enlighten.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <linux/mm.h>
  26. #include <linux/page-flags.h>
  27. #include <linux/highmem.h>
  28. #include <linux/console.h>
  29. #include <xen/xen.h>
  30. #include <xen/interface/xen.h>
  31. #include <xen/interface/version.h>
  32. #include <xen/interface/physdev.h>
  33. #include <xen/interface/vcpu.h>
  34. #include <xen/features.h>
  35. #include <xen/page.h>
  36. #include <xen/hvc-console.h>
  37. #include <asm/paravirt.h>
  38. #include <asm/apic.h>
  39. #include <asm/page.h>
  40. #include <asm/xen/hypercall.h>
  41. #include <asm/xen/hypervisor.h>
  42. #include <asm/fixmap.h>
  43. #include <asm/processor.h>
  44. #include <asm/proto.h>
  45. #include <asm/msr-index.h>
  46. #include <asm/traps.h>
  47. #include <asm/setup.h>
  48. #include <asm/desc.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/reboot.h>
  52. #include <asm/stackprotector.h>
  53. #include "xen-ops.h"
  54. #include "mmu.h"
  55. #include "multicalls.h"
  56. EXPORT_SYMBOL_GPL(hypercall_page);
  57. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  58. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  59. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  60. EXPORT_SYMBOL_GPL(xen_domain_type);
  61. struct start_info *xen_start_info;
  62. EXPORT_SYMBOL_GPL(xen_start_info);
  63. struct shared_info xen_dummy_shared_info;
  64. void *xen_initial_gdt;
  65. /*
  66. * Point at some empty memory to start with. We map the real shared_info
  67. * page as soon as fixmap is up and running.
  68. */
  69. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  70. /*
  71. * Flag to determine whether vcpu info placement is available on all
  72. * VCPUs. We assume it is to start with, and then set it to zero on
  73. * the first failure. This is because it can succeed on some VCPUs
  74. * and not others, since it can involve hypervisor memory allocation,
  75. * or because the guest failed to guarantee all the appropriate
  76. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  77. *
  78. * Note that any particular CPU may be using a placed vcpu structure,
  79. * but we can only optimise if the all are.
  80. *
  81. * 0: not available, 1: available
  82. */
  83. static int have_vcpu_info_placement = 1;
  84. static void xen_vcpu_setup(int cpu)
  85. {
  86. struct vcpu_register_vcpu_info info;
  87. int err;
  88. struct vcpu_info *vcpup;
  89. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  90. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  91. if (!have_vcpu_info_placement)
  92. return; /* already tested, not available */
  93. vcpup = &per_cpu(xen_vcpu_info, cpu);
  94. info.mfn = arbitrary_virt_to_mfn(vcpup);
  95. info.offset = offset_in_page(vcpup);
  96. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  97. cpu, vcpup, info.mfn, info.offset);
  98. /* Check to see if the hypervisor will put the vcpu_info
  99. structure where we want it, which allows direct access via
  100. a percpu-variable. */
  101. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  102. if (err) {
  103. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  104. have_vcpu_info_placement = 0;
  105. } else {
  106. /* This cpu is using the registered vcpu info, even if
  107. later ones fail to. */
  108. per_cpu(xen_vcpu, cpu) = vcpup;
  109. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  110. cpu, vcpup);
  111. }
  112. }
  113. /*
  114. * On restore, set the vcpu placement up again.
  115. * If it fails, then we're in a bad state, since
  116. * we can't back out from using it...
  117. */
  118. void xen_vcpu_restore(void)
  119. {
  120. if (have_vcpu_info_placement) {
  121. int cpu;
  122. for_each_online_cpu(cpu) {
  123. bool other_cpu = (cpu != smp_processor_id());
  124. if (other_cpu &&
  125. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  126. BUG();
  127. xen_vcpu_setup(cpu);
  128. if (other_cpu &&
  129. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  130. BUG();
  131. }
  132. BUG_ON(!have_vcpu_info_placement);
  133. }
  134. }
  135. static void __init xen_banner(void)
  136. {
  137. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  138. struct xen_extraversion extra;
  139. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  140. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  141. pv_info.name);
  142. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  143. version >> 16, version & 0xffff, extra.extraversion,
  144. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  145. }
  146. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  147. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  148. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  149. unsigned int *cx, unsigned int *dx)
  150. {
  151. unsigned maskecx = ~0;
  152. unsigned maskedx = ~0;
  153. /*
  154. * Mask out inconvenient features, to try and disable as many
  155. * unsupported kernel subsystems as possible.
  156. */
  157. if (*ax == 1) {
  158. maskecx = cpuid_leaf1_ecx_mask;
  159. maskedx = cpuid_leaf1_edx_mask;
  160. }
  161. asm(XEN_EMULATE_PREFIX "cpuid"
  162. : "=a" (*ax),
  163. "=b" (*bx),
  164. "=c" (*cx),
  165. "=d" (*dx)
  166. : "0" (*ax), "2" (*cx));
  167. *cx &= maskecx;
  168. *dx &= maskedx;
  169. }
  170. static __init void xen_init_cpuid_mask(void)
  171. {
  172. unsigned int ax, bx, cx, dx;
  173. cpuid_leaf1_edx_mask =
  174. ~((1 << X86_FEATURE_MCE) | /* disable MCE */
  175. (1 << X86_FEATURE_MCA) | /* disable MCA */
  176. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  177. if (!xen_initial_domain())
  178. cpuid_leaf1_edx_mask &=
  179. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  180. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  181. ax = 1;
  182. cx = 0;
  183. xen_cpuid(&ax, &bx, &cx, &dx);
  184. /* cpuid claims we support xsave; try enabling it to see what happens */
  185. if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
  186. unsigned long cr4;
  187. set_in_cr4(X86_CR4_OSXSAVE);
  188. cr4 = read_cr4();
  189. if ((cr4 & X86_CR4_OSXSAVE) == 0)
  190. cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
  191. clear_in_cr4(X86_CR4_OSXSAVE);
  192. }
  193. }
  194. static void xen_set_debugreg(int reg, unsigned long val)
  195. {
  196. HYPERVISOR_set_debugreg(reg, val);
  197. }
  198. static unsigned long xen_get_debugreg(int reg)
  199. {
  200. return HYPERVISOR_get_debugreg(reg);
  201. }
  202. static void xen_end_context_switch(struct task_struct *next)
  203. {
  204. xen_mc_flush();
  205. paravirt_end_context_switch(next);
  206. }
  207. static unsigned long xen_store_tr(void)
  208. {
  209. return 0;
  210. }
  211. /*
  212. * Set the page permissions for a particular virtual address. If the
  213. * address is a vmalloc mapping (or other non-linear mapping), then
  214. * find the linear mapping of the page and also set its protections to
  215. * match.
  216. */
  217. static void set_aliased_prot(void *v, pgprot_t prot)
  218. {
  219. int level;
  220. pte_t *ptep;
  221. pte_t pte;
  222. unsigned long pfn;
  223. struct page *page;
  224. ptep = lookup_address((unsigned long)v, &level);
  225. BUG_ON(ptep == NULL);
  226. pfn = pte_pfn(*ptep);
  227. page = pfn_to_page(pfn);
  228. pte = pfn_pte(pfn, prot);
  229. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  230. BUG();
  231. if (!PageHighMem(page)) {
  232. void *av = __va(PFN_PHYS(pfn));
  233. if (av != v)
  234. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  235. BUG();
  236. } else
  237. kmap_flush_unused();
  238. }
  239. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  240. {
  241. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  242. int i;
  243. for(i = 0; i < entries; i += entries_per_page)
  244. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  245. }
  246. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  247. {
  248. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  249. int i;
  250. for(i = 0; i < entries; i += entries_per_page)
  251. set_aliased_prot(ldt + i, PAGE_KERNEL);
  252. }
  253. static void xen_set_ldt(const void *addr, unsigned entries)
  254. {
  255. struct mmuext_op *op;
  256. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  257. op = mcs.args;
  258. op->cmd = MMUEXT_SET_LDT;
  259. op->arg1.linear_addr = (unsigned long)addr;
  260. op->arg2.nr_ents = entries;
  261. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  262. xen_mc_issue(PARAVIRT_LAZY_CPU);
  263. }
  264. static void xen_load_gdt(const struct desc_ptr *dtr)
  265. {
  266. unsigned long va = dtr->address;
  267. unsigned int size = dtr->size + 1;
  268. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  269. unsigned long frames[pages];
  270. int f;
  271. /*
  272. * A GDT can be up to 64k in size, which corresponds to 8192
  273. * 8-byte entries, or 16 4k pages..
  274. */
  275. BUG_ON(size > 65536);
  276. BUG_ON(va & ~PAGE_MASK);
  277. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  278. int level;
  279. pte_t *ptep;
  280. unsigned long pfn, mfn;
  281. void *virt;
  282. /*
  283. * The GDT is per-cpu and is in the percpu data area.
  284. * That can be virtually mapped, so we need to do a
  285. * page-walk to get the underlying MFN for the
  286. * hypercall. The page can also be in the kernel's
  287. * linear range, so we need to RO that mapping too.
  288. */
  289. ptep = lookup_address(va, &level);
  290. BUG_ON(ptep == NULL);
  291. pfn = pte_pfn(*ptep);
  292. mfn = pfn_to_mfn(pfn);
  293. virt = __va(PFN_PHYS(pfn));
  294. frames[f] = mfn;
  295. make_lowmem_page_readonly((void *)va);
  296. make_lowmem_page_readonly(virt);
  297. }
  298. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  299. BUG();
  300. }
  301. /*
  302. * load_gdt for early boot, when the gdt is only mapped once
  303. */
  304. static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
  305. {
  306. unsigned long va = dtr->address;
  307. unsigned int size = dtr->size + 1;
  308. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  309. unsigned long frames[pages];
  310. int f;
  311. /*
  312. * A GDT can be up to 64k in size, which corresponds to 8192
  313. * 8-byte entries, or 16 4k pages..
  314. */
  315. BUG_ON(size > 65536);
  316. BUG_ON(va & ~PAGE_MASK);
  317. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  318. pte_t pte;
  319. unsigned long pfn, mfn;
  320. pfn = virt_to_pfn(va);
  321. mfn = pfn_to_mfn(pfn);
  322. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  323. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  324. BUG();
  325. frames[f] = mfn;
  326. }
  327. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  328. BUG();
  329. }
  330. static void load_TLS_descriptor(struct thread_struct *t,
  331. unsigned int cpu, unsigned int i)
  332. {
  333. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  334. xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  335. struct multicall_space mc = __xen_mc_entry(0);
  336. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  337. }
  338. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  339. {
  340. /*
  341. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  342. * and lazy gs handling is enabled, it means we're in a
  343. * context switch, and %gs has just been saved. This means we
  344. * can zero it out to prevent faults on exit from the
  345. * hypervisor if the next process has no %gs. Either way, it
  346. * has been saved, and the new value will get loaded properly.
  347. * This will go away as soon as Xen has been modified to not
  348. * save/restore %gs for normal hypercalls.
  349. *
  350. * On x86_64, this hack is not used for %gs, because gs points
  351. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  352. * must not zero %gs on x86_64
  353. *
  354. * For x86_64, we need to zero %fs, otherwise we may get an
  355. * exception between the new %fs descriptor being loaded and
  356. * %fs being effectively cleared at __switch_to().
  357. */
  358. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  359. #ifdef CONFIG_X86_32
  360. lazy_load_gs(0);
  361. #else
  362. loadsegment(fs, 0);
  363. #endif
  364. }
  365. xen_mc_batch();
  366. load_TLS_descriptor(t, cpu, 0);
  367. load_TLS_descriptor(t, cpu, 1);
  368. load_TLS_descriptor(t, cpu, 2);
  369. xen_mc_issue(PARAVIRT_LAZY_CPU);
  370. }
  371. #ifdef CONFIG_X86_64
  372. static void xen_load_gs_index(unsigned int idx)
  373. {
  374. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  375. BUG();
  376. }
  377. #endif
  378. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  379. const void *ptr)
  380. {
  381. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  382. u64 entry = *(u64 *)ptr;
  383. preempt_disable();
  384. xen_mc_flush();
  385. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  386. BUG();
  387. preempt_enable();
  388. }
  389. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  390. struct trap_info *info)
  391. {
  392. unsigned long addr;
  393. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  394. return 0;
  395. info->vector = vector;
  396. addr = gate_offset(*val);
  397. #ifdef CONFIG_X86_64
  398. /*
  399. * Look for known traps using IST, and substitute them
  400. * appropriately. The debugger ones are the only ones we care
  401. * about. Xen will handle faults like double_fault and
  402. * machine_check, so we should never see them. Warn if
  403. * there's an unexpected IST-using fault handler.
  404. */
  405. if (addr == (unsigned long)debug)
  406. addr = (unsigned long)xen_debug;
  407. else if (addr == (unsigned long)int3)
  408. addr = (unsigned long)xen_int3;
  409. else if (addr == (unsigned long)stack_segment)
  410. addr = (unsigned long)xen_stack_segment;
  411. else if (addr == (unsigned long)double_fault ||
  412. addr == (unsigned long)nmi) {
  413. /* Don't need to handle these */
  414. return 0;
  415. #ifdef CONFIG_X86_MCE
  416. } else if (addr == (unsigned long)machine_check) {
  417. return 0;
  418. #endif
  419. } else {
  420. /* Some other trap using IST? */
  421. if (WARN_ON(val->ist != 0))
  422. return 0;
  423. }
  424. #endif /* CONFIG_X86_64 */
  425. info->address = addr;
  426. info->cs = gate_segment(*val);
  427. info->flags = val->dpl;
  428. /* interrupt gates clear IF */
  429. if (val->type == GATE_INTERRUPT)
  430. info->flags |= 1 << 2;
  431. return 1;
  432. }
  433. /* Locations of each CPU's IDT */
  434. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  435. /* Set an IDT entry. If the entry is part of the current IDT, then
  436. also update Xen. */
  437. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  438. {
  439. unsigned long p = (unsigned long)&dt[entrynum];
  440. unsigned long start, end;
  441. preempt_disable();
  442. start = __get_cpu_var(idt_desc).address;
  443. end = start + __get_cpu_var(idt_desc).size + 1;
  444. xen_mc_flush();
  445. native_write_idt_entry(dt, entrynum, g);
  446. if (p >= start && (p + 8) <= end) {
  447. struct trap_info info[2];
  448. info[1].address = 0;
  449. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  450. if (HYPERVISOR_set_trap_table(info))
  451. BUG();
  452. }
  453. preempt_enable();
  454. }
  455. static void xen_convert_trap_info(const struct desc_ptr *desc,
  456. struct trap_info *traps)
  457. {
  458. unsigned in, out, count;
  459. count = (desc->size+1) / sizeof(gate_desc);
  460. BUG_ON(count > 256);
  461. for (in = out = 0; in < count; in++) {
  462. gate_desc *entry = (gate_desc*)(desc->address) + in;
  463. if (cvt_gate_to_trap(in, entry, &traps[out]))
  464. out++;
  465. }
  466. traps[out].address = 0;
  467. }
  468. void xen_copy_trap_info(struct trap_info *traps)
  469. {
  470. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  471. xen_convert_trap_info(desc, traps);
  472. }
  473. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  474. hold a spinlock to protect the static traps[] array (static because
  475. it avoids allocation, and saves stack space). */
  476. static void xen_load_idt(const struct desc_ptr *desc)
  477. {
  478. static DEFINE_SPINLOCK(lock);
  479. static struct trap_info traps[257];
  480. spin_lock(&lock);
  481. __get_cpu_var(idt_desc) = *desc;
  482. xen_convert_trap_info(desc, traps);
  483. xen_mc_flush();
  484. if (HYPERVISOR_set_trap_table(traps))
  485. BUG();
  486. spin_unlock(&lock);
  487. }
  488. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  489. they're handled differently. */
  490. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  491. const void *desc, int type)
  492. {
  493. preempt_disable();
  494. switch (type) {
  495. case DESC_LDT:
  496. case DESC_TSS:
  497. /* ignore */
  498. break;
  499. default: {
  500. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  501. xen_mc_flush();
  502. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  503. BUG();
  504. }
  505. }
  506. preempt_enable();
  507. }
  508. /*
  509. * Version of write_gdt_entry for use at early boot-time needed to
  510. * update an entry as simply as possible.
  511. */
  512. static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  513. const void *desc, int type)
  514. {
  515. switch (type) {
  516. case DESC_LDT:
  517. case DESC_TSS:
  518. /* ignore */
  519. break;
  520. default: {
  521. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  522. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  523. dt[entry] = *(struct desc_struct *)desc;
  524. }
  525. }
  526. }
  527. static void xen_load_sp0(struct tss_struct *tss,
  528. struct thread_struct *thread)
  529. {
  530. struct multicall_space mcs = xen_mc_entry(0);
  531. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  532. xen_mc_issue(PARAVIRT_LAZY_CPU);
  533. }
  534. static void xen_set_iopl_mask(unsigned mask)
  535. {
  536. struct physdev_set_iopl set_iopl;
  537. /* Force the change at ring 0. */
  538. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  539. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  540. }
  541. static void xen_io_delay(void)
  542. {
  543. }
  544. #ifdef CONFIG_X86_LOCAL_APIC
  545. static u32 xen_apic_read(u32 reg)
  546. {
  547. return 0;
  548. }
  549. static void xen_apic_write(u32 reg, u32 val)
  550. {
  551. /* Warn to see if there's any stray references */
  552. WARN_ON(1);
  553. }
  554. static u64 xen_apic_icr_read(void)
  555. {
  556. return 0;
  557. }
  558. static void xen_apic_icr_write(u32 low, u32 id)
  559. {
  560. /* Warn to see if there's any stray references */
  561. WARN_ON(1);
  562. }
  563. static void xen_apic_wait_icr_idle(void)
  564. {
  565. return;
  566. }
  567. static u32 xen_safe_apic_wait_icr_idle(void)
  568. {
  569. return 0;
  570. }
  571. static void set_xen_basic_apic_ops(void)
  572. {
  573. apic->read = xen_apic_read;
  574. apic->write = xen_apic_write;
  575. apic->icr_read = xen_apic_icr_read;
  576. apic->icr_write = xen_apic_icr_write;
  577. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  578. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  579. }
  580. #endif
  581. static void xen_clts(void)
  582. {
  583. struct multicall_space mcs;
  584. mcs = xen_mc_entry(0);
  585. MULTI_fpu_taskswitch(mcs.mc, 0);
  586. xen_mc_issue(PARAVIRT_LAZY_CPU);
  587. }
  588. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  589. static unsigned long xen_read_cr0(void)
  590. {
  591. unsigned long cr0 = percpu_read(xen_cr0_value);
  592. if (unlikely(cr0 == 0)) {
  593. cr0 = native_read_cr0();
  594. percpu_write(xen_cr0_value, cr0);
  595. }
  596. return cr0;
  597. }
  598. static void xen_write_cr0(unsigned long cr0)
  599. {
  600. struct multicall_space mcs;
  601. percpu_write(xen_cr0_value, cr0);
  602. /* Only pay attention to cr0.TS; everything else is
  603. ignored. */
  604. mcs = xen_mc_entry(0);
  605. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  606. xen_mc_issue(PARAVIRT_LAZY_CPU);
  607. }
  608. static void xen_write_cr4(unsigned long cr4)
  609. {
  610. cr4 &= ~X86_CR4_PGE;
  611. cr4 &= ~X86_CR4_PSE;
  612. native_write_cr4(cr4);
  613. }
  614. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  615. {
  616. int ret;
  617. ret = 0;
  618. switch (msr) {
  619. #ifdef CONFIG_X86_64
  620. unsigned which;
  621. u64 base;
  622. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  623. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  624. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  625. set:
  626. base = ((u64)high << 32) | low;
  627. if (HYPERVISOR_set_segment_base(which, base) != 0)
  628. ret = -EIO;
  629. break;
  630. #endif
  631. case MSR_STAR:
  632. case MSR_CSTAR:
  633. case MSR_LSTAR:
  634. case MSR_SYSCALL_MASK:
  635. case MSR_IA32_SYSENTER_CS:
  636. case MSR_IA32_SYSENTER_ESP:
  637. case MSR_IA32_SYSENTER_EIP:
  638. /* Fast syscall setup is all done in hypercalls, so
  639. these are all ignored. Stub them out here to stop
  640. Xen console noise. */
  641. break;
  642. default:
  643. ret = native_write_msr_safe(msr, low, high);
  644. }
  645. return ret;
  646. }
  647. void xen_setup_shared_info(void)
  648. {
  649. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  650. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  651. xen_start_info->shared_info);
  652. HYPERVISOR_shared_info =
  653. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  654. } else
  655. HYPERVISOR_shared_info =
  656. (struct shared_info *)__va(xen_start_info->shared_info);
  657. #ifndef CONFIG_SMP
  658. /* In UP this is as good a place as any to set up shared info */
  659. xen_setup_vcpu_info_placement();
  660. #endif
  661. xen_setup_mfn_list_list();
  662. }
  663. /* This is called once we have the cpu_possible_map */
  664. void xen_setup_vcpu_info_placement(void)
  665. {
  666. int cpu;
  667. for_each_possible_cpu(cpu)
  668. xen_vcpu_setup(cpu);
  669. /* xen_vcpu_setup managed to place the vcpu_info within the
  670. percpu area for all cpus, so make use of it */
  671. if (have_vcpu_info_placement) {
  672. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  673. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  674. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  675. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  676. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  677. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  678. }
  679. }
  680. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  681. unsigned long addr, unsigned len)
  682. {
  683. char *start, *end, *reloc;
  684. unsigned ret;
  685. start = end = reloc = NULL;
  686. #define SITE(op, x) \
  687. case PARAVIRT_PATCH(op.x): \
  688. if (have_vcpu_info_placement) { \
  689. start = (char *)xen_##x##_direct; \
  690. end = xen_##x##_direct_end; \
  691. reloc = xen_##x##_direct_reloc; \
  692. } \
  693. goto patch_site
  694. switch (type) {
  695. SITE(pv_irq_ops, irq_enable);
  696. SITE(pv_irq_ops, irq_disable);
  697. SITE(pv_irq_ops, save_fl);
  698. SITE(pv_irq_ops, restore_fl);
  699. #undef SITE
  700. patch_site:
  701. if (start == NULL || (end-start) > len)
  702. goto default_patch;
  703. ret = paravirt_patch_insns(insnbuf, len, start, end);
  704. /* Note: because reloc is assigned from something that
  705. appears to be an array, gcc assumes it's non-null,
  706. but doesn't know its relationship with start and
  707. end. */
  708. if (reloc > start && reloc < end) {
  709. int reloc_off = reloc - start;
  710. long *relocp = (long *)(insnbuf + reloc_off);
  711. long delta = start - (char *)addr;
  712. *relocp += delta;
  713. }
  714. break;
  715. default_patch:
  716. default:
  717. ret = paravirt_patch_default(type, clobbers, insnbuf,
  718. addr, len);
  719. break;
  720. }
  721. return ret;
  722. }
  723. static const struct pv_info xen_info __initdata = {
  724. .paravirt_enabled = 1,
  725. .shared_kernel_pmd = 0,
  726. .name = "Xen",
  727. };
  728. static const struct pv_init_ops xen_init_ops __initdata = {
  729. .patch = xen_patch,
  730. };
  731. static const struct pv_time_ops xen_time_ops __initdata = {
  732. .sched_clock = xen_sched_clock,
  733. };
  734. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  735. .cpuid = xen_cpuid,
  736. .set_debugreg = xen_set_debugreg,
  737. .get_debugreg = xen_get_debugreg,
  738. .clts = xen_clts,
  739. .read_cr0 = xen_read_cr0,
  740. .write_cr0 = xen_write_cr0,
  741. .read_cr4 = native_read_cr4,
  742. .read_cr4_safe = native_read_cr4_safe,
  743. .write_cr4 = xen_write_cr4,
  744. .wbinvd = native_wbinvd,
  745. .read_msr = native_read_msr_safe,
  746. .write_msr = xen_write_msr_safe,
  747. .read_tsc = native_read_tsc,
  748. .read_pmc = native_read_pmc,
  749. .iret = xen_iret,
  750. .irq_enable_sysexit = xen_sysexit,
  751. #ifdef CONFIG_X86_64
  752. .usergs_sysret32 = xen_sysret32,
  753. .usergs_sysret64 = xen_sysret64,
  754. #endif
  755. .load_tr_desc = paravirt_nop,
  756. .set_ldt = xen_set_ldt,
  757. .load_gdt = xen_load_gdt,
  758. .load_idt = xen_load_idt,
  759. .load_tls = xen_load_tls,
  760. #ifdef CONFIG_X86_64
  761. .load_gs_index = xen_load_gs_index,
  762. #endif
  763. .alloc_ldt = xen_alloc_ldt,
  764. .free_ldt = xen_free_ldt,
  765. .store_gdt = native_store_gdt,
  766. .store_idt = native_store_idt,
  767. .store_tr = xen_store_tr,
  768. .write_ldt_entry = xen_write_ldt_entry,
  769. .write_gdt_entry = xen_write_gdt_entry,
  770. .write_idt_entry = xen_write_idt_entry,
  771. .load_sp0 = xen_load_sp0,
  772. .set_iopl_mask = xen_set_iopl_mask,
  773. .io_delay = xen_io_delay,
  774. /* Xen takes care of %gs when switching to usermode for us */
  775. .swapgs = paravirt_nop,
  776. .start_context_switch = paravirt_start_context_switch,
  777. .end_context_switch = xen_end_context_switch,
  778. };
  779. static const struct pv_apic_ops xen_apic_ops __initdata = {
  780. #ifdef CONFIG_X86_LOCAL_APIC
  781. .startup_ipi_hook = paravirt_nop,
  782. #endif
  783. };
  784. static void xen_reboot(int reason)
  785. {
  786. struct sched_shutdown r = { .reason = reason };
  787. #ifdef CONFIG_SMP
  788. smp_send_stop();
  789. #endif
  790. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  791. BUG();
  792. }
  793. static void xen_restart(char *msg)
  794. {
  795. xen_reboot(SHUTDOWN_reboot);
  796. }
  797. static void xen_emergency_restart(void)
  798. {
  799. xen_reboot(SHUTDOWN_reboot);
  800. }
  801. static void xen_machine_halt(void)
  802. {
  803. xen_reboot(SHUTDOWN_poweroff);
  804. }
  805. static void xen_crash_shutdown(struct pt_regs *regs)
  806. {
  807. xen_reboot(SHUTDOWN_crash);
  808. }
  809. static const struct machine_ops __initdata xen_machine_ops = {
  810. .restart = xen_restart,
  811. .halt = xen_machine_halt,
  812. .power_off = xen_machine_halt,
  813. .shutdown = xen_machine_halt,
  814. .crash_shutdown = xen_crash_shutdown,
  815. .emergency_restart = xen_emergency_restart,
  816. };
  817. /*
  818. * Set up the GDT and segment registers for -fstack-protector. Until
  819. * we do this, we have to be careful not to call any stack-protected
  820. * function, which is most of the kernel.
  821. */
  822. static void __init xen_setup_stackprotector(void)
  823. {
  824. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  825. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  826. setup_stack_canary_segment(0);
  827. switch_to_new_gdt(0);
  828. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  829. pv_cpu_ops.load_gdt = xen_load_gdt;
  830. }
  831. /* First C function to be called on Xen boot */
  832. asmlinkage void __init xen_start_kernel(void)
  833. {
  834. pgd_t *pgd;
  835. if (!xen_start_info)
  836. return;
  837. xen_domain_type = XEN_PV_DOMAIN;
  838. /* Install Xen paravirt ops */
  839. pv_info = xen_info;
  840. pv_init_ops = xen_init_ops;
  841. pv_time_ops = xen_time_ops;
  842. pv_cpu_ops = xen_cpu_ops;
  843. pv_apic_ops = xen_apic_ops;
  844. x86_init.resources.memory_setup = xen_memory_setup;
  845. x86_init.oem.arch_setup = xen_arch_setup;
  846. x86_init.oem.banner = xen_banner;
  847. x86_init.timers.timer_init = xen_time_init;
  848. x86_init.timers.setup_percpu_clockev = x86_init_noop;
  849. x86_cpuinit.setup_percpu_clockev = x86_init_noop;
  850. x86_platform.calibrate_tsc = xen_tsc_khz;
  851. x86_platform.get_wallclock = xen_get_wallclock;
  852. x86_platform.set_wallclock = xen_set_wallclock;
  853. /*
  854. * Set up some pagetable state before starting to set any ptes.
  855. */
  856. xen_init_mmu_ops();
  857. /* Prevent unwanted bits from being set in PTEs. */
  858. __supported_pte_mask &= ~_PAGE_GLOBAL;
  859. if (!xen_initial_domain())
  860. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  861. __supported_pte_mask |= _PAGE_IOMAP;
  862. #ifdef CONFIG_X86_64
  863. /* Work out if we support NX */
  864. check_efer();
  865. #endif
  866. xen_setup_features();
  867. /* Get mfn list */
  868. if (!xen_feature(XENFEAT_auto_translated_physmap))
  869. xen_build_dynamic_phys_to_machine();
  870. /*
  871. * Set up kernel GDT and segment registers, mainly so that
  872. * -fstack-protector code can be executed.
  873. */
  874. xen_setup_stackprotector();
  875. xen_init_irq_ops();
  876. xen_init_cpuid_mask();
  877. #ifdef CONFIG_X86_LOCAL_APIC
  878. /*
  879. * set up the basic apic ops.
  880. */
  881. set_xen_basic_apic_ops();
  882. #endif
  883. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  884. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  885. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  886. }
  887. machine_ops = xen_machine_ops;
  888. /*
  889. * The only reliable way to retain the initial address of the
  890. * percpu gdt_page is to remember it here, so we can go and
  891. * mark it RW later, when the initial percpu area is freed.
  892. */
  893. xen_initial_gdt = &per_cpu(gdt_page, 0);
  894. xen_smp_init();
  895. pgd = (pgd_t *)xen_start_info->pt_base;
  896. /* Don't do the full vcpu_info placement stuff until we have a
  897. possible map and a non-dummy shared_info. */
  898. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  899. local_irq_disable();
  900. early_boot_irqs_off();
  901. xen_raw_console_write("mapping kernel into physical memory\n");
  902. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  903. init_mm.pgd = pgd;
  904. /* keep using Xen gdt for now; no urgent need to change it */
  905. pv_info.kernel_rpl = 1;
  906. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  907. pv_info.kernel_rpl = 0;
  908. /* set the limit of our address space */
  909. xen_reserve_top();
  910. #ifdef CONFIG_X86_32
  911. /* set up basic CPUID stuff */
  912. cpu_detect(&new_cpu_data);
  913. new_cpu_data.hard_math = 1;
  914. new_cpu_data.wp_works_ok = 1;
  915. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  916. #endif
  917. /* Poke various useful things into boot_params */
  918. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  919. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  920. ? __pa(xen_start_info->mod_start) : 0;
  921. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  922. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  923. if (!xen_initial_domain()) {
  924. add_preferred_console("xenboot", 0, NULL);
  925. add_preferred_console("tty", 0, NULL);
  926. add_preferred_console("hvc", 0, NULL);
  927. }
  928. xen_raw_console_write("about to get started...\n");
  929. /* Start the world */
  930. #ifdef CONFIG_X86_32
  931. i386_start_kernel();
  932. #else
  933. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  934. #endif
  935. }