return 0;
  3105. }
  3106. static struct kset_uevent_ops slab_uevent_ops = {
  3107. .filter = uevent_filter,
  3108. };
  3109. static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
  3110. #define ID_STR_LENGTH 64
  3111. /* Create a unique string id for a slab cache:
  3112. * format
  3113. * :[flags-]size:[memory address of kmemcache]
  3114. */
  3115. static char *create_unique_id(struct kmem_cache *s)
  3116. {
  3117. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3118. char *p = name;
  3119. BUG_ON(!name);
  3120. *p++ = ':';
  3121. /*
  3122. * First flags affecting slabcache operations. We will only
  3123. * get here for aliasable slabs so we do not need to support
  3124. * too many flags. The flags here must cover all flags that
  3125. * are matched during merging to guarantee that the id is
  3126. * unique.
  3127. */
  3128. if (s->flags & SLAB_CACHE_DMA)
  3129. *p++ = 'd';
  3130. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3131. *p++ = 'a';
  3132. if (s->flags & SLAB_DEBUG_FREE)
  3133. *p++ = 'F';
  3134. if (p != name + 1)
  3135. *p++ = '-';
  3136. p += sprintf(p, "%07d", s->size);
  3137. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3138. return name;
  3139. }
  3140. static int sysfs_slab_add(struct kmem_cache *s)
  3141. {
  3142. int err;
  3143. const char *name;
  3144. int unmergeable;
  3145. if (slab_state < SYSFS)
  3146. /* Defer until later */
  3147. return 0;
  3148. unmergeable = slab_unmergeable(s);
  3149. if (unmergeable) {
  3150. /*
  3151. * Slabcache can never be merged so we can use the name proper.
  3152. * This is typically the case for debug situations. In that
  3153. * case we can catch duplicate names easily.
  3154. */
  3155. sysfs_remove_link(&slab_subsys.kobj, s->name);
  3156. name = s->name;
  3157. } else {
  3158. /*
  3159. * Create a unique name for the slab as a target
  3160. * for the symlinks.
  3161. */
  3162. name = create_unique_id(s);
  3163. }
  3164. kobj_set_kset_s(s, slab_subsys);
  3165. kobject_set_name(&s->kobj, name);
  3166. kobject_init(&s->kobj);
  3167. err = kobject_add(&s->kobj);
  3168. if (err)
  3169. return err;
  3170. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3171. if (err)
  3172. return err;
  3173. kobject_uevent(&s->kobj, KOBJ_ADD);
  3174. if (!unmergeable) {
  3175. /* Setup first alias */
  3176. sysfs_slab_alias(s, s->name);
  3177. kfree(name);
  3178. }
  3179. return 0;
  3180. }
  3181. static void sysfs_slab_remove(struct kmem_cache *s)
  3182. {
  3183. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3184. kobject_del(&s->kobj);
  3185. }
  3186. /*
  3187. * Need to buffer aliases during bootup until sysfs becomes
  3188. * available lest we loose that information.
  3189. */
  3190. struct saved_alias {
  3191. struct kmem_cache *s;
  3192. const char *name;
  3193. struct saved_alias *next;
  3194. };
  3195. static struct saved_alias *alias_list;
  3196. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3197. {
  3198. struct saved_alias *al;
  3199. if (slab_state == SYSFS) {
  3200. /*
  3201. * If we have a leftover link then remove it.
  3202. */
  3203. sysfs_remove_link(&slab_subsys.kobj, name);
  3204. return sysfs_create_link(&slab_subsys.kobj,
  3205. &s->kobj, name);
  3206. }
  3207. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3208. if (!al)
  3209. return -ENOMEM;
  3210. al->s = s;
  3211. al->name = name;
  3212. al->next = alias_list;
  3213. alias_list = al;
  3214. return 0;
  3215. }
  3216. static int __init slab_sysfs_init(void)
  3217. {
  3218. struct kmem_cache *s;
  3219. int err;
  3220. err = subsystem_register(&slab_subsys);
  3221. if (err) {
  3222. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3223. return -ENOSYS;
  3224. }
  3225. slab_state = SYSFS;
  3226. list_for_each_entry(s, &slab_caches, list) {
  3227. err = sysfs_slab_add(s);
  3228. BUG_ON(err);
  3229. }
  3230. while (alias_list) {
  3231. struct saved_alias *al = alias_list;
  3232. alias_list = alias_list->next;
  3233. err = sysfs_slab_alias(al->s, al->name);
  3234. BUG_ON(err);
  3235. kfree(al);
  3236. }
  3237. resiliency_test();
  3238. return 0;
  3239. }
  3240. __initcall(slab_sysfs_init);
  3241. #endif