md.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwith if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. /*
  108. * Enables to iterate over all existing md arrays
  109. * all_mddevs_lock protects this list.
  110. */
  111. static LIST_HEAD(all_mddevs);
  112. static DEFINE_SPINLOCK(all_mddevs_lock);
  113. /*
  114. * iterates through all used mddevs in the system.
  115. * We take care to grab the all_mddevs_lock whenever navigating
  116. * the list, and to always hold a refcount when unlocked.
  117. * Any code which breaks out of this loop while own
  118. * a reference to the current mddev and must mddev_put it.
  119. */
  120. #define ITERATE_MDDEV(mddev,tmp) \
  121. \
  122. for (({ spin_lock(&all_mddevs_lock); \
  123. tmp = all_mddevs.next; \
  124. mddev = NULL;}); \
  125. ({ if (tmp != &all_mddevs) \
  126. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  127. spin_unlock(&all_mddevs_lock); \
  128. if (mddev) mddev_put(mddev); \
  129. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  130. tmp != &all_mddevs;}); \
  131. ({ spin_lock(&all_mddevs_lock); \
  132. tmp = tmp->next;}) \
  133. )
  134. static int md_fail_request (request_queue_t *q, struct bio *bio)
  135. {
  136. bio_io_error(bio, bio->bi_size);
  137. return 0;
  138. }
  139. static inline mddev_t *mddev_get(mddev_t *mddev)
  140. {
  141. atomic_inc(&mddev->active);
  142. return mddev;
  143. }
  144. static void mddev_put(mddev_t *mddev)
  145. {
  146. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  147. return;
  148. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  149. list_del(&mddev->all_mddevs);
  150. blk_put_queue(mddev->queue);
  151. kfree(mddev);
  152. }
  153. spin_unlock(&all_mddevs_lock);
  154. }
  155. static mddev_t * mddev_find(dev_t unit)
  156. {
  157. mddev_t *mddev, *new = NULL;
  158. retry:
  159. spin_lock(&all_mddevs_lock);
  160. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  161. if (mddev->unit == unit) {
  162. mddev_get(mddev);
  163. spin_unlock(&all_mddevs_lock);
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. bio_put(bio);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. kfree(tmp1);
  375. kfree(tmp2);
  376. return ret;
  377. }
  378. static unsigned int calc_sb_csum(mdp_super_t * sb)
  379. {
  380. unsigned int disk_csum, csum;
  381. disk_csum = sb->sb_csum;
  382. sb->sb_csum = 0;
  383. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  384. sb->sb_csum = disk_csum;
  385. return csum;
  386. }
  387. /*
  388. * Handle superblock details.
  389. * We want to be able to handle multiple superblock formats
  390. * so we have a common interface to them all, and an array of
  391. * different handlers.
  392. * We rely on user-space to write the initial superblock, and support
  393. * reading and updating of superblocks.
  394. * Interface methods are:
  395. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  396. * loads and validates a superblock on dev.
  397. * if refdev != NULL, compare superblocks on both devices
  398. * Return:
  399. * 0 - dev has a superblock that is compatible with refdev
  400. * 1 - dev has a superblock that is compatible and newer than refdev
  401. * so dev should be used as the refdev in future
  402. * -EINVAL superblock incompatible or invalid
  403. * -othererror e.g. -EIO
  404. *
  405. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  406. * Verify that dev is acceptable into mddev.
  407. * The first time, mddev->raid_disks will be 0, and data from
  408. * dev should be merged in. Subsequent calls check that dev
  409. * is new enough. Return 0 or -EINVAL
  410. *
  411. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  412. * Update the superblock for rdev with data in mddev
  413. * This does not write to disc.
  414. *
  415. */
  416. struct super_type {
  417. char *name;
  418. struct module *owner;
  419. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  420. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  422. };
  423. /*
  424. * load_super for 0.90.0
  425. */
  426. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  427. {
  428. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  429. mdp_super_t *sb;
  430. int ret;
  431. sector_t sb_offset;
  432. /*
  433. * Calculate the position of the superblock,
  434. * it's at the end of the disk.
  435. *
  436. * It also happens to be a multiple of 4Kb.
  437. */
  438. sb_offset = calc_dev_sboffset(rdev->bdev);
  439. rdev->sb_offset = sb_offset;
  440. ret = read_disk_sb(rdev, MD_SB_BYTES);
  441. if (ret) return ret;
  442. ret = -EINVAL;
  443. bdevname(rdev->bdev, b);
  444. sb = (mdp_super_t*)page_address(rdev->sb_page);
  445. if (sb->md_magic != MD_SB_MAGIC) {
  446. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  447. b);
  448. goto abort;
  449. }
  450. if (sb->major_version != 0 ||
  451. sb->minor_version != 90) {
  452. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  453. sb->major_version, sb->minor_version,
  454. b);
  455. goto abort;
  456. }
  457. if (sb->raid_disks <= 0)
  458. goto abort;
  459. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  460. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  461. b);
  462. goto abort;
  463. }
  464. rdev->preferred_minor = sb->md_minor;
  465. rdev->data_offset = 0;
  466. rdev->sb_size = MD_SB_BYTES;
  467. if (sb->level == LEVEL_MULTIPATH)
  468. rdev->desc_nr = -1;
  469. else
  470. rdev->desc_nr = sb->this_disk.number;
  471. if (refdev == 0)
  472. ret = 1;
  473. else {
  474. __u64 ev1, ev2;
  475. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  476. if (!uuid_equal(refsb, sb)) {
  477. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  478. b, bdevname(refdev->bdev,b2));
  479. goto abort;
  480. }
  481. if (!sb_equal(refsb, sb)) {
  482. printk(KERN_WARNING "md: %s has same UUID"
  483. " but different superblock to %s\n",
  484. b, bdevname(refdev->bdev, b2));
  485. goto abort;
  486. }
  487. ev1 = md_event(sb);
  488. ev2 = md_event(refsb);
  489. if (ev1 > ev2)
  490. ret = 1;
  491. else
  492. ret = 0;
  493. }
  494. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  495. abort:
  496. return ret;
  497. }
  498. /*
  499. * validate_super for 0.90.0
  500. */
  501. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  502. {
  503. mdp_disk_t *desc;
  504. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  505. rdev->raid_disk = -1;
  506. rdev->in_sync = 0;
  507. if (mddev->raid_disks == 0) {
  508. mddev->major_version = 0;
  509. mddev->minor_version = sb->minor_version;
  510. mddev->patch_version = sb->patch_version;
  511. mddev->persistent = ! sb->not_persistent;
  512. mddev->chunk_size = sb->chunk_size;
  513. mddev->ctime = sb->ctime;
  514. mddev->utime = sb->utime;
  515. mddev->level = sb->level;
  516. mddev->layout = sb->layout;
  517. mddev->raid_disks = sb->raid_disks;
  518. mddev->size = sb->size;
  519. mddev->events = md_event(sb);
  520. mddev->bitmap_offset = 0;
  521. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  522. if (sb->state & (1<<MD_SB_CLEAN))
  523. mddev->recovery_cp = MaxSector;
  524. else {
  525. if (sb->events_hi == sb->cp_events_hi &&
  526. sb->events_lo == sb->cp_events_lo) {
  527. mddev->recovery_cp = sb->recovery_cp;
  528. } else
  529. mddev->recovery_cp = 0;
  530. }
  531. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  532. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  533. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  534. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  535. mddev->max_disks = MD_SB_DISKS;
  536. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  537. mddev->bitmap_file == NULL) {
  538. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  539. /* FIXME use a better test */
  540. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  541. return -EINVAL;
  542. }
  543. mddev->bitmap_offset = mddev->default_bitmap_offset;
  544. }
  545. } else if (mddev->pers == NULL) {
  546. /* Insist on good event counter while assembling */
  547. __u64 ev1 = md_event(sb);
  548. ++ev1;
  549. if (ev1 < mddev->events)
  550. return -EINVAL;
  551. } else if (mddev->bitmap) {
  552. /* if adding to array with a bitmap, then we can accept an
  553. * older device ... but not too old.
  554. */
  555. __u64 ev1 = md_event(sb);
  556. if (ev1 < mddev->bitmap->events_cleared)
  557. return 0;
  558. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  559. return 0;
  560. if (mddev->level != LEVEL_MULTIPATH) {
  561. rdev->faulty = 0;
  562. rdev->flags = 0;
  563. desc = sb->disks + rdev->desc_nr;
  564. if (desc->state & (1<<MD_DISK_FAULTY))
  565. rdev->faulty = 1;
  566. else if (desc->state & (1<<MD_DISK_SYNC) &&
  567. desc->raid_disk < mddev->raid_disks) {
  568. rdev->in_sync = 1;
  569. rdev->raid_disk = desc->raid_disk;
  570. }
  571. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  572. set_bit(WriteMostly, &rdev->flags);
  573. } else /* MULTIPATH are always insync */
  574. rdev->in_sync = 1;
  575. return 0;
  576. }
  577. /*
  578. * sync_super for 0.90.0
  579. */
  580. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  581. {
  582. mdp_super_t *sb;
  583. struct list_head *tmp;
  584. mdk_rdev_t *rdev2;
  585. int next_spare = mddev->raid_disks;
  586. /* make rdev->sb match mddev data..
  587. *
  588. * 1/ zero out disks
  589. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  590. * 3/ any empty disks < next_spare become removed
  591. *
  592. * disks[0] gets initialised to REMOVED because
  593. * we cannot be sure from other fields if it has
  594. * been initialised or not.
  595. */
  596. int i;
  597. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  598. sb = (mdp_super_t*)page_address(rdev->sb_page);
  599. memset(sb, 0, sizeof(*sb));
  600. sb->md_magic = MD_SB_MAGIC;
  601. sb->major_version = mddev->major_version;
  602. sb->minor_version = mddev->minor_version;
  603. sb->patch_version = mddev->patch_version;
  604. sb->gvalid_words = 0; /* ignored */
  605. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  606. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  607. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  608. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  609. sb->ctime = mddev->ctime;
  610. sb->level = mddev->level;
  611. sb->size = mddev->size;
  612. sb->raid_disks = mddev->raid_disks;
  613. sb->md_minor = mddev->md_minor;
  614. sb->not_persistent = !mddev->persistent;
  615. sb->utime = mddev->utime;
  616. sb->state = 0;
  617. sb->events_hi = (mddev->events>>32);
  618. sb->events_lo = (u32)mddev->events;
  619. if (mddev->in_sync)
  620. {
  621. sb->recovery_cp = mddev->recovery_cp;
  622. sb->cp_events_hi = (mddev->events>>32);
  623. sb->cp_events_lo = (u32)mddev->events;
  624. if (mddev->recovery_cp == MaxSector)
  625. sb->state = (1<< MD_SB_CLEAN);
  626. } else
  627. sb->recovery_cp = 0;
  628. sb->layout = mddev->layout;
  629. sb->chunk_size = mddev->chunk_size;
  630. if (mddev->bitmap && mddev->bitmap_file == NULL)
  631. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  632. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  633. ITERATE_RDEV(mddev,rdev2,tmp) {
  634. mdp_disk_t *d;
  635. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  636. rdev2->desc_nr = rdev2->raid_disk;
  637. else
  638. rdev2->desc_nr = next_spare++;
  639. d = &sb->disks[rdev2->desc_nr];
  640. nr_disks++;
  641. d->number = rdev2->desc_nr;
  642. d->major = MAJOR(rdev2->bdev->bd_dev);
  643. d->minor = MINOR(rdev2->bdev->bd_dev);
  644. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  645. d->raid_disk = rdev2->raid_disk;
  646. else
  647. d->raid_disk = rdev2->desc_nr; /* compatibility */
  648. if (rdev2->faulty) {
  649. d->state = (1<<MD_DISK_FAULTY);
  650. failed++;
  651. } else if (rdev2->in_sync) {
  652. d->state = (1<<MD_DISK_ACTIVE);
  653. d->state |= (1<<MD_DISK_SYNC);
  654. active++;
  655. working++;
  656. } else {
  657. d->state = 0;
  658. spare++;
  659. working++;
  660. }
  661. if (test_bit(WriteMostly, &rdev2->flags))
  662. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  663. }
  664. /* now set the "removed" and "faulty" bits on any missing devices */
  665. for (i=0 ; i < mddev->raid_disks ; i++) {
  666. mdp_disk_t *d = &sb->disks[i];
  667. if (d->state == 0 && d->number == 0) {
  668. d->number = i;
  669. d->raid_disk = i;
  670. d->state = (1<<MD_DISK_REMOVED);
  671. d->state |= (1<<MD_DISK_FAULTY);
  672. failed++;
  673. }
  674. }
  675. sb->nr_disks = nr_disks;
  676. sb->active_disks = active;
  677. sb->working_disks = working;
  678. sb->failed_disks = failed;
  679. sb->spare_disks = spare;
  680. sb->this_disk = sb->disks[rdev->desc_nr];
  681. sb->sb_csum = calc_sb_csum(sb);
  682. }
  683. /*
  684. * version 1 superblock
  685. */
  686. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  687. {
  688. unsigned int disk_csum, csum;
  689. unsigned long long newcsum;
  690. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  691. unsigned int *isuper = (unsigned int*)sb;
  692. int i;
  693. disk_csum = sb->sb_csum;
  694. sb->sb_csum = 0;
  695. newcsum = 0;
  696. for (i=0; size>=4; size -= 4 )
  697. newcsum += le32_to_cpu(*isuper++);
  698. if (size == 2)
  699. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  700. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  701. sb->sb_csum = disk_csum;
  702. return cpu_to_le32(csum);
  703. }
  704. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  705. {
  706. struct mdp_superblock_1 *sb;
  707. int ret;
  708. sector_t sb_offset;
  709. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  710. int bmask;
  711. /*
  712. * Calculate the position of the superblock.
  713. * It is always aligned to a 4K boundary and
  714. * depeding on minor_version, it can be:
  715. * 0: At least 8K, but less than 12K, from end of device
  716. * 1: At start of device
  717. * 2: 4K from start of device.
  718. */
  719. switch(minor_version) {
  720. case 0:
  721. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  722. sb_offset -= 8*2;
  723. sb_offset &= ~(sector_t)(4*2-1);
  724. /* convert from sectors to K */
  725. sb_offset /= 2;
  726. break;
  727. case 1:
  728. sb_offset = 0;
  729. break;
  730. case 2:
  731. sb_offset = 4;
  732. break;
  733. default:
  734. return -EINVAL;
  735. }
  736. rdev->sb_offset = sb_offset;
  737. /* superblock is rarely larger than 1K, but it can be larger,
  738. * and it is safe to read 4k, so we do that
  739. */
  740. ret = read_disk_sb(rdev, 4096);
  741. if (ret) return ret;
  742. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  743. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  744. sb->major_version != cpu_to_le32(1) ||
  745. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  746. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  747. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  748. return -EINVAL;
  749. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  750. printk("md: invalid superblock checksum on %s\n",
  751. bdevname(rdev->bdev,b));
  752. return -EINVAL;
  753. }
  754. if (le64_to_cpu(sb->data_size) < 10) {
  755. printk("md: data_size too small on %s\n",
  756. bdevname(rdev->bdev,b));
  757. return -EINVAL;
  758. }
  759. rdev->preferred_minor = 0xffff;
  760. rdev->data_offset = le64_to_cpu(sb->data_offset);
  761. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  762. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  763. if (rdev->sb_size & bmask)
  764. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  765. if (refdev == 0)
  766. return 1;
  767. else {
  768. __u64 ev1, ev2;
  769. struct mdp_superblock_1 *refsb =
  770. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  771. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  772. sb->level != refsb->level ||
  773. sb->layout != refsb->layout ||
  774. sb->chunksize != refsb->chunksize) {
  775. printk(KERN_WARNING "md: %s has strangely different"
  776. " superblock to %s\n",
  777. bdevname(rdev->bdev,b),
  778. bdevname(refdev->bdev,b2));
  779. return -EINVAL;
  780. }
  781. ev1 = le64_to_cpu(sb->events);
  782. ev2 = le64_to_cpu(refsb->events);
  783. if (ev1 > ev2)
  784. return 1;
  785. }
  786. if (minor_version)
  787. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  788. else
  789. rdev->size = rdev->sb_offset;
  790. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  791. return -EINVAL;
  792. rdev->size = le64_to_cpu(sb->data_size)/2;
  793. if (le32_to_cpu(sb->chunksize))
  794. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  795. return 0;
  796. }
  797. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  798. {
  799. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  800. rdev->raid_disk = -1;
  801. rdev->in_sync = 0;
  802. if (mddev->raid_disks == 0) {
  803. mddev->major_version = 1;
  804. mddev->patch_version = 0;
  805. mddev->persistent = 1;
  806. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  807. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  808. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  809. mddev->level = le32_to_cpu(sb->level);
  810. mddev->layout = le32_to_cpu(sb->layout);
  811. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  812. mddev->size = le64_to_cpu(sb->size)/2;
  813. mddev->events = le64_to_cpu(sb->events);
  814. mddev->bitmap_offset = 0;
  815. mddev->default_bitmap_offset = 0;
  816. mddev->default_bitmap_offset = 1024;
  817. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  818. memcpy(mddev->uuid, sb->set_uuid, 16);
  819. mddev->max_disks = (4096-256)/2;
  820. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  821. mddev->bitmap_file == NULL ) {
  822. if (mddev->level != 1) {
  823. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  824. return -EINVAL;
  825. }
  826. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  827. }
  828. } else if (mddev->pers == NULL) {
  829. /* Insist of good event counter while assembling */
  830. __u64 ev1 = le64_to_cpu(sb->events);
  831. ++ev1;
  832. if (ev1 < mddev->events)
  833. return -EINVAL;
  834. } else if (mddev->bitmap) {
  835. /* If adding to array with a bitmap, then we can accept an
  836. * older device, but not too old.
  837. */
  838. __u64 ev1 = le64_to_cpu(sb->events);
  839. if (ev1 < mddev->bitmap->events_cleared)
  840. return 0;
  841. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  842. return 0;
  843. if (mddev->level != LEVEL_MULTIPATH) {
  844. int role;
  845. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  846. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  847. switch(role) {
  848. case 0xffff: /* spare */
  849. rdev->faulty = 0;
  850. break;
  851. case 0xfffe: /* faulty */
  852. rdev->faulty = 1;
  853. break;
  854. default:
  855. rdev->in_sync = 1;
  856. rdev->faulty = 0;
  857. rdev->raid_disk = role;
  858. break;
  859. }
  860. rdev->flags = 0;
  861. if (sb->devflags & WriteMostly1)
  862. set_bit(WriteMostly, &rdev->flags);
  863. } else /* MULTIPATH are always insync */
  864. rdev->in_sync = 1;
  865. return 0;
  866. }
  867. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  868. {
  869. struct mdp_superblock_1 *sb;
  870. struct list_head *tmp;
  871. mdk_rdev_t *rdev2;
  872. int max_dev, i;
  873. /* make rdev->sb match mddev and rdev data. */
  874. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  875. sb->feature_map = 0;
  876. sb->pad0 = 0;
  877. memset(sb->pad1, 0, sizeof(sb->pad1));
  878. memset(sb->pad2, 0, sizeof(sb->pad2));
  879. memset(sb->pad3, 0, sizeof(sb->pad3));
  880. sb->utime = cpu_to_le64((__u64)mddev->utime);
  881. sb->events = cpu_to_le64(mddev->events);
  882. if (mddev->in_sync)
  883. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  884. else
  885. sb->resync_offset = cpu_to_le64(0);
  886. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  887. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  888. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  889. }
  890. max_dev = 0;
  891. ITERATE_RDEV(mddev,rdev2,tmp)
  892. if (rdev2->desc_nr+1 > max_dev)
  893. max_dev = rdev2->desc_nr+1;
  894. sb->max_dev = cpu_to_le32(max_dev);
  895. for (i=0; i<max_dev;i++)
  896. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  897. ITERATE_RDEV(mddev,rdev2,tmp) {
  898. i = rdev2->desc_nr;
  899. if (rdev2->faulty)
  900. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  901. else if (rdev2->in_sync)
  902. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  903. else
  904. sb->dev_roles[i] = cpu_to_le16(0xffff);
  905. }
  906. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  907. sb->sb_csum = calc_sb_1_csum(sb);
  908. }
  909. static struct super_type super_types[] = {
  910. [0] = {
  911. .name = "0.90.0",
  912. .owner = THIS_MODULE,
  913. .load_super = super_90_load,
  914. .validate_super = super_90_validate,
  915. .sync_super = super_90_sync,
  916. },
  917. [1] = {
  918. .name = "md-1",
  919. .owner = THIS_MODULE,
  920. .load_super = super_1_load,
  921. .validate_super = super_1_validate,
  922. .sync_super = super_1_sync,
  923. },
  924. };
  925. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  926. {
  927. struct list_head *tmp;
  928. mdk_rdev_t *rdev;
  929. ITERATE_RDEV(mddev,rdev,tmp)
  930. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  931. return rdev;
  932. return NULL;
  933. }
  934. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  935. {
  936. struct list_head *tmp;
  937. mdk_rdev_t *rdev;
  938. ITERATE_RDEV(mddev1,rdev,tmp)
  939. if (match_dev_unit(mddev2, rdev))
  940. return 1;
  941. return 0;
  942. }
  943. static LIST_HEAD(pending_raid_disks);
  944. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  945. {
  946. mdk_rdev_t *same_pdev;
  947. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  948. if (rdev->mddev) {
  949. MD_BUG();
  950. return -EINVAL;
  951. }
  952. same_pdev = match_dev_unit(mddev, rdev);
  953. if (same_pdev)
  954. printk(KERN_WARNING
  955. "%s: WARNING: %s appears to be on the same physical"
  956. " disk as %s. True\n protection against single-disk"
  957. " failure might be compromised.\n",
  958. mdname(mddev), bdevname(rdev->bdev,b),
  959. bdevname(same_pdev->bdev,b2));
  960. /* Verify rdev->desc_nr is unique.
  961. * If it is -1, assign a free number, else
  962. * check number is not in use
  963. */
  964. if (rdev->desc_nr < 0) {
  965. int choice = 0;
  966. if (mddev->pers) choice = mddev->raid_disks;
  967. while (find_rdev_nr(mddev, choice))
  968. choice++;
  969. rdev->desc_nr = choice;
  970. } else {
  971. if (find_rdev_nr(mddev, rdev->desc_nr))
  972. return -EBUSY;
  973. }
  974. list_add(&rdev->same_set, &mddev->disks);
  975. rdev->mddev = mddev;
  976. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  977. return 0;
  978. }
  979. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  980. {
  981. char b[BDEVNAME_SIZE];
  982. if (!rdev->mddev) {
  983. MD_BUG();
  984. return;
  985. }
  986. list_del_init(&rdev->same_set);
  987. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  988. rdev->mddev = NULL;
  989. }
  990. /*
  991. * prevent the device from being mounted, repartitioned or
  992. * otherwise reused by a RAID array (or any other kernel
  993. * subsystem), by bd_claiming the device.
  994. */
  995. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  996. {
  997. int err = 0;
  998. struct block_device *bdev;
  999. char b[BDEVNAME_SIZE];
  1000. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1001. if (IS_ERR(bdev)) {
  1002. printk(KERN_ERR "md: could not open %s.\n",
  1003. __bdevname(dev, b));
  1004. return PTR_ERR(bdev);
  1005. }
  1006. err = bd_claim(bdev, rdev);
  1007. if (err) {
  1008. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1009. bdevname(bdev, b));
  1010. blkdev_put(bdev);
  1011. return err;
  1012. }
  1013. rdev->bdev = bdev;
  1014. return err;
  1015. }
  1016. static void unlock_rdev(mdk_rdev_t *rdev)
  1017. {
  1018. struct block_device *bdev = rdev->bdev;
  1019. rdev->bdev = NULL;
  1020. if (!bdev)
  1021. MD_BUG();
  1022. bd_release(bdev);
  1023. blkdev_put(bdev);
  1024. }
  1025. void md_autodetect_dev(dev_t dev);
  1026. static void export_rdev(mdk_rdev_t * rdev)
  1027. {
  1028. char b[BDEVNAME_SIZE];
  1029. printk(KERN_INFO "md: export_rdev(%s)\n",
  1030. bdevname(rdev->bdev,b));
  1031. if (rdev->mddev)
  1032. MD_BUG();
  1033. free_disk_sb(rdev);
  1034. list_del_init(&rdev->same_set);
  1035. #ifndef MODULE
  1036. md_autodetect_dev(rdev->bdev->bd_dev);
  1037. #endif
  1038. unlock_rdev(rdev);
  1039. kfree(rdev);
  1040. }
  1041. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1042. {
  1043. unbind_rdev_from_array(rdev);
  1044. export_rdev(rdev);
  1045. }
  1046. static void export_array(mddev_t *mddev)
  1047. {
  1048. struct list_head *tmp;
  1049. mdk_rdev_t *rdev;
  1050. ITERATE_RDEV(mddev,rdev,tmp) {
  1051. if (!rdev->mddev) {
  1052. MD_BUG();
  1053. continue;
  1054. }
  1055. kick_rdev_from_array(rdev);
  1056. }
  1057. if (!list_empty(&mddev->disks))
  1058. MD_BUG();
  1059. mddev->raid_disks = 0;
  1060. mddev->major_version = 0;
  1061. }
  1062. static void print_desc(mdp_disk_t *desc)
  1063. {
  1064. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1065. desc->major,desc->minor,desc->raid_disk,desc->state);
  1066. }
  1067. static void print_sb(mdp_super_t *sb)
  1068. {
  1069. int i;
  1070. printk(KERN_INFO
  1071. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1072. sb->major_version, sb->minor_version, sb->patch_version,
  1073. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1074. sb->ctime);
  1075. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1076. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1077. sb->md_minor, sb->layout, sb->chunk_size);
  1078. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1079. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1080. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1081. sb->failed_disks, sb->spare_disks,
  1082. sb->sb_csum, (unsigned long)sb->events_lo);
  1083. printk(KERN_INFO);
  1084. for (i = 0; i < MD_SB_DISKS; i++) {
  1085. mdp_disk_t *desc;
  1086. desc = sb->disks + i;
  1087. if (desc->number || desc->major || desc->minor ||
  1088. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1089. printk(" D %2d: ", i);
  1090. print_desc(desc);
  1091. }
  1092. }
  1093. printk(KERN_INFO "md: THIS: ");
  1094. print_desc(&sb->this_disk);
  1095. }
  1096. static void print_rdev(mdk_rdev_t *rdev)
  1097. {
  1098. char b[BDEVNAME_SIZE];
  1099. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1100. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1101. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1102. if (rdev->sb_loaded) {
  1103. printk(KERN_INFO "md: rdev superblock:\n");
  1104. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1105. } else
  1106. printk(KERN_INFO "md: no rdev superblock!\n");
  1107. }
  1108. void md_print_devices(void)
  1109. {
  1110. struct list_head *tmp, *tmp2;
  1111. mdk_rdev_t *rdev;
  1112. mddev_t *mddev;
  1113. char b[BDEVNAME_SIZE];
  1114. printk("\n");
  1115. printk("md: **********************************\n");
  1116. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1117. printk("md: **********************************\n");
  1118. ITERATE_MDDEV(mddev,tmp) {
  1119. if (mddev->bitmap)
  1120. bitmap_print_sb(mddev->bitmap);
  1121. else
  1122. printk("%s: ", mdname(mddev));
  1123. ITERATE_RDEV(mddev,rdev,tmp2)
  1124. printk("<%s>", bdevname(rdev->bdev,b));
  1125. printk("\n");
  1126. ITERATE_RDEV(mddev,rdev,tmp2)
  1127. print_rdev(rdev);
  1128. }
  1129. printk("md: **********************************\n");
  1130. printk("\n");
  1131. }
  1132. static void sync_sbs(mddev_t * mddev)
  1133. {
  1134. mdk_rdev_t *rdev;
  1135. struct list_head *tmp;
  1136. ITERATE_RDEV(mddev,rdev,tmp) {
  1137. super_types[mddev->major_version].
  1138. sync_super(mddev, rdev);
  1139. rdev->sb_loaded = 1;
  1140. }
  1141. }
  1142. static void md_update_sb(mddev_t * mddev)
  1143. {
  1144. int err;
  1145. struct list_head *tmp;
  1146. mdk_rdev_t *rdev;
  1147. int sync_req;
  1148. repeat:
  1149. spin_lock(&mddev->write_lock);
  1150. sync_req = mddev->in_sync;
  1151. mddev->utime = get_seconds();
  1152. mddev->events ++;
  1153. if (!mddev->events) {
  1154. /*
  1155. * oops, this 64-bit counter should never wrap.
  1156. * Either we are in around ~1 trillion A.C., assuming
  1157. * 1 reboot per second, or we have a bug:
  1158. */
  1159. MD_BUG();
  1160. mddev->events --;
  1161. }
  1162. mddev->sb_dirty = 2;
  1163. sync_sbs(mddev);
  1164. /*
  1165. * do not write anything to disk if using
  1166. * nonpersistent superblocks
  1167. */
  1168. if (!mddev->persistent) {
  1169. mddev->sb_dirty = 0;
  1170. spin_unlock(&mddev->write_lock);
  1171. wake_up(&mddev->sb_wait);
  1172. return;
  1173. }
  1174. spin_unlock(&mddev->write_lock);
  1175. dprintk(KERN_INFO
  1176. "md: updating %s RAID superblock on device (in sync %d)\n",
  1177. mdname(mddev),mddev->in_sync);
  1178. err = bitmap_update_sb(mddev->bitmap);
  1179. ITERATE_RDEV(mddev,rdev,tmp) {
  1180. char b[BDEVNAME_SIZE];
  1181. dprintk(KERN_INFO "md: ");
  1182. if (rdev->faulty)
  1183. dprintk("(skipping faulty ");
  1184. dprintk("%s ", bdevname(rdev->bdev,b));
  1185. if (!rdev->faulty) {
  1186. md_super_write(mddev,rdev,
  1187. rdev->sb_offset<<1, rdev->sb_size,
  1188. rdev->sb_page);
  1189. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1190. bdevname(rdev->bdev,b),
  1191. (unsigned long long)rdev->sb_offset);
  1192. } else
  1193. dprintk(")\n");
  1194. if (mddev->level == LEVEL_MULTIPATH)
  1195. /* only need to write one superblock... */
  1196. break;
  1197. }
  1198. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1199. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1200. spin_lock(&mddev->write_lock);
  1201. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1202. /* have to write it out again */
  1203. spin_unlock(&mddev->write_lock);
  1204. goto repeat;
  1205. }
  1206. mddev->sb_dirty = 0;
  1207. spin_unlock(&mddev->write_lock);
  1208. wake_up(&mddev->sb_wait);
  1209. }
  1210. /*
  1211. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1212. *
  1213. * mark the device faulty if:
  1214. *
  1215. * - the device is nonexistent (zero size)
  1216. * - the device has no valid superblock
  1217. *
  1218. * a faulty rdev _never_ has rdev->sb set.
  1219. */
  1220. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1221. {
  1222. char b[BDEVNAME_SIZE];
  1223. int err;
  1224. mdk_rdev_t *rdev;
  1225. sector_t size;
  1226. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1227. if (!rdev) {
  1228. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1229. return ERR_PTR(-ENOMEM);
  1230. }
  1231. memset(rdev, 0, sizeof(*rdev));
  1232. if ((err = alloc_disk_sb(rdev)))
  1233. goto abort_free;
  1234. err = lock_rdev(rdev, newdev);
  1235. if (err)
  1236. goto abort_free;
  1237. rdev->desc_nr = -1;
  1238. rdev->faulty = 0;
  1239. rdev->in_sync = 0;
  1240. rdev->data_offset = 0;
  1241. atomic_set(&rdev->nr_pending, 0);
  1242. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1243. if (!size) {
  1244. printk(KERN_WARNING
  1245. "md: %s has zero or unknown size, marking faulty!\n",
  1246. bdevname(rdev->bdev,b));
  1247. err = -EINVAL;
  1248. goto abort_free;
  1249. }
  1250. if (super_format >= 0) {
  1251. err = super_types[super_format].
  1252. load_super(rdev, NULL, super_minor);
  1253. if (err == -EINVAL) {
  1254. printk(KERN_WARNING
  1255. "md: %s has invalid sb, not importing!\n",
  1256. bdevname(rdev->bdev,b));
  1257. goto abort_free;
  1258. }
  1259. if (err < 0) {
  1260. printk(KERN_WARNING
  1261. "md: could not read %s's sb, not importing!\n",
  1262. bdevname(rdev->bdev,b));
  1263. goto abort_free;
  1264. }
  1265. }
  1266. INIT_LIST_HEAD(&rdev->same_set);
  1267. return rdev;
  1268. abort_free:
  1269. if (rdev->sb_page) {
  1270. if (rdev->bdev)
  1271. unlock_rdev(rdev);
  1272. free_disk_sb(rdev);
  1273. }
  1274. kfree(rdev);
  1275. return ERR_PTR(err);
  1276. }
  1277. /*
  1278. * Check a full RAID array for plausibility
  1279. */
  1280. static void analyze_sbs(mddev_t * mddev)
  1281. {
  1282. int i;
  1283. struct list_head *tmp;
  1284. mdk_rdev_t *rdev, *freshest;
  1285. char b[BDEVNAME_SIZE];
  1286. freshest = NULL;
  1287. ITERATE_RDEV(mddev,rdev,tmp)
  1288. switch (super_types[mddev->major_version].
  1289. load_super(rdev, freshest, mddev->minor_version)) {
  1290. case 1:
  1291. freshest = rdev;
  1292. break;
  1293. case 0:
  1294. break;
  1295. default:
  1296. printk( KERN_ERR \
  1297. "md: fatal superblock inconsistency in %s"
  1298. " -- removing from array\n",
  1299. bdevname(rdev->bdev,b));
  1300. kick_rdev_from_array(rdev);
  1301. }
  1302. super_types[mddev->major_version].
  1303. validate_super(mddev, freshest);
  1304. i = 0;
  1305. ITERATE_RDEV(mddev,rdev,tmp) {
  1306. if (rdev != freshest)
  1307. if (super_types[mddev->major_version].
  1308. validate_super(mddev, rdev)) {
  1309. printk(KERN_WARNING "md: kicking non-fresh %s"
  1310. " from array!\n",
  1311. bdevname(rdev->bdev,b));
  1312. kick_rdev_from_array(rdev);
  1313. continue;
  1314. }
  1315. if (mddev->level == LEVEL_MULTIPATH) {
  1316. rdev->desc_nr = i++;
  1317. rdev->raid_disk = rdev->desc_nr;
  1318. rdev->in_sync = 1;
  1319. }
  1320. }
  1321. if (mddev->recovery_cp != MaxSector &&
  1322. mddev->level >= 1)
  1323. printk(KERN_ERR "md: %s: raid array is not clean"
  1324. " -- starting background reconstruction\n",
  1325. mdname(mddev));
  1326. }
  1327. int mdp_major = 0;
  1328. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1329. {
  1330. static DECLARE_MUTEX(disks_sem);
  1331. mddev_t *mddev = mddev_find(dev);
  1332. struct gendisk *disk;
  1333. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1334. int shift = partitioned ? MdpMinorShift : 0;
  1335. int unit = MINOR(dev) >> shift;
  1336. if (!mddev)
  1337. return NULL;
  1338. down(&disks_sem);
  1339. if (mddev->gendisk) {
  1340. up(&disks_sem);
  1341. mddev_put(mddev);
  1342. return NULL;
  1343. }
  1344. disk = alloc_disk(1 << shift);
  1345. if (!disk) {
  1346. up(&disks_sem);
  1347. mddev_put(mddev);
  1348. return NULL;
  1349. }
  1350. disk->major = MAJOR(dev);
  1351. disk->first_minor = unit << shift;
  1352. if (partitioned) {
  1353. sprintf(disk->disk_name, "md_d%d", unit);
  1354. sprintf(disk->devfs_name, "md/d%d", unit);
  1355. } else {
  1356. sprintf(disk->disk_name, "md%d", unit);
  1357. sprintf(disk->devfs_name, "md/%d", unit);
  1358. }
  1359. disk->fops = &md_fops;
  1360. disk->private_data = mddev;
  1361. disk->queue = mddev->queue;
  1362. add_disk(disk);
  1363. mddev->gendisk = disk;
  1364. up(&disks_sem);
  1365. return NULL;
  1366. }
  1367. void md_wakeup_thread(mdk_thread_t *thread);
  1368. static void md_safemode_timeout(unsigned long data)
  1369. {
  1370. mddev_t *mddev = (mddev_t *) data;
  1371. mddev->safemode = 1;
  1372. md_wakeup_thread(mddev->thread);
  1373. }
  1374. static int do_md_run(mddev_t * mddev)
  1375. {
  1376. int pnum, err;
  1377. int chunk_size;
  1378. struct list_head *tmp;
  1379. mdk_rdev_t *rdev;
  1380. struct gendisk *disk;
  1381. char b[BDEVNAME_SIZE];
  1382. if (list_empty(&mddev->disks))
  1383. /* cannot run an array with no devices.. */
  1384. return -EINVAL;
  1385. if (mddev->pers)
  1386. return -EBUSY;
  1387. /*
  1388. * Analyze all RAID superblock(s)
  1389. */
  1390. if (!mddev->raid_disks)
  1391. analyze_sbs(mddev);
  1392. chunk_size = mddev->chunk_size;
  1393. pnum = level_to_pers(mddev->level);
  1394. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1395. if (!chunk_size) {
  1396. /*
  1397. * 'default chunksize' in the old md code used to
  1398. * be PAGE_SIZE, baaad.
  1399. * we abort here to be on the safe side. We don't
  1400. * want to continue the bad practice.
  1401. */
  1402. printk(KERN_ERR
  1403. "no chunksize specified, see 'man raidtab'\n");
  1404. return -EINVAL;
  1405. }
  1406. if (chunk_size > MAX_CHUNK_SIZE) {
  1407. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1408. chunk_size, MAX_CHUNK_SIZE);
  1409. return -EINVAL;
  1410. }
  1411. /*
  1412. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1413. */
  1414. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1415. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1416. return -EINVAL;
  1417. }
  1418. if (chunk_size < PAGE_SIZE) {
  1419. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1420. chunk_size, PAGE_SIZE);
  1421. return -EINVAL;
  1422. }
  1423. /* devices must have minimum size of one chunk */
  1424. ITERATE_RDEV(mddev,rdev,tmp) {
  1425. if (rdev->faulty)
  1426. continue;
  1427. if (rdev->size < chunk_size / 1024) {
  1428. printk(KERN_WARNING
  1429. "md: Dev %s smaller than chunk_size:"
  1430. " %lluk < %dk\n",
  1431. bdevname(rdev->bdev,b),
  1432. (unsigned long long)rdev->size,
  1433. chunk_size / 1024);
  1434. return -EINVAL;
  1435. }
  1436. }
  1437. }
  1438. #ifdef CONFIG_KMOD
  1439. if (!pers[pnum])
  1440. {
  1441. request_module("md-personality-%d", pnum);
  1442. }
  1443. #endif
  1444. /*
  1445. * Drop all container device buffers, from now on
  1446. * the only valid external interface is through the md
  1447. * device.
  1448. * Also find largest hardsector size
  1449. */
  1450. ITERATE_RDEV(mddev,rdev,tmp) {
  1451. if (rdev->faulty)
  1452. continue;
  1453. sync_blockdev(rdev->bdev);
  1454. invalidate_bdev(rdev->bdev, 0);
  1455. }
  1456. md_probe(mddev->unit, NULL, NULL);
  1457. disk = mddev->gendisk;
  1458. if (!disk)
  1459. return -ENOMEM;
  1460. spin_lock(&pers_lock);
  1461. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1462. spin_unlock(&pers_lock);
  1463. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1464. pnum);
  1465. return -EINVAL;
  1466. }
  1467. mddev->pers = pers[pnum];
  1468. spin_unlock(&pers_lock);
  1469. mddev->recovery = 0;
  1470. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1471. /* before we start the array running, initialise the bitmap */
  1472. err = bitmap_create(mddev);
  1473. if (err)
  1474. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1475. mdname(mddev), err);
  1476. else
  1477. err = mddev->pers->run(mddev);
  1478. if (err) {
  1479. printk(KERN_ERR "md: pers->run() failed ...\n");
  1480. module_put(mddev->pers->owner);
  1481. mddev->pers = NULL;
  1482. bitmap_destroy(mddev);
  1483. return err;
  1484. }
  1485. atomic_set(&mddev->writes_pending,0);
  1486. mddev->safemode = 0;
  1487. mddev->safemode_timer.function = md_safemode_timeout;
  1488. mddev->safemode_timer.data = (unsigned long) mddev;
  1489. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1490. mddev->in_sync = 1;
  1491. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1492. md_wakeup_thread(mddev->thread);
  1493. if (mddev->sb_dirty)
  1494. md_update_sb(mddev);
  1495. set_capacity(disk, mddev->array_size<<1);
  1496. /* If we call blk_queue_make_request here, it will
  1497. * re-initialise max_sectors etc which may have been
  1498. * refined inside -> run. So just set the bits we need to set.
  1499. * Most initialisation happended when we called
  1500. * blk_queue_make_request(..., md_fail_request)
  1501. * earlier.
  1502. */
  1503. mddev->queue->queuedata = mddev;
  1504. mddev->queue->make_request_fn = mddev->pers->make_request;
  1505. mddev->changed = 1;
  1506. return 0;
  1507. }
  1508. static int restart_array(mddev_t *mddev)
  1509. {
  1510. struct gendisk *disk = mddev->gendisk;
  1511. int err;
  1512. /*
  1513. * Complain if it has no devices
  1514. */
  1515. err = -ENXIO;
  1516. if (list_empty(&mddev->disks))
  1517. goto out;
  1518. if (mddev->pers) {
  1519. err = -EBUSY;
  1520. if (!mddev->ro)
  1521. goto out;
  1522. mddev->safemode = 0;
  1523. mddev->ro = 0;
  1524. set_disk_ro(disk, 0);
  1525. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1526. mdname(mddev));
  1527. /*
  1528. * Kick recovery or resync if necessary
  1529. */
  1530. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1531. md_wakeup_thread(mddev->thread);
  1532. err = 0;
  1533. } else {
  1534. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1535. mdname(mddev));
  1536. err = -EINVAL;
  1537. }
  1538. out:
  1539. return err;
  1540. }
  1541. static int do_md_stop(mddev_t * mddev, int ro)
  1542. {
  1543. int err = 0;
  1544. struct gendisk *disk = mddev->gendisk;
  1545. if (mddev->pers) {
  1546. if (atomic_read(&mddev->active)>2) {
  1547. printk("md: %s still in use.\n",mdname(mddev));
  1548. return -EBUSY;
  1549. }
  1550. if (mddev->sync_thread) {
  1551. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1552. md_unregister_thread(mddev->sync_thread);
  1553. mddev->sync_thread = NULL;
  1554. }
  1555. del_timer_sync(&mddev->safemode_timer);
  1556. invalidate_partition(disk, 0);
  1557. if (ro) {
  1558. err = -ENXIO;
  1559. if (mddev->ro)
  1560. goto out;
  1561. mddev->ro = 1;
  1562. } else {
  1563. bitmap_flush(mddev);
  1564. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1565. if (mddev->ro)
  1566. set_disk_ro(disk, 0);
  1567. blk_queue_make_request(mddev->queue, md_fail_request);
  1568. mddev->pers->stop(mddev);
  1569. module_put(mddev->pers->owner);
  1570. mddev->pers = NULL;
  1571. if (mddev->ro)
  1572. mddev->ro = 0;
  1573. }
  1574. if (!mddev->in_sync) {
  1575. /* mark array as shutdown cleanly */
  1576. mddev->in_sync = 1;
  1577. md_update_sb(mddev);
  1578. }
  1579. if (ro)
  1580. set_disk_ro(disk, 1);
  1581. }
  1582. bitmap_destroy(mddev);
  1583. if (mddev->bitmap_file) {
  1584. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1585. fput(mddev->bitmap_file);
  1586. mddev->bitmap_file = NULL;
  1587. }
  1588. mddev->bitmap_offset = 0;
  1589. /*
  1590. * Free resources if final stop
  1591. */
  1592. if (!ro) {
  1593. struct gendisk *disk;
  1594. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1595. export_array(mddev);
  1596. mddev->array_size = 0;
  1597. disk = mddev->gendisk;
  1598. if (disk)
  1599. set_capacity(disk, 0);
  1600. mddev->changed = 1;
  1601. } else
  1602. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1603. mdname(mddev));
  1604. err = 0;
  1605. out:
  1606. return err;
  1607. }
  1608. static void autorun_array(mddev_t *mddev)
  1609. {
  1610. mdk_rdev_t *rdev;
  1611. struct list_head *tmp;
  1612. int err;
  1613. if (list_empty(&mddev->disks))
  1614. return;
  1615. printk(KERN_INFO "md: running: ");
  1616. ITERATE_RDEV(mddev,rdev,tmp) {
  1617. char b[BDEVNAME_SIZE];
  1618. printk("<%s>", bdevname(rdev->bdev,b));
  1619. }
  1620. printk("\n");
  1621. err = do_md_run (mddev);
  1622. if (err) {
  1623. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1624. do_md_stop (mddev, 0);
  1625. }
  1626. }
  1627. /*
  1628. * lets try to run arrays based on all disks that have arrived
  1629. * until now. (those are in pending_raid_disks)
  1630. *
  1631. * the method: pick the first pending disk, collect all disks with
  1632. * the same UUID, remove all from the pending list and put them into
  1633. * the 'same_array' list. Then order this list based on superblock
  1634. * update time (freshest comes first), kick out 'old' disks and
  1635. * compare superblocks. If everything's fine then run it.
  1636. *
  1637. * If "unit" is allocated, then bump its reference count
  1638. */
  1639. static void autorun_devices(int part)
  1640. {
  1641. struct list_head candidates;
  1642. struct list_head *tmp;
  1643. mdk_rdev_t *rdev0, *rdev;
  1644. mddev_t *mddev;
  1645. char b[BDEVNAME_SIZE];
  1646. printk(KERN_INFO "md: autorun ...\n");
  1647. while (!list_empty(&pending_raid_disks)) {
  1648. dev_t dev;
  1649. rdev0 = list_entry(pending_raid_disks.next,
  1650. mdk_rdev_t, same_set);
  1651. printk(KERN_INFO "md: considering %s ...\n",
  1652. bdevname(rdev0->bdev,b));
  1653. INIT_LIST_HEAD(&candidates);
  1654. ITERATE_RDEV_PENDING(rdev,tmp)
  1655. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1656. printk(KERN_INFO "md: adding %s ...\n",
  1657. bdevname(rdev->bdev,b));
  1658. list_move(&rdev->same_set, &candidates);
  1659. }
  1660. /*
  1661. * now we have a set of devices, with all of them having
  1662. * mostly sane superblocks. It's time to allocate the
  1663. * mddev.
  1664. */
  1665. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1666. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1667. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1668. break;
  1669. }
  1670. if (part)
  1671. dev = MKDEV(mdp_major,
  1672. rdev0->preferred_minor << MdpMinorShift);
  1673. else
  1674. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1675. md_probe(dev, NULL, NULL);
  1676. mddev = mddev_find(dev);
  1677. if (!mddev) {
  1678. printk(KERN_ERR
  1679. "md: cannot allocate memory for md drive.\n");
  1680. break;
  1681. }
  1682. if (mddev_lock(mddev))
  1683. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1684. mdname(mddev));
  1685. else if (mddev->raid_disks || mddev->major_version
  1686. || !list_empty(&mddev->disks)) {
  1687. printk(KERN_WARNING
  1688. "md: %s already running, cannot run %s\n",
  1689. mdname(mddev), bdevname(rdev0->bdev,b));
  1690. mddev_unlock(mddev);
  1691. } else {
  1692. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1693. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1694. list_del_init(&rdev->same_set);
  1695. if (bind_rdev_to_array(rdev, mddev))
  1696. export_rdev(rdev);
  1697. }
  1698. autorun_array(mddev);
  1699. mddev_unlock(mddev);
  1700. }
  1701. /* on success, candidates will be empty, on error
  1702. * it won't...
  1703. */
  1704. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1705. export_rdev(rdev);
  1706. mddev_put(mddev);
  1707. }
  1708. printk(KERN_INFO "md: ... autorun DONE.\n");
  1709. }
  1710. /*
  1711. * import RAID devices based on one partition
  1712. * if possible, the array gets run as well.
  1713. */
  1714. static int autostart_array(dev_t startdev)
  1715. {
  1716. char b[BDEVNAME_SIZE];
  1717. int err = -EINVAL, i;
  1718. mdp_super_t *sb = NULL;
  1719. mdk_rdev_t *start_rdev = NULL, *rdev;
  1720. start_rdev = md_import_device(startdev, 0, 0);
  1721. if (IS_ERR(start_rdev))
  1722. return err;
  1723. /* NOTE: this can only work for 0.90.0 superblocks */
  1724. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1725. if (sb->major_version != 0 ||
  1726. sb->minor_version != 90 ) {
  1727. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1728. export_rdev(start_rdev);
  1729. return err;
  1730. }
  1731. if (start_rdev->faulty) {
  1732. printk(KERN_WARNING
  1733. "md: can not autostart based on faulty %s!\n",
  1734. bdevname(start_rdev->bdev,b));
  1735. export_rdev(start_rdev);
  1736. return err;
  1737. }
  1738. list_add(&start_rdev->same_set, &pending_raid_disks);
  1739. for (i = 0; i < MD_SB_DISKS; i++) {
  1740. mdp_disk_t *desc = sb->disks + i;
  1741. dev_t dev = MKDEV(desc->major, desc->minor);
  1742. if (!dev)
  1743. continue;
  1744. if (dev == startdev)
  1745. continue;
  1746. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1747. continue;
  1748. rdev = md_import_device(dev, 0, 0);
  1749. if (IS_ERR(rdev))
  1750. continue;
  1751. list_add(&rdev->same_set, &pending_raid_disks);
  1752. }
  1753. /*
  1754. * possibly return codes
  1755. */
  1756. autorun_devices(0);
  1757. return 0;
  1758. }
  1759. static int get_version(void __user * arg)
  1760. {
  1761. mdu_version_t ver;
  1762. ver.major = MD_MAJOR_VERSION;
  1763. ver.minor = MD_MINOR_VERSION;
  1764. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1765. if (copy_to_user(arg, &ver, sizeof(ver)))
  1766. return -EFAULT;
  1767. return 0;
  1768. }
  1769. static int get_array_info(mddev_t * mddev, void __user * arg)
  1770. {
  1771. mdu_array_info_t info;
  1772. int nr,working,active,failed,spare;
  1773. mdk_rdev_t *rdev;
  1774. struct list_head *tmp;
  1775. nr=working=active=failed=spare=0;
  1776. ITERATE_RDEV(mddev,rdev,tmp) {
  1777. nr++;
  1778. if (rdev->faulty)
  1779. failed++;
  1780. else {
  1781. working++;
  1782. if (rdev->in_sync)
  1783. active++;
  1784. else
  1785. spare++;
  1786. }
  1787. }
  1788. info.major_version = mddev->major_version;
  1789. info.minor_version = mddev->minor_version;
  1790. info.patch_version = MD_PATCHLEVEL_VERSION;
  1791. info.ctime = mddev->ctime;
  1792. info.level = mddev->level;
  1793. info.size = mddev->size;
  1794. info.nr_disks = nr;
  1795. info.raid_disks = mddev->raid_disks;
  1796. info.md_minor = mddev->md_minor;
  1797. info.not_persistent= !mddev->persistent;
  1798. info.utime = mddev->utime;
  1799. info.state = 0;
  1800. if (mddev->in_sync)
  1801. info.state = (1<<MD_SB_CLEAN);
  1802. if (mddev->bitmap && mddev->bitmap_offset)
  1803. info.state = (1<<MD_SB_BITMAP_PRESENT);
  1804. info.active_disks = active;
  1805. info.working_disks = working;
  1806. info.failed_disks = failed;
  1807. info.spare_disks = spare;
  1808. info.layout = mddev->layout;
  1809. info.chunk_size = mddev->chunk_size;
  1810. if (copy_to_user(arg, &info, sizeof(info)))
  1811. return -EFAULT;
  1812. return 0;
  1813. }
  1814. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  1815. {
  1816. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1817. char *ptr, *buf = NULL;
  1818. int err = -ENOMEM;
  1819. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1820. if (!file)
  1821. goto out;
  1822. /* bitmap disabled, zero the first byte and copy out */
  1823. if (!mddev->bitmap || !mddev->bitmap->file) {
  1824. file->pathname[0] = '\0';
  1825. goto copy_out;
  1826. }
  1827. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1828. if (!buf)
  1829. goto out;
  1830. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1831. if (!ptr)
  1832. goto out;
  1833. strcpy(file->pathname, ptr);
  1834. copy_out:
  1835. err = 0;
  1836. if (copy_to_user(arg, file, sizeof(*file)))
  1837. err = -EFAULT;
  1838. out:
  1839. kfree(buf);
  1840. kfree(file);
  1841. return err;
  1842. }
  1843. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1844. {
  1845. mdu_disk_info_t info;
  1846. unsigned int nr;
  1847. mdk_rdev_t *rdev;
  1848. if (copy_from_user(&info, arg, sizeof(info)))
  1849. return -EFAULT;
  1850. nr = info.number;
  1851. rdev = find_rdev_nr(mddev, nr);
  1852. if (rdev) {
  1853. info.major = MAJOR(rdev->bdev->bd_dev);
  1854. info.minor = MINOR(rdev->bdev->bd_dev);
  1855. info.raid_disk = rdev->raid_disk;
  1856. info.state = 0;
  1857. if (rdev->faulty)
  1858. info.state |= (1<<MD_DISK_FAULTY);
  1859. else if (rdev->in_sync) {
  1860. info.state |= (1<<MD_DISK_ACTIVE);
  1861. info.state |= (1<<MD_DISK_SYNC);
  1862. }
  1863. if (test_bit(WriteMostly, &rdev->flags))
  1864. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  1865. } else {
  1866. info.major = info.minor = 0;
  1867. info.raid_disk = -1;
  1868. info.state = (1<<MD_DISK_REMOVED);
  1869. }
  1870. if (copy_to_user(arg, &info, sizeof(info)))
  1871. return -EFAULT;
  1872. return 0;
  1873. }
  1874. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1875. {
  1876. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1877. mdk_rdev_t *rdev;
  1878. dev_t dev = MKDEV(info->major,info->minor);
  1879. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1880. return -EOVERFLOW;
  1881. if (!mddev->raid_disks) {
  1882. int err;
  1883. /* expecting a device which has a superblock */
  1884. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1885. if (IS_ERR(rdev)) {
  1886. printk(KERN_WARNING
  1887. "md: md_import_device returned %ld\n",
  1888. PTR_ERR(rdev));
  1889. return PTR_ERR(rdev);
  1890. }
  1891. if (!list_empty(&mddev->disks)) {
  1892. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1893. mdk_rdev_t, same_set);
  1894. int err = super_types[mddev->major_version]
  1895. .load_super(rdev, rdev0, mddev->minor_version);
  1896. if (err < 0) {
  1897. printk(KERN_WARNING
  1898. "md: %s has different UUID to %s\n",
  1899. bdevname(rdev->bdev,b),
  1900. bdevname(rdev0->bdev,b2));
  1901. export_rdev(rdev);
  1902. return -EINVAL;
  1903. }
  1904. }
  1905. err = bind_rdev_to_array(rdev, mddev);
  1906. if (err)
  1907. export_rdev(rdev);
  1908. return err;
  1909. }
  1910. /*
  1911. * add_new_disk can be used once the array is assembled
  1912. * to add "hot spares". They must already have a superblock
  1913. * written
  1914. */
  1915. if (mddev->pers) {
  1916. int err;
  1917. if (!mddev->pers->hot_add_disk) {
  1918. printk(KERN_WARNING
  1919. "%s: personality does not support diskops!\n",
  1920. mdname(mddev));
  1921. return -EINVAL;
  1922. }
  1923. if (mddev->persistent)
  1924. rdev = md_import_device(dev, mddev->major_version,
  1925. mddev->minor_version);
  1926. else
  1927. rdev = md_import_device(dev, -1, -1);
  1928. if (IS_ERR(rdev)) {
  1929. printk(KERN_WARNING
  1930. "md: md_import_device returned %ld\n",
  1931. PTR_ERR(rdev));
  1932. return PTR_ERR(rdev);
  1933. }
  1934. /* set save_raid_disk if appropriate */
  1935. if (!mddev->persistent) {
  1936. if (info->state & (1<<MD_DISK_SYNC) &&
  1937. info->raid_disk < mddev->raid_disks)
  1938. rdev->raid_disk = info->raid_disk;
  1939. else
  1940. rdev->raid_disk = -1;
  1941. } else
  1942. super_types[mddev->major_version].
  1943. validate_super(mddev, rdev);
  1944. rdev->saved_raid_disk = rdev->raid_disk;
  1945. rdev->in_sync = 0; /* just to be sure */
  1946. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1947. set_bit(WriteMostly, &rdev->flags);
  1948. rdev->raid_disk = -1;
  1949. err = bind_rdev_to_array(rdev, mddev);
  1950. if (err)
  1951. export_rdev(rdev);
  1952. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1953. md_wakeup_thread(mddev->thread);
  1954. return err;
  1955. }
  1956. /* otherwise, add_new_disk is only allowed
  1957. * for major_version==0 superblocks
  1958. */
  1959. if (mddev->major_version != 0) {
  1960. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1961. mdname(mddev));
  1962. return -EINVAL;
  1963. }
  1964. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1965. int err;
  1966. rdev = md_import_device (dev, -1, 0);
  1967. if (IS_ERR(rdev)) {
  1968. printk(KERN_WARNING
  1969. "md: error, md_import_device() returned %ld\n",
  1970. PTR_ERR(rdev));
  1971. return PTR_ERR(rdev);
  1972. }
  1973. rdev->desc_nr = info->number;
  1974. if (info->raid_disk < mddev->raid_disks)
  1975. rdev->raid_disk = info->raid_disk;
  1976. else
  1977. rdev->raid_disk = -1;
  1978. rdev->faulty = 0;
  1979. if (rdev->raid_disk < mddev->raid_disks)
  1980. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1981. else
  1982. rdev->in_sync = 0;
  1983. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1984. set_bit(WriteMostly, &rdev->flags);
  1985. err = bind_rdev_to_array(rdev, mddev);
  1986. if (err) {
  1987. export_rdev(rdev);
  1988. return err;
  1989. }
  1990. if (!mddev->persistent) {
  1991. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1992. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1993. } else
  1994. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1995. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1996. if (!mddev->size || (mddev->size > rdev->size))
  1997. mddev->size = rdev->size;
  1998. }
  1999. return 0;
  2000. }
  2001. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2002. {
  2003. char b[BDEVNAME_SIZE];
  2004. mdk_rdev_t *rdev;
  2005. if (!mddev->pers)
  2006. return -ENODEV;
  2007. rdev = find_rdev(mddev, dev);
  2008. if (!rdev)
  2009. return -ENXIO;
  2010. if (rdev->raid_disk >= 0)
  2011. goto busy;
  2012. kick_rdev_from_array(rdev);
  2013. md_update_sb(mddev);
  2014. return 0;
  2015. busy:
  2016. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2017. bdevname(rdev->bdev,b), mdname(mddev));
  2018. return -EBUSY;
  2019. }
  2020. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2021. {
  2022. char b[BDEVNAME_SIZE];
  2023. int err;
  2024. unsigned int size;
  2025. mdk_rdev_t *rdev;
  2026. if (!mddev->pers)
  2027. return -ENODEV;
  2028. if (mddev->major_version != 0) {
  2029. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2030. " version-0 superblocks.\n",
  2031. mdname(mddev));
  2032. return -EINVAL;
  2033. }
  2034. if (!mddev->pers->hot_add_disk) {
  2035. printk(KERN_WARNING
  2036. "%s: personality does not support diskops!\n",
  2037. mdname(mddev));
  2038. return -EINVAL;
  2039. }
  2040. rdev = md_import_device (dev, -1, 0);
  2041. if (IS_ERR(rdev)) {
  2042. printk(KERN_WARNING
  2043. "md: error, md_import_device() returned %ld\n",
  2044. PTR_ERR(rdev));
  2045. return -EINVAL;
  2046. }
  2047. if (mddev->persistent)
  2048. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2049. else
  2050. rdev->sb_offset =
  2051. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2052. size = calc_dev_size(rdev, mddev->chunk_size);
  2053. rdev->size = size;
  2054. if (size < mddev->size) {
  2055. printk(KERN_WARNING
  2056. "%s: disk size %llu blocks < array size %llu\n",
  2057. mdname(mddev), (unsigned long long)size,
  2058. (unsigned long long)mddev->size);
  2059. err = -ENOSPC;
  2060. goto abort_export;
  2061. }
  2062. if (rdev->faulty) {
  2063. printk(KERN_WARNING
  2064. "md: can not hot-add faulty %s disk to %s!\n",
  2065. bdevname(rdev->bdev,b), mdname(mddev));
  2066. err = -EINVAL;
  2067. goto abort_export;
  2068. }
  2069. rdev->in_sync = 0;
  2070. rdev->desc_nr = -1;
  2071. bind_rdev_to_array(rdev, mddev);
  2072. /*
  2073. * The rest should better be atomic, we can have disk failures
  2074. * noticed in interrupt contexts ...
  2075. */
  2076. if (rdev->desc_nr == mddev->max_disks) {
  2077. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2078. mdname(mddev));
  2079. err = -EBUSY;
  2080. goto abort_unbind_export;
  2081. }
  2082. rdev->raid_disk = -1;
  2083. md_update_sb(mddev);
  2084. /*
  2085. * Kick recovery, maybe this spare has to be added to the
  2086. * array immediately.
  2087. */
  2088. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2089. md_wakeup_thread(mddev->thread);
  2090. return 0;
  2091. abort_unbind_export:
  2092. unbind_rdev_from_array(rdev);
  2093. abort_export:
  2094. export_rdev(rdev);
  2095. return err;
  2096. }
  2097. /* similar to deny_write_access, but accounts for our holding a reference
  2098. * to the file ourselves */
  2099. static int deny_bitmap_write_access(struct file * file)
  2100. {
  2101. struct inode *inode = file->f_mapping->host;
  2102. spin_lock(&inode->i_lock);
  2103. if (atomic_read(&inode->i_writecount) > 1) {
  2104. spin_unlock(&inode->i_lock);
  2105. return -ETXTBSY;
  2106. }
  2107. atomic_set(&inode->i_writecount, -1);
  2108. spin_unlock(&inode->i_lock);
  2109. return 0;
  2110. }
  2111. static int set_bitmap_file(mddev_t *mddev, int fd)
  2112. {
  2113. int err;
  2114. if (mddev->pers) {
  2115. if (!mddev->pers->quiesce)
  2116. return -EBUSY;
  2117. if (mddev->recovery || mddev->sync_thread)
  2118. return -EBUSY;
  2119. /* we should be able to change the bitmap.. */
  2120. }
  2121. if (fd >= 0) {
  2122. if (mddev->bitmap)
  2123. return -EEXIST; /* cannot add when bitmap is present */
  2124. mddev->bitmap_file = fget(fd);
  2125. if (mddev->bitmap_file == NULL) {
  2126. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2127. mdname(mddev));
  2128. return -EBADF;
  2129. }
  2130. err = deny_bitmap_write_access(mddev->bitmap_file);
  2131. if (err) {
  2132. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2133. mdname(mddev));
  2134. fput(mddev->bitmap_file);
  2135. mddev->bitmap_file = NULL;
  2136. return err;
  2137. }
  2138. mddev->bitmap_offset = 0; /* file overrides offset */
  2139. } else if (mddev->bitmap == NULL)
  2140. return -ENOENT; /* cannot remove what isn't there */
  2141. err = 0;
  2142. if (mddev->pers) {
  2143. mddev->pers->quiesce(mddev, 1);
  2144. if (fd >= 0)
  2145. err = bitmap_create(mddev);
  2146. if (fd < 0 || err)
  2147. bitmap_destroy(mddev);
  2148. mddev->pers->quiesce(mddev, 0);
  2149. } else if (fd < 0) {
  2150. if (mddev->bitmap_file)
  2151. fput(mddev->bitmap_file);
  2152. mddev->bitmap_file = NULL;
  2153. }
  2154. return err;
  2155. }
  2156. /*
  2157. * set_array_info is used two different ways
  2158. * The original usage is when creating a new array.
  2159. * In this usage, raid_disks is > 0 and it together with
  2160. * level, size, not_persistent,layout,chunksize determine the
  2161. * shape of the array.
  2162. * This will always create an array with a type-0.90.0 superblock.
  2163. * The newer usage is when assembling an array.
  2164. * In this case raid_disks will be 0, and the major_version field is
  2165. * use to determine which style super-blocks are to be found on the devices.
  2166. * The minor and patch _version numbers are also kept incase the
  2167. * super_block handler wishes to interpret them.
  2168. */
  2169. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2170. {
  2171. if (info->raid_disks == 0) {
  2172. /* just setting version number for superblock loading */
  2173. if (info->major_version < 0 ||
  2174. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2175. super_types[info->major_version].name == NULL) {
  2176. /* maybe try to auto-load a module? */
  2177. printk(KERN_INFO
  2178. "md: superblock version %d not known\n",
  2179. info->major_version);
  2180. return -EINVAL;
  2181. }
  2182. mddev->major_version = info->major_version;
  2183. mddev->minor_version = info->minor_version;
  2184. mddev->patch_version = info->patch_version;
  2185. return 0;
  2186. }
  2187. mddev->major_version = MD_MAJOR_VERSION;
  2188. mddev->minor_version = MD_MINOR_VERSION;
  2189. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2190. mddev->ctime = get_seconds();
  2191. mddev->level = info->level;
  2192. mddev->size = info->size;
  2193. mddev->raid_disks = info->raid_disks;
  2194. /* don't set md_minor, it is determined by which /dev/md* was
  2195. * openned
  2196. */
  2197. if (info->state & (1<<MD_SB_CLEAN))
  2198. mddev->recovery_cp = MaxSector;
  2199. else
  2200. mddev->recovery_cp = 0;
  2201. mddev->persistent = ! info->not_persistent;
  2202. mddev->layout = info->layout;
  2203. mddev->chunk_size = info->chunk_size;
  2204. mddev->max_disks = MD_SB_DISKS;
  2205. mddev->sb_dirty = 1;
  2206. /*
  2207. * Generate a 128 bit UUID
  2208. */
  2209. get_random_bytes(mddev->uuid, 16);
  2210. return 0;
  2211. }
  2212. /*
  2213. * update_array_info is used to change the configuration of an
  2214. * on-line array.
  2215. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2216. * fields in the info are checked against the array.
  2217. * Any differences that cannot be handled will cause an error.
  2218. * Normally, only one change can be managed at a time.
  2219. */
  2220. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2221. {
  2222. int rv = 0;
  2223. int cnt = 0;
  2224. int state = 0;
  2225. /* calculate expected state,ignoring low bits */
  2226. if (mddev->bitmap && mddev->bitmap_offset)
  2227. state |= (1 << MD_SB_BITMAP_PRESENT);
  2228. if (mddev->major_version != info->major_version ||
  2229. mddev->minor_version != info->minor_version ||
  2230. /* mddev->patch_version != info->patch_version || */
  2231. mddev->ctime != info->ctime ||
  2232. mddev->level != info->level ||
  2233. /* mddev->layout != info->layout || */
  2234. !mddev->persistent != info->not_persistent||
  2235. mddev->chunk_size != info->chunk_size ||
  2236. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2237. ((state^info->state) & 0xfffffe00)
  2238. )
  2239. return -EINVAL;
  2240. /* Check there is only one change */
  2241. if (mddev->size != info->size) cnt++;
  2242. if (mddev->raid_disks != info->raid_disks) cnt++;
  2243. if (mddev->layout != info->layout) cnt++;
  2244. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2245. if (cnt == 0) return 0;
  2246. if (cnt > 1) return -EINVAL;
  2247. if (mddev->layout != info->layout) {
  2248. /* Change layout
  2249. * we don't need to do anything at the md level, the
  2250. * personality will take care of it all.
  2251. */
  2252. if (mddev->pers->reconfig == NULL)
  2253. return -EINVAL;
  2254. else
  2255. return mddev->pers->reconfig(mddev, info->layout, -1);
  2256. }
  2257. if (mddev->size != info->size) {
  2258. mdk_rdev_t * rdev;
  2259. struct list_head *tmp;
  2260. if (mddev->pers->resize == NULL)
  2261. return -EINVAL;
  2262. /* The "size" is the amount of each device that is used.
  2263. * This can only make sense for arrays with redundancy.
  2264. * linear and raid0 always use whatever space is available
  2265. * We can only consider changing the size if no resync
  2266. * or reconstruction is happening, and if the new size
  2267. * is acceptable. It must fit before the sb_offset or,
  2268. * if that is <data_offset, it must fit before the
  2269. * size of each device.
  2270. * If size is zero, we find the largest size that fits.
  2271. */
  2272. if (mddev->sync_thread)
  2273. return -EBUSY;
  2274. ITERATE_RDEV(mddev,rdev,tmp) {
  2275. sector_t avail;
  2276. int fit = (info->size == 0);
  2277. if (rdev->sb_offset > rdev->data_offset)
  2278. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2279. else
  2280. avail = get_capacity(rdev->bdev->bd_disk)
  2281. - rdev->data_offset;
  2282. if (fit && (info->size == 0 || info->size > avail/2))
  2283. info->size = avail/2;
  2284. if (avail < ((sector_t)info->size << 1))
  2285. return -ENOSPC;
  2286. }
  2287. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2288. if (!rv) {
  2289. struct block_device *bdev;
  2290. bdev = bdget_disk(mddev->gendisk, 0);
  2291. if (bdev) {
  2292. down(&bdev->bd_inode->i_sem);
  2293. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2294. up(&bdev->bd_inode->i_sem);
  2295. bdput(bdev);
  2296. }
  2297. }
  2298. }
  2299. if (mddev->raid_disks != info->raid_disks) {
  2300. /* change the number of raid disks */
  2301. if (mddev->pers->reshape == NULL)
  2302. return -EINVAL;
  2303. if (info->raid_disks <= 0 ||
  2304. info->raid_disks >= mddev->max_disks)
  2305. return -EINVAL;
  2306. if (mddev->sync_thread)
  2307. return -EBUSY;
  2308. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2309. if (!rv) {
  2310. struct block_device *bdev;
  2311. bdev = bdget_disk(mddev->gendisk, 0);
  2312. if (bdev) {
  2313. down(&bdev->bd_inode->i_sem);
  2314. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2315. up(&bdev->bd_inode->i_sem);
  2316. bdput(bdev);
  2317. }
  2318. }
  2319. }
  2320. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2321. if (mddev->pers->quiesce == NULL)
  2322. return -EINVAL;
  2323. if (mddev->recovery || mddev->sync_thread)
  2324. return -EBUSY;
  2325. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2326. /* add the bitmap */
  2327. if (mddev->bitmap)
  2328. return -EEXIST;
  2329. if (mddev->default_bitmap_offset == 0)
  2330. return -EINVAL;
  2331. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2332. mddev->pers->quiesce(mddev, 1);
  2333. rv = bitmap_create(mddev);
  2334. if (rv)
  2335. bitmap_destroy(mddev);
  2336. mddev->pers->quiesce(mddev, 0);
  2337. } else {
  2338. /* remove the bitmap */
  2339. if (!mddev->bitmap)
  2340. return -ENOENT;
  2341. if (mddev->bitmap->file)
  2342. return -EINVAL;
  2343. mddev->pers->quiesce(mddev, 1);
  2344. bitmap_destroy(mddev);
  2345. mddev->pers->quiesce(mddev, 0);
  2346. mddev->bitmap_offset = 0;
  2347. }
  2348. }
  2349. md_update_sb(mddev);
  2350. return rv;
  2351. }
  2352. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2353. {
  2354. mdk_rdev_t *rdev;
  2355. if (mddev->pers == NULL)
  2356. return -ENODEV;
  2357. rdev = find_rdev(mddev, dev);
  2358. if (!rdev)
  2359. return -ENODEV;
  2360. md_error(mddev, rdev);
  2361. return 0;
  2362. }
  2363. static int md_ioctl(struct inode *inode, struct file *file,
  2364. unsigned int cmd, unsigned long arg)
  2365. {
  2366. int err = 0;
  2367. void __user *argp = (void __user *)arg;
  2368. struct hd_geometry __user *loc = argp;
  2369. mddev_t *mddev = NULL;
  2370. if (!capable(CAP_SYS_ADMIN))
  2371. return -EACCES;
  2372. /*
  2373. * Commands dealing with the RAID driver but not any
  2374. * particular array:
  2375. */
  2376. switch (cmd)
  2377. {
  2378. case RAID_VERSION:
  2379. err = get_version(argp);
  2380. goto done;
  2381. case PRINT_RAID_DEBUG:
  2382. err = 0;
  2383. md_print_devices();
  2384. goto done;
  2385. #ifndef MODULE
  2386. case RAID_AUTORUN:
  2387. err = 0;
  2388. autostart_arrays(arg);
  2389. goto done;
  2390. #endif
  2391. default:;
  2392. }
  2393. /*
  2394. * Commands creating/starting a new array:
  2395. */
  2396. mddev = inode->i_bdev->bd_disk->private_data;
  2397. if (!mddev) {
  2398. BUG();
  2399. goto abort;
  2400. }
  2401. if (cmd == START_ARRAY) {
  2402. /* START_ARRAY doesn't need to lock the array as autostart_array
  2403. * does the locking, and it could even be a different array
  2404. */
  2405. static int cnt = 3;
  2406. if (cnt > 0 ) {
  2407. printk(KERN_WARNING
  2408. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2409. "This will not be supported beyond 2.6\n",
  2410. current->comm, current->pid);
  2411. cnt--;
  2412. }
  2413. err = autostart_array(new_decode_dev(arg));
  2414. if (err) {
  2415. printk(KERN_WARNING "md: autostart failed!\n");
  2416. goto abort;
  2417. }
  2418. goto done;
  2419. }
  2420. err = mddev_lock(mddev);
  2421. if (err) {
  2422. printk(KERN_INFO
  2423. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2424. err, cmd);
  2425. goto abort;
  2426. }
  2427. switch (cmd)
  2428. {
  2429. case SET_ARRAY_INFO:
  2430. {
  2431. mdu_array_info_t info;
  2432. if (!arg)
  2433. memset(&info, 0, sizeof(info));
  2434. else if (copy_from_user(&info, argp, sizeof(info))) {
  2435. err = -EFAULT;
  2436. goto abort_unlock;
  2437. }
  2438. if (mddev->pers) {
  2439. err = update_array_info(mddev, &info);
  2440. if (err) {
  2441. printk(KERN_WARNING "md: couldn't update"
  2442. " array info. %d\n", err);
  2443. goto abort_unlock;
  2444. }
  2445. goto done_unlock;
  2446. }
  2447. if (!list_empty(&mddev->disks)) {
  2448. printk(KERN_WARNING
  2449. "md: array %s already has disks!\n",
  2450. mdname(mddev));
  2451. err = -EBUSY;
  2452. goto abort_unlock;
  2453. }
  2454. if (mddev->raid_disks) {
  2455. printk(KERN_WARNING
  2456. "md: array %s already initialised!\n",
  2457. mdname(mddev));
  2458. err = -EBUSY;
  2459. goto abort_unlock;
  2460. }
  2461. err = set_array_info(mddev, &info);
  2462. if (err) {
  2463. printk(KERN_WARNING "md: couldn't set"
  2464. " array info. %d\n", err);
  2465. goto abort_unlock;
  2466. }
  2467. }
  2468. goto done_unlock;
  2469. default:;
  2470. }
  2471. /*
  2472. * Commands querying/configuring an existing array:
  2473. */
  2474. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2475. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2476. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2477. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2478. err = -ENODEV;
  2479. goto abort_unlock;
  2480. }
  2481. /*
  2482. * Commands even a read-only array can execute:
  2483. */
  2484. switch (cmd)
  2485. {
  2486. case GET_ARRAY_INFO:
  2487. err = get_array_info(mddev, argp);
  2488. goto done_unlock;
  2489. case GET_BITMAP_FILE:
  2490. err = get_bitmap_file(mddev, argp);
  2491. goto done_unlock;
  2492. case GET_DISK_INFO:
  2493. err = get_disk_info(mddev, argp);
  2494. goto done_unlock;
  2495. case RESTART_ARRAY_RW:
  2496. err = restart_array(mddev);
  2497. goto done_unlock;
  2498. case STOP_ARRAY:
  2499. err = do_md_stop (mddev, 0);
  2500. goto done_unlock;
  2501. case STOP_ARRAY_RO:
  2502. err = do_md_stop (mddev, 1);
  2503. goto done_unlock;
  2504. /*
  2505. * We have a problem here : there is no easy way to give a CHS
  2506. * virtual geometry. We currently pretend that we have a 2 heads
  2507. * 4 sectors (with a BIG number of cylinders...). This drives
  2508. * dosfs just mad... ;-)
  2509. */
  2510. case HDIO_GETGEO:
  2511. if (!loc) {
  2512. err = -EINVAL;
  2513. goto abort_unlock;
  2514. }
  2515. err = put_user (2, (char __user *) &loc->heads);
  2516. if (err)
  2517. goto abort_unlock;
  2518. err = put_user (4, (char __user *) &loc->sectors);
  2519. if (err)
  2520. goto abort_unlock;
  2521. err = put_user(get_capacity(mddev->gendisk)/8,
  2522. (short __user *) &loc->cylinders);
  2523. if (err)
  2524. goto abort_unlock;
  2525. err = put_user (get_start_sect(inode->i_bdev),
  2526. (long __user *) &loc->start);
  2527. goto done_unlock;
  2528. }
  2529. /*
  2530. * The remaining ioctls are changing the state of the
  2531. * superblock, so we do not allow read-only arrays
  2532. * here:
  2533. */
  2534. if (mddev->ro) {
  2535. err = -EROFS;
  2536. goto abort_unlock;
  2537. }
  2538. switch (cmd)
  2539. {
  2540. case ADD_NEW_DISK:
  2541. {
  2542. mdu_disk_info_t info;
  2543. if (copy_from_user(&info, argp, sizeof(info)))
  2544. err = -EFAULT;
  2545. else
  2546. err = add_new_disk(mddev, &info);
  2547. goto done_unlock;
  2548. }
  2549. case HOT_REMOVE_DISK:
  2550. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2551. goto done_unlock;
  2552. case HOT_ADD_DISK:
  2553. err = hot_add_disk(mddev, new_decode_dev(arg));
  2554. goto done_unlock;
  2555. case SET_DISK_FAULTY:
  2556. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2557. goto done_unlock;
  2558. case RUN_ARRAY:
  2559. err = do_md_run (mddev);
  2560. goto done_unlock;
  2561. case SET_BITMAP_FILE:
  2562. err = set_bitmap_file(mddev, (int)arg);
  2563. goto done_unlock;
  2564. default:
  2565. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2566. printk(KERN_WARNING "md: %s(pid %d) used"
  2567. " obsolete MD ioctl, upgrade your"
  2568. " software to use new ictls.\n",
  2569. current->comm, current->pid);
  2570. err = -EINVAL;
  2571. goto abort_unlock;
  2572. }
  2573. done_unlock:
  2574. abort_unlock:
  2575. mddev_unlock(mddev);
  2576. return err;
  2577. done:
  2578. if (err)
  2579. MD_BUG();
  2580. abort:
  2581. return err;
  2582. }
  2583. static int md_open(struct inode *inode, struct file *file)
  2584. {
  2585. /*
  2586. * Succeed if we can lock the mddev, which confirms that
  2587. * it isn't being stopped right now.
  2588. */
  2589. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2590. int err;
  2591. if ((err = mddev_lock(mddev)))
  2592. goto out;
  2593. err = 0;
  2594. mddev_get(mddev);
  2595. mddev_unlock(mddev);
  2596. check_disk_change(inode->i_bdev);
  2597. out:
  2598. return err;
  2599. }
  2600. static int md_release(struct inode *inode, struct file * file)
  2601. {
  2602. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2603. if (!mddev)
  2604. BUG();
  2605. mddev_put(mddev);
  2606. return 0;
  2607. }
  2608. static int md_media_changed(struct gendisk *disk)
  2609. {
  2610. mddev_t *mddev = disk->private_data;
  2611. return mddev->changed;
  2612. }
  2613. static int md_revalidate(struct gendisk *disk)
  2614. {
  2615. mddev_t *mddev = disk->private_data;
  2616. mddev->changed = 0;
  2617. return 0;
  2618. }
  2619. static struct block_device_operations md_fops =
  2620. {
  2621. .owner = THIS_MODULE,
  2622. .open = md_open,
  2623. .release = md_release,
  2624. .ioctl = md_ioctl,
  2625. .media_changed = md_media_changed,
  2626. .revalidate_disk= md_revalidate,
  2627. };
  2628. static int md_thread(void * arg)
  2629. {
  2630. mdk_thread_t *thread = arg;
  2631. /*
  2632. * md_thread is a 'system-thread', it's priority should be very
  2633. * high. We avoid resource deadlocks individually in each
  2634. * raid personality. (RAID5 does preallocation) We also use RR and
  2635. * the very same RT priority as kswapd, thus we will never get
  2636. * into a priority inversion deadlock.
  2637. *
  2638. * we definitely have to have equal or higher priority than
  2639. * bdflush, otherwise bdflush will deadlock if there are too
  2640. * many dirty RAID5 blocks.
  2641. */
  2642. complete(thread->event);
  2643. while (!kthread_should_stop()) {
  2644. void (*run)(mddev_t *);
  2645. wait_event_interruptible_timeout(thread->wqueue,
  2646. test_bit(THREAD_WAKEUP, &thread->flags)
  2647. || kthread_should_stop(),
  2648. thread->timeout);
  2649. try_to_freeze();
  2650. clear_bit(THREAD_WAKEUP, &thread->flags);
  2651. run = thread->run;
  2652. if (run)
  2653. run(thread->mddev);
  2654. }
  2655. return 0;
  2656. }
  2657. void md_wakeup_thread(mdk_thread_t *thread)
  2658. {
  2659. if (thread) {
  2660. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2661. set_bit(THREAD_WAKEUP, &thread->flags);
  2662. wake_up(&thread->wqueue);
  2663. }
  2664. }
  2665. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2666. const char *name)
  2667. {
  2668. mdk_thread_t *thread;
  2669. struct completion event;
  2670. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2671. if (!thread)
  2672. return NULL;
  2673. memset(thread, 0, sizeof(mdk_thread_t));
  2674. init_waitqueue_head(&thread->wqueue);
  2675. init_completion(&event);
  2676. thread->event = &event;
  2677. thread->run = run;
  2678. thread->mddev = mddev;
  2679. thread->name = name;
  2680. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2681. thread->tsk = kthread_run(md_thread, thread, mdname(thread->mddev));
  2682. if (IS_ERR(thread->tsk)) {
  2683. kfree(thread);
  2684. return NULL;
  2685. }
  2686. wait_for_completion(&event);
  2687. return thread;
  2688. }
  2689. void md_unregister_thread(mdk_thread_t *thread)
  2690. {
  2691. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2692. kthread_stop(thread->tsk);
  2693. kfree(thread);
  2694. }
  2695. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2696. {
  2697. if (!mddev) {
  2698. MD_BUG();
  2699. return;
  2700. }
  2701. if (!rdev || rdev->faulty)
  2702. return;
  2703. /*
  2704. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2705. mdname(mddev),
  2706. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2707. __builtin_return_address(0),__builtin_return_address(1),
  2708. __builtin_return_address(2),__builtin_return_address(3));
  2709. */
  2710. if (!mddev->pers->error_handler)
  2711. return;
  2712. mddev->pers->error_handler(mddev,rdev);
  2713. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2714. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2715. md_wakeup_thread(mddev->thread);
  2716. }
  2717. /* seq_file implementation /proc/mdstat */
  2718. static void status_unused(struct seq_file *seq)
  2719. {
  2720. int i = 0;
  2721. mdk_rdev_t *rdev;
  2722. struct list_head *tmp;
  2723. seq_printf(seq, "unused devices: ");
  2724. ITERATE_RDEV_PENDING(rdev,tmp) {
  2725. char b[BDEVNAME_SIZE];
  2726. i++;
  2727. seq_printf(seq, "%s ",
  2728. bdevname(rdev->bdev,b));
  2729. }
  2730. if (!i)
  2731. seq_printf(seq, "<none>");
  2732. seq_printf(seq, "\n");
  2733. }
  2734. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2735. {
  2736. unsigned long max_blocks, resync, res, dt, db, rt;
  2737. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2738. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2739. max_blocks = mddev->resync_max_sectors >> 1;
  2740. else
  2741. max_blocks = mddev->size;
  2742. /*
  2743. * Should not happen.
  2744. */
  2745. if (!max_blocks) {
  2746. MD_BUG();
  2747. return;
  2748. }
  2749. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2750. {
  2751. int i, x = res/50, y = 20-x;
  2752. seq_printf(seq, "[");
  2753. for (i = 0; i < x; i++)
  2754. seq_printf(seq, "=");
  2755. seq_printf(seq, ">");
  2756. for (i = 0; i < y; i++)
  2757. seq_printf(seq, ".");
  2758. seq_printf(seq, "] ");
  2759. }
  2760. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2761. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2762. "resync" : "recovery"),
  2763. res/10, res % 10, resync, max_blocks);
  2764. /*
  2765. * We do not want to overflow, so the order of operands and
  2766. * the * 100 / 100 trick are important. We do a +1 to be
  2767. * safe against division by zero. We only estimate anyway.
  2768. *
  2769. * dt: time from mark until now
  2770. * db: blocks written from mark until now
  2771. * rt: remaining time
  2772. */
  2773. dt = ((jiffies - mddev->resync_mark) / HZ);
  2774. if (!dt) dt++;
  2775. db = resync - (mddev->resync_mark_cnt/2);
  2776. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2777. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2778. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2779. }
  2780. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2781. {
  2782. struct list_head *tmp;
  2783. loff_t l = *pos;
  2784. mddev_t *mddev;
  2785. if (l >= 0x10000)
  2786. return NULL;
  2787. if (!l--)
  2788. /* header */
  2789. return (void*)1;
  2790. spin_lock(&all_mddevs_lock);
  2791. list_for_each(tmp,&all_mddevs)
  2792. if (!l--) {
  2793. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2794. mddev_get(mddev);
  2795. spin_unlock(&all_mddevs_lock);
  2796. return mddev;
  2797. }
  2798. spin_unlock(&all_mddevs_lock);
  2799. if (!l--)
  2800. return (void*)2;/* tail */
  2801. return NULL;
  2802. }
  2803. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2804. {
  2805. struct list_head *tmp;
  2806. mddev_t *next_mddev, *mddev = v;
  2807. ++*pos;
  2808. if (v == (void*)2)
  2809. return NULL;
  2810. spin_lock(&all_mddevs_lock);
  2811. if (v == (void*)1)
  2812. tmp = all_mddevs.next;
  2813. else
  2814. tmp = mddev->all_mddevs.next;
  2815. if (tmp != &all_mddevs)
  2816. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2817. else {
  2818. next_mddev = (void*)2;
  2819. *pos = 0x10000;
  2820. }
  2821. spin_unlock(&all_mddevs_lock);
  2822. if (v != (void*)1)
  2823. mddev_put(mddev);
  2824. return next_mddev;
  2825. }
  2826. static void md_seq_stop(struct seq_file *seq, void *v)
  2827. {
  2828. mddev_t *mddev = v;
  2829. if (mddev && v != (void*)1 && v != (void*)2)
  2830. mddev_put(mddev);
  2831. }
  2832. static int md_seq_show(struct seq_file *seq, void *v)
  2833. {
  2834. mddev_t *mddev = v;
  2835. sector_t size;
  2836. struct list_head *tmp2;
  2837. mdk_rdev_t *rdev;
  2838. int i;
  2839. struct bitmap *bitmap;
  2840. if (v == (void*)1) {
  2841. seq_printf(seq, "Personalities : ");
  2842. spin_lock(&pers_lock);
  2843. for (i = 0; i < MAX_PERSONALITY; i++)
  2844. if (pers[i])
  2845. seq_printf(seq, "[%s] ", pers[i]->name);
  2846. spin_unlock(&pers_lock);
  2847. seq_printf(seq, "\n");
  2848. return 0;
  2849. }
  2850. if (v == (void*)2) {
  2851. status_unused(seq);
  2852. return 0;
  2853. }
  2854. if (mddev_lock(mddev)!=0)
  2855. return -EINTR;
  2856. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2857. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2858. mddev->pers ? "" : "in");
  2859. if (mddev->pers) {
  2860. if (mddev->ro)
  2861. seq_printf(seq, " (read-only)");
  2862. seq_printf(seq, " %s", mddev->pers->name);
  2863. }
  2864. size = 0;
  2865. ITERATE_RDEV(mddev,rdev,tmp2) {
  2866. char b[BDEVNAME_SIZE];
  2867. seq_printf(seq, " %s[%d]",
  2868. bdevname(rdev->bdev,b), rdev->desc_nr);
  2869. if (test_bit(WriteMostly, &rdev->flags))
  2870. seq_printf(seq, "(W)");
  2871. if (rdev->faulty) {
  2872. seq_printf(seq, "(F)");
  2873. continue;
  2874. }
  2875. size += rdev->size;
  2876. }
  2877. if (!list_empty(&mddev->disks)) {
  2878. if (mddev->pers)
  2879. seq_printf(seq, "\n %llu blocks",
  2880. (unsigned long long)mddev->array_size);
  2881. else
  2882. seq_printf(seq, "\n %llu blocks",
  2883. (unsigned long long)size);
  2884. }
  2885. if (mddev->persistent) {
  2886. if (mddev->major_version != 0 ||
  2887. mddev->minor_version != 90) {
  2888. seq_printf(seq," super %d.%d",
  2889. mddev->major_version,
  2890. mddev->minor_version);
  2891. }
  2892. } else
  2893. seq_printf(seq, " super non-persistent");
  2894. if (mddev->pers) {
  2895. mddev->pers->status (seq, mddev);
  2896. seq_printf(seq, "\n ");
  2897. if (mddev->curr_resync > 2) {
  2898. status_resync (seq, mddev);
  2899. seq_printf(seq, "\n ");
  2900. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2901. seq_printf(seq, " resync=DELAYED\n ");
  2902. } else
  2903. seq_printf(seq, "\n ");
  2904. if ((bitmap = mddev->bitmap)) {
  2905. unsigned long chunk_kb;
  2906. unsigned long flags;
  2907. spin_lock_irqsave(&bitmap->lock, flags);
  2908. chunk_kb = bitmap->chunksize >> 10;
  2909. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2910. "%lu%s chunk",
  2911. bitmap->pages - bitmap->missing_pages,
  2912. bitmap->pages,
  2913. (bitmap->pages - bitmap->missing_pages)
  2914. << (PAGE_SHIFT - 10),
  2915. chunk_kb ? chunk_kb : bitmap->chunksize,
  2916. chunk_kb ? "KB" : "B");
  2917. if (bitmap->file) {
  2918. seq_printf(seq, ", file: ");
  2919. seq_path(seq, bitmap->file->f_vfsmnt,
  2920. bitmap->file->f_dentry," \t\n");
  2921. }
  2922. seq_printf(seq, "\n");
  2923. spin_unlock_irqrestore(&bitmap->lock, flags);
  2924. }
  2925. seq_printf(seq, "\n");
  2926. }
  2927. mddev_unlock(mddev);
  2928. return 0;
  2929. }
  2930. static struct seq_operations md_seq_ops = {
  2931. .start = md_seq_start,
  2932. .next = md_seq_next,
  2933. .stop = md_seq_stop,
  2934. .show = md_seq_show,
  2935. };
  2936. static int md_seq_open(struct inode *inode, struct file *file)
  2937. {
  2938. int error;
  2939. error = seq_open(file, &md_seq_ops);
  2940. return error;
  2941. }
  2942. static struct file_operations md_seq_fops = {
  2943. .open = md_seq_open,
  2944. .read = seq_read,
  2945. .llseek = seq_lseek,
  2946. .release = seq_release,
  2947. };
  2948. int register_md_personality(int pnum, mdk_personality_t *p)
  2949. {
  2950. if (pnum >= MAX_PERSONALITY) {
  2951. printk(KERN_ERR
  2952. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2953. p->name, pnum, MAX_PERSONALITY-1);
  2954. return -EINVAL;
  2955. }
  2956. spin_lock(&pers_lock);
  2957. if (pers[pnum]) {
  2958. spin_unlock(&pers_lock);
  2959. return -EBUSY;
  2960. }
  2961. pers[pnum] = p;
  2962. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2963. spin_unlock(&pers_lock);
  2964. return 0;
  2965. }
  2966. int unregister_md_personality(int pnum)
  2967. {
  2968. if (pnum >= MAX_PERSONALITY)
  2969. return -EINVAL;
  2970. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2971. spin_lock(&pers_lock);
  2972. pers[pnum] = NULL;
  2973. spin_unlock(&pers_lock);
  2974. return 0;
  2975. }
  2976. static int is_mddev_idle(mddev_t *mddev)
  2977. {
  2978. mdk_rdev_t * rdev;
  2979. struct list_head *tmp;
  2980. int idle;
  2981. unsigned long curr_events;
  2982. idle = 1;
  2983. ITERATE_RDEV(mddev,rdev,tmp) {
  2984. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2985. curr_events = disk_stat_read(disk, read_sectors) +
  2986. disk_stat_read(disk, write_sectors) -
  2987. atomic_read(&disk->sync_io);
  2988. /* Allow some slack between valud of curr_events and last_events,
  2989. * as there are some uninteresting races.
  2990. * Note: the following is an unsigned comparison.
  2991. */
  2992. if ((curr_events - rdev->last_events + 32) > 64) {
  2993. rdev->last_events = curr_events;
  2994. idle = 0;
  2995. }
  2996. }
  2997. return idle;
  2998. }
  2999. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3000. {
  3001. /* another "blocks" (512byte) blocks have been synced */
  3002. atomic_sub(blocks, &mddev->recovery_active);
  3003. wake_up(&mddev->recovery_wait);
  3004. if (!ok) {
  3005. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3006. md_wakeup_thread(mddev->thread);
  3007. // stop recovery, signal do_sync ....
  3008. }
  3009. }
  3010. /* md_write_start(mddev, bi)
  3011. * If we need to update some array metadata (e.g. 'active' flag
  3012. * in superblock) before writing, schedule a superblock update
  3013. * and wait for it to complete.
  3014. */
  3015. void md_write_start(mddev_t *mddev, struct bio *bi)
  3016. {
  3017. if (bio_data_dir(bi) != WRITE)
  3018. return;
  3019. atomic_inc(&mddev->writes_pending);
  3020. if (mddev->in_sync) {
  3021. spin_lock(&mddev->write_lock);
  3022. if (mddev->in_sync) {
  3023. mddev->in_sync = 0;
  3024. mddev->sb_dirty = 1;
  3025. md_wakeup_thread(mddev->thread);
  3026. }
  3027. spin_unlock(&mddev->write_lock);
  3028. }
  3029. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3030. }
  3031. void md_write_end(mddev_t *mddev)
  3032. {
  3033. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3034. if (mddev->safemode == 2)
  3035. md_wakeup_thread(mddev->thread);
  3036. else
  3037. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3038. }
  3039. }
  3040. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3041. #define SYNC_MARKS 10
  3042. #define SYNC_MARK_STEP (3*HZ)
  3043. static void md_do_sync(mddev_t *mddev)
  3044. {
  3045. mddev_t *mddev2;
  3046. unsigned int currspeed = 0,
  3047. window;
  3048. sector_t max_sectors,j, io_sectors;
  3049. unsigned long mark[SYNC_MARKS];
  3050. sector_t mark_cnt[SYNC_MARKS];
  3051. int last_mark,m;
  3052. struct list_head *tmp;
  3053. sector_t last_check;
  3054. int skipped = 0;
  3055. /* just incase thread restarts... */
  3056. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3057. return;
  3058. /* we overload curr_resync somewhat here.
  3059. * 0 == not engaged in resync at all
  3060. * 2 == checking that there is no conflict with another sync
  3061. * 1 == like 2, but have yielded to allow conflicting resync to
  3062. * commense
  3063. * other == active in resync - this many blocks
  3064. *
  3065. * Before starting a resync we must have set curr_resync to
  3066. * 2, and then checked that every "conflicting" array has curr_resync
  3067. * less than ours. When we find one that is the same or higher
  3068. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3069. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3070. * This will mean we have to start checking from the beginning again.
  3071. *
  3072. */
  3073. do {
  3074. mddev->curr_resync = 2;
  3075. try_again:
  3076. if (signal_pending(current)) {
  3077. flush_signals(current);
  3078. goto skip;
  3079. }
  3080. ITERATE_MDDEV(mddev2,tmp) {
  3081. if (mddev2 == mddev)
  3082. continue;
  3083. if (mddev2->curr_resync &&
  3084. match_mddev_units(mddev,mddev2)) {
  3085. DEFINE_WAIT(wq);
  3086. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3087. /* arbitrarily yield */
  3088. mddev->curr_resync = 1;
  3089. wake_up(&resync_wait);
  3090. }
  3091. if (mddev > mddev2 && mddev->curr_resync == 1)
  3092. /* no need to wait here, we can wait the next
  3093. * time 'round when curr_resync == 2
  3094. */
  3095. continue;
  3096. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3097. if (!signal_pending(current)
  3098. && mddev2->curr_resync >= mddev->curr_resync) {
  3099. printk(KERN_INFO "md: delaying resync of %s"
  3100. " until %s has finished resync (they"
  3101. " share one or more physical units)\n",
  3102. mdname(mddev), mdname(mddev2));
  3103. mddev_put(mddev2);
  3104. schedule();
  3105. finish_wait(&resync_wait, &wq);
  3106. goto try_again;
  3107. }
  3108. finish_wait(&resync_wait, &wq);
  3109. }
  3110. }
  3111. } while (mddev->curr_resync < 2);
  3112. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3113. /* resync follows the size requested by the personality,
  3114. * which defaults to physical size, but can be virtual size
  3115. */
  3116. max_sectors = mddev->resync_max_sectors;
  3117. else
  3118. /* recovery follows the physical size of devices */
  3119. max_sectors = mddev->size << 1;
  3120. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3121. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3122. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3123. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3124. "(but not more than %d KB/sec) for reconstruction.\n",
  3125. sysctl_speed_limit_max);
  3126. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3127. /* we don't use the checkpoint if there's a bitmap */
  3128. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3129. j = mddev->recovery_cp;
  3130. else
  3131. j = 0;
  3132. io_sectors = 0;
  3133. for (m = 0; m < SYNC_MARKS; m++) {
  3134. mark[m] = jiffies;
  3135. mark_cnt[m] = io_sectors;
  3136. }
  3137. last_mark = 0;
  3138. mddev->resync_mark = mark[last_mark];
  3139. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3140. /*
  3141. * Tune reconstruction:
  3142. */
  3143. window = 32*(PAGE_SIZE/512);
  3144. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3145. window/2,(unsigned long long) max_sectors/2);
  3146. atomic_set(&mddev->recovery_active, 0);
  3147. init_waitqueue_head(&mddev->recovery_wait);
  3148. last_check = 0;
  3149. if (j>2) {
  3150. printk(KERN_INFO
  3151. "md: resuming recovery of %s from checkpoint.\n",
  3152. mdname(mddev));
  3153. mddev->curr_resync = j;
  3154. }
  3155. while (j < max_sectors) {
  3156. sector_t sectors;
  3157. skipped = 0;
  3158. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3159. currspeed < sysctl_speed_limit_min);
  3160. if (sectors == 0) {
  3161. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3162. goto out;
  3163. }
  3164. if (!skipped) { /* actual IO requested */
  3165. io_sectors += sectors;
  3166. atomic_add(sectors, &mddev->recovery_active);
  3167. }
  3168. j += sectors;
  3169. if (j>1) mddev->curr_resync = j;
  3170. if (last_check + window > io_sectors || j == max_sectors)
  3171. continue;
  3172. last_check = io_sectors;
  3173. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3174. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3175. break;
  3176. repeat:
  3177. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3178. /* step marks */
  3179. int next = (last_mark+1) % SYNC_MARKS;
  3180. mddev->resync_mark = mark[next];
  3181. mddev->resync_mark_cnt = mark_cnt[next];
  3182. mark[next] = jiffies;
  3183. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3184. last_mark = next;
  3185. }
  3186. if (signal_pending(current)) {
  3187. /*
  3188. * got a signal, exit.
  3189. */
  3190. printk(KERN_INFO
  3191. "md: md_do_sync() got signal ... exiting\n");
  3192. flush_signals(current);
  3193. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3194. goto out;
  3195. }
  3196. /*
  3197. * this loop exits only if either when we are slower than
  3198. * the 'hard' speed limit, or the system was IO-idle for
  3199. * a jiffy.
  3200. * the system might be non-idle CPU-wise, but we only care
  3201. * about not overloading the IO subsystem. (things like an
  3202. * e2fsck being done on the RAID array should execute fast)
  3203. */
  3204. mddev->queue->unplug_fn(mddev->queue);
  3205. cond_resched();
  3206. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3207. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3208. if (currspeed > sysctl_speed_limit_min) {
  3209. if ((currspeed > sysctl_speed_limit_max) ||
  3210. !is_mddev_idle(mddev)) {
  3211. msleep_interruptible(250);
  3212. goto repeat;
  3213. }
  3214. }
  3215. }
  3216. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3217. /*
  3218. * this also signals 'finished resyncing' to md_stop
  3219. */
  3220. out:
  3221. mddev->queue->unplug_fn(mddev->queue);
  3222. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3223. /* tell personality that we are finished */
  3224. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3225. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3226. mddev->curr_resync > 2 &&
  3227. mddev->curr_resync >= mddev->recovery_cp) {
  3228. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3229. printk(KERN_INFO
  3230. "md: checkpointing recovery of %s.\n",
  3231. mdname(mddev));
  3232. mddev->recovery_cp = mddev->curr_resync;
  3233. } else
  3234. mddev->recovery_cp = MaxSector;
  3235. }
  3236. skip:
  3237. mddev->curr_resync = 0;
  3238. wake_up(&resync_wait);
  3239. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3240. md_wakeup_thread(mddev->thread);
  3241. }
  3242. /*
  3243. * This routine is regularly called by all per-raid-array threads to
  3244. * deal with generic issues like resync and super-block update.
  3245. * Raid personalities that don't have a thread (linear/raid0) do not
  3246. * need this as they never do any recovery or update the superblock.
  3247. *
  3248. * It does not do any resync itself, but rather "forks" off other threads
  3249. * to do that as needed.
  3250. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3251. * "->recovery" and create a thread at ->sync_thread.
  3252. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3253. * and wakeups up this thread which will reap the thread and finish up.
  3254. * This thread also removes any faulty devices (with nr_pending == 0).
  3255. *
  3256. * The overall approach is:
  3257. * 1/ if the superblock needs updating, update it.
  3258. * 2/ If a recovery thread is running, don't do anything else.
  3259. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3260. * 4/ If there are any faulty devices, remove them.
  3261. * 5/ If array is degraded, try to add spares devices
  3262. * 6/ If array has spares or is not in-sync, start a resync thread.
  3263. */
  3264. void md_check_recovery(mddev_t *mddev)
  3265. {
  3266. mdk_rdev_t *rdev;
  3267. struct list_head *rtmp;
  3268. if (mddev->bitmap)
  3269. bitmap_daemon_work(mddev->bitmap);
  3270. if (mddev->ro)
  3271. return;
  3272. if (signal_pending(current)) {
  3273. if (mddev->pers->sync_request) {
  3274. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3275. mdname(mddev));
  3276. mddev->safemode = 2;
  3277. }
  3278. flush_signals(current);
  3279. }
  3280. if ( ! (
  3281. mddev->sb_dirty ||
  3282. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3283. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3284. (mddev->safemode == 1) ||
  3285. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3286. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3287. ))
  3288. return;
  3289. if (mddev_trylock(mddev)==0) {
  3290. int spares =0;
  3291. spin_lock(&mddev->write_lock);
  3292. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3293. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3294. mddev->in_sync = 1;
  3295. mddev->sb_dirty = 1;
  3296. }
  3297. if (mddev->safemode == 1)
  3298. mddev->safemode = 0;
  3299. spin_unlock(&mddev->write_lock);
  3300. if (mddev->sb_dirty)
  3301. md_update_sb(mddev);
  3302. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3303. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3304. /* resync/recovery still happening */
  3305. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3306. goto unlock;
  3307. }
  3308. if (mddev->sync_thread) {
  3309. /* resync has finished, collect result */
  3310. md_unregister_thread(mddev->sync_thread);
  3311. mddev->sync_thread = NULL;
  3312. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3313. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3314. /* success...*/
  3315. /* activate any spares */
  3316. mddev->pers->spare_active(mddev);
  3317. }
  3318. md_update_sb(mddev);
  3319. /* if array is no-longer degraded, then any saved_raid_disk
  3320. * information must be scrapped
  3321. */
  3322. if (!mddev->degraded)
  3323. ITERATE_RDEV(mddev,rdev,rtmp)
  3324. rdev->saved_raid_disk = -1;
  3325. mddev->recovery = 0;
  3326. /* flag recovery needed just to double check */
  3327. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3328. goto unlock;
  3329. }
  3330. if (mddev->recovery)
  3331. /* probably just the RECOVERY_NEEDED flag */
  3332. mddev->recovery = 0;
  3333. /* no recovery is running.
  3334. * remove any failed drives, then
  3335. * add spares if possible.
  3336. * Spare are also removed and re-added, to allow
  3337. * the personality to fail the re-add.
  3338. */
  3339. ITERATE_RDEV(mddev,rdev,rtmp)
  3340. if (rdev->raid_disk >= 0 &&
  3341. (rdev->faulty || ! rdev->in_sync) &&
  3342. atomic_read(&rdev->nr_pending)==0) {
  3343. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3344. rdev->raid_disk = -1;
  3345. }
  3346. if (mddev->degraded) {
  3347. ITERATE_RDEV(mddev,rdev,rtmp)
  3348. if (rdev->raid_disk < 0
  3349. && !rdev->faulty) {
  3350. if (mddev->pers->hot_add_disk(mddev,rdev))
  3351. spares++;
  3352. else
  3353. break;
  3354. }
  3355. }
  3356. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3357. /* nothing we can do ... */
  3358. goto unlock;
  3359. }
  3360. if (mddev->pers->sync_request) {
  3361. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3362. if (!spares)
  3363. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3364. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3365. /* We are adding a device or devices to an array
  3366. * which has the bitmap stored on all devices.
  3367. * So make sure all bitmap pages get written
  3368. */
  3369. bitmap_write_all(mddev->bitmap);
  3370. }
  3371. mddev->sync_thread = md_register_thread(md_do_sync,
  3372. mddev,
  3373. "%s_resync");
  3374. if (!mddev->sync_thread) {
  3375. printk(KERN_ERR "%s: could not start resync"
  3376. " thread...\n",
  3377. mdname(mddev));
  3378. /* leave the spares where they are, it shouldn't hurt */
  3379. mddev->recovery = 0;
  3380. } else {
  3381. md_wakeup_thread(mddev->sync_thread);
  3382. }
  3383. }
  3384. unlock:
  3385. mddev_unlock(mddev);
  3386. }
  3387. }
  3388. static int md_notify_reboot(struct notifier_block *this,
  3389. unsigned long code, void *x)
  3390. {
  3391. struct list_head *tmp;
  3392. mddev_t *mddev;
  3393. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3394. printk(KERN_INFO "md: stopping all md devices.\n");
  3395. ITERATE_MDDEV(mddev,tmp)
  3396. if (mddev_trylock(mddev)==0)
  3397. do_md_stop (mddev, 1);
  3398. /*
  3399. * certain more exotic SCSI devices are known to be
  3400. * volatile wrt too early system reboots. While the
  3401. * right place to handle this issue is the given
  3402. * driver, we do want to have a safe RAID driver ...
  3403. */
  3404. mdelay(1000*1);
  3405. }
  3406. return NOTIFY_DONE;
  3407. }
  3408. static struct notifier_block md_notifier = {
  3409. .notifier_call = md_notify_reboot,
  3410. .next = NULL,
  3411. .priority = INT_MAX, /* before any real devices */
  3412. };
  3413. static void md_geninit(void)
  3414. {
  3415. struct proc_dir_entry *p;
  3416. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3417. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3418. if (p)
  3419. p->proc_fops = &md_seq_fops;
  3420. }
  3421. static int __init md_init(void)
  3422. {
  3423. int minor;
  3424. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3425. " MD_SB_DISKS=%d\n",
  3426. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3427. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3428. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3429. BITMAP_MINOR);
  3430. if (register_blkdev(MAJOR_NR, "md"))
  3431. return -1;
  3432. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3433. unregister_blkdev(MAJOR_NR, "md");
  3434. return -1;
  3435. }
  3436. devfs_mk_dir("md");
  3437. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3438. md_probe, NULL, NULL);
  3439. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3440. md_probe, NULL, NULL);
  3441. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3442. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3443. S_IFBLK|S_IRUSR|S_IWUSR,
  3444. "md/%d", minor);
  3445. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3446. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3447. S_IFBLK|S_IRUSR|S_IWUSR,
  3448. "md/mdp%d", minor);
  3449. register_reboot_notifier(&md_notifier);
  3450. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3451. md_geninit();
  3452. return (0);
  3453. }
  3454. #ifndef MODULE
  3455. /*
  3456. * Searches all registered partitions for autorun RAID arrays
  3457. * at boot time.
  3458. */
  3459. static dev_t detected_devices[128];
  3460. static int dev_cnt;
  3461. void md_autodetect_dev(dev_t dev)
  3462. {
  3463. if (dev_cnt >= 0 && dev_cnt < 127)
  3464. detected_devices[dev_cnt++] = dev;
  3465. }
  3466. static void autostart_arrays(int part)
  3467. {
  3468. mdk_rdev_t *rdev;
  3469. int i;
  3470. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3471. for (i = 0; i < dev_cnt; i++) {
  3472. dev_t dev = detected_devices[i];
  3473. rdev = md_import_device(dev,0, 0);
  3474. if (IS_ERR(rdev))
  3475. continue;
  3476. if (rdev->faulty) {
  3477. MD_BUG();
  3478. continue;
  3479. }
  3480. list_add(&rdev->same_set, &pending_raid_disks);
  3481. }
  3482. dev_cnt = 0;
  3483. autorun_devices(part);
  3484. }
  3485. #endif
  3486. static __exit void md_exit(void)
  3487. {
  3488. mddev_t *mddev;
  3489. struct list_head *tmp;
  3490. int i;
  3491. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3492. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3493. for (i=0; i < MAX_MD_DEVS; i++)
  3494. devfs_remove("md/%d", i);
  3495. for (i=0; i < MAX_MD_DEVS; i++)
  3496. devfs_remove("md/d%d", i);
  3497. devfs_remove("md");
  3498. unregister_blkdev(MAJOR_NR,"md");
  3499. unregister_blkdev(mdp_major, "mdp");
  3500. unregister_reboot_notifier(&md_notifier);
  3501. unregister_sysctl_table(raid_table_header);
  3502. remove_proc_entry("mdstat", NULL);
  3503. ITERATE_MDDEV(mddev,tmp) {
  3504. struct gendisk *disk = mddev->gendisk;
  3505. if (!disk)
  3506. continue;
  3507. export_array(mddev);
  3508. del_gendisk(disk);
  3509. put_disk(disk);
  3510. mddev->gendisk = NULL;
  3511. mddev_put(mddev);
  3512. }
  3513. }
  3514. module_init(md_init)
  3515. module_exit(md_exit)
  3516. EXPORT_SYMBOL(register_md_personality);
  3517. EXPORT_SYMBOL(unregister_md_personality);
  3518. EXPORT_SYMBOL(md_error);
  3519. EXPORT_SYMBOL(md_done_sync);
  3520. EXPORT_SYMBOL(md_write_start);
  3521. EXPORT_SYMBOL(md_write_end);
  3522. EXPORT_SYMBOL(md_register_thread);
  3523. EXPORT_SYMBOL(md_unregister_thread);
  3524. EXPORT_SYMBOL(md_wakeup_thread);
  3525. EXPORT_SYMBOL(md_print_devices);
  3526. EXPORT_SYMBOL(md_check_recovery);
  3527. MODULE_LICENSE("GPL");
  3528. MODULE_ALIAS("md");
  3529. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);