time.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. DEFINE_SPINLOCK(rtc_lock);
  137. EXPORT_SYMBOL_GPL(rtc_lock);
  138. static u64 tb_to_ns_scale __read_mostly;
  139. static unsigned tb_to_ns_shift __read_mostly;
  140. static unsigned long boot_tb __read_mostly;
  141. extern struct timezone sys_tz;
  142. static long timezone_offset;
  143. unsigned long ppc_proc_freq;
  144. EXPORT_SYMBOL(ppc_proc_freq);
  145. unsigned long ppc_tb_freq;
  146. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  147. /*
  148. * Factors for converting from cputime_t (timebase ticks) to
  149. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  150. * These are all stored as 0.64 fixed-point binary fractions.
  151. */
  152. u64 __cputime_jiffies_factor;
  153. EXPORT_SYMBOL(__cputime_jiffies_factor);
  154. u64 __cputime_msec_factor;
  155. EXPORT_SYMBOL(__cputime_msec_factor);
  156. u64 __cputime_sec_factor;
  157. EXPORT_SYMBOL(__cputime_sec_factor);
  158. u64 __cputime_clockt_factor;
  159. EXPORT_SYMBOL(__cputime_clockt_factor);
  160. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  161. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  162. cputime_t cputime_one_jiffy;
  163. void (*dtl_consumer)(struct dtl_entry *, u64);
  164. static void calc_cputime_factors(void)
  165. {
  166. struct div_result res;
  167. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  168. __cputime_jiffies_factor = res.result_low;
  169. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  170. __cputime_msec_factor = res.result_low;
  171. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  172. __cputime_sec_factor = res.result_low;
  173. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  174. __cputime_clockt_factor = res.result_low;
  175. }
  176. /*
  177. * Read the SPURR on systems that have it, otherwise the PURR,
  178. * or if that doesn't exist return the timebase value passed in.
  179. */
  180. static u64 read_spurr(u64 tb)
  181. {
  182. if (cpu_has_feature(CPU_FTR_SPURR))
  183. return mfspr(SPRN_SPURR);
  184. if (cpu_has_feature(CPU_FTR_PURR))
  185. return mfspr(SPRN_PURR);
  186. return tb;
  187. }
  188. #ifdef CONFIG_PPC_SPLPAR
  189. /*
  190. * Scan the dispatch trace log and count up the stolen time.
  191. * Should be called with interrupts disabled.
  192. */
  193. static u64 scan_dispatch_log(u64 stop_tb)
  194. {
  195. u64 i = local_paca->dtl_ridx;
  196. struct dtl_entry *dtl = local_paca->dtl_curr;
  197. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  198. struct lppaca *vpa = local_paca->lppaca_ptr;
  199. u64 tb_delta;
  200. u64 stolen = 0;
  201. u64 dtb;
  202. if (i == vpa->dtl_idx)
  203. return 0;
  204. while (i < vpa->dtl_idx) {
  205. if (dtl_consumer)
  206. dtl_consumer(dtl, i);
  207. dtb = dtl->timebase;
  208. tb_delta = dtl->enqueue_to_dispatch_time +
  209. dtl->ready_to_enqueue_time;
  210. barrier();
  211. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  212. /* buffer has overflowed */
  213. i = vpa->dtl_idx - N_DISPATCH_LOG;
  214. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  215. continue;
  216. }
  217. if (dtb > stop_tb)
  218. break;
  219. stolen += tb_delta;
  220. ++i;
  221. ++dtl;
  222. if (dtl == dtl_end)
  223. dtl = local_paca->dispatch_log;
  224. }
  225. local_paca->dtl_ridx = i;
  226. local_paca->dtl_curr = dtl;
  227. return stolen;
  228. }
  229. /*
  230. * Accumulate stolen time by scanning the dispatch trace log.
  231. * Called on entry from user mode.
  232. */
  233. void accumulate_stolen_time(void)
  234. {
  235. u64 sst, ust;
  236. sst = scan_dispatch_log(get_paca()->starttime_user);
  237. ust = scan_dispatch_log(get_paca()->starttime);
  238. get_paca()->system_time -= sst;
  239. get_paca()->user_time -= ust;
  240. get_paca()->stolen_time += ust + sst;
  241. }
  242. static inline u64 calculate_stolen_time(u64 stop_tb)
  243. {
  244. u64 stolen = 0;
  245. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  246. stolen = scan_dispatch_log(stop_tb);
  247. get_paca()->system_time -= stolen;
  248. }
  249. stolen += get_paca()->stolen_time;
  250. get_paca()->stolen_time = 0;
  251. return stolen;
  252. }
  253. #else /* CONFIG_PPC_SPLPAR */
  254. static inline u64 calculate_stolen_time(u64 stop_tb)
  255. {
  256. return 0;
  257. }
  258. #endif /* CONFIG_PPC_SPLPAR */
  259. /*
  260. * Account time for a transition between system, hard irq
  261. * or soft irq state.
  262. */
  263. void account_system_vtime(struct task_struct *tsk)
  264. {
  265. u64 now, nowscaled, delta, deltascaled;
  266. unsigned long flags;
  267. u64 stolen, udelta, sys_scaled, user_scaled;
  268. local_irq_save(flags);
  269. now = mftb();
  270. nowscaled = read_spurr(now);
  271. get_paca()->system_time += now - get_paca()->starttime;
  272. get_paca()->starttime = now;
  273. deltascaled = nowscaled - get_paca()->startspurr;
  274. get_paca()->startspurr = nowscaled;
  275. stolen = calculate_stolen_time(now);
  276. delta = get_paca()->system_time;
  277. get_paca()->system_time = 0;
  278. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  279. get_paca()->utime_sspurr = get_paca()->user_time;
  280. /*
  281. * Because we don't read the SPURR on every kernel entry/exit,
  282. * deltascaled includes both user and system SPURR ticks.
  283. * Apportion these ticks to system SPURR ticks and user
  284. * SPURR ticks in the same ratio as the system time (delta)
  285. * and user time (udelta) values obtained from the timebase
  286. * over the same interval. The system ticks get accounted here;
  287. * the user ticks get saved up in paca->user_time_scaled to be
  288. * used by account_process_tick.
  289. */
  290. sys_scaled = delta;
  291. user_scaled = udelta;
  292. if (deltascaled != delta + udelta) {
  293. if (udelta) {
  294. sys_scaled = deltascaled * delta / (delta + udelta);
  295. user_scaled = deltascaled - sys_scaled;
  296. } else {
  297. sys_scaled = deltascaled;
  298. }
  299. }
  300. get_paca()->user_time_scaled += user_scaled;
  301. if (in_irq() || idle_task(smp_processor_id()) != tsk) {
  302. account_system_time(tsk, 0, delta, sys_scaled);
  303. if (stolen)
  304. account_steal_time(stolen);
  305. } else {
  306. account_idle_time(delta + stolen);
  307. }
  308. local_irq_restore(flags);
  309. }
  310. EXPORT_SYMBOL_GPL(account_system_vtime);
  311. /*
  312. * Transfer the user and system times accumulated in the paca
  313. * by the exception entry and exit code to the generic process
  314. * user and system time records.
  315. * Must be called with interrupts disabled.
  316. * Assumes that account_system_vtime() has been called recently
  317. * (i.e. since the last entry from usermode) so that
  318. * get_paca()->user_time_scaled is up to date.
  319. */
  320. void account_process_tick(struct task_struct *tsk, int user_tick)
  321. {
  322. cputime_t utime, utimescaled;
  323. utime = get_paca()->user_time;
  324. utimescaled = get_paca()->user_time_scaled;
  325. get_paca()->user_time = 0;
  326. get_paca()->user_time_scaled = 0;
  327. get_paca()->utime_sspurr = 0;
  328. account_user_time(tsk, utime, utimescaled);
  329. }
  330. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  331. #define calc_cputime_factors()
  332. #endif
  333. void __delay(unsigned long loops)
  334. {
  335. unsigned long start;
  336. int diff;
  337. if (__USE_RTC()) {
  338. start = get_rtcl();
  339. do {
  340. /* the RTCL register wraps at 1000000000 */
  341. diff = get_rtcl() - start;
  342. if (diff < 0)
  343. diff += 1000000000;
  344. } while (diff < loops);
  345. } else {
  346. start = get_tbl();
  347. while (get_tbl() - start < loops)
  348. HMT_low();
  349. HMT_medium();
  350. }
  351. }
  352. EXPORT_SYMBOL(__delay);
  353. void udelay(unsigned long usecs)
  354. {
  355. __delay(tb_ticks_per_usec * usecs);
  356. }
  357. EXPORT_SYMBOL(udelay);
  358. #ifdef CONFIG_SMP
  359. unsigned long profile_pc(struct pt_regs *regs)
  360. {
  361. unsigned long pc = instruction_pointer(regs);
  362. if (in_lock_functions(pc))
  363. return regs->link;
  364. return pc;
  365. }
  366. EXPORT_SYMBOL(profile_pc);
  367. #endif
  368. #ifdef CONFIG_PPC_ISERIES
  369. /*
  370. * This function recalibrates the timebase based on the 49-bit time-of-day
  371. * value in the Titan chip. The Titan is much more accurate than the value
  372. * returned by the service processor for the timebase frequency.
  373. */
  374. static int __init iSeries_tb_recal(void)
  375. {
  376. unsigned long titan, tb;
  377. /* Make sure we only run on iSeries */
  378. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  379. return -ENODEV;
  380. tb = get_tb();
  381. titan = HvCallXm_loadTod();
  382. if ( iSeries_recal_titan ) {
  383. unsigned long tb_ticks = tb - iSeries_recal_tb;
  384. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  385. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  386. unsigned long new_tb_ticks_per_jiffy =
  387. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  388. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  389. char sign = '+';
  390. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  391. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  392. if ( tick_diff < 0 ) {
  393. tick_diff = -tick_diff;
  394. sign = '-';
  395. }
  396. if ( tick_diff ) {
  397. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  398. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  399. new_tb_ticks_per_jiffy, sign, tick_diff );
  400. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  401. tb_ticks_per_sec = new_tb_ticks_per_sec;
  402. calc_cputime_factors();
  403. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  404. setup_cputime_one_jiffy();
  405. }
  406. else {
  407. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  408. " new tb_ticks_per_jiffy = %lu\n"
  409. " old tb_ticks_per_jiffy = %lu\n",
  410. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  411. }
  412. }
  413. }
  414. iSeries_recal_titan = titan;
  415. iSeries_recal_tb = tb;
  416. /* Called here as now we know accurate values for the timebase */
  417. clocksource_init();
  418. return 0;
  419. }
  420. late_initcall(iSeries_tb_recal);
  421. /* Called from platform early init */
  422. void __init iSeries_time_init_early(void)
  423. {
  424. iSeries_recal_tb = get_tb();
  425. iSeries_recal_titan = HvCallXm_loadTod();
  426. }
  427. #endif /* CONFIG_PPC_ISERIES */
  428. #ifdef CONFIG_PERF_EVENTS
  429. /*
  430. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  431. */
  432. #ifdef CONFIG_PPC64
  433. static inline unsigned long test_perf_event_pending(void)
  434. {
  435. unsigned long x;
  436. asm volatile("lbz %0,%1(13)"
  437. : "=r" (x)
  438. : "i" (offsetof(struct paca_struct, perf_event_pending)));
  439. return x;
  440. }
  441. static inline void set_perf_event_pending_flag(void)
  442. {
  443. asm volatile("stb %0,%1(13)" : :
  444. "r" (1),
  445. "i" (offsetof(struct paca_struct, perf_event_pending)));
  446. }
  447. static inline void clear_perf_event_pending(void)
  448. {
  449. asm volatile("stb %0,%1(13)" : :
  450. "r" (0),
  451. "i" (offsetof(struct paca_struct, perf_event_pending)));
  452. }
  453. #else /* 32-bit */
  454. DEFINE_PER_CPU(u8, perf_event_pending);
  455. #define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
  456. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  457. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  458. #endif /* 32 vs 64 bit */
  459. void set_perf_event_pending(void)
  460. {
  461. preempt_disable();
  462. set_perf_event_pending_flag();
  463. set_dec(1);
  464. preempt_enable();
  465. }
  466. #else /* CONFIG_PERF_EVENTS */
  467. #define test_perf_event_pending() 0
  468. #define clear_perf_event_pending()
  469. #endif /* CONFIG_PERF_EVENTS */
  470. /*
  471. * For iSeries shared processors, we have to let the hypervisor
  472. * set the hardware decrementer. We set a virtual decrementer
  473. * in the lppaca and call the hypervisor if the virtual
  474. * decrementer is less than the current value in the hardware
  475. * decrementer. (almost always the new decrementer value will
  476. * be greater than the current hardware decementer so the hypervisor
  477. * call will not be needed)
  478. */
  479. /*
  480. * timer_interrupt - gets called when the decrementer overflows,
  481. * with interrupts disabled.
  482. */
  483. void timer_interrupt(struct pt_regs * regs)
  484. {
  485. struct pt_regs *old_regs;
  486. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  487. struct clock_event_device *evt = &decrementer->event;
  488. u64 now;
  489. trace_timer_interrupt_entry(regs);
  490. __get_cpu_var(irq_stat).timer_irqs++;
  491. /* Ensure a positive value is written to the decrementer, or else
  492. * some CPUs will continuue to take decrementer exceptions */
  493. set_dec(DECREMENTER_MAX);
  494. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  495. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  496. do_IRQ(regs);
  497. #endif
  498. old_regs = set_irq_regs(regs);
  499. irq_enter();
  500. if (test_perf_event_pending()) {
  501. clear_perf_event_pending();
  502. perf_event_do_pending();
  503. }
  504. #ifdef CONFIG_PPC_ISERIES
  505. if (firmware_has_feature(FW_FEATURE_ISERIES))
  506. get_lppaca()->int_dword.fields.decr_int = 0;
  507. #endif
  508. now = get_tb_or_rtc();
  509. if (now >= decrementer->next_tb) {
  510. decrementer->next_tb = ~(u64)0;
  511. if (evt->event_handler)
  512. evt->event_handler(evt);
  513. } else {
  514. now = decrementer->next_tb - now;
  515. if (now <= DECREMENTER_MAX)
  516. set_dec((int)now);
  517. }
  518. #ifdef CONFIG_PPC_ISERIES
  519. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  520. process_hvlpevents();
  521. #endif
  522. #ifdef CONFIG_PPC64
  523. /* collect purr register values often, for accurate calculations */
  524. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  525. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  526. cu->current_tb = mfspr(SPRN_PURR);
  527. }
  528. #endif
  529. irq_exit();
  530. set_irq_regs(old_regs);
  531. trace_timer_interrupt_exit(regs);
  532. }
  533. #ifdef CONFIG_SUSPEND
  534. static void generic_suspend_disable_irqs(void)
  535. {
  536. /* Disable the decrementer, so that it doesn't interfere
  537. * with suspending.
  538. */
  539. set_dec(0x7fffffff);
  540. local_irq_disable();
  541. set_dec(0x7fffffff);
  542. }
  543. static void generic_suspend_enable_irqs(void)
  544. {
  545. local_irq_enable();
  546. }
  547. /* Overrides the weak version in kernel/power/main.c */
  548. void arch_suspend_disable_irqs(void)
  549. {
  550. if (ppc_md.suspend_disable_irqs)
  551. ppc_md.suspend_disable_irqs();
  552. generic_suspend_disable_irqs();
  553. }
  554. /* Overrides the weak version in kernel/power/main.c */
  555. void arch_suspend_enable_irqs(void)
  556. {
  557. generic_suspend_enable_irqs();
  558. if (ppc_md.suspend_enable_irqs)
  559. ppc_md.suspend_enable_irqs();
  560. }
  561. #endif
  562. /*
  563. * Scheduler clock - returns current time in nanosec units.
  564. *
  565. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  566. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  567. * are 64-bit unsigned numbers.
  568. */
  569. unsigned long long sched_clock(void)
  570. {
  571. if (__USE_RTC())
  572. return get_rtc();
  573. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  574. }
  575. static int __init get_freq(char *name, int cells, unsigned long *val)
  576. {
  577. struct device_node *cpu;
  578. const unsigned int *fp;
  579. int found = 0;
  580. /* The cpu node should have timebase and clock frequency properties */
  581. cpu = of_find_node_by_type(NULL, "cpu");
  582. if (cpu) {
  583. fp = of_get_property(cpu, name, NULL);
  584. if (fp) {
  585. found = 1;
  586. *val = of_read_ulong(fp, cells);
  587. }
  588. of_node_put(cpu);
  589. }
  590. return found;
  591. }
  592. /* should become __cpuinit when secondary_cpu_time_init also is */
  593. void start_cpu_decrementer(void)
  594. {
  595. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  596. /* Clear any pending timer interrupts */
  597. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  598. /* Enable decrementer interrupt */
  599. mtspr(SPRN_TCR, TCR_DIE);
  600. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  601. }
  602. void __init generic_calibrate_decr(void)
  603. {
  604. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  605. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  606. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  607. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  608. "(not found)\n");
  609. }
  610. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  611. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  612. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  613. printk(KERN_ERR "WARNING: Estimating processor frequency "
  614. "(not found)\n");
  615. }
  616. }
  617. int update_persistent_clock(struct timespec now)
  618. {
  619. struct rtc_time tm;
  620. if (!ppc_md.set_rtc_time)
  621. return 0;
  622. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  623. tm.tm_year -= 1900;
  624. tm.tm_mon -= 1;
  625. return ppc_md.set_rtc_time(&tm);
  626. }
  627. static void __read_persistent_clock(struct timespec *ts)
  628. {
  629. struct rtc_time tm;
  630. static int first = 1;
  631. ts->tv_nsec = 0;
  632. /* XXX this is a litle fragile but will work okay in the short term */
  633. if (first) {
  634. first = 0;
  635. if (ppc_md.time_init)
  636. timezone_offset = ppc_md.time_init();
  637. /* get_boot_time() isn't guaranteed to be safe to call late */
  638. if (ppc_md.get_boot_time) {
  639. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  640. return;
  641. }
  642. }
  643. if (!ppc_md.get_rtc_time) {
  644. ts->tv_sec = 0;
  645. return;
  646. }
  647. ppc_md.get_rtc_time(&tm);
  648. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  649. tm.tm_hour, tm.tm_min, tm.tm_sec);
  650. }
  651. void read_persistent_clock(struct timespec *ts)
  652. {
  653. __read_persistent_clock(ts);
  654. /* Sanitize it in case real time clock is set below EPOCH */
  655. if (ts->tv_sec < 0) {
  656. ts->tv_sec = 0;
  657. ts->tv_nsec = 0;
  658. }
  659. }
  660. /* clocksource code */
  661. static cycle_t rtc_read(struct clocksource *cs)
  662. {
  663. return (cycle_t)get_rtc();
  664. }
  665. static cycle_t timebase_read(struct clocksource *cs)
  666. {
  667. return (cycle_t)get_tb();
  668. }
  669. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  670. struct clocksource *clock, u32 mult)
  671. {
  672. u64 new_tb_to_xs, new_stamp_xsec;
  673. u32 frac_sec;
  674. if (clock != &clocksource_timebase)
  675. return;
  676. /* Make userspace gettimeofday spin until we're done. */
  677. ++vdso_data->tb_update_count;
  678. smp_mb();
  679. /* XXX this assumes clock->shift == 22 */
  680. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  681. new_tb_to_xs = (u64) mult * 4611686018ULL;
  682. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  683. do_div(new_stamp_xsec, 1000000000);
  684. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  685. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  686. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  687. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  688. /*
  689. * tb_update_count is used to allow the userspace gettimeofday code
  690. * to assure itself that it sees a consistent view of the tb_to_xs and
  691. * stamp_xsec variables. It reads the tb_update_count, then reads
  692. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  693. * the two values of tb_update_count match and are even then the
  694. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  695. * loops back and reads them again until this criteria is met.
  696. * We expect the caller to have done the first increment of
  697. * vdso_data->tb_update_count already.
  698. */
  699. vdso_data->tb_orig_stamp = clock->cycle_last;
  700. vdso_data->stamp_xsec = new_stamp_xsec;
  701. vdso_data->tb_to_xs = new_tb_to_xs;
  702. vdso_data->wtom_clock_sec = wtm->tv_sec;
  703. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  704. vdso_data->stamp_xtime = *wall_time;
  705. vdso_data->stamp_sec_fraction = frac_sec;
  706. smp_wmb();
  707. ++(vdso_data->tb_update_count);
  708. }
  709. void update_vsyscall_tz(void)
  710. {
  711. /* Make userspace gettimeofday spin until we're done. */
  712. ++vdso_data->tb_update_count;
  713. smp_mb();
  714. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  715. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  716. smp_mb();
  717. ++vdso_data->tb_update_count;
  718. }
  719. static void __init clocksource_init(void)
  720. {
  721. struct clocksource *clock;
  722. if (__USE_RTC())
  723. clock = &clocksource_rtc;
  724. else
  725. clock = &clocksource_timebase;
  726. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  727. if (clocksource_register(clock)) {
  728. printk(KERN_ERR "clocksource: %s is already registered\n",
  729. clock->name);
  730. return;
  731. }
  732. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  733. clock->name, clock->mult, clock->shift);
  734. }
  735. static int decrementer_set_next_event(unsigned long evt,
  736. struct clock_event_device *dev)
  737. {
  738. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  739. set_dec(evt);
  740. return 0;
  741. }
  742. static void decrementer_set_mode(enum clock_event_mode mode,
  743. struct clock_event_device *dev)
  744. {
  745. if (mode != CLOCK_EVT_MODE_ONESHOT)
  746. decrementer_set_next_event(DECREMENTER_MAX, dev);
  747. }
  748. static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
  749. int shift)
  750. {
  751. uint64_t tmp = ((uint64_t)ticks) << shift;
  752. do_div(tmp, nsec);
  753. return tmp;
  754. }
  755. static void __init setup_clockevent_multiplier(unsigned long hz)
  756. {
  757. u64 mult, shift = 32;
  758. while (1) {
  759. mult = div_sc64(hz, NSEC_PER_SEC, shift);
  760. if (mult && (mult >> 32UL) == 0UL)
  761. break;
  762. shift--;
  763. }
  764. decrementer_clockevent.shift = shift;
  765. decrementer_clockevent.mult = mult;
  766. }
  767. static void register_decrementer_clockevent(int cpu)
  768. {
  769. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  770. *dec = decrementer_clockevent;
  771. dec->cpumask = cpumask_of(cpu);
  772. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  773. dec->name, dec->mult, dec->shift, cpu);
  774. clockevents_register_device(dec);
  775. }
  776. static void __init init_decrementer_clockevent(void)
  777. {
  778. int cpu = smp_processor_id();
  779. setup_clockevent_multiplier(ppc_tb_freq);
  780. decrementer_clockevent.max_delta_ns =
  781. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  782. decrementer_clockevent.min_delta_ns =
  783. clockevent_delta2ns(2, &decrementer_clockevent);
  784. register_decrementer_clockevent(cpu);
  785. }
  786. void secondary_cpu_time_init(void)
  787. {
  788. /* Start the decrementer on CPUs that have manual control
  789. * such as BookE
  790. */
  791. start_cpu_decrementer();
  792. /* FIME: Should make unrelatred change to move snapshot_timebase
  793. * call here ! */
  794. register_decrementer_clockevent(smp_processor_id());
  795. }
  796. /* This function is only called on the boot processor */
  797. void __init time_init(void)
  798. {
  799. struct div_result res;
  800. u64 scale;
  801. unsigned shift;
  802. if (__USE_RTC()) {
  803. /* 601 processor: dec counts down by 128 every 128ns */
  804. ppc_tb_freq = 1000000000;
  805. } else {
  806. /* Normal PowerPC with timebase register */
  807. ppc_md.calibrate_decr();
  808. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  809. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  810. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  811. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  812. }
  813. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  814. tb_ticks_per_sec = ppc_tb_freq;
  815. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  816. calc_cputime_factors();
  817. setup_cputime_one_jiffy();
  818. /*
  819. * Compute scale factor for sched_clock.
  820. * The calibrate_decr() function has set tb_ticks_per_sec,
  821. * which is the timebase frequency.
  822. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  823. * the 128-bit result as a 64.64 fixed-point number.
  824. * We then shift that number right until it is less than 1.0,
  825. * giving us the scale factor and shift count to use in
  826. * sched_clock().
  827. */
  828. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  829. scale = res.result_low;
  830. for (shift = 0; res.result_high != 0; ++shift) {
  831. scale = (scale >> 1) | (res.result_high << 63);
  832. res.result_high >>= 1;
  833. }
  834. tb_to_ns_scale = scale;
  835. tb_to_ns_shift = shift;
  836. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  837. boot_tb = get_tb_or_rtc();
  838. /* If platform provided a timezone (pmac), we correct the time */
  839. if (timezone_offset) {
  840. sys_tz.tz_minuteswest = -timezone_offset / 60;
  841. sys_tz.tz_dsttime = 0;
  842. }
  843. vdso_data->tb_update_count = 0;
  844. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  845. /* Start the decrementer on CPUs that have manual control
  846. * such as BookE
  847. */
  848. start_cpu_decrementer();
  849. /* Register the clocksource, if we're not running on iSeries */
  850. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  851. clocksource_init();
  852. init_decrementer_clockevent();
  853. }
  854. #define FEBRUARY 2
  855. #define STARTOFTIME 1970
  856. #define SECDAY 86400L
  857. #define SECYR (SECDAY * 365)
  858. #define leapyear(year) ((year) % 4 == 0 && \
  859. ((year) % 100 != 0 || (year) % 400 == 0))
  860. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  861. #define days_in_month(a) (month_days[(a) - 1])
  862. static int month_days[12] = {
  863. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  864. };
  865. /*
  866. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  867. */
  868. void GregorianDay(struct rtc_time * tm)
  869. {
  870. int leapsToDate;
  871. int lastYear;
  872. int day;
  873. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  874. lastYear = tm->tm_year - 1;
  875. /*
  876. * Number of leap corrections to apply up to end of last year
  877. */
  878. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  879. /*
  880. * This year is a leap year if it is divisible by 4 except when it is
  881. * divisible by 100 unless it is divisible by 400
  882. *
  883. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  884. */
  885. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  886. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  887. tm->tm_mday;
  888. tm->tm_wday = day % 7;
  889. }
  890. void to_tm(int tim, struct rtc_time * tm)
  891. {
  892. register int i;
  893. register long hms, day;
  894. day = tim / SECDAY;
  895. hms = tim % SECDAY;
  896. /* Hours, minutes, seconds are easy */
  897. tm->tm_hour = hms / 3600;
  898. tm->tm_min = (hms % 3600) / 60;
  899. tm->tm_sec = (hms % 3600) % 60;
  900. /* Number of years in days */
  901. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  902. day -= days_in_year(i);
  903. tm->tm_year = i;
  904. /* Number of months in days left */
  905. if (leapyear(tm->tm_year))
  906. days_in_month(FEBRUARY) = 29;
  907. for (i = 1; day >= days_in_month(i); i++)
  908. day -= days_in_month(i);
  909. days_in_month(FEBRUARY) = 28;
  910. tm->tm_mon = i;
  911. /* Days are what is left over (+1) from all that. */
  912. tm->tm_mday = day + 1;
  913. /*
  914. * Determine the day of week
  915. */
  916. GregorianDay(tm);
  917. }
  918. /*
  919. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  920. * result.
  921. */
  922. void div128_by_32(u64 dividend_high, u64 dividend_low,
  923. unsigned divisor, struct div_result *dr)
  924. {
  925. unsigned long a, b, c, d;
  926. unsigned long w, x, y, z;
  927. u64 ra, rb, rc;
  928. a = dividend_high >> 32;
  929. b = dividend_high & 0xffffffff;
  930. c = dividend_low >> 32;
  931. d = dividend_low & 0xffffffff;
  932. w = a / divisor;
  933. ra = ((u64)(a - (w * divisor)) << 32) + b;
  934. rb = ((u64) do_div(ra, divisor) << 32) + c;
  935. x = ra;
  936. rc = ((u64) do_div(rb, divisor) << 32) + d;
  937. y = rb;
  938. do_div(rc, divisor);
  939. z = rc;
  940. dr->result_high = ((u64)w << 32) + x;
  941. dr->result_low = ((u64)y << 32) + z;
  942. }
  943. /* We don't need to calibrate delay, we use the CPU timebase for that */
  944. void calibrate_delay(void)
  945. {
  946. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  947. * as the number of __delay(1) in a jiffy, so make it so
  948. */
  949. loops_per_jiffy = tb_ticks_per_jiffy;
  950. }
  951. static int __init rtc_init(void)
  952. {
  953. struct platform_device *pdev;
  954. if (!ppc_md.get_rtc_time)
  955. return -ENODEV;
  956. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  957. if (IS_ERR(pdev))
  958. return PTR_ERR(pdev);
  959. return 0;
  960. }
  961. module_init(rtc_init);