rmap.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/module.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <asm/tlbflush.h>
  57. #include "internal.h"
  58. static struct kmem_cache *anon_vma_cachep;
  59. static inline struct anon_vma *anon_vma_alloc(void)
  60. {
  61. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  62. }
  63. static inline void anon_vma_free(struct anon_vma *anon_vma)
  64. {
  65. kmem_cache_free(anon_vma_cachep, anon_vma);
  66. }
  67. /**
  68. * anon_vma_prepare - attach an anon_vma to a memory region
  69. * @vma: the memory region in question
  70. *
  71. * This makes sure the memory mapping described by 'vma' has
  72. * an 'anon_vma' attached to it, so that we can associate the
  73. * anonymous pages mapped into it with that anon_vma.
  74. *
  75. * The common case will be that we already have one, but if
  76. * if not we either need to find an adjacent mapping that we
  77. * can re-use the anon_vma from (very common when the only
  78. * reason for splitting a vma has been mprotect()), or we
  79. * allocate a new one.
  80. *
  81. * Anon-vma allocations are very subtle, because we may have
  82. * optimistically looked up an anon_vma in page_lock_anon_vma()
  83. * and that may actually touch the spinlock even in the newly
  84. * allocated vma (it depends on RCU to make sure that the
  85. * anon_vma isn't actually destroyed).
  86. *
  87. * As a result, we need to do proper anon_vma locking even
  88. * for the new allocation. At the same time, we do not want
  89. * to do any locking for the common case of already having
  90. * an anon_vma.
  91. *
  92. * This must be called with the mmap_sem held for reading.
  93. */
  94. int anon_vma_prepare(struct vm_area_struct *vma)
  95. {
  96. struct anon_vma *anon_vma = vma->anon_vma;
  97. might_sleep();
  98. if (unlikely(!anon_vma)) {
  99. struct mm_struct *mm = vma->vm_mm;
  100. struct anon_vma *allocated;
  101. anon_vma = find_mergeable_anon_vma(vma);
  102. allocated = NULL;
  103. if (!anon_vma) {
  104. anon_vma = anon_vma_alloc();
  105. if (unlikely(!anon_vma))
  106. return -ENOMEM;
  107. allocated = anon_vma;
  108. }
  109. spin_lock(&anon_vma->lock);
  110. /* page_table_lock to protect against threads */
  111. spin_lock(&mm->page_table_lock);
  112. if (likely(!vma->anon_vma)) {
  113. vma->anon_vma = anon_vma;
  114. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  115. allocated = NULL;
  116. }
  117. spin_unlock(&mm->page_table_lock);
  118. spin_unlock(&anon_vma->lock);
  119. if (unlikely(allocated))
  120. anon_vma_free(allocated);
  121. }
  122. return 0;
  123. }
  124. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  125. {
  126. BUG_ON(vma->anon_vma != next->anon_vma);
  127. list_del(&next->anon_vma_node);
  128. }
  129. void __anon_vma_link(struct vm_area_struct *vma)
  130. {
  131. struct anon_vma *anon_vma = vma->anon_vma;
  132. if (anon_vma)
  133. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  134. }
  135. void anon_vma_link(struct vm_area_struct *vma)
  136. {
  137. struct anon_vma *anon_vma = vma->anon_vma;
  138. if (anon_vma) {
  139. spin_lock(&anon_vma->lock);
  140. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  141. spin_unlock(&anon_vma->lock);
  142. }
  143. }
  144. void anon_vma_unlink(struct vm_area_struct *vma)
  145. {
  146. struct anon_vma *anon_vma = vma->anon_vma;
  147. int empty;
  148. if (!anon_vma)
  149. return;
  150. spin_lock(&anon_vma->lock);
  151. list_del(&vma->anon_vma_node);
  152. /* We must garbage collect the anon_vma if it's empty */
  153. empty = list_empty(&anon_vma->head);
  154. spin_unlock(&anon_vma->lock);
  155. if (empty)
  156. anon_vma_free(anon_vma);
  157. }
  158. static void anon_vma_ctor(void *data)
  159. {
  160. struct anon_vma *anon_vma = data;
  161. spin_lock_init(&anon_vma->lock);
  162. INIT_LIST_HEAD(&anon_vma->head);
  163. }
  164. void __init anon_vma_init(void)
  165. {
  166. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  167. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  168. }
  169. /*
  170. * Getting a lock on a stable anon_vma from a page off the LRU is
  171. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  172. */
  173. struct anon_vma *page_lock_anon_vma(struct page *page)
  174. {
  175. struct anon_vma *anon_vma;
  176. unsigned long anon_mapping;
  177. rcu_read_lock();
  178. anon_mapping = (unsigned long) page->mapping;
  179. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  180. goto out;
  181. if (!page_mapped(page))
  182. goto out;
  183. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  184. spin_lock(&anon_vma->lock);
  185. return anon_vma;
  186. out:
  187. rcu_read_unlock();
  188. return NULL;
  189. }
  190. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  191. {
  192. spin_unlock(&anon_vma->lock);
  193. rcu_read_unlock();
  194. }
  195. /*
  196. * At what user virtual address is page expected in @vma?
  197. * Returns virtual address or -EFAULT if page's index/offset is not
  198. * within the range mapped the @vma.
  199. */
  200. static inline unsigned long
  201. vma_address(struct page *page, struct vm_area_struct *vma)
  202. {
  203. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  204. unsigned long address;
  205. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  206. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  207. /* page should be within @vma mapping range */
  208. return -EFAULT;
  209. }
  210. return address;
  211. }
  212. /*
  213. * At what user virtual address is page expected in vma?
  214. * checking that the page matches the vma.
  215. */
  216. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  217. {
  218. if (PageAnon(page)) {
  219. if (vma->anon_vma != page_anon_vma(page))
  220. return -EFAULT;
  221. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  222. if (!vma->vm_file ||
  223. vma->vm_file->f_mapping != page->mapping)
  224. return -EFAULT;
  225. } else
  226. return -EFAULT;
  227. return vma_address(page, vma);
  228. }
  229. /*
  230. * Check that @page is mapped at @address into @mm.
  231. *
  232. * If @sync is false, page_check_address may perform a racy check to avoid
  233. * the page table lock when the pte is not present (helpful when reclaiming
  234. * highly shared pages).
  235. *
  236. * On success returns with pte mapped and locked.
  237. */
  238. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  239. unsigned long address, spinlock_t **ptlp, int sync)
  240. {
  241. pgd_t *pgd;
  242. pud_t *pud;
  243. pmd_t *pmd;
  244. pte_t *pte;
  245. spinlock_t *ptl;
  246. pgd = pgd_offset(mm, address);
  247. if (!pgd_present(*pgd))
  248. return NULL;
  249. pud = pud_offset(pgd, address);
  250. if (!pud_present(*pud))
  251. return NULL;
  252. pmd = pmd_offset(pud, address);
  253. if (!pmd_present(*pmd))
  254. return NULL;
  255. pte = pte_offset_map(pmd, address);
  256. /* Make a quick check before getting the lock */
  257. if (!sync && !pte_present(*pte)) {
  258. pte_unmap(pte);
  259. return NULL;
  260. }
  261. ptl = pte_lockptr(mm, pmd);
  262. spin_lock(ptl);
  263. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  264. *ptlp = ptl;
  265. return pte;
  266. }
  267. pte_unmap_unlock(pte, ptl);
  268. return NULL;
  269. }
  270. /**
  271. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  272. * @page: the page to test
  273. * @vma: the VMA to test
  274. *
  275. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  276. * if the page is not mapped into the page tables of this VMA. Only
  277. * valid for normal file or anonymous VMAs.
  278. */
  279. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  280. {
  281. unsigned long address;
  282. pte_t *pte;
  283. spinlock_t *ptl;
  284. address = vma_address(page, vma);
  285. if (address == -EFAULT) /* out of vma range */
  286. return 0;
  287. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  288. if (!pte) /* the page is not in this mm */
  289. return 0;
  290. pte_unmap_unlock(pte, ptl);
  291. return 1;
  292. }
  293. /*
  294. * Subfunctions of page_referenced: page_referenced_one called
  295. * repeatedly from either page_referenced_anon or page_referenced_file.
  296. */
  297. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  298. unsigned long address, unsigned int *mapcount,
  299. unsigned long *vm_flags)
  300. {
  301. struct mm_struct *mm = vma->vm_mm;
  302. pte_t *pte;
  303. spinlock_t *ptl;
  304. int referenced = 0;
  305. pte = page_check_address(page, mm, address, &ptl, 0);
  306. if (!pte)
  307. goto out;
  308. /*
  309. * Don't want to elevate referenced for mlocked page that gets this far,
  310. * in order that it progresses to try_to_unmap and is moved to the
  311. * unevictable list.
  312. */
  313. if (vma->vm_flags & VM_LOCKED) {
  314. *mapcount = 1; /* break early from loop */
  315. *vm_flags |= VM_LOCKED;
  316. goto out_unmap;
  317. }
  318. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  319. /*
  320. * Don't treat a reference through a sequentially read
  321. * mapping as such. If the page has been used in
  322. * another mapping, we will catch it; if this other
  323. * mapping is already gone, the unmap path will have
  324. * set PG_referenced or activated the page.
  325. */
  326. if (likely(!VM_SequentialReadHint(vma)))
  327. referenced++;
  328. }
  329. /* Pretend the page is referenced if the task has the
  330. swap token and is in the middle of a page fault. */
  331. if (mm != current->mm && has_swap_token(mm) &&
  332. rwsem_is_locked(&mm->mmap_sem))
  333. referenced++;
  334. out_unmap:
  335. (*mapcount)--;
  336. pte_unmap_unlock(pte, ptl);
  337. if (referenced)
  338. *vm_flags |= vma->vm_flags;
  339. out:
  340. return referenced;
  341. }
  342. static int page_referenced_anon(struct page *page,
  343. struct mem_cgroup *mem_cont,
  344. unsigned long *vm_flags)
  345. {
  346. unsigned int mapcount;
  347. struct anon_vma *anon_vma;
  348. struct vm_area_struct *vma;
  349. int referenced = 0;
  350. anon_vma = page_lock_anon_vma(page);
  351. if (!anon_vma)
  352. return referenced;
  353. mapcount = page_mapcount(page);
  354. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  355. unsigned long address = vma_address(page, vma);
  356. if (address == -EFAULT)
  357. continue;
  358. /*
  359. * If we are reclaiming on behalf of a cgroup, skip
  360. * counting on behalf of references from different
  361. * cgroups
  362. */
  363. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  364. continue;
  365. referenced += page_referenced_one(page, vma, address,
  366. &mapcount, vm_flags);
  367. if (!mapcount)
  368. break;
  369. }
  370. page_unlock_anon_vma(anon_vma);
  371. return referenced;
  372. }
  373. /**
  374. * page_referenced_file - referenced check for object-based rmap
  375. * @page: the page we're checking references on.
  376. * @mem_cont: target memory controller
  377. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  378. *
  379. * For an object-based mapped page, find all the places it is mapped and
  380. * check/clear the referenced flag. This is done by following the page->mapping
  381. * pointer, then walking the chain of vmas it holds. It returns the number
  382. * of references it found.
  383. *
  384. * This function is only called from page_referenced for object-based pages.
  385. */
  386. static int page_referenced_file(struct page *page,
  387. struct mem_cgroup *mem_cont,
  388. unsigned long *vm_flags)
  389. {
  390. unsigned int mapcount;
  391. struct address_space *mapping = page->mapping;
  392. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  393. struct vm_area_struct *vma;
  394. struct prio_tree_iter iter;
  395. int referenced = 0;
  396. /*
  397. * The caller's checks on page->mapping and !PageAnon have made
  398. * sure that this is a file page: the check for page->mapping
  399. * excludes the case just before it gets set on an anon page.
  400. */
  401. BUG_ON(PageAnon(page));
  402. /*
  403. * The page lock not only makes sure that page->mapping cannot
  404. * suddenly be NULLified by truncation, it makes sure that the
  405. * structure at mapping cannot be freed and reused yet,
  406. * so we can safely take mapping->i_mmap_lock.
  407. */
  408. BUG_ON(!PageLocked(page));
  409. spin_lock(&mapping->i_mmap_lock);
  410. /*
  411. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  412. * is more likely to be accurate if we note it after spinning.
  413. */
  414. mapcount = page_mapcount(page);
  415. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  416. unsigned long address = vma_address(page, vma);
  417. if (address == -EFAULT)
  418. continue;
  419. /*
  420. * If we are reclaiming on behalf of a cgroup, skip
  421. * counting on behalf of references from different
  422. * cgroups
  423. */
  424. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  425. continue;
  426. referenced += page_referenced_one(page, vma, address,
  427. &mapcount, vm_flags);
  428. if (!mapcount)
  429. break;
  430. }
  431. spin_unlock(&mapping->i_mmap_lock);
  432. return referenced;
  433. }
  434. /**
  435. * page_referenced - test if the page was referenced
  436. * @page: the page to test
  437. * @is_locked: caller holds lock on the page
  438. * @mem_cont: target memory controller
  439. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  440. *
  441. * Quick test_and_clear_referenced for all mappings to a page,
  442. * returns the number of ptes which referenced the page.
  443. */
  444. int page_referenced(struct page *page,
  445. int is_locked,
  446. struct mem_cgroup *mem_cont,
  447. unsigned long *vm_flags)
  448. {
  449. int referenced = 0;
  450. if (TestClearPageReferenced(page))
  451. referenced++;
  452. *vm_flags = 0;
  453. if (page_mapped(page) && page_rmapping(page)) {
  454. if (PageAnon(page))
  455. referenced += page_referenced_anon(page, mem_cont,
  456. vm_flags);
  457. else if (is_locked)
  458. referenced += page_referenced_file(page, mem_cont,
  459. vm_flags);
  460. else if (!trylock_page(page))
  461. referenced++;
  462. else {
  463. if (page->mapping)
  464. referenced += page_referenced_file(page,
  465. mem_cont, vm_flags);
  466. unlock_page(page);
  467. }
  468. }
  469. if (page_test_and_clear_young(page))
  470. referenced++;
  471. return referenced;
  472. }
  473. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  474. unsigned long address)
  475. {
  476. struct mm_struct *mm = vma->vm_mm;
  477. pte_t *pte;
  478. spinlock_t *ptl;
  479. int ret = 0;
  480. pte = page_check_address(page, mm, address, &ptl, 1);
  481. if (!pte)
  482. goto out;
  483. if (pte_dirty(*pte) || pte_write(*pte)) {
  484. pte_t entry;
  485. flush_cache_page(vma, address, pte_pfn(*pte));
  486. entry = ptep_clear_flush_notify(vma, address, pte);
  487. entry = pte_wrprotect(entry);
  488. entry = pte_mkclean(entry);
  489. set_pte_at(mm, address, pte, entry);
  490. ret = 1;
  491. }
  492. pte_unmap_unlock(pte, ptl);
  493. out:
  494. return ret;
  495. }
  496. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  497. {
  498. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  499. struct vm_area_struct *vma;
  500. struct prio_tree_iter iter;
  501. int ret = 0;
  502. BUG_ON(PageAnon(page));
  503. spin_lock(&mapping->i_mmap_lock);
  504. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  505. if (vma->vm_flags & VM_SHARED) {
  506. unsigned long address = vma_address(page, vma);
  507. if (address == -EFAULT)
  508. continue;
  509. ret += page_mkclean_one(page, vma, address);
  510. }
  511. }
  512. spin_unlock(&mapping->i_mmap_lock);
  513. return ret;
  514. }
  515. int page_mkclean(struct page *page)
  516. {
  517. int ret = 0;
  518. BUG_ON(!PageLocked(page));
  519. if (page_mapped(page)) {
  520. struct address_space *mapping = page_mapping(page);
  521. if (mapping) {
  522. ret = page_mkclean_file(mapping, page);
  523. if (page_test_dirty(page)) {
  524. page_clear_dirty(page);
  525. ret = 1;
  526. }
  527. }
  528. }
  529. return ret;
  530. }
  531. EXPORT_SYMBOL_GPL(page_mkclean);
  532. /**
  533. * __page_set_anon_rmap - setup new anonymous rmap
  534. * @page: the page to add the mapping to
  535. * @vma: the vm area in which the mapping is added
  536. * @address: the user virtual address mapped
  537. */
  538. static void __page_set_anon_rmap(struct page *page,
  539. struct vm_area_struct *vma, unsigned long address)
  540. {
  541. struct anon_vma *anon_vma = vma->anon_vma;
  542. BUG_ON(!anon_vma);
  543. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  544. page->mapping = (struct address_space *) anon_vma;
  545. page->index = linear_page_index(vma, address);
  546. /*
  547. * nr_mapped state can be updated without turning off
  548. * interrupts because it is not modified via interrupt.
  549. */
  550. __inc_zone_page_state(page, NR_ANON_PAGES);
  551. }
  552. /**
  553. * __page_check_anon_rmap - sanity check anonymous rmap addition
  554. * @page: the page to add the mapping to
  555. * @vma: the vm area in which the mapping is added
  556. * @address: the user virtual address mapped
  557. */
  558. static void __page_check_anon_rmap(struct page *page,
  559. struct vm_area_struct *vma, unsigned long address)
  560. {
  561. #ifdef CONFIG_DEBUG_VM
  562. /*
  563. * The page's anon-rmap details (mapping and index) are guaranteed to
  564. * be set up correctly at this point.
  565. *
  566. * We have exclusion against page_add_anon_rmap because the caller
  567. * always holds the page locked, except if called from page_dup_rmap,
  568. * in which case the page is already known to be setup.
  569. *
  570. * We have exclusion against page_add_new_anon_rmap because those pages
  571. * are initially only visible via the pagetables, and the pte is locked
  572. * over the call to page_add_new_anon_rmap.
  573. */
  574. struct anon_vma *anon_vma = vma->anon_vma;
  575. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  576. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  577. BUG_ON(page->index != linear_page_index(vma, address));
  578. #endif
  579. }
  580. /**
  581. * page_add_anon_rmap - add pte mapping to an anonymous page
  582. * @page: the page to add the mapping to
  583. * @vma: the vm area in which the mapping is added
  584. * @address: the user virtual address mapped
  585. *
  586. * The caller needs to hold the pte lock and the page must be locked.
  587. */
  588. void page_add_anon_rmap(struct page *page,
  589. struct vm_area_struct *vma, unsigned long address)
  590. {
  591. VM_BUG_ON(!PageLocked(page));
  592. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  593. if (atomic_inc_and_test(&page->_mapcount))
  594. __page_set_anon_rmap(page, vma, address);
  595. else
  596. __page_check_anon_rmap(page, vma, address);
  597. }
  598. /**
  599. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  600. * @page: the page to add the mapping to
  601. * @vma: the vm area in which the mapping is added
  602. * @address: the user virtual address mapped
  603. *
  604. * Same as page_add_anon_rmap but must only be called on *new* pages.
  605. * This means the inc-and-test can be bypassed.
  606. * Page does not have to be locked.
  607. */
  608. void page_add_new_anon_rmap(struct page *page,
  609. struct vm_area_struct *vma, unsigned long address)
  610. {
  611. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  612. SetPageSwapBacked(page);
  613. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  614. __page_set_anon_rmap(page, vma, address);
  615. if (page_evictable(page, vma))
  616. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  617. else
  618. add_page_to_unevictable_list(page);
  619. }
  620. /**
  621. * page_add_file_rmap - add pte mapping to a file page
  622. * @page: the page to add the mapping to
  623. *
  624. * The caller needs to hold the pte lock.
  625. */
  626. void page_add_file_rmap(struct page *page)
  627. {
  628. if (atomic_inc_and_test(&page->_mapcount)) {
  629. __inc_zone_page_state(page, NR_FILE_MAPPED);
  630. mem_cgroup_update_mapped_file_stat(page, 1);
  631. }
  632. }
  633. /**
  634. * page_remove_rmap - take down pte mapping from a page
  635. * @page: page to remove mapping from
  636. *
  637. * The caller needs to hold the pte lock.
  638. */
  639. void page_remove_rmap(struct page *page)
  640. {
  641. /* page still mapped by someone else? */
  642. if (!atomic_add_negative(-1, &page->_mapcount))
  643. return;
  644. /*
  645. * Now that the last pte has gone, s390 must transfer dirty
  646. * flag from storage key to struct page. We can usually skip
  647. * this if the page is anon, so about to be freed; but perhaps
  648. * not if it's in swapcache - there might be another pte slot
  649. * containing the swap entry, but page not yet written to swap.
  650. */
  651. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  652. page_clear_dirty(page);
  653. set_page_dirty(page);
  654. }
  655. if (PageAnon(page)) {
  656. mem_cgroup_uncharge_page(page);
  657. __dec_zone_page_state(page, NR_ANON_PAGES);
  658. } else {
  659. __dec_zone_page_state(page, NR_FILE_MAPPED);
  660. }
  661. mem_cgroup_update_mapped_file_stat(page, -1);
  662. /*
  663. * It would be tidy to reset the PageAnon mapping here,
  664. * but that might overwrite a racing page_add_anon_rmap
  665. * which increments mapcount after us but sets mapping
  666. * before us: so leave the reset to free_hot_cold_page,
  667. * and remember that it's only reliable while mapped.
  668. * Leaving it set also helps swapoff to reinstate ptes
  669. * faster for those pages still in swapcache.
  670. */
  671. }
  672. /*
  673. * Subfunctions of try_to_unmap: try_to_unmap_one called
  674. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  675. */
  676. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  677. unsigned long address, enum ttu_flags flags)
  678. {
  679. struct mm_struct *mm = vma->vm_mm;
  680. pte_t *pte;
  681. pte_t pteval;
  682. spinlock_t *ptl;
  683. int ret = SWAP_AGAIN;
  684. pte = page_check_address(page, mm, address, &ptl, 0);
  685. if (!pte)
  686. goto out;
  687. /*
  688. * If the page is mlock()d, we cannot swap it out.
  689. * If it's recently referenced (perhaps page_referenced
  690. * skipped over this mm) then we should reactivate it.
  691. */
  692. if (!(flags & TTU_IGNORE_MLOCK)) {
  693. if (vma->vm_flags & VM_LOCKED) {
  694. ret = SWAP_MLOCK;
  695. goto out_unmap;
  696. }
  697. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  698. goto out_unmap;
  699. }
  700. if (!(flags & TTU_IGNORE_ACCESS)) {
  701. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  702. ret = SWAP_FAIL;
  703. goto out_unmap;
  704. }
  705. }
  706. /* Nuke the page table entry. */
  707. flush_cache_page(vma, address, page_to_pfn(page));
  708. pteval = ptep_clear_flush_notify(vma, address, pte);
  709. /* Move the dirty bit to the physical page now the pte is gone. */
  710. if (pte_dirty(pteval))
  711. set_page_dirty(page);
  712. /* Update high watermark before we lower rss */
  713. update_hiwater_rss(mm);
  714. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  715. if (PageAnon(page))
  716. dec_mm_counter(mm, anon_rss);
  717. else
  718. dec_mm_counter(mm, file_rss);
  719. set_pte_at(mm, address, pte,
  720. swp_entry_to_pte(make_hwpoison_entry(page)));
  721. } else if (PageAnon(page)) {
  722. swp_entry_t entry = { .val = page_private(page) };
  723. if (PageSwapCache(page)) {
  724. /*
  725. * Store the swap location in the pte.
  726. * See handle_pte_fault() ...
  727. */
  728. if (swap_duplicate(entry) < 0) {
  729. set_pte_at(mm, address, pte, pteval);
  730. ret = SWAP_FAIL;
  731. goto out_unmap;
  732. }
  733. if (list_empty(&mm->mmlist)) {
  734. spin_lock(&mmlist_lock);
  735. if (list_empty(&mm->mmlist))
  736. list_add(&mm->mmlist, &init_mm.mmlist);
  737. spin_unlock(&mmlist_lock);
  738. }
  739. dec_mm_counter(mm, anon_rss);
  740. } else if (PAGE_MIGRATION) {
  741. /*
  742. * Store the pfn of the page in a special migration
  743. * pte. do_swap_page() will wait until the migration
  744. * pte is removed and then restart fault handling.
  745. */
  746. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  747. entry = make_migration_entry(page, pte_write(pteval));
  748. }
  749. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  750. BUG_ON(pte_file(*pte));
  751. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  752. /* Establish migration entry for a file page */
  753. swp_entry_t entry;
  754. entry = make_migration_entry(page, pte_write(pteval));
  755. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  756. } else
  757. dec_mm_counter(mm, file_rss);
  758. page_remove_rmap(page);
  759. page_cache_release(page);
  760. out_unmap:
  761. pte_unmap_unlock(pte, ptl);
  762. if (ret == SWAP_MLOCK) {
  763. ret = SWAP_AGAIN;
  764. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  765. if (vma->vm_flags & VM_LOCKED) {
  766. mlock_vma_page(page);
  767. ret = SWAP_MLOCK;
  768. }
  769. up_read(&vma->vm_mm->mmap_sem);
  770. }
  771. }
  772. out:
  773. return ret;
  774. }
  775. /*
  776. * objrmap doesn't work for nonlinear VMAs because the assumption that
  777. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  778. * Consequently, given a particular page and its ->index, we cannot locate the
  779. * ptes which are mapping that page without an exhaustive linear search.
  780. *
  781. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  782. * maps the file to which the target page belongs. The ->vm_private_data field
  783. * holds the current cursor into that scan. Successive searches will circulate
  784. * around the vma's virtual address space.
  785. *
  786. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  787. * more scanning pressure is placed against them as well. Eventually pages
  788. * will become fully unmapped and are eligible for eviction.
  789. *
  790. * For very sparsely populated VMAs this is a little inefficient - chances are
  791. * there there won't be many ptes located within the scan cluster. In this case
  792. * maybe we could scan further - to the end of the pte page, perhaps.
  793. *
  794. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  795. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  796. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  797. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  798. */
  799. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  800. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  801. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  802. struct vm_area_struct *vma, struct page *check_page)
  803. {
  804. struct mm_struct *mm = vma->vm_mm;
  805. pgd_t *pgd;
  806. pud_t *pud;
  807. pmd_t *pmd;
  808. pte_t *pte;
  809. pte_t pteval;
  810. spinlock_t *ptl;
  811. struct page *page;
  812. unsigned long address;
  813. unsigned long end;
  814. int ret = SWAP_AGAIN;
  815. int locked_vma = 0;
  816. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  817. end = address + CLUSTER_SIZE;
  818. if (address < vma->vm_start)
  819. address = vma->vm_start;
  820. if (end > vma->vm_end)
  821. end = vma->vm_end;
  822. pgd = pgd_offset(mm, address);
  823. if (!pgd_present(*pgd))
  824. return ret;
  825. pud = pud_offset(pgd, address);
  826. if (!pud_present(*pud))
  827. return ret;
  828. pmd = pmd_offset(pud, address);
  829. if (!pmd_present(*pmd))
  830. return ret;
  831. /*
  832. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  833. * keep the sem while scanning the cluster for mlocking pages.
  834. */
  835. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  836. locked_vma = (vma->vm_flags & VM_LOCKED);
  837. if (!locked_vma)
  838. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  839. }
  840. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  841. /* Update high watermark before we lower rss */
  842. update_hiwater_rss(mm);
  843. for (; address < end; pte++, address += PAGE_SIZE) {
  844. if (!pte_present(*pte))
  845. continue;
  846. page = vm_normal_page(vma, address, *pte);
  847. BUG_ON(!page || PageAnon(page));
  848. if (locked_vma) {
  849. mlock_vma_page(page); /* no-op if already mlocked */
  850. if (page == check_page)
  851. ret = SWAP_MLOCK;
  852. continue; /* don't unmap */
  853. }
  854. if (ptep_clear_flush_young_notify(vma, address, pte))
  855. continue;
  856. /* Nuke the page table entry. */
  857. flush_cache_page(vma, address, pte_pfn(*pte));
  858. pteval = ptep_clear_flush_notify(vma, address, pte);
  859. /* If nonlinear, store the file page offset in the pte. */
  860. if (page->index != linear_page_index(vma, address))
  861. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  862. /* Move the dirty bit to the physical page now the pte is gone. */
  863. if (pte_dirty(pteval))
  864. set_page_dirty(page);
  865. page_remove_rmap(page);
  866. page_cache_release(page);
  867. dec_mm_counter(mm, file_rss);
  868. (*mapcount)--;
  869. }
  870. pte_unmap_unlock(pte - 1, ptl);
  871. if (locked_vma)
  872. up_read(&vma->vm_mm->mmap_sem);
  873. return ret;
  874. }
  875. /**
  876. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  877. * rmap method
  878. * @page: the page to unmap/unlock
  879. * @flags: action and flags
  880. *
  881. * Find all the mappings of a page using the mapping pointer and the vma chains
  882. * contained in the anon_vma struct it points to.
  883. *
  884. * This function is only called from try_to_unmap/try_to_munlock for
  885. * anonymous pages.
  886. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  887. * where the page was found will be held for write. So, we won't recheck
  888. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  889. * 'LOCKED.
  890. */
  891. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  892. {
  893. struct anon_vma *anon_vma;
  894. struct vm_area_struct *vma;
  895. int ret = SWAP_AGAIN;
  896. anon_vma = page_lock_anon_vma(page);
  897. if (!anon_vma)
  898. return ret;
  899. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  900. unsigned long address = vma_address(page, vma);
  901. if (address == -EFAULT)
  902. continue;
  903. ret = try_to_unmap_one(page, vma, address, flags);
  904. if (ret != SWAP_AGAIN || !page_mapped(page))
  905. break;
  906. }
  907. page_unlock_anon_vma(anon_vma);
  908. return ret;
  909. }
  910. /**
  911. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  912. * @page: the page to unmap/unlock
  913. * @flags: action and flags
  914. *
  915. * Find all the mappings of a page using the mapping pointer and the vma chains
  916. * contained in the address_space struct it points to.
  917. *
  918. * This function is only called from try_to_unmap/try_to_munlock for
  919. * object-based pages.
  920. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  921. * where the page was found will be held for write. So, we won't recheck
  922. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  923. * 'LOCKED.
  924. */
  925. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  926. {
  927. struct address_space *mapping = page->mapping;
  928. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  929. struct vm_area_struct *vma;
  930. struct prio_tree_iter iter;
  931. int ret = SWAP_AGAIN;
  932. unsigned long cursor;
  933. unsigned long max_nl_cursor = 0;
  934. unsigned long max_nl_size = 0;
  935. unsigned int mapcount;
  936. spin_lock(&mapping->i_mmap_lock);
  937. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  938. unsigned long address = vma_address(page, vma);
  939. if (address == -EFAULT)
  940. continue;
  941. ret = try_to_unmap_one(page, vma, address, flags);
  942. if (ret != SWAP_AGAIN || !page_mapped(page))
  943. goto out;
  944. }
  945. if (list_empty(&mapping->i_mmap_nonlinear))
  946. goto out;
  947. /*
  948. * We don't bother to try to find the munlocked page in nonlinears.
  949. * It's costly. Instead, later, page reclaim logic may call
  950. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  951. */
  952. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  953. goto out;
  954. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  955. shared.vm_set.list) {
  956. cursor = (unsigned long) vma->vm_private_data;
  957. if (cursor > max_nl_cursor)
  958. max_nl_cursor = cursor;
  959. cursor = vma->vm_end - vma->vm_start;
  960. if (cursor > max_nl_size)
  961. max_nl_size = cursor;
  962. }
  963. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  964. ret = SWAP_FAIL;
  965. goto out;
  966. }
  967. /*
  968. * We don't try to search for this page in the nonlinear vmas,
  969. * and page_referenced wouldn't have found it anyway. Instead
  970. * just walk the nonlinear vmas trying to age and unmap some.
  971. * The mapcount of the page we came in with is irrelevant,
  972. * but even so use it as a guide to how hard we should try?
  973. */
  974. mapcount = page_mapcount(page);
  975. if (!mapcount)
  976. goto out;
  977. cond_resched_lock(&mapping->i_mmap_lock);
  978. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  979. if (max_nl_cursor == 0)
  980. max_nl_cursor = CLUSTER_SIZE;
  981. do {
  982. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  983. shared.vm_set.list) {
  984. cursor = (unsigned long) vma->vm_private_data;
  985. while ( cursor < max_nl_cursor &&
  986. cursor < vma->vm_end - vma->vm_start) {
  987. if (try_to_unmap_cluster(cursor, &mapcount,
  988. vma, page) == SWAP_MLOCK)
  989. ret = SWAP_MLOCK;
  990. cursor += CLUSTER_SIZE;
  991. vma->vm_private_data = (void *) cursor;
  992. if ((int)mapcount <= 0)
  993. goto out;
  994. }
  995. vma->vm_private_data = (void *) max_nl_cursor;
  996. }
  997. cond_resched_lock(&mapping->i_mmap_lock);
  998. max_nl_cursor += CLUSTER_SIZE;
  999. } while (max_nl_cursor <= max_nl_size);
  1000. /*
  1001. * Don't loop forever (perhaps all the remaining pages are
  1002. * in locked vmas). Reset cursor on all unreserved nonlinear
  1003. * vmas, now forgetting on which ones it had fallen behind.
  1004. */
  1005. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1006. vma->vm_private_data = NULL;
  1007. out:
  1008. spin_unlock(&mapping->i_mmap_lock);
  1009. return ret;
  1010. }
  1011. /**
  1012. * try_to_unmap - try to remove all page table mappings to a page
  1013. * @page: the page to get unmapped
  1014. * @flags: action and flags
  1015. *
  1016. * Tries to remove all the page table entries which are mapping this
  1017. * page, used in the pageout path. Caller must hold the page lock.
  1018. * Return values are:
  1019. *
  1020. * SWAP_SUCCESS - we succeeded in removing all mappings
  1021. * SWAP_AGAIN - we missed a mapping, try again later
  1022. * SWAP_FAIL - the page is unswappable
  1023. * SWAP_MLOCK - page is mlocked.
  1024. */
  1025. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1026. {
  1027. int ret;
  1028. BUG_ON(!PageLocked(page));
  1029. if (PageAnon(page))
  1030. ret = try_to_unmap_anon(page, flags);
  1031. else
  1032. ret = try_to_unmap_file(page, flags);
  1033. if (ret != SWAP_MLOCK && !page_mapped(page))
  1034. ret = SWAP_SUCCESS;
  1035. return ret;
  1036. }
  1037. /**
  1038. * try_to_munlock - try to munlock a page
  1039. * @page: the page to be munlocked
  1040. *
  1041. * Called from munlock code. Checks all of the VMAs mapping the page
  1042. * to make sure nobody else has this page mlocked. The page will be
  1043. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1044. *
  1045. * Return values are:
  1046. *
  1047. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1048. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1049. * SWAP_MLOCK - page is now mlocked.
  1050. */
  1051. int try_to_munlock(struct page *page)
  1052. {
  1053. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1054. if (PageAnon(page))
  1055. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1056. else
  1057. return try_to_unmap_file(page, TTU_MUNLOCK);
  1058. }