intel_dp.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. /**
  51. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  52. * @intel_dp: DP struct
  53. *
  54. * Returns true if the given DP struct corresponds to a PCH DP port attached
  55. * to an eDP panel, false otherwise. Helpful for determining whether we
  56. * may need FDI resources for a given DP output or not.
  57. */
  58. static bool is_pch_edp(struct intel_dp *intel_dp)
  59. {
  60. return intel_dp->is_pch_edp;
  61. }
  62. /**
  63. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  64. * @intel_dp: DP struct
  65. *
  66. * Returns true if the given DP struct corresponds to a CPU eDP port.
  67. */
  68. static bool is_cpu_edp(struct intel_dp *intel_dp)
  69. {
  70. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. /**
  82. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  83. * @encoder: DRM encoder
  84. *
  85. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  86. * by intel_display.c.
  87. */
  88. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  89. {
  90. struct intel_dp *intel_dp;
  91. if (!encoder)
  92. return false;
  93. intel_dp = enc_to_intel_dp(encoder);
  94. return is_pch_edp(intel_dp);
  95. }
  96. static void intel_dp_link_down(struct intel_dp *intel_dp);
  97. void
  98. intel_edp_link_config(struct intel_encoder *intel_encoder,
  99. int *lane_num, int *link_bw)
  100. {
  101. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  102. *lane_num = intel_dp->lane_count;
  103. *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  104. }
  105. int
  106. intel_edp_target_clock(struct intel_encoder *intel_encoder,
  107. struct drm_display_mode *mode)
  108. {
  109. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  110. struct intel_connector *intel_connector = intel_dp->attached_connector;
  111. if (intel_connector->panel.fixed_mode)
  112. return intel_connector->panel.fixed_mode->clock;
  113. else
  114. return mode->clock;
  115. }
  116. static int
  117. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  118. {
  119. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  120. switch (max_link_bw) {
  121. case DP_LINK_BW_1_62:
  122. case DP_LINK_BW_2_7:
  123. break;
  124. default:
  125. max_link_bw = DP_LINK_BW_1_62;
  126. break;
  127. }
  128. return max_link_bw;
  129. }
  130. /*
  131. * The units on the numbers in the next two are... bizarre. Examples will
  132. * make it clearer; this one parallels an example in the eDP spec.
  133. *
  134. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  135. *
  136. * 270000 * 1 * 8 / 10 == 216000
  137. *
  138. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  139. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  140. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  141. * 119000. At 18bpp that's 2142000 kilobits per second.
  142. *
  143. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  144. * get the result in decakilobits instead of kilobits.
  145. */
  146. static int
  147. intel_dp_link_required(int pixel_clock, int bpp)
  148. {
  149. return (pixel_clock * bpp + 9) / 10;
  150. }
  151. static int
  152. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  153. {
  154. return (max_link_clock * max_lanes * 8) / 10;
  155. }
  156. static bool
  157. intel_dp_adjust_dithering(struct intel_dp *intel_dp,
  158. struct drm_display_mode *mode,
  159. bool adjust_mode)
  160. {
  161. int max_link_clock =
  162. drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  163. int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  164. int max_rate, mode_rate;
  165. mode_rate = intel_dp_link_required(mode->clock, 24);
  166. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  167. if (mode_rate > max_rate) {
  168. mode_rate = intel_dp_link_required(mode->clock, 18);
  169. if (mode_rate > max_rate)
  170. return false;
  171. if (adjust_mode)
  172. mode->private_flags
  173. |= INTEL_MODE_DP_FORCE_6BPC;
  174. return true;
  175. }
  176. return true;
  177. }
  178. static int
  179. intel_dp_mode_valid(struct drm_connector *connector,
  180. struct drm_display_mode *mode)
  181. {
  182. struct intel_dp *intel_dp = intel_attached_dp(connector);
  183. struct intel_connector *intel_connector = to_intel_connector(connector);
  184. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  185. if (is_edp(intel_dp) && fixed_mode) {
  186. if (mode->hdisplay > fixed_mode->hdisplay)
  187. return MODE_PANEL;
  188. if (mode->vdisplay > fixed_mode->vdisplay)
  189. return MODE_PANEL;
  190. }
  191. if (!intel_dp_adjust_dithering(intel_dp, mode, false))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  196. return MODE_H_ILLEGAL;
  197. return MODE_OK;
  198. }
  199. static uint32_t
  200. pack_aux(uint8_t *src, int src_bytes)
  201. {
  202. int i;
  203. uint32_t v = 0;
  204. if (src_bytes > 4)
  205. src_bytes = 4;
  206. for (i = 0; i < src_bytes; i++)
  207. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  208. return v;
  209. }
  210. static void
  211. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  212. {
  213. int i;
  214. if (dst_bytes > 4)
  215. dst_bytes = 4;
  216. for (i = 0; i < dst_bytes; i++)
  217. dst[i] = src >> ((3-i) * 8);
  218. }
  219. /* hrawclock is 1/4 the FSB frequency */
  220. static int
  221. intel_hrawclk(struct drm_device *dev)
  222. {
  223. struct drm_i915_private *dev_priv = dev->dev_private;
  224. uint32_t clkcfg;
  225. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  226. if (IS_VALLEYVIEW(dev))
  227. return 200;
  228. clkcfg = I915_READ(CLKCFG);
  229. switch (clkcfg & CLKCFG_FSB_MASK) {
  230. case CLKCFG_FSB_400:
  231. return 100;
  232. case CLKCFG_FSB_533:
  233. return 133;
  234. case CLKCFG_FSB_667:
  235. return 166;
  236. case CLKCFG_FSB_800:
  237. return 200;
  238. case CLKCFG_FSB_1067:
  239. return 266;
  240. case CLKCFG_FSB_1333:
  241. return 333;
  242. /* these two are just a guess; one of them might be right */
  243. case CLKCFG_FSB_1600:
  244. case CLKCFG_FSB_1600_ALT:
  245. return 400;
  246. default:
  247. return 133;
  248. }
  249. }
  250. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  251. {
  252. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  253. struct drm_i915_private *dev_priv = dev->dev_private;
  254. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  255. }
  256. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  257. {
  258. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  261. }
  262. static void
  263. intel_dp_check_edp(struct intel_dp *intel_dp)
  264. {
  265. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  266. struct drm_i915_private *dev_priv = dev->dev_private;
  267. if (!is_edp(intel_dp))
  268. return;
  269. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  270. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  271. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  272. I915_READ(PCH_PP_STATUS),
  273. I915_READ(PCH_PP_CONTROL));
  274. }
  275. }
  276. static uint32_t
  277. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  278. {
  279. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  280. struct drm_device *dev = intel_dig_port->base.base.dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. uint32_t ch_ctl = intel_dp->output_reg + 0x10;
  283. uint32_t status;
  284. bool done;
  285. if (IS_HASWELL(dev)) {
  286. switch (intel_dig_port->port) {
  287. case PORT_A:
  288. ch_ctl = DPA_AUX_CH_CTL;
  289. break;
  290. case PORT_B:
  291. ch_ctl = PCH_DPB_AUX_CH_CTL;
  292. break;
  293. case PORT_C:
  294. ch_ctl = PCH_DPC_AUX_CH_CTL;
  295. break;
  296. case PORT_D:
  297. ch_ctl = PCH_DPD_AUX_CH_CTL;
  298. break;
  299. default:
  300. BUG();
  301. }
  302. }
  303. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  304. if (has_aux_irq)
  305. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
  306. else
  307. done = wait_for_atomic(C, 10) == 0;
  308. if (!done)
  309. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  310. has_aux_irq);
  311. #undef C
  312. return status;
  313. }
  314. static int
  315. intel_dp_aux_ch(struct intel_dp *intel_dp,
  316. uint8_t *send, int send_bytes,
  317. uint8_t *recv, int recv_size)
  318. {
  319. uint32_t output_reg = intel_dp->output_reg;
  320. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  321. struct drm_device *dev = intel_dig_port->base.base.dev;
  322. struct drm_i915_private *dev_priv = dev->dev_private;
  323. uint32_t ch_ctl = output_reg + 0x10;
  324. uint32_t ch_data = ch_ctl + 4;
  325. int i, ret, recv_bytes;
  326. uint32_t status;
  327. uint32_t aux_clock_divider;
  328. int try, precharge;
  329. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  330. /* dp aux is extremely sensitive to irq latency, hence request the
  331. * lowest possible wakeup latency and so prevent the cpu from going into
  332. * deep sleep states.
  333. */
  334. pm_qos_update_request(&dev_priv->pm_qos, 0);
  335. if (IS_HASWELL(dev)) {
  336. switch (intel_dig_port->port) {
  337. case PORT_A:
  338. ch_ctl = DPA_AUX_CH_CTL;
  339. ch_data = DPA_AUX_CH_DATA1;
  340. break;
  341. case PORT_B:
  342. ch_ctl = PCH_DPB_AUX_CH_CTL;
  343. ch_data = PCH_DPB_AUX_CH_DATA1;
  344. break;
  345. case PORT_C:
  346. ch_ctl = PCH_DPC_AUX_CH_CTL;
  347. ch_data = PCH_DPC_AUX_CH_DATA1;
  348. break;
  349. case PORT_D:
  350. ch_ctl = PCH_DPD_AUX_CH_CTL;
  351. ch_data = PCH_DPD_AUX_CH_DATA1;
  352. break;
  353. default:
  354. BUG();
  355. }
  356. }
  357. intel_dp_check_edp(intel_dp);
  358. /* The clock divider is based off the hrawclk,
  359. * and would like to run at 2MHz. So, take the
  360. * hrawclk value and divide by 2 and use that
  361. *
  362. * Note that PCH attached eDP panels should use a 125MHz input
  363. * clock divider.
  364. */
  365. if (is_cpu_edp(intel_dp)) {
  366. if (HAS_DDI(dev))
  367. aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
  368. else if (IS_VALLEYVIEW(dev))
  369. aux_clock_divider = 100;
  370. else if (IS_GEN6(dev) || IS_GEN7(dev))
  371. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  372. else
  373. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  374. } else if (HAS_PCH_SPLIT(dev))
  375. aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  376. else
  377. aux_clock_divider = intel_hrawclk(dev) / 2;
  378. if (IS_GEN6(dev))
  379. precharge = 3;
  380. else
  381. precharge = 5;
  382. /* Try to wait for any previous AUX channel activity */
  383. for (try = 0; try < 3; try++) {
  384. status = I915_READ_NOTRACE(ch_ctl);
  385. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  386. break;
  387. msleep(1);
  388. }
  389. if (try == 3) {
  390. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  391. I915_READ(ch_ctl));
  392. ret = -EBUSY;
  393. goto out;
  394. }
  395. /* Must try at least 3 times according to DP spec */
  396. for (try = 0; try < 5; try++) {
  397. /* Load the send data into the aux channel data registers */
  398. for (i = 0; i < send_bytes; i += 4)
  399. I915_WRITE(ch_data + i,
  400. pack_aux(send + i, send_bytes - i));
  401. /* Send the command and wait for it to complete */
  402. I915_WRITE(ch_ctl,
  403. DP_AUX_CH_CTL_SEND_BUSY |
  404. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  405. DP_AUX_CH_CTL_TIME_OUT_400us |
  406. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  407. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  408. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  409. DP_AUX_CH_CTL_DONE |
  410. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  411. DP_AUX_CH_CTL_RECEIVE_ERROR);
  412. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  413. /* Clear done status and any errors */
  414. I915_WRITE(ch_ctl,
  415. status |
  416. DP_AUX_CH_CTL_DONE |
  417. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  418. DP_AUX_CH_CTL_RECEIVE_ERROR);
  419. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  420. DP_AUX_CH_CTL_RECEIVE_ERROR))
  421. continue;
  422. if (status & DP_AUX_CH_CTL_DONE)
  423. break;
  424. }
  425. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  426. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  427. ret = -EBUSY;
  428. goto out;
  429. }
  430. /* Check for timeout or receive error.
  431. * Timeouts occur when the sink is not connected
  432. */
  433. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  434. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  435. ret = -EIO;
  436. goto out;
  437. }
  438. /* Timeouts occur when the device isn't connected, so they're
  439. * "normal" -- don't fill the kernel log with these */
  440. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  441. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  442. ret = -ETIMEDOUT;
  443. goto out;
  444. }
  445. /* Unload any bytes sent back from the other side */
  446. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  447. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  448. if (recv_bytes > recv_size)
  449. recv_bytes = recv_size;
  450. for (i = 0; i < recv_bytes; i += 4)
  451. unpack_aux(I915_READ(ch_data + i),
  452. recv + i, recv_bytes - i);
  453. ret = recv_bytes;
  454. out:
  455. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  456. return ret;
  457. }
  458. /* Write data to the aux channel in native mode */
  459. static int
  460. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  461. uint16_t address, uint8_t *send, int send_bytes)
  462. {
  463. int ret;
  464. uint8_t msg[20];
  465. int msg_bytes;
  466. uint8_t ack;
  467. intel_dp_check_edp(intel_dp);
  468. if (send_bytes > 16)
  469. return -1;
  470. msg[0] = AUX_NATIVE_WRITE << 4;
  471. msg[1] = address >> 8;
  472. msg[2] = address & 0xff;
  473. msg[3] = send_bytes - 1;
  474. memcpy(&msg[4], send, send_bytes);
  475. msg_bytes = send_bytes + 4;
  476. for (;;) {
  477. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  478. if (ret < 0)
  479. return ret;
  480. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  481. break;
  482. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  483. udelay(100);
  484. else
  485. return -EIO;
  486. }
  487. return send_bytes;
  488. }
  489. /* Write a single byte to the aux channel in native mode */
  490. static int
  491. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  492. uint16_t address, uint8_t byte)
  493. {
  494. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  495. }
  496. /* read bytes from a native aux channel */
  497. static int
  498. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  499. uint16_t address, uint8_t *recv, int recv_bytes)
  500. {
  501. uint8_t msg[4];
  502. int msg_bytes;
  503. uint8_t reply[20];
  504. int reply_bytes;
  505. uint8_t ack;
  506. int ret;
  507. intel_dp_check_edp(intel_dp);
  508. msg[0] = AUX_NATIVE_READ << 4;
  509. msg[1] = address >> 8;
  510. msg[2] = address & 0xff;
  511. msg[3] = recv_bytes - 1;
  512. msg_bytes = 4;
  513. reply_bytes = recv_bytes + 1;
  514. for (;;) {
  515. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  516. reply, reply_bytes);
  517. if (ret == 0)
  518. return -EPROTO;
  519. if (ret < 0)
  520. return ret;
  521. ack = reply[0];
  522. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  523. memcpy(recv, reply + 1, ret - 1);
  524. return ret - 1;
  525. }
  526. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  527. udelay(100);
  528. else
  529. return -EIO;
  530. }
  531. }
  532. static int
  533. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  534. uint8_t write_byte, uint8_t *read_byte)
  535. {
  536. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  537. struct intel_dp *intel_dp = container_of(adapter,
  538. struct intel_dp,
  539. adapter);
  540. uint16_t address = algo_data->address;
  541. uint8_t msg[5];
  542. uint8_t reply[2];
  543. unsigned retry;
  544. int msg_bytes;
  545. int reply_bytes;
  546. int ret;
  547. intel_dp_check_edp(intel_dp);
  548. /* Set up the command byte */
  549. if (mode & MODE_I2C_READ)
  550. msg[0] = AUX_I2C_READ << 4;
  551. else
  552. msg[0] = AUX_I2C_WRITE << 4;
  553. if (!(mode & MODE_I2C_STOP))
  554. msg[0] |= AUX_I2C_MOT << 4;
  555. msg[1] = address >> 8;
  556. msg[2] = address;
  557. switch (mode) {
  558. case MODE_I2C_WRITE:
  559. msg[3] = 0;
  560. msg[4] = write_byte;
  561. msg_bytes = 5;
  562. reply_bytes = 1;
  563. break;
  564. case MODE_I2C_READ:
  565. msg[3] = 0;
  566. msg_bytes = 4;
  567. reply_bytes = 2;
  568. break;
  569. default:
  570. msg_bytes = 3;
  571. reply_bytes = 1;
  572. break;
  573. }
  574. for (retry = 0; retry < 5; retry++) {
  575. ret = intel_dp_aux_ch(intel_dp,
  576. msg, msg_bytes,
  577. reply, reply_bytes);
  578. if (ret < 0) {
  579. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  580. return ret;
  581. }
  582. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  583. case AUX_NATIVE_REPLY_ACK:
  584. /* I2C-over-AUX Reply field is only valid
  585. * when paired with AUX ACK.
  586. */
  587. break;
  588. case AUX_NATIVE_REPLY_NACK:
  589. DRM_DEBUG_KMS("aux_ch native nack\n");
  590. return -EREMOTEIO;
  591. case AUX_NATIVE_REPLY_DEFER:
  592. udelay(100);
  593. continue;
  594. default:
  595. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  596. reply[0]);
  597. return -EREMOTEIO;
  598. }
  599. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  600. case AUX_I2C_REPLY_ACK:
  601. if (mode == MODE_I2C_READ) {
  602. *read_byte = reply[1];
  603. }
  604. return reply_bytes - 1;
  605. case AUX_I2C_REPLY_NACK:
  606. DRM_DEBUG_KMS("aux_i2c nack\n");
  607. return -EREMOTEIO;
  608. case AUX_I2C_REPLY_DEFER:
  609. DRM_DEBUG_KMS("aux_i2c defer\n");
  610. udelay(100);
  611. break;
  612. default:
  613. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  614. return -EREMOTEIO;
  615. }
  616. }
  617. DRM_ERROR("too many retries, giving up\n");
  618. return -EREMOTEIO;
  619. }
  620. static int
  621. intel_dp_i2c_init(struct intel_dp *intel_dp,
  622. struct intel_connector *intel_connector, const char *name)
  623. {
  624. int ret;
  625. DRM_DEBUG_KMS("i2c_init %s\n", name);
  626. intel_dp->algo.running = false;
  627. intel_dp->algo.address = 0;
  628. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  629. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  630. intel_dp->adapter.owner = THIS_MODULE;
  631. intel_dp->adapter.class = I2C_CLASS_DDC;
  632. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  633. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  634. intel_dp->adapter.algo_data = &intel_dp->algo;
  635. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  636. ironlake_edp_panel_vdd_on(intel_dp);
  637. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  638. ironlake_edp_panel_vdd_off(intel_dp, false);
  639. return ret;
  640. }
  641. bool
  642. intel_dp_mode_fixup(struct drm_encoder *encoder,
  643. const struct drm_display_mode *mode,
  644. struct drm_display_mode *adjusted_mode)
  645. {
  646. struct drm_device *dev = encoder->dev;
  647. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  648. struct intel_connector *intel_connector = intel_dp->attached_connector;
  649. int lane_count, clock;
  650. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  651. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  652. int bpp, mode_rate;
  653. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  654. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  655. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  656. adjusted_mode);
  657. intel_pch_panel_fitting(dev,
  658. intel_connector->panel.fitting_mode,
  659. mode, adjusted_mode);
  660. }
  661. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  662. return false;
  663. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  664. "max bw %02x pixel clock %iKHz\n",
  665. max_lane_count, bws[max_clock], adjusted_mode->clock);
  666. if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
  667. return false;
  668. bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
  669. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  670. for (clock = 0; clock <= max_clock; clock++) {
  671. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  672. int link_bw_clock =
  673. drm_dp_bw_code_to_link_rate(bws[clock]);
  674. int link_avail = intel_dp_max_data_rate(link_bw_clock,
  675. lane_count);
  676. if (mode_rate <= link_avail) {
  677. intel_dp->link_bw = bws[clock];
  678. intel_dp->lane_count = lane_count;
  679. adjusted_mode->clock = link_bw_clock;
  680. DRM_DEBUG_KMS("DP link bw %02x lane "
  681. "count %d clock %d bpp %d\n",
  682. intel_dp->link_bw, intel_dp->lane_count,
  683. adjusted_mode->clock, bpp);
  684. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  685. mode_rate, link_avail);
  686. return true;
  687. }
  688. }
  689. }
  690. return false;
  691. }
  692. struct intel_dp_m_n {
  693. uint32_t tu;
  694. uint32_t gmch_m;
  695. uint32_t gmch_n;
  696. uint32_t link_m;
  697. uint32_t link_n;
  698. };
  699. static void
  700. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  701. {
  702. while (*num > 0xffffff || *den > 0xffffff) {
  703. *num >>= 1;
  704. *den >>= 1;
  705. }
  706. }
  707. static void
  708. intel_dp_compute_m_n(int bpp,
  709. int nlanes,
  710. int pixel_clock,
  711. int link_clock,
  712. struct intel_dp_m_n *m_n)
  713. {
  714. m_n->tu = 64;
  715. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  716. m_n->gmch_n = link_clock * nlanes;
  717. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  718. m_n->link_m = pixel_clock;
  719. m_n->link_n = link_clock;
  720. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  721. }
  722. void
  723. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  724. struct drm_display_mode *adjusted_mode)
  725. {
  726. struct drm_device *dev = crtc->dev;
  727. struct intel_encoder *intel_encoder;
  728. struct intel_dp *intel_dp;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  731. int lane_count = 4;
  732. struct intel_dp_m_n m_n;
  733. int pipe = intel_crtc->pipe;
  734. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  735. /*
  736. * Find the lane count in the intel_encoder private
  737. */
  738. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  739. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  740. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  741. intel_encoder->type == INTEL_OUTPUT_EDP)
  742. {
  743. lane_count = intel_dp->lane_count;
  744. break;
  745. }
  746. }
  747. /*
  748. * Compute the GMCH and Link ratios. The '3' here is
  749. * the number of bytes_per_pixel post-LUT, which we always
  750. * set up for 8-bits of R/G/B, or 3 bytes total.
  751. */
  752. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  753. mode->clock, adjusted_mode->clock, &m_n);
  754. if (IS_HASWELL(dev)) {
  755. I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
  756. TU_SIZE(m_n.tu) | m_n.gmch_m);
  757. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  758. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  759. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  760. } else if (HAS_PCH_SPLIT(dev)) {
  761. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  762. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  763. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  764. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  765. } else if (IS_VALLEYVIEW(dev)) {
  766. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  767. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  768. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  769. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  770. } else {
  771. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  772. TU_SIZE(m_n.tu) | m_n.gmch_m);
  773. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  774. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  775. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  776. }
  777. }
  778. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  779. {
  780. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  781. intel_dp->link_configuration[0] = intel_dp->link_bw;
  782. intel_dp->link_configuration[1] = intel_dp->lane_count;
  783. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  784. /*
  785. * Check for DPCD version > 1.1 and enhanced framing support
  786. */
  787. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  788. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  789. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  790. }
  791. }
  792. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  793. {
  794. struct drm_device *dev = crtc->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. u32 dpa_ctl;
  797. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  798. dpa_ctl = I915_READ(DP_A);
  799. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  800. if (clock < 200000) {
  801. /* For a long time we've carried around a ILK-DevA w/a for the
  802. * 160MHz clock. If we're really unlucky, it's still required.
  803. */
  804. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  805. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  806. } else {
  807. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  808. }
  809. I915_WRITE(DP_A, dpa_ctl);
  810. POSTING_READ(DP_A);
  811. udelay(500);
  812. }
  813. static void
  814. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  815. struct drm_display_mode *adjusted_mode)
  816. {
  817. struct drm_device *dev = encoder->dev;
  818. struct drm_i915_private *dev_priv = dev->dev_private;
  819. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  820. struct drm_crtc *crtc = encoder->crtc;
  821. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  822. /*
  823. * There are four kinds of DP registers:
  824. *
  825. * IBX PCH
  826. * SNB CPU
  827. * IVB CPU
  828. * CPT PCH
  829. *
  830. * IBX PCH and CPU are the same for almost everything,
  831. * except that the CPU DP PLL is configured in this
  832. * register
  833. *
  834. * CPT PCH is quite different, having many bits moved
  835. * to the TRANS_DP_CTL register instead. That
  836. * configuration happens (oddly) in ironlake_pch_enable
  837. */
  838. /* Preserve the BIOS-computed detected bit. This is
  839. * supposed to be read-only.
  840. */
  841. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  842. /* Handle DP bits in common between all three register formats */
  843. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  844. switch (intel_dp->lane_count) {
  845. case 1:
  846. intel_dp->DP |= DP_PORT_WIDTH_1;
  847. break;
  848. case 2:
  849. intel_dp->DP |= DP_PORT_WIDTH_2;
  850. break;
  851. case 4:
  852. intel_dp->DP |= DP_PORT_WIDTH_4;
  853. break;
  854. }
  855. if (intel_dp->has_audio) {
  856. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  857. pipe_name(intel_crtc->pipe));
  858. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  859. intel_write_eld(encoder, adjusted_mode);
  860. }
  861. intel_dp_init_link_config(intel_dp);
  862. /* Split out the IBX/CPU vs CPT settings */
  863. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  864. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  865. intel_dp->DP |= DP_SYNC_HS_HIGH;
  866. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  867. intel_dp->DP |= DP_SYNC_VS_HIGH;
  868. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  869. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  870. intel_dp->DP |= DP_ENHANCED_FRAMING;
  871. intel_dp->DP |= intel_crtc->pipe << 29;
  872. /* don't miss out required setting for eDP */
  873. if (adjusted_mode->clock < 200000)
  874. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  875. else
  876. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  877. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  878. intel_dp->DP |= intel_dp->color_range;
  879. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  880. intel_dp->DP |= DP_SYNC_HS_HIGH;
  881. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  882. intel_dp->DP |= DP_SYNC_VS_HIGH;
  883. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  884. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  885. intel_dp->DP |= DP_ENHANCED_FRAMING;
  886. if (intel_crtc->pipe == 1)
  887. intel_dp->DP |= DP_PIPEB_SELECT;
  888. if (is_cpu_edp(intel_dp)) {
  889. /* don't miss out required setting for eDP */
  890. if (adjusted_mode->clock < 200000)
  891. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  892. else
  893. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  894. }
  895. } else {
  896. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  897. }
  898. if (is_cpu_edp(intel_dp))
  899. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  900. }
  901. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  902. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  903. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  904. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  905. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  906. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  907. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  908. u32 mask,
  909. u32 value)
  910. {
  911. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  914. mask, value,
  915. I915_READ(PCH_PP_STATUS),
  916. I915_READ(PCH_PP_CONTROL));
  917. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  918. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  919. I915_READ(PCH_PP_STATUS),
  920. I915_READ(PCH_PP_CONTROL));
  921. }
  922. }
  923. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  924. {
  925. DRM_DEBUG_KMS("Wait for panel power on\n");
  926. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  927. }
  928. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  929. {
  930. DRM_DEBUG_KMS("Wait for panel power off time\n");
  931. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  932. }
  933. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  934. {
  935. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  936. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  937. }
  938. /* Read the current pp_control value, unlocking the register if it
  939. * is locked
  940. */
  941. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  942. {
  943. u32 control = I915_READ(PCH_PP_CONTROL);
  944. control &= ~PANEL_UNLOCK_MASK;
  945. control |= PANEL_UNLOCK_REGS;
  946. return control;
  947. }
  948. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  949. {
  950. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  951. struct drm_i915_private *dev_priv = dev->dev_private;
  952. u32 pp;
  953. if (!is_edp(intel_dp))
  954. return;
  955. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  956. WARN(intel_dp->want_panel_vdd,
  957. "eDP VDD already requested on\n");
  958. intel_dp->want_panel_vdd = true;
  959. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  960. DRM_DEBUG_KMS("eDP VDD already on\n");
  961. return;
  962. }
  963. if (!ironlake_edp_have_panel_power(intel_dp))
  964. ironlake_wait_panel_power_cycle(intel_dp);
  965. pp = ironlake_get_pp_control(dev_priv);
  966. pp |= EDP_FORCE_VDD;
  967. I915_WRITE(PCH_PP_CONTROL, pp);
  968. POSTING_READ(PCH_PP_CONTROL);
  969. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  970. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  971. /*
  972. * If the panel wasn't on, delay before accessing aux channel
  973. */
  974. if (!ironlake_edp_have_panel_power(intel_dp)) {
  975. DRM_DEBUG_KMS("eDP was not running\n");
  976. msleep(intel_dp->panel_power_up_delay);
  977. }
  978. }
  979. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  980. {
  981. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  982. struct drm_i915_private *dev_priv = dev->dev_private;
  983. u32 pp;
  984. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  985. pp = ironlake_get_pp_control(dev_priv);
  986. pp &= ~EDP_FORCE_VDD;
  987. I915_WRITE(PCH_PP_CONTROL, pp);
  988. POSTING_READ(PCH_PP_CONTROL);
  989. /* Make sure sequencer is idle before allowing subsequent activity */
  990. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  991. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  992. msleep(intel_dp->panel_power_down_delay);
  993. }
  994. }
  995. static void ironlake_panel_vdd_work(struct work_struct *__work)
  996. {
  997. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  998. struct intel_dp, panel_vdd_work);
  999. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1000. mutex_lock(&dev->mode_config.mutex);
  1001. ironlake_panel_vdd_off_sync(intel_dp);
  1002. mutex_unlock(&dev->mode_config.mutex);
  1003. }
  1004. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  1005. {
  1006. if (!is_edp(intel_dp))
  1007. return;
  1008. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  1009. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  1010. intel_dp->want_panel_vdd = false;
  1011. if (sync) {
  1012. ironlake_panel_vdd_off_sync(intel_dp);
  1013. } else {
  1014. /*
  1015. * Queue the timer to fire a long
  1016. * time from now (relative to the power down delay)
  1017. * to keep the panel power up across a sequence of operations
  1018. */
  1019. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1020. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1021. }
  1022. }
  1023. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  1024. {
  1025. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. u32 pp;
  1028. if (!is_edp(intel_dp))
  1029. return;
  1030. DRM_DEBUG_KMS("Turn eDP power on\n");
  1031. if (ironlake_edp_have_panel_power(intel_dp)) {
  1032. DRM_DEBUG_KMS("eDP power already on\n");
  1033. return;
  1034. }
  1035. ironlake_wait_panel_power_cycle(intel_dp);
  1036. pp = ironlake_get_pp_control(dev_priv);
  1037. if (IS_GEN5(dev)) {
  1038. /* ILK workaround: disable reset around power sequence */
  1039. pp &= ~PANEL_POWER_RESET;
  1040. I915_WRITE(PCH_PP_CONTROL, pp);
  1041. POSTING_READ(PCH_PP_CONTROL);
  1042. }
  1043. pp |= POWER_TARGET_ON;
  1044. if (!IS_GEN5(dev))
  1045. pp |= PANEL_POWER_RESET;
  1046. I915_WRITE(PCH_PP_CONTROL, pp);
  1047. POSTING_READ(PCH_PP_CONTROL);
  1048. ironlake_wait_panel_on(intel_dp);
  1049. if (IS_GEN5(dev)) {
  1050. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1051. I915_WRITE(PCH_PP_CONTROL, pp);
  1052. POSTING_READ(PCH_PP_CONTROL);
  1053. }
  1054. }
  1055. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1056. {
  1057. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. u32 pp;
  1060. if (!is_edp(intel_dp))
  1061. return;
  1062. DRM_DEBUG_KMS("Turn eDP power off\n");
  1063. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1064. pp = ironlake_get_pp_control(dev_priv);
  1065. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1066. * panels get very unhappy and cease to work. */
  1067. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1068. I915_WRITE(PCH_PP_CONTROL, pp);
  1069. POSTING_READ(PCH_PP_CONTROL);
  1070. intel_dp->want_panel_vdd = false;
  1071. ironlake_wait_panel_off(intel_dp);
  1072. }
  1073. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1074. {
  1075. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1076. struct drm_device *dev = intel_dig_port->base.base.dev;
  1077. struct drm_i915_private *dev_priv = dev->dev_private;
  1078. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1079. u32 pp;
  1080. if (!is_edp(intel_dp))
  1081. return;
  1082. DRM_DEBUG_KMS("\n");
  1083. /*
  1084. * If we enable the backlight right away following a panel power
  1085. * on, we may see slight flicker as the panel syncs with the eDP
  1086. * link. So delay a bit to make sure the image is solid before
  1087. * allowing it to appear.
  1088. */
  1089. msleep(intel_dp->backlight_on_delay);
  1090. pp = ironlake_get_pp_control(dev_priv);
  1091. pp |= EDP_BLC_ENABLE;
  1092. I915_WRITE(PCH_PP_CONTROL, pp);
  1093. POSTING_READ(PCH_PP_CONTROL);
  1094. intel_panel_enable_backlight(dev, pipe);
  1095. }
  1096. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1097. {
  1098. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1099. struct drm_i915_private *dev_priv = dev->dev_private;
  1100. u32 pp;
  1101. if (!is_edp(intel_dp))
  1102. return;
  1103. intel_panel_disable_backlight(dev);
  1104. DRM_DEBUG_KMS("\n");
  1105. pp = ironlake_get_pp_control(dev_priv);
  1106. pp &= ~EDP_BLC_ENABLE;
  1107. I915_WRITE(PCH_PP_CONTROL, pp);
  1108. POSTING_READ(PCH_PP_CONTROL);
  1109. msleep(intel_dp->backlight_off_delay);
  1110. }
  1111. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1112. {
  1113. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1114. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1115. struct drm_device *dev = crtc->dev;
  1116. struct drm_i915_private *dev_priv = dev->dev_private;
  1117. u32 dpa_ctl;
  1118. assert_pipe_disabled(dev_priv,
  1119. to_intel_crtc(crtc)->pipe);
  1120. DRM_DEBUG_KMS("\n");
  1121. dpa_ctl = I915_READ(DP_A);
  1122. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1123. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1124. /* We don't adjust intel_dp->DP while tearing down the link, to
  1125. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1126. * enable bits here to ensure that we don't enable too much. */
  1127. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1128. intel_dp->DP |= DP_PLL_ENABLE;
  1129. I915_WRITE(DP_A, intel_dp->DP);
  1130. POSTING_READ(DP_A);
  1131. udelay(200);
  1132. }
  1133. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1134. {
  1135. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1136. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1137. struct drm_device *dev = crtc->dev;
  1138. struct drm_i915_private *dev_priv = dev->dev_private;
  1139. u32 dpa_ctl;
  1140. assert_pipe_disabled(dev_priv,
  1141. to_intel_crtc(crtc)->pipe);
  1142. dpa_ctl = I915_READ(DP_A);
  1143. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1144. "dp pll off, should be on\n");
  1145. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1146. /* We can't rely on the value tracked for the DP register in
  1147. * intel_dp->DP because link_down must not change that (otherwise link
  1148. * re-training will fail. */
  1149. dpa_ctl &= ~DP_PLL_ENABLE;
  1150. I915_WRITE(DP_A, dpa_ctl);
  1151. POSTING_READ(DP_A);
  1152. udelay(200);
  1153. }
  1154. /* If the sink supports it, try to set the power state appropriately */
  1155. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1156. {
  1157. int ret, i;
  1158. /* Should have a valid DPCD by this point */
  1159. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1160. return;
  1161. if (mode != DRM_MODE_DPMS_ON) {
  1162. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1163. DP_SET_POWER_D3);
  1164. if (ret != 1)
  1165. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1166. } else {
  1167. /*
  1168. * When turning on, we need to retry for 1ms to give the sink
  1169. * time to wake up.
  1170. */
  1171. for (i = 0; i < 3; i++) {
  1172. ret = intel_dp_aux_native_write_1(intel_dp,
  1173. DP_SET_POWER,
  1174. DP_SET_POWER_D0);
  1175. if (ret == 1)
  1176. break;
  1177. msleep(1);
  1178. }
  1179. }
  1180. }
  1181. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1182. enum pipe *pipe)
  1183. {
  1184. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1185. struct drm_device *dev = encoder->base.dev;
  1186. struct drm_i915_private *dev_priv = dev->dev_private;
  1187. u32 tmp = I915_READ(intel_dp->output_reg);
  1188. if (!(tmp & DP_PORT_EN))
  1189. return false;
  1190. if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
  1191. *pipe = PORT_TO_PIPE_CPT(tmp);
  1192. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  1193. *pipe = PORT_TO_PIPE(tmp);
  1194. } else {
  1195. u32 trans_sel;
  1196. u32 trans_dp;
  1197. int i;
  1198. switch (intel_dp->output_reg) {
  1199. case PCH_DP_B:
  1200. trans_sel = TRANS_DP_PORT_SEL_B;
  1201. break;
  1202. case PCH_DP_C:
  1203. trans_sel = TRANS_DP_PORT_SEL_C;
  1204. break;
  1205. case PCH_DP_D:
  1206. trans_sel = TRANS_DP_PORT_SEL_D;
  1207. break;
  1208. default:
  1209. return true;
  1210. }
  1211. for_each_pipe(i) {
  1212. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1213. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1214. *pipe = i;
  1215. return true;
  1216. }
  1217. }
  1218. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1219. intel_dp->output_reg);
  1220. }
  1221. return true;
  1222. }
  1223. static void intel_disable_dp(struct intel_encoder *encoder)
  1224. {
  1225. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1226. /* Make sure the panel is off before trying to change the mode. But also
  1227. * ensure that we have vdd while we switch off the panel. */
  1228. ironlake_edp_panel_vdd_on(intel_dp);
  1229. ironlake_edp_backlight_off(intel_dp);
  1230. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1231. ironlake_edp_panel_off(intel_dp);
  1232. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1233. if (!is_cpu_edp(intel_dp))
  1234. intel_dp_link_down(intel_dp);
  1235. }
  1236. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1237. {
  1238. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1239. if (is_cpu_edp(intel_dp)) {
  1240. intel_dp_link_down(intel_dp);
  1241. ironlake_edp_pll_off(intel_dp);
  1242. }
  1243. }
  1244. static void intel_enable_dp(struct intel_encoder *encoder)
  1245. {
  1246. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1247. struct drm_device *dev = encoder->base.dev;
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1250. if (WARN_ON(dp_reg & DP_PORT_EN))
  1251. return;
  1252. ironlake_edp_panel_vdd_on(intel_dp);
  1253. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1254. intel_dp_start_link_train(intel_dp);
  1255. ironlake_edp_panel_on(intel_dp);
  1256. ironlake_edp_panel_vdd_off(intel_dp, true);
  1257. intel_dp_complete_link_train(intel_dp);
  1258. ironlake_edp_backlight_on(intel_dp);
  1259. }
  1260. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1261. {
  1262. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1263. if (is_cpu_edp(intel_dp))
  1264. ironlake_edp_pll_on(intel_dp);
  1265. }
  1266. /*
  1267. * Native read with retry for link status and receiver capability reads for
  1268. * cases where the sink may still be asleep.
  1269. */
  1270. static bool
  1271. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1272. uint8_t *recv, int recv_bytes)
  1273. {
  1274. int ret, i;
  1275. /*
  1276. * Sinks are *supposed* to come up within 1ms from an off state,
  1277. * but we're also supposed to retry 3 times per the spec.
  1278. */
  1279. for (i = 0; i < 3; i++) {
  1280. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1281. recv_bytes);
  1282. if (ret == recv_bytes)
  1283. return true;
  1284. msleep(1);
  1285. }
  1286. return false;
  1287. }
  1288. /*
  1289. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1290. * link status information
  1291. */
  1292. static bool
  1293. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1294. {
  1295. return intel_dp_aux_native_read_retry(intel_dp,
  1296. DP_LANE0_1_STATUS,
  1297. link_status,
  1298. DP_LINK_STATUS_SIZE);
  1299. }
  1300. #if 0
  1301. static char *voltage_names[] = {
  1302. "0.4V", "0.6V", "0.8V", "1.2V"
  1303. };
  1304. static char *pre_emph_names[] = {
  1305. "0dB", "3.5dB", "6dB", "9.5dB"
  1306. };
  1307. static char *link_train_names[] = {
  1308. "pattern 1", "pattern 2", "idle", "off"
  1309. };
  1310. #endif
  1311. /*
  1312. * These are source-specific values; current Intel hardware supports
  1313. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1314. */
  1315. static uint8_t
  1316. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1317. {
  1318. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1319. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1320. return DP_TRAIN_VOLTAGE_SWING_800;
  1321. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1322. return DP_TRAIN_VOLTAGE_SWING_1200;
  1323. else
  1324. return DP_TRAIN_VOLTAGE_SWING_800;
  1325. }
  1326. static uint8_t
  1327. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1328. {
  1329. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1330. if (IS_HASWELL(dev)) {
  1331. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1332. case DP_TRAIN_VOLTAGE_SWING_400:
  1333. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1334. case DP_TRAIN_VOLTAGE_SWING_600:
  1335. return DP_TRAIN_PRE_EMPHASIS_6;
  1336. case DP_TRAIN_VOLTAGE_SWING_800:
  1337. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1338. case DP_TRAIN_VOLTAGE_SWING_1200:
  1339. default:
  1340. return DP_TRAIN_PRE_EMPHASIS_0;
  1341. }
  1342. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1343. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1344. case DP_TRAIN_VOLTAGE_SWING_400:
  1345. return DP_TRAIN_PRE_EMPHASIS_6;
  1346. case DP_TRAIN_VOLTAGE_SWING_600:
  1347. case DP_TRAIN_VOLTAGE_SWING_800:
  1348. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1349. default:
  1350. return DP_TRAIN_PRE_EMPHASIS_0;
  1351. }
  1352. } else {
  1353. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1354. case DP_TRAIN_VOLTAGE_SWING_400:
  1355. return DP_TRAIN_PRE_EMPHASIS_6;
  1356. case DP_TRAIN_VOLTAGE_SWING_600:
  1357. return DP_TRAIN_PRE_EMPHASIS_6;
  1358. case DP_TRAIN_VOLTAGE_SWING_800:
  1359. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1360. case DP_TRAIN_VOLTAGE_SWING_1200:
  1361. default:
  1362. return DP_TRAIN_PRE_EMPHASIS_0;
  1363. }
  1364. }
  1365. }
  1366. static void
  1367. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1368. {
  1369. uint8_t v = 0;
  1370. uint8_t p = 0;
  1371. int lane;
  1372. uint8_t voltage_max;
  1373. uint8_t preemph_max;
  1374. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1375. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1376. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1377. if (this_v > v)
  1378. v = this_v;
  1379. if (this_p > p)
  1380. p = this_p;
  1381. }
  1382. voltage_max = intel_dp_voltage_max(intel_dp);
  1383. if (v >= voltage_max)
  1384. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1385. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1386. if (p >= preemph_max)
  1387. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1388. for (lane = 0; lane < 4; lane++)
  1389. intel_dp->train_set[lane] = v | p;
  1390. }
  1391. static uint32_t
  1392. intel_dp_signal_levels(uint8_t train_set)
  1393. {
  1394. uint32_t signal_levels = 0;
  1395. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1396. case DP_TRAIN_VOLTAGE_SWING_400:
  1397. default:
  1398. signal_levels |= DP_VOLTAGE_0_4;
  1399. break;
  1400. case DP_TRAIN_VOLTAGE_SWING_600:
  1401. signal_levels |= DP_VOLTAGE_0_6;
  1402. break;
  1403. case DP_TRAIN_VOLTAGE_SWING_800:
  1404. signal_levels |= DP_VOLTAGE_0_8;
  1405. break;
  1406. case DP_TRAIN_VOLTAGE_SWING_1200:
  1407. signal_levels |= DP_VOLTAGE_1_2;
  1408. break;
  1409. }
  1410. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1411. case DP_TRAIN_PRE_EMPHASIS_0:
  1412. default:
  1413. signal_levels |= DP_PRE_EMPHASIS_0;
  1414. break;
  1415. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1416. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1417. break;
  1418. case DP_TRAIN_PRE_EMPHASIS_6:
  1419. signal_levels |= DP_PRE_EMPHASIS_6;
  1420. break;
  1421. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1422. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1423. break;
  1424. }
  1425. return signal_levels;
  1426. }
  1427. /* Gen6's DP voltage swing and pre-emphasis control */
  1428. static uint32_t
  1429. intel_gen6_edp_signal_levels(uint8_t train_set)
  1430. {
  1431. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1432. DP_TRAIN_PRE_EMPHASIS_MASK);
  1433. switch (signal_levels) {
  1434. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1435. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1436. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1437. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1438. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1439. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1440. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1441. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1442. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1443. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1444. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1445. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1446. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1447. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1448. default:
  1449. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1450. "0x%x\n", signal_levels);
  1451. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1452. }
  1453. }
  1454. /* Gen7's DP voltage swing and pre-emphasis control */
  1455. static uint32_t
  1456. intel_gen7_edp_signal_levels(uint8_t train_set)
  1457. {
  1458. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1459. DP_TRAIN_PRE_EMPHASIS_MASK);
  1460. switch (signal_levels) {
  1461. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1462. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1463. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1464. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1465. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1466. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1467. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1468. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1469. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1470. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1471. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1472. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1473. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1474. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1475. default:
  1476. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1477. "0x%x\n", signal_levels);
  1478. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1479. }
  1480. }
  1481. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1482. static uint32_t
  1483. intel_dp_signal_levels_hsw(uint8_t train_set)
  1484. {
  1485. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1486. DP_TRAIN_PRE_EMPHASIS_MASK);
  1487. switch (signal_levels) {
  1488. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1489. return DDI_BUF_EMP_400MV_0DB_HSW;
  1490. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1491. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1492. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1493. return DDI_BUF_EMP_400MV_6DB_HSW;
  1494. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1495. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1496. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1497. return DDI_BUF_EMP_600MV_0DB_HSW;
  1498. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1499. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1500. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1501. return DDI_BUF_EMP_600MV_6DB_HSW;
  1502. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1503. return DDI_BUF_EMP_800MV_0DB_HSW;
  1504. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1505. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1506. default:
  1507. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1508. "0x%x\n", signal_levels);
  1509. return DDI_BUF_EMP_400MV_0DB_HSW;
  1510. }
  1511. }
  1512. static bool
  1513. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1514. uint32_t dp_reg_value,
  1515. uint8_t dp_train_pat)
  1516. {
  1517. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1518. struct drm_device *dev = intel_dig_port->base.base.dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. enum port port = intel_dig_port->port;
  1521. int ret;
  1522. uint32_t temp;
  1523. if (IS_HASWELL(dev)) {
  1524. temp = I915_READ(DP_TP_CTL(port));
  1525. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1526. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1527. else
  1528. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1529. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1530. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1531. case DP_TRAINING_PATTERN_DISABLE:
  1532. temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1533. I915_WRITE(DP_TP_CTL(port), temp);
  1534. if (wait_for((I915_READ(DP_TP_STATUS(port)) &
  1535. DP_TP_STATUS_IDLE_DONE), 1))
  1536. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1537. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1538. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1539. break;
  1540. case DP_TRAINING_PATTERN_1:
  1541. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1542. break;
  1543. case DP_TRAINING_PATTERN_2:
  1544. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1545. break;
  1546. case DP_TRAINING_PATTERN_3:
  1547. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1548. break;
  1549. }
  1550. I915_WRITE(DP_TP_CTL(port), temp);
  1551. } else if (HAS_PCH_CPT(dev) &&
  1552. (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1553. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1554. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1555. case DP_TRAINING_PATTERN_DISABLE:
  1556. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1557. break;
  1558. case DP_TRAINING_PATTERN_1:
  1559. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1560. break;
  1561. case DP_TRAINING_PATTERN_2:
  1562. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1563. break;
  1564. case DP_TRAINING_PATTERN_3:
  1565. DRM_ERROR("DP training pattern 3 not supported\n");
  1566. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1567. break;
  1568. }
  1569. } else {
  1570. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1571. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1572. case DP_TRAINING_PATTERN_DISABLE:
  1573. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1574. break;
  1575. case DP_TRAINING_PATTERN_1:
  1576. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1577. break;
  1578. case DP_TRAINING_PATTERN_2:
  1579. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1580. break;
  1581. case DP_TRAINING_PATTERN_3:
  1582. DRM_ERROR("DP training pattern 3 not supported\n");
  1583. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1584. break;
  1585. }
  1586. }
  1587. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1588. POSTING_READ(intel_dp->output_reg);
  1589. intel_dp_aux_native_write_1(intel_dp,
  1590. DP_TRAINING_PATTERN_SET,
  1591. dp_train_pat);
  1592. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1593. DP_TRAINING_PATTERN_DISABLE) {
  1594. ret = intel_dp_aux_native_write(intel_dp,
  1595. DP_TRAINING_LANE0_SET,
  1596. intel_dp->train_set,
  1597. intel_dp->lane_count);
  1598. if (ret != intel_dp->lane_count)
  1599. return false;
  1600. }
  1601. return true;
  1602. }
  1603. /* Enable corresponding port and start training pattern 1 */
  1604. void
  1605. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1606. {
  1607. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1608. struct drm_device *dev = encoder->dev;
  1609. int i;
  1610. uint8_t voltage;
  1611. bool clock_recovery = false;
  1612. int voltage_tries, loop_tries;
  1613. uint32_t DP = intel_dp->DP;
  1614. if (HAS_DDI(dev))
  1615. intel_ddi_prepare_link_retrain(encoder);
  1616. /* Write the link configuration data */
  1617. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1618. intel_dp->link_configuration,
  1619. DP_LINK_CONFIGURATION_SIZE);
  1620. DP |= DP_PORT_EN;
  1621. memset(intel_dp->train_set, 0, 4);
  1622. voltage = 0xff;
  1623. voltage_tries = 0;
  1624. loop_tries = 0;
  1625. clock_recovery = false;
  1626. for (;;) {
  1627. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1628. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1629. uint32_t signal_levels;
  1630. if (IS_HASWELL(dev)) {
  1631. signal_levels = intel_dp_signal_levels_hsw(
  1632. intel_dp->train_set[0]);
  1633. DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
  1634. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1635. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1636. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1637. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1638. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1639. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1640. } else {
  1641. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1642. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1643. }
  1644. DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
  1645. signal_levels);
  1646. /* Set training pattern 1 */
  1647. if (!intel_dp_set_link_train(intel_dp, DP,
  1648. DP_TRAINING_PATTERN_1 |
  1649. DP_LINK_SCRAMBLING_DISABLE))
  1650. break;
  1651. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1652. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1653. DRM_ERROR("failed to get link status\n");
  1654. break;
  1655. }
  1656. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1657. DRM_DEBUG_KMS("clock recovery OK\n");
  1658. clock_recovery = true;
  1659. break;
  1660. }
  1661. /* Check to see if we've tried the max voltage */
  1662. for (i = 0; i < intel_dp->lane_count; i++)
  1663. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1664. break;
  1665. if (i == intel_dp->lane_count && voltage_tries == 5) {
  1666. ++loop_tries;
  1667. if (loop_tries == 5) {
  1668. DRM_DEBUG_KMS("too many full retries, give up\n");
  1669. break;
  1670. }
  1671. memset(intel_dp->train_set, 0, 4);
  1672. voltage_tries = 0;
  1673. continue;
  1674. }
  1675. /* Check to see if we've tried the same voltage 5 times */
  1676. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1677. ++voltage_tries;
  1678. if (voltage_tries == 5) {
  1679. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1680. break;
  1681. }
  1682. } else
  1683. voltage_tries = 0;
  1684. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1685. /* Compute new intel_dp->train_set as requested by target */
  1686. intel_get_adjust_train(intel_dp, link_status);
  1687. }
  1688. intel_dp->DP = DP;
  1689. }
  1690. void
  1691. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1692. {
  1693. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1694. bool channel_eq = false;
  1695. int tries, cr_tries;
  1696. uint32_t DP = intel_dp->DP;
  1697. /* channel equalization */
  1698. tries = 0;
  1699. cr_tries = 0;
  1700. channel_eq = false;
  1701. for (;;) {
  1702. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1703. uint32_t signal_levels;
  1704. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1705. if (cr_tries > 5) {
  1706. DRM_ERROR("failed to train DP, aborting\n");
  1707. intel_dp_link_down(intel_dp);
  1708. break;
  1709. }
  1710. if (IS_HASWELL(dev)) {
  1711. signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
  1712. DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
  1713. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1714. signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
  1715. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
  1716. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1717. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1718. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1719. } else {
  1720. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
  1721. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1722. }
  1723. /* channel eq pattern */
  1724. if (!intel_dp_set_link_train(intel_dp, DP,
  1725. DP_TRAINING_PATTERN_2 |
  1726. DP_LINK_SCRAMBLING_DISABLE))
  1727. break;
  1728. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  1729. if (!intel_dp_get_link_status(intel_dp, link_status))
  1730. break;
  1731. /* Make sure clock is still ok */
  1732. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1733. intel_dp_start_link_train(intel_dp);
  1734. cr_tries++;
  1735. continue;
  1736. }
  1737. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1738. channel_eq = true;
  1739. break;
  1740. }
  1741. /* Try 5 times, then try clock recovery if that fails */
  1742. if (tries > 5) {
  1743. intel_dp_link_down(intel_dp);
  1744. intel_dp_start_link_train(intel_dp);
  1745. tries = 0;
  1746. cr_tries++;
  1747. continue;
  1748. }
  1749. /* Compute new intel_dp->train_set as requested by target */
  1750. intel_get_adjust_train(intel_dp, link_status);
  1751. ++tries;
  1752. }
  1753. if (channel_eq)
  1754. DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
  1755. intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
  1756. }
  1757. static void
  1758. intel_dp_link_down(struct intel_dp *intel_dp)
  1759. {
  1760. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1761. struct drm_device *dev = intel_dig_port->base.base.dev;
  1762. struct drm_i915_private *dev_priv = dev->dev_private;
  1763. uint32_t DP = intel_dp->DP;
  1764. /*
  1765. * DDI code has a strict mode set sequence and we should try to respect
  1766. * it, otherwise we might hang the machine in many different ways. So we
  1767. * really should be disabling the port only on a complete crtc_disable
  1768. * sequence. This function is just called under two conditions on DDI
  1769. * code:
  1770. * - Link train failed while doing crtc_enable, and on this case we
  1771. * really should respect the mode set sequence and wait for a
  1772. * crtc_disable.
  1773. * - Someone turned the monitor off and intel_dp_check_link_status
  1774. * called us. We don't need to disable the whole port on this case, so
  1775. * when someone turns the monitor on again,
  1776. * intel_ddi_prepare_link_retrain will take care of redoing the link
  1777. * train.
  1778. */
  1779. if (HAS_DDI(dev))
  1780. return;
  1781. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  1782. return;
  1783. DRM_DEBUG_KMS("\n");
  1784. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1785. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1786. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1787. } else {
  1788. DP &= ~DP_LINK_TRAIN_MASK;
  1789. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1790. }
  1791. POSTING_READ(intel_dp->output_reg);
  1792. msleep(17);
  1793. if (HAS_PCH_IBX(dev) &&
  1794. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1795. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1796. /* Hardware workaround: leaving our transcoder select
  1797. * set to transcoder B while it's off will prevent the
  1798. * corresponding HDMI output on transcoder A.
  1799. *
  1800. * Combine this with another hardware workaround:
  1801. * transcoder select bit can only be cleared while the
  1802. * port is enabled.
  1803. */
  1804. DP &= ~DP_PIPEB_SELECT;
  1805. I915_WRITE(intel_dp->output_reg, DP);
  1806. /* Changes to enable or select take place the vblank
  1807. * after being written.
  1808. */
  1809. if (crtc == NULL) {
  1810. /* We can arrive here never having been attached
  1811. * to a CRTC, for instance, due to inheriting
  1812. * random state from the BIOS.
  1813. *
  1814. * If the pipe is not running, play safe and
  1815. * wait for the clocks to stabilise before
  1816. * continuing.
  1817. */
  1818. POSTING_READ(intel_dp->output_reg);
  1819. msleep(50);
  1820. } else
  1821. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1822. }
  1823. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1824. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1825. POSTING_READ(intel_dp->output_reg);
  1826. msleep(intel_dp->panel_power_down_delay);
  1827. }
  1828. static bool
  1829. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1830. {
  1831. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1832. sizeof(intel_dp->dpcd)) == 0)
  1833. return false; /* aux transfer failed */
  1834. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  1835. return false; /* DPCD not present */
  1836. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  1837. DP_DWN_STRM_PORT_PRESENT))
  1838. return true; /* native DP sink */
  1839. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  1840. return true; /* no per-port downstream info */
  1841. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  1842. intel_dp->downstream_ports,
  1843. DP_MAX_DOWNSTREAM_PORTS) == 0)
  1844. return false; /* downstream port status fetch failed */
  1845. return true;
  1846. }
  1847. static void
  1848. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1849. {
  1850. u8 buf[3];
  1851. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1852. return;
  1853. ironlake_edp_panel_vdd_on(intel_dp);
  1854. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1855. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1856. buf[0], buf[1], buf[2]);
  1857. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1858. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1859. buf[0], buf[1], buf[2]);
  1860. ironlake_edp_panel_vdd_off(intel_dp, false);
  1861. }
  1862. static bool
  1863. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1864. {
  1865. int ret;
  1866. ret = intel_dp_aux_native_read_retry(intel_dp,
  1867. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1868. sink_irq_vector, 1);
  1869. if (!ret)
  1870. return false;
  1871. return true;
  1872. }
  1873. static void
  1874. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1875. {
  1876. /* NAK by default */
  1877. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  1878. }
  1879. /*
  1880. * According to DP spec
  1881. * 5.1.2:
  1882. * 1. Read DPCD
  1883. * 2. Configure link according to Receiver Capabilities
  1884. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1885. * 4. Check link status on receipt of hot-plug interrupt
  1886. */
  1887. void
  1888. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1889. {
  1890. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1891. u8 sink_irq_vector;
  1892. u8 link_status[DP_LINK_STATUS_SIZE];
  1893. if (!intel_encoder->connectors_active)
  1894. return;
  1895. if (WARN_ON(!intel_encoder->base.crtc))
  1896. return;
  1897. /* Try to read receiver status if the link appears to be up */
  1898. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1899. intel_dp_link_down(intel_dp);
  1900. return;
  1901. }
  1902. /* Now read the DPCD to see if it's actually running */
  1903. if (!intel_dp_get_dpcd(intel_dp)) {
  1904. intel_dp_link_down(intel_dp);
  1905. return;
  1906. }
  1907. /* Try to read the source of the interrupt */
  1908. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1909. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1910. /* Clear interrupt source */
  1911. intel_dp_aux_native_write_1(intel_dp,
  1912. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1913. sink_irq_vector);
  1914. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1915. intel_dp_handle_test_request(intel_dp);
  1916. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1917. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1918. }
  1919. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1920. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1921. drm_get_encoder_name(&intel_encoder->base));
  1922. intel_dp_start_link_train(intel_dp);
  1923. intel_dp_complete_link_train(intel_dp);
  1924. }
  1925. }
  1926. /* XXX this is probably wrong for multiple downstream ports */
  1927. static enum drm_connector_status
  1928. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1929. {
  1930. uint8_t *dpcd = intel_dp->dpcd;
  1931. bool hpd;
  1932. uint8_t type;
  1933. if (!intel_dp_get_dpcd(intel_dp))
  1934. return connector_status_disconnected;
  1935. /* if there's no downstream port, we're done */
  1936. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  1937. return connector_status_connected;
  1938. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  1939. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  1940. if (hpd) {
  1941. uint8_t reg;
  1942. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  1943. &reg, 1))
  1944. return connector_status_unknown;
  1945. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  1946. : connector_status_disconnected;
  1947. }
  1948. /* If no HPD, poke DDC gently */
  1949. if (drm_probe_ddc(&intel_dp->adapter))
  1950. return connector_status_connected;
  1951. /* Well we tried, say unknown for unreliable port types */
  1952. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  1953. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  1954. return connector_status_unknown;
  1955. /* Anything else is out of spec, warn and ignore */
  1956. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  1957. return connector_status_disconnected;
  1958. }
  1959. static enum drm_connector_status
  1960. ironlake_dp_detect(struct intel_dp *intel_dp)
  1961. {
  1962. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1963. enum drm_connector_status status;
  1964. /* Can't disconnect eDP, but you can close the lid... */
  1965. if (is_edp(intel_dp)) {
  1966. status = intel_panel_detect(dev);
  1967. if (status == connector_status_unknown)
  1968. status = connector_status_connected;
  1969. return status;
  1970. }
  1971. return intel_dp_detect_dpcd(intel_dp);
  1972. }
  1973. static enum drm_connector_status
  1974. g4x_dp_detect(struct intel_dp *intel_dp)
  1975. {
  1976. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1977. struct drm_i915_private *dev_priv = dev->dev_private;
  1978. uint32_t bit;
  1979. switch (intel_dp->output_reg) {
  1980. case DP_B:
  1981. bit = DPB_HOTPLUG_LIVE_STATUS;
  1982. break;
  1983. case DP_C:
  1984. bit = DPC_HOTPLUG_LIVE_STATUS;
  1985. break;
  1986. case DP_D:
  1987. bit = DPD_HOTPLUG_LIVE_STATUS;
  1988. break;
  1989. default:
  1990. return connector_status_unknown;
  1991. }
  1992. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  1993. return connector_status_disconnected;
  1994. return intel_dp_detect_dpcd(intel_dp);
  1995. }
  1996. static struct edid *
  1997. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1998. {
  1999. struct intel_connector *intel_connector = to_intel_connector(connector);
  2000. /* use cached edid if we have one */
  2001. if (intel_connector->edid) {
  2002. struct edid *edid;
  2003. int size;
  2004. /* invalid edid */
  2005. if (IS_ERR(intel_connector->edid))
  2006. return NULL;
  2007. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2008. edid = kmalloc(size, GFP_KERNEL);
  2009. if (!edid)
  2010. return NULL;
  2011. memcpy(edid, intel_connector->edid, size);
  2012. return edid;
  2013. }
  2014. return drm_get_edid(connector, adapter);
  2015. }
  2016. static int
  2017. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2018. {
  2019. struct intel_connector *intel_connector = to_intel_connector(connector);
  2020. /* use cached edid if we have one */
  2021. if (intel_connector->edid) {
  2022. /* invalid edid */
  2023. if (IS_ERR(intel_connector->edid))
  2024. return 0;
  2025. return intel_connector_update_modes(connector,
  2026. intel_connector->edid);
  2027. }
  2028. return intel_ddc_get_modes(connector, adapter);
  2029. }
  2030. /**
  2031. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  2032. *
  2033. * \return true if DP port is connected.
  2034. * \return false if DP port is disconnected.
  2035. */
  2036. static enum drm_connector_status
  2037. intel_dp_detect(struct drm_connector *connector, bool force)
  2038. {
  2039. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2040. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2041. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2042. struct drm_device *dev = connector->dev;
  2043. enum drm_connector_status status;
  2044. struct edid *edid = NULL;
  2045. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2046. intel_dp->has_audio = false;
  2047. if (HAS_PCH_SPLIT(dev))
  2048. status = ironlake_dp_detect(intel_dp);
  2049. else
  2050. status = g4x_dp_detect(intel_dp);
  2051. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2052. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2053. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2054. if (status != connector_status_connected)
  2055. return status;
  2056. intel_dp_probe_oui(intel_dp);
  2057. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2058. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2059. } else {
  2060. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2061. if (edid) {
  2062. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2063. kfree(edid);
  2064. }
  2065. }
  2066. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2067. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2068. return connector_status_connected;
  2069. }
  2070. static int intel_dp_get_modes(struct drm_connector *connector)
  2071. {
  2072. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2073. struct intel_connector *intel_connector = to_intel_connector(connector);
  2074. struct drm_device *dev = connector->dev;
  2075. int ret;
  2076. /* We should parse the EDID data and find out if it has an audio sink
  2077. */
  2078. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2079. if (ret)
  2080. return ret;
  2081. /* if eDP has no EDID, fall back to fixed mode */
  2082. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2083. struct drm_display_mode *mode;
  2084. mode = drm_mode_duplicate(dev,
  2085. intel_connector->panel.fixed_mode);
  2086. if (mode) {
  2087. drm_mode_probed_add(connector, mode);
  2088. return 1;
  2089. }
  2090. }
  2091. return 0;
  2092. }
  2093. static bool
  2094. intel_dp_detect_audio(struct drm_connector *connector)
  2095. {
  2096. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2097. struct edid *edid;
  2098. bool has_audio = false;
  2099. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2100. if (edid) {
  2101. has_audio = drm_detect_monitor_audio(edid);
  2102. kfree(edid);
  2103. }
  2104. return has_audio;
  2105. }
  2106. static int
  2107. intel_dp_set_property(struct drm_connector *connector,
  2108. struct drm_property *property,
  2109. uint64_t val)
  2110. {
  2111. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2112. struct intel_connector *intel_connector = to_intel_connector(connector);
  2113. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2114. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2115. int ret;
  2116. ret = drm_object_property_set_value(&connector->base, property, val);
  2117. if (ret)
  2118. return ret;
  2119. if (property == dev_priv->force_audio_property) {
  2120. int i = val;
  2121. bool has_audio;
  2122. if (i == intel_dp->force_audio)
  2123. return 0;
  2124. intel_dp->force_audio = i;
  2125. if (i == HDMI_AUDIO_AUTO)
  2126. has_audio = intel_dp_detect_audio(connector);
  2127. else
  2128. has_audio = (i == HDMI_AUDIO_ON);
  2129. if (has_audio == intel_dp->has_audio)
  2130. return 0;
  2131. intel_dp->has_audio = has_audio;
  2132. goto done;
  2133. }
  2134. if (property == dev_priv->broadcast_rgb_property) {
  2135. if (val == !!intel_dp->color_range)
  2136. return 0;
  2137. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  2138. goto done;
  2139. }
  2140. if (is_edp(intel_dp) &&
  2141. property == connector->dev->mode_config.scaling_mode_property) {
  2142. if (val == DRM_MODE_SCALE_NONE) {
  2143. DRM_DEBUG_KMS("no scaling not supported\n");
  2144. return -EINVAL;
  2145. }
  2146. if (intel_connector->panel.fitting_mode == val) {
  2147. /* the eDP scaling property is not changed */
  2148. return 0;
  2149. }
  2150. intel_connector->panel.fitting_mode = val;
  2151. goto done;
  2152. }
  2153. return -EINVAL;
  2154. done:
  2155. if (intel_encoder->base.crtc) {
  2156. struct drm_crtc *crtc = intel_encoder->base.crtc;
  2157. intel_set_mode(crtc, &crtc->mode,
  2158. crtc->x, crtc->y, crtc->fb);
  2159. }
  2160. return 0;
  2161. }
  2162. static void
  2163. intel_dp_destroy(struct drm_connector *connector)
  2164. {
  2165. struct drm_device *dev = connector->dev;
  2166. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2167. struct intel_connector *intel_connector = to_intel_connector(connector);
  2168. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2169. kfree(intel_connector->edid);
  2170. if (is_edp(intel_dp)) {
  2171. intel_panel_destroy_backlight(dev);
  2172. intel_panel_fini(&intel_connector->panel);
  2173. }
  2174. drm_sysfs_connector_remove(connector);
  2175. drm_connector_cleanup(connector);
  2176. kfree(connector);
  2177. }
  2178. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2179. {
  2180. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2181. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2182. i2c_del_adapter(&intel_dp->adapter);
  2183. drm_encoder_cleanup(encoder);
  2184. if (is_edp(intel_dp)) {
  2185. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2186. ironlake_panel_vdd_off_sync(intel_dp);
  2187. }
  2188. kfree(intel_dig_port);
  2189. }
  2190. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2191. .mode_fixup = intel_dp_mode_fixup,
  2192. .mode_set = intel_dp_mode_set,
  2193. .disable = intel_encoder_noop,
  2194. };
  2195. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2196. .dpms = intel_connector_dpms,
  2197. .detect = intel_dp_detect,
  2198. .fill_modes = drm_helper_probe_single_connector_modes,
  2199. .set_property = intel_dp_set_property,
  2200. .destroy = intel_dp_destroy,
  2201. };
  2202. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2203. .get_modes = intel_dp_get_modes,
  2204. .mode_valid = intel_dp_mode_valid,
  2205. .best_encoder = intel_best_encoder,
  2206. };
  2207. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2208. .destroy = intel_dp_encoder_destroy,
  2209. };
  2210. static void
  2211. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2212. {
  2213. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2214. intel_dp_check_link_status(intel_dp);
  2215. }
  2216. /* Return which DP Port should be selected for Transcoder DP control */
  2217. int
  2218. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2219. {
  2220. struct drm_device *dev = crtc->dev;
  2221. struct intel_encoder *intel_encoder;
  2222. struct intel_dp *intel_dp;
  2223. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2224. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2225. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2226. intel_encoder->type == INTEL_OUTPUT_EDP)
  2227. return intel_dp->output_reg;
  2228. }
  2229. return -1;
  2230. }
  2231. /* check the VBT to see whether the eDP is on DP-D port */
  2232. bool intel_dpd_is_edp(struct drm_device *dev)
  2233. {
  2234. struct drm_i915_private *dev_priv = dev->dev_private;
  2235. struct child_device_config *p_child;
  2236. int i;
  2237. if (!dev_priv->child_dev_num)
  2238. return false;
  2239. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2240. p_child = dev_priv->child_dev + i;
  2241. if (p_child->dvo_port == PORT_IDPD &&
  2242. p_child->device_type == DEVICE_TYPE_eDP)
  2243. return true;
  2244. }
  2245. return false;
  2246. }
  2247. static void
  2248. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2249. {
  2250. struct intel_connector *intel_connector = to_intel_connector(connector);
  2251. intel_attach_force_audio_property(connector);
  2252. intel_attach_broadcast_rgb_property(connector);
  2253. if (is_edp(intel_dp)) {
  2254. drm_mode_create_scaling_mode_property(connector->dev);
  2255. drm_connector_attach_property(
  2256. connector,
  2257. connector->dev->mode_config.scaling_mode_property,
  2258. DRM_MODE_SCALE_ASPECT);
  2259. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2260. }
  2261. }
  2262. static void
  2263. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2264. struct intel_dp *intel_dp)
  2265. {
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. struct edp_power_seq cur, vbt, spec, final;
  2268. u32 pp_on, pp_off, pp_div, pp;
  2269. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2270. * the very first thing. */
  2271. pp = ironlake_get_pp_control(dev_priv);
  2272. I915_WRITE(PCH_PP_CONTROL, pp);
  2273. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2274. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2275. pp_div = I915_READ(PCH_PP_DIVISOR);
  2276. /* Pull timing values out of registers */
  2277. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2278. PANEL_POWER_UP_DELAY_SHIFT;
  2279. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2280. PANEL_LIGHT_ON_DELAY_SHIFT;
  2281. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2282. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2283. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2284. PANEL_POWER_DOWN_DELAY_SHIFT;
  2285. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2286. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2287. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2288. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2289. vbt = dev_priv->edp.pps;
  2290. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2291. * our hw here, which are all in 100usec. */
  2292. spec.t1_t3 = 210 * 10;
  2293. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2294. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2295. spec.t10 = 500 * 10;
  2296. /* This one is special and actually in units of 100ms, but zero
  2297. * based in the hw (so we need to add 100 ms). But the sw vbt
  2298. * table multiplies it with 1000 to make it in units of 100usec,
  2299. * too. */
  2300. spec.t11_t12 = (510 + 100) * 10;
  2301. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2302. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2303. /* Use the max of the register settings and vbt. If both are
  2304. * unset, fall back to the spec limits. */
  2305. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2306. spec.field : \
  2307. max(cur.field, vbt.field))
  2308. assign_final(t1_t3);
  2309. assign_final(t8);
  2310. assign_final(t9);
  2311. assign_final(t10);
  2312. assign_final(t11_t12);
  2313. #undef assign_final
  2314. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2315. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2316. intel_dp->backlight_on_delay = get_delay(t8);
  2317. intel_dp->backlight_off_delay = get_delay(t9);
  2318. intel_dp->panel_power_down_delay = get_delay(t10);
  2319. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2320. #undef get_delay
  2321. /* And finally store the new values in the power sequencer. */
  2322. pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2323. (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2324. pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2325. (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2326. /* Compute the divisor for the pp clock, simply match the Bspec
  2327. * formula. */
  2328. pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
  2329. << PP_REFERENCE_DIVIDER_SHIFT;
  2330. pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
  2331. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2332. /* Haswell doesn't have any port selection bits for the panel
  2333. * power sequencer any more. */
  2334. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2335. if (is_cpu_edp(intel_dp))
  2336. pp_on |= PANEL_POWER_PORT_DP_A;
  2337. else
  2338. pp_on |= PANEL_POWER_PORT_DP_D;
  2339. }
  2340. I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
  2341. I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
  2342. I915_WRITE(PCH_PP_DIVISOR, pp_div);
  2343. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2344. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2345. intel_dp->panel_power_cycle_delay);
  2346. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2347. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2348. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2349. I915_READ(PCH_PP_ON_DELAYS),
  2350. I915_READ(PCH_PP_OFF_DELAYS),
  2351. I915_READ(PCH_PP_DIVISOR));
  2352. }
  2353. void
  2354. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2355. struct intel_connector *intel_connector)
  2356. {
  2357. struct drm_connector *connector = &intel_connector->base;
  2358. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2359. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2360. struct drm_device *dev = intel_encoder->base.dev;
  2361. struct drm_i915_private *dev_priv = dev->dev_private;
  2362. struct drm_display_mode *fixed_mode = NULL;
  2363. enum port port = intel_dig_port->port;
  2364. const char *name = NULL;
  2365. int type;
  2366. /* Preserve the current hw state. */
  2367. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2368. intel_dp->attached_connector = intel_connector;
  2369. if (HAS_PCH_SPLIT(dev) && port == PORT_D)
  2370. if (intel_dpd_is_edp(dev))
  2371. intel_dp->is_pch_edp = true;
  2372. /*
  2373. * FIXME : We need to initialize built-in panels before external panels.
  2374. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2375. */
  2376. if (IS_VALLEYVIEW(dev) && port == PORT_C) {
  2377. type = DRM_MODE_CONNECTOR_eDP;
  2378. intel_encoder->type = INTEL_OUTPUT_EDP;
  2379. } else if (port == PORT_A || is_pch_edp(intel_dp)) {
  2380. type = DRM_MODE_CONNECTOR_eDP;
  2381. intel_encoder->type = INTEL_OUTPUT_EDP;
  2382. } else {
  2383. /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
  2384. * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
  2385. * rewrite it.
  2386. */
  2387. type = DRM_MODE_CONNECTOR_DisplayPort;
  2388. }
  2389. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2390. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2391. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2392. connector->interlace_allowed = true;
  2393. connector->doublescan_allowed = 0;
  2394. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2395. ironlake_panel_vdd_work);
  2396. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2397. drm_sysfs_connector_add(connector);
  2398. if (HAS_DDI(dev))
  2399. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2400. else
  2401. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2402. /* Set up the DDC bus. */
  2403. switch (port) {
  2404. case PORT_A:
  2405. name = "DPDDC-A";
  2406. break;
  2407. case PORT_B:
  2408. dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
  2409. name = "DPDDC-B";
  2410. break;
  2411. case PORT_C:
  2412. dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
  2413. name = "DPDDC-C";
  2414. break;
  2415. case PORT_D:
  2416. dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
  2417. name = "DPDDC-D";
  2418. break;
  2419. default:
  2420. WARN(1, "Invalid port %c\n", port_name(port));
  2421. break;
  2422. }
  2423. if (is_edp(intel_dp))
  2424. intel_dp_init_panel_power_sequencer(dev, intel_dp);
  2425. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2426. /* Cache DPCD and EDID for edp. */
  2427. if (is_edp(intel_dp)) {
  2428. bool ret;
  2429. struct drm_display_mode *scan;
  2430. struct edid *edid;
  2431. ironlake_edp_panel_vdd_on(intel_dp);
  2432. ret = intel_dp_get_dpcd(intel_dp);
  2433. ironlake_edp_panel_vdd_off(intel_dp, false);
  2434. if (ret) {
  2435. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2436. dev_priv->no_aux_handshake =
  2437. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2438. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2439. } else {
  2440. /* if this fails, presume the device is a ghost */
  2441. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2442. intel_dp_encoder_destroy(&intel_encoder->base);
  2443. intel_dp_destroy(connector);
  2444. return;
  2445. }
  2446. ironlake_edp_panel_vdd_on(intel_dp);
  2447. edid = drm_get_edid(connector, &intel_dp->adapter);
  2448. if (edid) {
  2449. if (drm_add_edid_modes(connector, edid)) {
  2450. drm_mode_connector_update_edid_property(connector, edid);
  2451. drm_edid_to_eld(connector, edid);
  2452. } else {
  2453. kfree(edid);
  2454. edid = ERR_PTR(-EINVAL);
  2455. }
  2456. } else {
  2457. edid = ERR_PTR(-ENOENT);
  2458. }
  2459. intel_connector->edid = edid;
  2460. /* prefer fixed mode from EDID if available */
  2461. list_for_each_entry(scan, &connector->probed_modes, head) {
  2462. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2463. fixed_mode = drm_mode_duplicate(dev, scan);
  2464. break;
  2465. }
  2466. }
  2467. /* fallback to VBT if available for eDP */
  2468. if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  2469. fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  2470. if (fixed_mode)
  2471. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2472. }
  2473. ironlake_edp_panel_vdd_off(intel_dp, false);
  2474. }
  2475. if (is_edp(intel_dp)) {
  2476. intel_panel_init(&intel_connector->panel, fixed_mode);
  2477. intel_panel_setup_backlight(connector);
  2478. }
  2479. intel_dp_add_properties(intel_dp, connector);
  2480. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2481. * 0xd. Failure to do so will result in spurious interrupts being
  2482. * generated on the port when a cable is not attached.
  2483. */
  2484. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2485. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2486. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2487. }
  2488. }
  2489. void
  2490. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2491. {
  2492. struct intel_digital_port *intel_dig_port;
  2493. struct intel_encoder *intel_encoder;
  2494. struct drm_encoder *encoder;
  2495. struct intel_connector *intel_connector;
  2496. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2497. if (!intel_dig_port)
  2498. return;
  2499. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2500. if (!intel_connector) {
  2501. kfree(intel_dig_port);
  2502. return;
  2503. }
  2504. intel_encoder = &intel_dig_port->base;
  2505. encoder = &intel_encoder->base;
  2506. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2507. DRM_MODE_ENCODER_TMDS);
  2508. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2509. intel_encoder->enable = intel_enable_dp;
  2510. intel_encoder->pre_enable = intel_pre_enable_dp;
  2511. intel_encoder->disable = intel_disable_dp;
  2512. intel_encoder->post_disable = intel_post_disable_dp;
  2513. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2514. intel_dig_port->port = port;
  2515. intel_dig_port->dp.output_reg = output_reg;
  2516. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2517. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2518. intel_encoder->cloneable = false;
  2519. intel_encoder->hot_plug = intel_dp_hot_plug;
  2520. intel_dp_init_connector(intel_dig_port, intel_connector);
  2521. }