kvm-ia64.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/gcc_intrin.h>
  35. #include <asm/pal.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/div64.h>
  38. #include <asm/tlb.h>
  39. #include <asm/elf.h>
  40. #include "misc.h"
  41. #include "vti.h"
  42. #include "iodev.h"
  43. #include "ioapic.h"
  44. #include "lapic.h"
  45. #include "irq.h"
  46. static unsigned long kvm_vmm_base;
  47. static unsigned long kvm_vsa_base;
  48. static unsigned long kvm_vm_buffer;
  49. static unsigned long kvm_vm_buffer_size;
  50. unsigned long kvm_vmm_gp;
  51. static long vp_env_info;
  52. static struct kvm_vmm_info *kvm_vmm_info;
  53. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  54. struct kvm_stats_debugfs_item debugfs_entries[] = {
  55. { NULL }
  56. };
  57. static void kvm_flush_icache(unsigned long start, unsigned long len)
  58. {
  59. int l;
  60. for (l = 0; l < (len + 32); l += 32)
  61. ia64_fc(start + l);
  62. ia64_sync_i();
  63. ia64_srlz_i();
  64. }
  65. static void kvm_flush_tlb_all(void)
  66. {
  67. unsigned long i, j, count0, count1, stride0, stride1, addr;
  68. long flags;
  69. addr = local_cpu_data->ptce_base;
  70. count0 = local_cpu_data->ptce_count[0];
  71. count1 = local_cpu_data->ptce_count[1];
  72. stride0 = local_cpu_data->ptce_stride[0];
  73. stride1 = local_cpu_data->ptce_stride[1];
  74. local_irq_save(flags);
  75. for (i = 0; i < count0; ++i) {
  76. for (j = 0; j < count1; ++j) {
  77. ia64_ptce(addr);
  78. addr += stride1;
  79. }
  80. addr += stride0;
  81. }
  82. local_irq_restore(flags);
  83. ia64_srlz_i(); /* srlz.i implies srlz.d */
  84. }
  85. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  86. {
  87. struct ia64_pal_retval iprv;
  88. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  89. (u64)opt_handler);
  90. return iprv.status;
  91. }
  92. static DEFINE_SPINLOCK(vp_lock);
  93. void kvm_arch_hardware_enable(void *garbage)
  94. {
  95. long status;
  96. long tmp_base;
  97. unsigned long pte;
  98. unsigned long saved_psr;
  99. int slot;
  100. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  101. PAGE_KERNEL));
  102. local_irq_save(saved_psr);
  103. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  104. local_irq_restore(saved_psr);
  105. if (slot < 0)
  106. return;
  107. spin_lock(&vp_lock);
  108. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  109. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  110. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  111. if (status != 0) {
  112. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  113. return ;
  114. }
  115. if (!kvm_vsa_base) {
  116. kvm_vsa_base = tmp_base;
  117. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  118. }
  119. spin_unlock(&vp_lock);
  120. ia64_ptr_entry(0x3, slot);
  121. }
  122. void kvm_arch_hardware_disable(void *garbage)
  123. {
  124. long status;
  125. int slot;
  126. unsigned long pte;
  127. unsigned long saved_psr;
  128. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  129. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  130. PAGE_KERNEL));
  131. local_irq_save(saved_psr);
  132. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  133. local_irq_restore(saved_psr);
  134. if (slot < 0)
  135. return;
  136. status = ia64_pal_vp_exit_env(host_iva);
  137. if (status)
  138. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  139. status);
  140. ia64_ptr_entry(0x3, slot);
  141. }
  142. void kvm_arch_check_processor_compat(void *rtn)
  143. {
  144. *(int *)rtn = 0;
  145. }
  146. int kvm_dev_ioctl_check_extension(long ext)
  147. {
  148. int r;
  149. switch (ext) {
  150. case KVM_CAP_IRQCHIP:
  151. case KVM_CAP_USER_MEMORY:
  152. case KVM_CAP_MP_STATE:
  153. r = 1;
  154. break;
  155. case KVM_CAP_COALESCED_MMIO:
  156. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  157. break;
  158. default:
  159. r = 0;
  160. }
  161. return r;
  162. }
  163. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  164. gpa_t addr, int len, int is_write)
  165. {
  166. struct kvm_io_device *dev;
  167. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  168. return dev;
  169. }
  170. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  171. {
  172. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  173. kvm_run->hw.hardware_exit_reason = 1;
  174. return 0;
  175. }
  176. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  177. {
  178. struct kvm_mmio_req *p;
  179. struct kvm_io_device *mmio_dev;
  180. p = kvm_get_vcpu_ioreq(vcpu);
  181. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  182. goto mmio;
  183. vcpu->mmio_needed = 1;
  184. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  185. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  186. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  187. if (vcpu->mmio_is_write)
  188. memcpy(vcpu->mmio_data, &p->data, p->size);
  189. memcpy(kvm_run->mmio.data, &p->data, p->size);
  190. kvm_run->exit_reason = KVM_EXIT_MMIO;
  191. return 0;
  192. mmio:
  193. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  194. if (mmio_dev) {
  195. if (!p->dir)
  196. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  197. &p->data);
  198. else
  199. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  200. &p->data);
  201. } else
  202. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  203. p->state = STATE_IORESP_READY;
  204. return 1;
  205. }
  206. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  207. {
  208. struct exit_ctl_data *p;
  209. p = kvm_get_exit_data(vcpu);
  210. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  211. return kvm_pal_emul(vcpu, kvm_run);
  212. else {
  213. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  214. kvm_run->hw.hardware_exit_reason = 2;
  215. return 0;
  216. }
  217. }
  218. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  219. {
  220. struct exit_ctl_data *p;
  221. p = kvm_get_exit_data(vcpu);
  222. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  223. kvm_sal_emul(vcpu);
  224. return 1;
  225. } else {
  226. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  227. kvm_run->hw.hardware_exit_reason = 3;
  228. return 0;
  229. }
  230. }
  231. /*
  232. * offset: address offset to IPI space.
  233. * value: deliver value.
  234. */
  235. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  236. uint64_t vector)
  237. {
  238. switch (dm) {
  239. case SAPIC_FIXED:
  240. kvm_apic_set_irq(vcpu, vector, 0);
  241. break;
  242. case SAPIC_NMI:
  243. kvm_apic_set_irq(vcpu, 2, 0);
  244. break;
  245. case SAPIC_EXTINT:
  246. kvm_apic_set_irq(vcpu, 0, 0);
  247. break;
  248. case SAPIC_INIT:
  249. case SAPIC_PMI:
  250. default:
  251. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  252. break;
  253. }
  254. }
  255. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  256. unsigned long eid)
  257. {
  258. union ia64_lid lid;
  259. int i;
  260. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  261. if (kvm->vcpus[i]) {
  262. lid.val = VCPU_LID(kvm->vcpus[i]);
  263. if (lid.id == id && lid.eid == eid)
  264. return kvm->vcpus[i];
  265. }
  266. }
  267. return NULL;
  268. }
  269. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  270. {
  271. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  272. struct kvm_vcpu *target_vcpu;
  273. struct kvm_pt_regs *regs;
  274. union ia64_ipi_a addr = p->u.ipi_data.addr;
  275. union ia64_ipi_d data = p->u.ipi_data.data;
  276. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  277. if (!target_vcpu)
  278. return handle_vm_error(vcpu, kvm_run);
  279. if (!target_vcpu->arch.launched) {
  280. regs = vcpu_regs(target_vcpu);
  281. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  282. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  283. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  284. if (waitqueue_active(&target_vcpu->wq))
  285. wake_up_interruptible(&target_vcpu->wq);
  286. } else {
  287. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  288. if (target_vcpu != vcpu)
  289. kvm_vcpu_kick(target_vcpu);
  290. }
  291. return 1;
  292. }
  293. struct call_data {
  294. struct kvm_ptc_g ptc_g_data;
  295. struct kvm_vcpu *vcpu;
  296. };
  297. static void vcpu_global_purge(void *info)
  298. {
  299. struct call_data *p = (struct call_data *)info;
  300. struct kvm_vcpu *vcpu = p->vcpu;
  301. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  302. return;
  303. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  304. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  305. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  306. p->ptc_g_data;
  307. } else {
  308. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  309. vcpu->arch.ptc_g_count = 0;
  310. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  311. }
  312. }
  313. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  314. {
  315. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  316. struct kvm *kvm = vcpu->kvm;
  317. struct call_data call_data;
  318. int i;
  319. call_data.ptc_g_data = p->u.ptc_g_data;
  320. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  321. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  322. KVM_MP_STATE_UNINITIALIZED ||
  323. vcpu == kvm->vcpus[i])
  324. continue;
  325. if (waitqueue_active(&kvm->vcpus[i]->wq))
  326. wake_up_interruptible(&kvm->vcpus[i]->wq);
  327. if (kvm->vcpus[i]->cpu != -1) {
  328. call_data.vcpu = kvm->vcpus[i];
  329. smp_call_function_single(kvm->vcpus[i]->cpu,
  330. vcpu_global_purge, &call_data, 1);
  331. } else
  332. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  333. }
  334. return 1;
  335. }
  336. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  337. {
  338. return 1;
  339. }
  340. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  341. {
  342. ktime_t kt;
  343. long itc_diff;
  344. unsigned long vcpu_now_itc;
  345. unsigned long expires;
  346. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  347. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  348. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  349. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  350. if (time_after(vcpu_now_itc, vpd->itm)) {
  351. vcpu->arch.timer_check = 1;
  352. return 1;
  353. }
  354. itc_diff = vpd->itm - vcpu_now_itc;
  355. if (itc_diff < 0)
  356. itc_diff = -itc_diff;
  357. expires = div64_u64(itc_diff, cyc_per_usec);
  358. kt = ktime_set(0, 1000 * expires);
  359. vcpu->arch.ht_active = 1;
  360. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  361. if (irqchip_in_kernel(vcpu->kvm)) {
  362. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  363. kvm_vcpu_block(vcpu);
  364. hrtimer_cancel(p_ht);
  365. vcpu->arch.ht_active = 0;
  366. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  367. return -EINTR;
  368. return 1;
  369. } else {
  370. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  371. return 0;
  372. }
  373. }
  374. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  375. struct kvm_run *kvm_run)
  376. {
  377. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  378. return 0;
  379. }
  380. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  381. struct kvm_run *kvm_run)
  382. {
  383. return 1;
  384. }
  385. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  386. struct kvm_run *kvm_run) = {
  387. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  388. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  389. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  390. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  391. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  392. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  393. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  394. [EXIT_REASON_IPI] = handle_ipi,
  395. [EXIT_REASON_PTC_G] = handle_global_purge,
  396. };
  397. static const int kvm_vti_max_exit_handlers =
  398. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  399. static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  400. {
  401. }
  402. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  403. {
  404. struct exit_ctl_data *p_exit_data;
  405. p_exit_data = kvm_get_exit_data(vcpu);
  406. return p_exit_data->exit_reason;
  407. }
  408. /*
  409. * The guest has exited. See if we can fix it or if we need userspace
  410. * assistance.
  411. */
  412. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  413. {
  414. u32 exit_reason = kvm_get_exit_reason(vcpu);
  415. vcpu->arch.last_exit = exit_reason;
  416. if (exit_reason < kvm_vti_max_exit_handlers
  417. && kvm_vti_exit_handlers[exit_reason])
  418. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  419. else {
  420. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  421. kvm_run->hw.hardware_exit_reason = exit_reason;
  422. }
  423. return 0;
  424. }
  425. static inline void vti_set_rr6(unsigned long rr6)
  426. {
  427. ia64_set_rr(RR6, rr6);
  428. ia64_srlz_i();
  429. }
  430. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  431. {
  432. unsigned long pte;
  433. struct kvm *kvm = vcpu->kvm;
  434. int r;
  435. /*Insert a pair of tr to map vmm*/
  436. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  437. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  438. if (r < 0)
  439. goto out;
  440. vcpu->arch.vmm_tr_slot = r;
  441. /*Insert a pairt of tr to map data of vm*/
  442. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  443. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  444. pte, KVM_VM_DATA_SHIFT);
  445. if (r < 0)
  446. goto out;
  447. vcpu->arch.vm_tr_slot = r;
  448. r = 0;
  449. out:
  450. return r;
  451. }
  452. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  453. {
  454. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  455. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  456. }
  457. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  458. {
  459. int cpu = smp_processor_id();
  460. if (vcpu->arch.last_run_cpu != cpu ||
  461. per_cpu(last_vcpu, cpu) != vcpu) {
  462. per_cpu(last_vcpu, cpu) = vcpu;
  463. vcpu->arch.last_run_cpu = cpu;
  464. kvm_flush_tlb_all();
  465. }
  466. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  467. vti_set_rr6(vcpu->arch.vmm_rr);
  468. return kvm_insert_vmm_mapping(vcpu);
  469. }
  470. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  471. {
  472. kvm_purge_vmm_mapping(vcpu);
  473. vti_set_rr6(vcpu->arch.host_rr6);
  474. }
  475. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  476. {
  477. union context *host_ctx, *guest_ctx;
  478. int r;
  479. /*Get host and guest context with guest address space.*/
  480. host_ctx = kvm_get_host_context(vcpu);
  481. guest_ctx = kvm_get_guest_context(vcpu);
  482. r = kvm_vcpu_pre_transition(vcpu);
  483. if (r < 0)
  484. goto out;
  485. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  486. kvm_vcpu_post_transition(vcpu);
  487. r = 0;
  488. out:
  489. return r;
  490. }
  491. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  492. {
  493. int r;
  494. again:
  495. preempt_disable();
  496. kvm_prepare_guest_switch(vcpu);
  497. local_irq_disable();
  498. if (signal_pending(current)) {
  499. local_irq_enable();
  500. preempt_enable();
  501. r = -EINTR;
  502. kvm_run->exit_reason = KVM_EXIT_INTR;
  503. goto out;
  504. }
  505. vcpu->guest_mode = 1;
  506. kvm_guest_enter();
  507. r = vti_vcpu_run(vcpu, kvm_run);
  508. if (r < 0) {
  509. local_irq_enable();
  510. preempt_enable();
  511. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  512. goto out;
  513. }
  514. vcpu->arch.launched = 1;
  515. vcpu->guest_mode = 0;
  516. local_irq_enable();
  517. /*
  518. * We must have an instruction between local_irq_enable() and
  519. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  520. * the interrupt shadow. The stat.exits increment will do nicely.
  521. * But we need to prevent reordering, hence this barrier():
  522. */
  523. barrier();
  524. kvm_guest_exit();
  525. preempt_enable();
  526. r = kvm_handle_exit(kvm_run, vcpu);
  527. if (r > 0) {
  528. if (!need_resched())
  529. goto again;
  530. }
  531. out:
  532. if (r > 0) {
  533. kvm_resched(vcpu);
  534. goto again;
  535. }
  536. return r;
  537. }
  538. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  539. {
  540. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  541. if (!vcpu->mmio_is_write)
  542. memcpy(&p->data, vcpu->mmio_data, 8);
  543. p->state = STATE_IORESP_READY;
  544. }
  545. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  546. {
  547. int r;
  548. sigset_t sigsaved;
  549. vcpu_load(vcpu);
  550. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  551. kvm_vcpu_block(vcpu);
  552. vcpu_put(vcpu);
  553. return -EAGAIN;
  554. }
  555. if (vcpu->sigset_active)
  556. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  557. if (vcpu->mmio_needed) {
  558. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  559. kvm_set_mmio_data(vcpu);
  560. vcpu->mmio_read_completed = 1;
  561. vcpu->mmio_needed = 0;
  562. }
  563. r = __vcpu_run(vcpu, kvm_run);
  564. if (vcpu->sigset_active)
  565. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  566. vcpu_put(vcpu);
  567. return r;
  568. }
  569. /*
  570. * Allocate 16M memory for every vm to hold its specific data.
  571. * Its memory map is defined in kvm_host.h.
  572. */
  573. static struct kvm *kvm_alloc_kvm(void)
  574. {
  575. struct kvm *kvm;
  576. uint64_t vm_base;
  577. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  578. if (!vm_base)
  579. return ERR_PTR(-ENOMEM);
  580. printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
  581. /* Zero all pages before use! */
  582. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  583. kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
  584. kvm->arch.vm_base = vm_base;
  585. return kvm;
  586. }
  587. struct kvm_io_range {
  588. unsigned long start;
  589. unsigned long size;
  590. unsigned long type;
  591. };
  592. static const struct kvm_io_range io_ranges[] = {
  593. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  594. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  595. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  596. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  597. {PIB_START, PIB_SIZE, GPFN_PIB},
  598. };
  599. static void kvm_build_io_pmt(struct kvm *kvm)
  600. {
  601. unsigned long i, j;
  602. /* Mark I/O ranges */
  603. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  604. i++) {
  605. for (j = io_ranges[i].start;
  606. j < io_ranges[i].start + io_ranges[i].size;
  607. j += PAGE_SIZE)
  608. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  609. io_ranges[i].type, 0);
  610. }
  611. }
  612. /*Use unused rids to virtualize guest rid.*/
  613. #define GUEST_PHYSICAL_RR0 0x1739
  614. #define GUEST_PHYSICAL_RR4 0x2739
  615. #define VMM_INIT_RR 0x1660
  616. static void kvm_init_vm(struct kvm *kvm)
  617. {
  618. long vm_base;
  619. BUG_ON(!kvm);
  620. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  621. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  622. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  623. vm_base = kvm->arch.vm_base;
  624. if (vm_base) {
  625. kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
  626. kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
  627. kvm->arch.vpd_base = vm_base + KVM_VPD_OFS;
  628. }
  629. /*
  630. *Fill P2M entries for MMIO/IO ranges
  631. */
  632. kvm_build_io_pmt(kvm);
  633. }
  634. struct kvm *kvm_arch_create_vm(void)
  635. {
  636. struct kvm *kvm = kvm_alloc_kvm();
  637. if (IS_ERR(kvm))
  638. return ERR_PTR(-ENOMEM);
  639. kvm_init_vm(kvm);
  640. return kvm;
  641. }
  642. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  643. struct kvm_irqchip *chip)
  644. {
  645. int r;
  646. r = 0;
  647. switch (chip->chip_id) {
  648. case KVM_IRQCHIP_IOAPIC:
  649. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  650. sizeof(struct kvm_ioapic_state));
  651. break;
  652. default:
  653. r = -EINVAL;
  654. break;
  655. }
  656. return r;
  657. }
  658. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  659. {
  660. int r;
  661. r = 0;
  662. switch (chip->chip_id) {
  663. case KVM_IRQCHIP_IOAPIC:
  664. memcpy(ioapic_irqchip(kvm),
  665. &chip->chip.ioapic,
  666. sizeof(struct kvm_ioapic_state));
  667. break;
  668. default:
  669. r = -EINVAL;
  670. break;
  671. }
  672. return r;
  673. }
  674. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  675. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  676. {
  677. int i;
  678. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  679. int r;
  680. vcpu_load(vcpu);
  681. for (i = 0; i < 16; i++) {
  682. vpd->vgr[i] = regs->vpd.vgr[i];
  683. vpd->vbgr[i] = regs->vpd.vbgr[i];
  684. }
  685. for (i = 0; i < 128; i++)
  686. vpd->vcr[i] = regs->vpd.vcr[i];
  687. vpd->vhpi = regs->vpd.vhpi;
  688. vpd->vnat = regs->vpd.vnat;
  689. vpd->vbnat = regs->vpd.vbnat;
  690. vpd->vpsr = regs->vpd.vpsr;
  691. vpd->vpr = regs->vpd.vpr;
  692. r = -EFAULT;
  693. r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
  694. sizeof(union context));
  695. if (r)
  696. goto out;
  697. r = copy_from_user(vcpu + 1, regs->saved_stack +
  698. sizeof(struct kvm_vcpu),
  699. IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
  700. if (r)
  701. goto out;
  702. vcpu->arch.exit_data =
  703. ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
  704. RESTORE_REGS(mp_state);
  705. RESTORE_REGS(vmm_rr);
  706. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  707. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  708. RESTORE_REGS(itr_regions);
  709. RESTORE_REGS(dtr_regions);
  710. RESTORE_REGS(tc_regions);
  711. RESTORE_REGS(irq_check);
  712. RESTORE_REGS(itc_check);
  713. RESTORE_REGS(timer_check);
  714. RESTORE_REGS(timer_pending);
  715. RESTORE_REGS(last_itc);
  716. for (i = 0; i < 8; i++) {
  717. vcpu->arch.vrr[i] = regs->vrr[i];
  718. vcpu->arch.ibr[i] = regs->ibr[i];
  719. vcpu->arch.dbr[i] = regs->dbr[i];
  720. }
  721. for (i = 0; i < 4; i++)
  722. vcpu->arch.insvc[i] = regs->insvc[i];
  723. RESTORE_REGS(xtp);
  724. RESTORE_REGS(metaphysical_rr0);
  725. RESTORE_REGS(metaphysical_rr4);
  726. RESTORE_REGS(metaphysical_saved_rr0);
  727. RESTORE_REGS(metaphysical_saved_rr4);
  728. RESTORE_REGS(fp_psr);
  729. RESTORE_REGS(saved_gp);
  730. vcpu->arch.irq_new_pending = 1;
  731. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  732. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  733. vcpu_put(vcpu);
  734. r = 0;
  735. out:
  736. return r;
  737. }
  738. long kvm_arch_vm_ioctl(struct file *filp,
  739. unsigned int ioctl, unsigned long arg)
  740. {
  741. struct kvm *kvm = filp->private_data;
  742. void __user *argp = (void __user *)arg;
  743. int r = -EINVAL;
  744. switch (ioctl) {
  745. case KVM_SET_MEMORY_REGION: {
  746. struct kvm_memory_region kvm_mem;
  747. struct kvm_userspace_memory_region kvm_userspace_mem;
  748. r = -EFAULT;
  749. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  750. goto out;
  751. kvm_userspace_mem.slot = kvm_mem.slot;
  752. kvm_userspace_mem.flags = kvm_mem.flags;
  753. kvm_userspace_mem.guest_phys_addr =
  754. kvm_mem.guest_phys_addr;
  755. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  756. r = kvm_vm_ioctl_set_memory_region(kvm,
  757. &kvm_userspace_mem, 0);
  758. if (r)
  759. goto out;
  760. break;
  761. }
  762. case KVM_CREATE_IRQCHIP:
  763. r = -EFAULT;
  764. r = kvm_ioapic_init(kvm);
  765. if (r)
  766. goto out;
  767. break;
  768. case KVM_IRQ_LINE: {
  769. struct kvm_irq_level irq_event;
  770. r = -EFAULT;
  771. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  772. goto out;
  773. if (irqchip_in_kernel(kvm)) {
  774. mutex_lock(&kvm->lock);
  775. kvm_ioapic_set_irq(kvm->arch.vioapic,
  776. irq_event.irq,
  777. irq_event.level);
  778. mutex_unlock(&kvm->lock);
  779. r = 0;
  780. }
  781. break;
  782. }
  783. case KVM_GET_IRQCHIP: {
  784. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  785. struct kvm_irqchip chip;
  786. r = -EFAULT;
  787. if (copy_from_user(&chip, argp, sizeof chip))
  788. goto out;
  789. r = -ENXIO;
  790. if (!irqchip_in_kernel(kvm))
  791. goto out;
  792. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  793. if (r)
  794. goto out;
  795. r = -EFAULT;
  796. if (copy_to_user(argp, &chip, sizeof chip))
  797. goto out;
  798. r = 0;
  799. break;
  800. }
  801. case KVM_SET_IRQCHIP: {
  802. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  803. struct kvm_irqchip chip;
  804. r = -EFAULT;
  805. if (copy_from_user(&chip, argp, sizeof chip))
  806. goto out;
  807. r = -ENXIO;
  808. if (!irqchip_in_kernel(kvm))
  809. goto out;
  810. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  811. if (r)
  812. goto out;
  813. r = 0;
  814. break;
  815. }
  816. default:
  817. ;
  818. }
  819. out:
  820. return r;
  821. }
  822. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  823. struct kvm_sregs *sregs)
  824. {
  825. return -EINVAL;
  826. }
  827. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  828. struct kvm_sregs *sregs)
  829. {
  830. return -EINVAL;
  831. }
  832. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  833. struct kvm_translation *tr)
  834. {
  835. return -EINVAL;
  836. }
  837. static int kvm_alloc_vmm_area(void)
  838. {
  839. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  840. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  841. get_order(KVM_VMM_SIZE));
  842. if (!kvm_vmm_base)
  843. return -ENOMEM;
  844. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  845. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  846. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  847. kvm_vmm_base, kvm_vm_buffer);
  848. }
  849. return 0;
  850. }
  851. static void kvm_free_vmm_area(void)
  852. {
  853. if (kvm_vmm_base) {
  854. /*Zero this area before free to avoid bits leak!!*/
  855. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  856. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  857. kvm_vmm_base = 0;
  858. kvm_vm_buffer = 0;
  859. kvm_vsa_base = 0;
  860. }
  861. }
  862. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  863. {
  864. }
  865. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  866. {
  867. int i;
  868. union cpuid3_t cpuid3;
  869. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  870. if (IS_ERR(vpd))
  871. return PTR_ERR(vpd);
  872. /* CPUID init */
  873. for (i = 0; i < 5; i++)
  874. vpd->vcpuid[i] = ia64_get_cpuid(i);
  875. /* Limit the CPUID number to 5 */
  876. cpuid3.value = vpd->vcpuid[3];
  877. cpuid3.number = 4; /* 5 - 1 */
  878. vpd->vcpuid[3] = cpuid3.value;
  879. /*Set vac and vdc fields*/
  880. vpd->vac.a_from_int_cr = 1;
  881. vpd->vac.a_to_int_cr = 1;
  882. vpd->vac.a_from_psr = 1;
  883. vpd->vac.a_from_cpuid = 1;
  884. vpd->vac.a_cover = 1;
  885. vpd->vac.a_bsw = 1;
  886. vpd->vac.a_int = 1;
  887. vpd->vdc.d_vmsw = 1;
  888. /*Set virtual buffer*/
  889. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  890. return 0;
  891. }
  892. static int vti_create_vp(struct kvm_vcpu *vcpu)
  893. {
  894. long ret;
  895. struct vpd *vpd = vcpu->arch.vpd;
  896. unsigned long vmm_ivt;
  897. vmm_ivt = kvm_vmm_info->vmm_ivt;
  898. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  899. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  900. if (ret) {
  901. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  902. return -EINVAL;
  903. }
  904. return 0;
  905. }
  906. static void init_ptce_info(struct kvm_vcpu *vcpu)
  907. {
  908. ia64_ptce_info_t ptce = {0};
  909. ia64_get_ptce(&ptce);
  910. vcpu->arch.ptce_base = ptce.base;
  911. vcpu->arch.ptce_count[0] = ptce.count[0];
  912. vcpu->arch.ptce_count[1] = ptce.count[1];
  913. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  914. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  915. }
  916. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  917. {
  918. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  919. if (hrtimer_cancel(p_ht))
  920. hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
  921. }
  922. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  923. {
  924. struct kvm_vcpu *vcpu;
  925. wait_queue_head_t *q;
  926. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  927. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  928. goto out;
  929. q = &vcpu->wq;
  930. if (waitqueue_active(q)) {
  931. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  932. wake_up_interruptible(q);
  933. }
  934. out:
  935. vcpu->arch.timer_check = 1;
  936. return HRTIMER_NORESTART;
  937. }
  938. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  939. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  940. {
  941. struct kvm_vcpu *v;
  942. int r;
  943. int i;
  944. long itc_offset;
  945. struct kvm *kvm = vcpu->kvm;
  946. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  947. union context *p_ctx = &vcpu->arch.guest;
  948. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  949. /*Init vcpu context for first run.*/
  950. if (IS_ERR(vmm_vcpu))
  951. return PTR_ERR(vmm_vcpu);
  952. if (vcpu->vcpu_id == 0) {
  953. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  954. /*Set entry address for first run.*/
  955. regs->cr_iip = PALE_RESET_ENTRY;
  956. /*Initilize itc offset for vcpus*/
  957. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  958. for (i = 0; i < MAX_VCPU_NUM; i++) {
  959. v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
  960. v->arch.itc_offset = itc_offset;
  961. v->arch.last_itc = 0;
  962. }
  963. } else
  964. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  965. r = -ENOMEM;
  966. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  967. if (!vcpu->arch.apic)
  968. goto out;
  969. vcpu->arch.apic->vcpu = vcpu;
  970. p_ctx->gr[1] = 0;
  971. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
  972. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  973. p_ctx->psr = 0x1008522000UL;
  974. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  975. p_ctx->caller_unat = 0;
  976. p_ctx->pr = 0x0;
  977. p_ctx->ar[36] = 0x0; /*unat*/
  978. p_ctx->ar[19] = 0x0; /*rnat*/
  979. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  980. ((sizeof(struct kvm_vcpu)+15) & ~15);
  981. p_ctx->ar[64] = 0x0; /*pfs*/
  982. p_ctx->cr[0] = 0x7e04UL;
  983. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  984. p_ctx->cr[8] = 0x3c;
  985. /*Initilize region register*/
  986. p_ctx->rr[0] = 0x30;
  987. p_ctx->rr[1] = 0x30;
  988. p_ctx->rr[2] = 0x30;
  989. p_ctx->rr[3] = 0x30;
  990. p_ctx->rr[4] = 0x30;
  991. p_ctx->rr[5] = 0x30;
  992. p_ctx->rr[7] = 0x30;
  993. /*Initilize branch register 0*/
  994. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  995. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  996. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  997. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  998. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  999. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1000. vcpu->arch.last_run_cpu = -1;
  1001. vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
  1002. vcpu->arch.vsa_base = kvm_vsa_base;
  1003. vcpu->arch.__gp = kvm_vmm_gp;
  1004. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1005. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
  1006. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
  1007. init_ptce_info(vcpu);
  1008. r = 0;
  1009. out:
  1010. return r;
  1011. }
  1012. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1013. {
  1014. unsigned long psr;
  1015. int r;
  1016. local_irq_save(psr);
  1017. r = kvm_insert_vmm_mapping(vcpu);
  1018. if (r)
  1019. goto fail;
  1020. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1021. if (r)
  1022. goto fail;
  1023. r = vti_init_vpd(vcpu);
  1024. if (r) {
  1025. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1026. goto uninit;
  1027. }
  1028. r = vti_create_vp(vcpu);
  1029. if (r)
  1030. goto uninit;
  1031. kvm_purge_vmm_mapping(vcpu);
  1032. local_irq_restore(psr);
  1033. return 0;
  1034. uninit:
  1035. kvm_vcpu_uninit(vcpu);
  1036. fail:
  1037. local_irq_restore(psr);
  1038. return r;
  1039. }
  1040. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1041. unsigned int id)
  1042. {
  1043. struct kvm_vcpu *vcpu;
  1044. unsigned long vm_base = kvm->arch.vm_base;
  1045. int r;
  1046. int cpu;
  1047. r = -ENOMEM;
  1048. if (!vm_base) {
  1049. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1050. goto fail;
  1051. }
  1052. vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
  1053. vcpu->kvm = kvm;
  1054. cpu = get_cpu();
  1055. vti_vcpu_load(vcpu, cpu);
  1056. r = vti_vcpu_setup(vcpu, id);
  1057. put_cpu();
  1058. if (r) {
  1059. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1060. goto fail;
  1061. }
  1062. return vcpu;
  1063. fail:
  1064. return ERR_PTR(r);
  1065. }
  1066. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1067. {
  1068. return 0;
  1069. }
  1070. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1071. {
  1072. return -EINVAL;
  1073. }
  1074. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1075. {
  1076. return -EINVAL;
  1077. }
  1078. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1079. struct kvm_debug_guest *dbg)
  1080. {
  1081. return -EINVAL;
  1082. }
  1083. static void free_kvm(struct kvm *kvm)
  1084. {
  1085. unsigned long vm_base = kvm->arch.vm_base;
  1086. if (vm_base) {
  1087. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1088. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1089. }
  1090. }
  1091. static void kvm_release_vm_pages(struct kvm *kvm)
  1092. {
  1093. struct kvm_memory_slot *memslot;
  1094. int i, j;
  1095. unsigned long base_gfn;
  1096. for (i = 0; i < kvm->nmemslots; i++) {
  1097. memslot = &kvm->memslots[i];
  1098. base_gfn = memslot->base_gfn;
  1099. for (j = 0; j < memslot->npages; j++) {
  1100. if (memslot->rmap[j])
  1101. put_page((struct page *)memslot->rmap[j]);
  1102. }
  1103. }
  1104. }
  1105. void kvm_arch_destroy_vm(struct kvm *kvm)
  1106. {
  1107. kfree(kvm->arch.vioapic);
  1108. kvm_release_vm_pages(kvm);
  1109. kvm_free_physmem(kvm);
  1110. free_kvm(kvm);
  1111. }
  1112. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1113. {
  1114. }
  1115. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1116. {
  1117. if (cpu != vcpu->cpu) {
  1118. vcpu->cpu = cpu;
  1119. if (vcpu->arch.ht_active)
  1120. kvm_migrate_hlt_timer(vcpu);
  1121. }
  1122. }
  1123. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1124. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1125. {
  1126. int i;
  1127. int r;
  1128. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1129. vcpu_load(vcpu);
  1130. for (i = 0; i < 16; i++) {
  1131. regs->vpd.vgr[i] = vpd->vgr[i];
  1132. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1133. }
  1134. for (i = 0; i < 128; i++)
  1135. regs->vpd.vcr[i] = vpd->vcr[i];
  1136. regs->vpd.vhpi = vpd->vhpi;
  1137. regs->vpd.vnat = vpd->vnat;
  1138. regs->vpd.vbnat = vpd->vbnat;
  1139. regs->vpd.vpsr = vpd->vpsr;
  1140. regs->vpd.vpr = vpd->vpr;
  1141. r = -EFAULT;
  1142. r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
  1143. sizeof(union context));
  1144. if (r)
  1145. goto out;
  1146. r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
  1147. if (r)
  1148. goto out;
  1149. SAVE_REGS(mp_state);
  1150. SAVE_REGS(vmm_rr);
  1151. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1152. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1153. SAVE_REGS(itr_regions);
  1154. SAVE_REGS(dtr_regions);
  1155. SAVE_REGS(tc_regions);
  1156. SAVE_REGS(irq_check);
  1157. SAVE_REGS(itc_check);
  1158. SAVE_REGS(timer_check);
  1159. SAVE_REGS(timer_pending);
  1160. SAVE_REGS(last_itc);
  1161. for (i = 0; i < 8; i++) {
  1162. regs->vrr[i] = vcpu->arch.vrr[i];
  1163. regs->ibr[i] = vcpu->arch.ibr[i];
  1164. regs->dbr[i] = vcpu->arch.dbr[i];
  1165. }
  1166. for (i = 0; i < 4; i++)
  1167. regs->insvc[i] = vcpu->arch.insvc[i];
  1168. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1169. SAVE_REGS(xtp);
  1170. SAVE_REGS(metaphysical_rr0);
  1171. SAVE_REGS(metaphysical_rr4);
  1172. SAVE_REGS(metaphysical_saved_rr0);
  1173. SAVE_REGS(metaphysical_saved_rr4);
  1174. SAVE_REGS(fp_psr);
  1175. SAVE_REGS(saved_gp);
  1176. vcpu_put(vcpu);
  1177. r = 0;
  1178. out:
  1179. return r;
  1180. }
  1181. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1182. {
  1183. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1184. kfree(vcpu->arch.apic);
  1185. }
  1186. long kvm_arch_vcpu_ioctl(struct file *filp,
  1187. unsigned int ioctl, unsigned long arg)
  1188. {
  1189. return -EINVAL;
  1190. }
  1191. int kvm_arch_set_memory_region(struct kvm *kvm,
  1192. struct kvm_userspace_memory_region *mem,
  1193. struct kvm_memory_slot old,
  1194. int user_alloc)
  1195. {
  1196. unsigned long i;
  1197. unsigned long pfn;
  1198. int npages = mem->memory_size >> PAGE_SHIFT;
  1199. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1200. unsigned long base_gfn = memslot->base_gfn;
  1201. for (i = 0; i < npages; i++) {
  1202. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1203. if (!kvm_is_mmio_pfn(pfn)) {
  1204. kvm_set_pmt_entry(kvm, base_gfn + i,
  1205. pfn << PAGE_SHIFT,
  1206. _PAGE_MA_WB);
  1207. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1208. } else {
  1209. kvm_set_pmt_entry(kvm, base_gfn + i,
  1210. GPFN_LOW_MMIO | (pfn << PAGE_SHIFT),
  1211. _PAGE_MA_UC);
  1212. memslot->rmap[i] = 0;
  1213. }
  1214. }
  1215. return 0;
  1216. }
  1217. void kvm_arch_flush_shadow(struct kvm *kvm)
  1218. {
  1219. }
  1220. long kvm_arch_dev_ioctl(struct file *filp,
  1221. unsigned int ioctl, unsigned long arg)
  1222. {
  1223. return -EINVAL;
  1224. }
  1225. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1226. {
  1227. kvm_vcpu_uninit(vcpu);
  1228. }
  1229. static int vti_cpu_has_kvm_support(void)
  1230. {
  1231. long avail = 1, status = 1, control = 1;
  1232. long ret;
  1233. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1234. if (ret)
  1235. goto out;
  1236. if (!(avail & PAL_PROC_VM_BIT))
  1237. goto out;
  1238. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1239. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1240. if (ret)
  1241. goto out;
  1242. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1243. if (!(vp_env_info & VP_OPCODE)) {
  1244. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1245. "vm_env_info:0x%lx\n", vp_env_info);
  1246. }
  1247. return 1;
  1248. out:
  1249. return 0;
  1250. }
  1251. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1252. struct module *module)
  1253. {
  1254. unsigned long module_base;
  1255. unsigned long vmm_size;
  1256. unsigned long vmm_offset, func_offset, fdesc_offset;
  1257. struct fdesc *p_fdesc;
  1258. BUG_ON(!module);
  1259. if (!kvm_vmm_base) {
  1260. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1261. return -EFAULT;
  1262. }
  1263. /*Calculate new position of relocated vmm module.*/
  1264. module_base = (unsigned long)module->module_core;
  1265. vmm_size = module->core_size;
  1266. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1267. return -EFAULT;
  1268. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1269. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1270. /*Recalculate kvm_vmm_info based on new VMM*/
  1271. vmm_offset = vmm_info->vmm_ivt - module_base;
  1272. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1273. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1274. kvm_vmm_info->vmm_ivt);
  1275. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1276. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1277. fdesc_offset);
  1278. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1279. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1280. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1281. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1282. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1283. KVM_VMM_BASE+func_offset);
  1284. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1285. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1286. fdesc_offset);
  1287. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1288. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1289. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1290. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1291. kvm_vmm_gp = p_fdesc->gp;
  1292. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1293. kvm_vmm_info->vmm_entry);
  1294. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1295. KVM_VMM_BASE + func_offset);
  1296. return 0;
  1297. }
  1298. int kvm_arch_init(void *opaque)
  1299. {
  1300. int r;
  1301. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1302. if (!vti_cpu_has_kvm_support()) {
  1303. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1304. r = -EOPNOTSUPP;
  1305. goto out;
  1306. }
  1307. if (kvm_vmm_info) {
  1308. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1309. r = -EEXIST;
  1310. goto out;
  1311. }
  1312. r = -ENOMEM;
  1313. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1314. if (!kvm_vmm_info)
  1315. goto out;
  1316. if (kvm_alloc_vmm_area())
  1317. goto out_free0;
  1318. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1319. if (r)
  1320. goto out_free1;
  1321. return 0;
  1322. out_free1:
  1323. kvm_free_vmm_area();
  1324. out_free0:
  1325. kfree(kvm_vmm_info);
  1326. out:
  1327. return r;
  1328. }
  1329. void kvm_arch_exit(void)
  1330. {
  1331. kvm_free_vmm_area();
  1332. kfree(kvm_vmm_info);
  1333. kvm_vmm_info = NULL;
  1334. }
  1335. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1336. struct kvm_dirty_log *log)
  1337. {
  1338. struct kvm_memory_slot *memslot;
  1339. int r, i;
  1340. long n, base;
  1341. unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
  1342. + KVM_MEM_DIRTY_LOG_OFS);
  1343. r = -EINVAL;
  1344. if (log->slot >= KVM_MEMORY_SLOTS)
  1345. goto out;
  1346. memslot = &kvm->memslots[log->slot];
  1347. r = -ENOENT;
  1348. if (!memslot->dirty_bitmap)
  1349. goto out;
  1350. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1351. base = memslot->base_gfn / BITS_PER_LONG;
  1352. for (i = 0; i < n/sizeof(long); ++i) {
  1353. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1354. dirty_bitmap[base + i] = 0;
  1355. }
  1356. r = 0;
  1357. out:
  1358. return r;
  1359. }
  1360. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1361. struct kvm_dirty_log *log)
  1362. {
  1363. int r;
  1364. int n;
  1365. struct kvm_memory_slot *memslot;
  1366. int is_dirty = 0;
  1367. spin_lock(&kvm->arch.dirty_log_lock);
  1368. r = kvm_ia64_sync_dirty_log(kvm, log);
  1369. if (r)
  1370. goto out;
  1371. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1372. if (r)
  1373. goto out;
  1374. /* If nothing is dirty, don't bother messing with page tables. */
  1375. if (is_dirty) {
  1376. kvm_flush_remote_tlbs(kvm);
  1377. memslot = &kvm->memslots[log->slot];
  1378. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1379. memset(memslot->dirty_bitmap, 0, n);
  1380. }
  1381. r = 0;
  1382. out:
  1383. spin_unlock(&kvm->arch.dirty_log_lock);
  1384. return r;
  1385. }
  1386. int kvm_arch_hardware_setup(void)
  1387. {
  1388. return 0;
  1389. }
  1390. void kvm_arch_hardware_unsetup(void)
  1391. {
  1392. }
  1393. static void vcpu_kick_intr(void *info)
  1394. {
  1395. #ifdef DEBUG
  1396. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1397. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1398. #endif
  1399. }
  1400. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1401. {
  1402. int ipi_pcpu = vcpu->cpu;
  1403. if (waitqueue_active(&vcpu->wq))
  1404. wake_up_interruptible(&vcpu->wq);
  1405. if (vcpu->guest_mode)
  1406. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1407. }
  1408. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1409. {
  1410. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1411. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1412. vcpu->arch.irq_new_pending = 1;
  1413. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  1414. kvm_vcpu_kick(vcpu);
  1415. else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
  1416. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1417. if (waitqueue_active(&vcpu->wq))
  1418. wake_up_interruptible(&vcpu->wq);
  1419. }
  1420. return 1;
  1421. }
  1422. return 0;
  1423. }
  1424. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1425. {
  1426. return apic->vcpu->vcpu_id == dest;
  1427. }
  1428. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1429. {
  1430. return 0;
  1431. }
  1432. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1433. unsigned long bitmap)
  1434. {
  1435. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1436. int i;
  1437. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1438. if (!kvm->vcpus[i])
  1439. continue;
  1440. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1441. lvcpu = kvm->vcpus[i];
  1442. }
  1443. return lvcpu;
  1444. }
  1445. static int find_highest_bits(int *dat)
  1446. {
  1447. u32 bits, bitnum;
  1448. int i;
  1449. /* loop for all 256 bits */
  1450. for (i = 7; i >= 0 ; i--) {
  1451. bits = dat[i];
  1452. if (bits) {
  1453. bitnum = fls(bits);
  1454. return i * 32 + bitnum - 1;
  1455. }
  1456. }
  1457. return -1;
  1458. }
  1459. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1460. {
  1461. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1462. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1463. return NMI_VECTOR;
  1464. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1465. return ExtINT_VECTOR;
  1466. return find_highest_bits((int *)&vpd->irr[0]);
  1467. }
  1468. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1469. {
  1470. if (kvm_highest_pending_irq(vcpu) != -1)
  1471. return 1;
  1472. return 0;
  1473. }
  1474. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1475. {
  1476. return 0;
  1477. }
  1478. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1479. {
  1480. return gfn;
  1481. }
  1482. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1483. {
  1484. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1485. }
  1486. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1487. struct kvm_mp_state *mp_state)
  1488. {
  1489. vcpu_load(vcpu);
  1490. mp_state->mp_state = vcpu->arch.mp_state;
  1491. vcpu_put(vcpu);
  1492. return 0;
  1493. }
  1494. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1495. {
  1496. int r;
  1497. long psr;
  1498. local_irq_save(psr);
  1499. r = kvm_insert_vmm_mapping(vcpu);
  1500. if (r)
  1501. goto fail;
  1502. vcpu->arch.launched = 0;
  1503. kvm_arch_vcpu_uninit(vcpu);
  1504. r = kvm_arch_vcpu_init(vcpu);
  1505. if (r)
  1506. goto fail;
  1507. kvm_purge_vmm_mapping(vcpu);
  1508. r = 0;
  1509. fail:
  1510. local_irq_restore(psr);
  1511. return r;
  1512. }
  1513. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1514. struct kvm_mp_state *mp_state)
  1515. {
  1516. int r = 0;
  1517. vcpu_load(vcpu);
  1518. vcpu->arch.mp_state = mp_state->mp_state;
  1519. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1520. r = vcpu_reset(vcpu);
  1521. vcpu_put(vcpu);
  1522. return r;
  1523. }