disk-io.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "compat.h"
  36. #include "ctree.h"
  37. #include "disk-io.h"
  38. #include "transaction.h"
  39. #include "btrfs_inode.h"
  40. #include "volumes.h"
  41. #include "print-tree.h"
  42. #include "async-thread.h"
  43. #include "locking.h"
  44. #include "tree-log.h"
  45. #include "free-space-cache.h"
  46. #include "inode-map.h"
  47. #include "check-integrity.h"
  48. #include "rcu-string.h"
  49. #include "dev-replace.h"
  50. #include "raid56.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  65. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67. struct extent_io_tree *dirty_pages,
  68. int mark);
  69. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70. struct extent_io_tree *pinned_extents);
  71. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72. static void btrfs_error_commit_super(struct btrfs_root *root);
  73. /*
  74. * end_io_wq structs are used to do processing in task context when an IO is
  75. * complete. This is used during reads to verify checksums, and it is used
  76. * by writes to insert metadata for new file extents after IO is complete.
  77. */
  78. struct end_io_wq {
  79. struct bio *bio;
  80. bio_end_io_t *end_io;
  81. void *private;
  82. struct btrfs_fs_info *info;
  83. int error;
  84. int metadata;
  85. struct list_head list;
  86. struct btrfs_work work;
  87. };
  88. /*
  89. * async submit bios are used to offload expensive checksumming
  90. * onto the worker threads. They checksum file and metadata bios
  91. * just before they are sent down the IO stack.
  92. */
  93. struct async_submit_bio {
  94. struct inode *inode;
  95. struct bio *bio;
  96. struct list_head list;
  97. extent_submit_bio_hook_t *submit_bio_start;
  98. extent_submit_bio_hook_t *submit_bio_done;
  99. int rw;
  100. int mirror_num;
  101. unsigned long bio_flags;
  102. /*
  103. * bio_offset is optional, can be used if the pages in the bio
  104. * can't tell us where in the file the bio should go
  105. */
  106. u64 bio_offset;
  107. struct btrfs_work work;
  108. int error;
  109. };
  110. /*
  111. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  112. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  113. * the level the eb occupies in the tree.
  114. *
  115. * Different roots are used for different purposes and may nest inside each
  116. * other and they require separate keysets. As lockdep keys should be
  117. * static, assign keysets according to the purpose of the root as indicated
  118. * by btrfs_root->objectid. This ensures that all special purpose roots
  119. * have separate keysets.
  120. *
  121. * Lock-nesting across peer nodes is always done with the immediate parent
  122. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  123. * subclass to avoid triggering lockdep warning in such cases.
  124. *
  125. * The key is set by the readpage_end_io_hook after the buffer has passed
  126. * csum validation but before the pages are unlocked. It is also set by
  127. * btrfs_init_new_buffer on freshly allocated blocks.
  128. *
  129. * We also add a check to make sure the highest level of the tree is the
  130. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  131. * needs update as well.
  132. */
  133. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134. # if BTRFS_MAX_LEVEL != 8
  135. # error
  136. # endif
  137. static struct btrfs_lockdep_keyset {
  138. u64 id; /* root objectid */
  139. const char *name_stem; /* lock name stem */
  140. char names[BTRFS_MAX_LEVEL + 1][20];
  141. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  142. } btrfs_lockdep_keysets[] = {
  143. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  144. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  145. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  146. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  147. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  148. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  149. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  150. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  151. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  152. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  277. "failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id,
  280. (unsigned long long)buf->start, val, found,
  281. btrfs_header_level(buf));
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 1;
  285. }
  286. } else {
  287. write_extent_buffer(buf, result, 0, csum_size);
  288. }
  289. if (result != (char *)&inline_result)
  290. kfree(result);
  291. return 0;
  292. }
  293. /*
  294. * we can't consider a given block up to date unless the transid of the
  295. * block matches the transid in the parent node's pointer. This is how we
  296. * detect blocks that either didn't get written at all or got written
  297. * in the wrong place.
  298. */
  299. static int verify_parent_transid(struct extent_io_tree *io_tree,
  300. struct extent_buffer *eb, u64 parent_transid,
  301. int atomic)
  302. {
  303. struct extent_state *cached_state = NULL;
  304. int ret;
  305. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  306. return 0;
  307. if (atomic)
  308. return -EAGAIN;
  309. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  310. 0, &cached_state);
  311. if (extent_buffer_uptodate(eb) &&
  312. btrfs_header_generation(eb) == parent_transid) {
  313. ret = 0;
  314. goto out;
  315. }
  316. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  317. "found %llu\n",
  318. (unsigned long long)eb->start,
  319. (unsigned long long)parent_transid,
  320. (unsigned long long)btrfs_header_generation(eb));
  321. ret = 1;
  322. clear_extent_buffer_uptodate(eb);
  323. out:
  324. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  325. &cached_state, GFP_NOFS);
  326. return ret;
  327. }
  328. /*
  329. * Return 0 if the superblock checksum type matches the checksum value of that
  330. * algorithm. Pass the raw disk superblock data.
  331. */
  332. static int btrfs_check_super_csum(char *raw_disk_sb)
  333. {
  334. struct btrfs_super_block *disk_sb =
  335. (struct btrfs_super_block *)raw_disk_sb;
  336. u16 csum_type = btrfs_super_csum_type(disk_sb);
  337. int ret = 0;
  338. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  339. u32 crc = ~(u32)0;
  340. const int csum_size = sizeof(crc);
  341. char result[csum_size];
  342. /*
  343. * The super_block structure does not span the whole
  344. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  345. * is filled with zeros and is included in the checkum.
  346. */
  347. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  348. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  349. btrfs_csum_final(crc, result);
  350. if (memcmp(raw_disk_sb, result, csum_size))
  351. ret = 1;
  352. if (ret && btrfs_super_generation(disk_sb) < 10) {
  353. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  354. ret = 0;
  355. }
  356. }
  357. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  358. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  359. csum_type);
  360. ret = 1;
  361. }
  362. return ret;
  363. }
  364. /*
  365. * helper to read a given tree block, doing retries as required when
  366. * the checksums don't match and we have alternate mirrors to try.
  367. */
  368. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  369. struct extent_buffer *eb,
  370. u64 start, u64 parent_transid)
  371. {
  372. struct extent_io_tree *io_tree;
  373. int failed = 0;
  374. int ret;
  375. int num_copies = 0;
  376. int mirror_num = 0;
  377. int failed_mirror = 0;
  378. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  379. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  380. while (1) {
  381. ret = read_extent_buffer_pages(io_tree, eb, start,
  382. WAIT_COMPLETE,
  383. btree_get_extent, mirror_num);
  384. if (!ret) {
  385. if (!verify_parent_transid(io_tree, eb,
  386. parent_transid, 0))
  387. break;
  388. else
  389. ret = -EIO;
  390. }
  391. /*
  392. * This buffer's crc is fine, but its contents are corrupted, so
  393. * there is no reason to read the other copies, they won't be
  394. * any less wrong.
  395. */
  396. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  397. break;
  398. num_copies = btrfs_num_copies(root->fs_info,
  399. eb->start, eb->len);
  400. if (num_copies == 1)
  401. break;
  402. if (!failed_mirror) {
  403. failed = 1;
  404. failed_mirror = eb->read_mirror;
  405. }
  406. mirror_num++;
  407. if (mirror_num == failed_mirror)
  408. mirror_num++;
  409. if (mirror_num > num_copies)
  410. break;
  411. }
  412. if (failed && !ret && failed_mirror)
  413. repair_eb_io_failure(root, eb, failed_mirror);
  414. return ret;
  415. }
  416. /*
  417. * checksum a dirty tree block before IO. This has extra checks to make sure
  418. * we only fill in the checksum field in the first page of a multi-page block
  419. */
  420. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  421. {
  422. struct extent_io_tree *tree;
  423. u64 start = page_offset(page);
  424. u64 found_start;
  425. struct extent_buffer *eb;
  426. tree = &BTRFS_I(page->mapping->host)->io_tree;
  427. eb = (struct extent_buffer *)page->private;
  428. if (page != eb->pages[0])
  429. return 0;
  430. found_start = btrfs_header_bytenr(eb);
  431. if (found_start != start) {
  432. WARN_ON(1);
  433. return 0;
  434. }
  435. if (!PageUptodate(page)) {
  436. WARN_ON(1);
  437. return 0;
  438. }
  439. csum_tree_block(root, eb, 0);
  440. return 0;
  441. }
  442. static int check_tree_block_fsid(struct btrfs_root *root,
  443. struct extent_buffer *eb)
  444. {
  445. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  446. u8 fsid[BTRFS_UUID_SIZE];
  447. int ret = 1;
  448. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  449. BTRFS_FSID_SIZE);
  450. while (fs_devices) {
  451. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  452. ret = 0;
  453. break;
  454. }
  455. fs_devices = fs_devices->seed;
  456. }
  457. return ret;
  458. }
  459. #define CORRUPT(reason, eb, root, slot) \
  460. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  461. "root=%llu, slot=%d\n", reason, \
  462. (unsigned long long)btrfs_header_bytenr(eb), \
  463. (unsigned long long)root->objectid, slot)
  464. static noinline int check_leaf(struct btrfs_root *root,
  465. struct extent_buffer *leaf)
  466. {
  467. struct btrfs_key key;
  468. struct btrfs_key leaf_key;
  469. u32 nritems = btrfs_header_nritems(leaf);
  470. int slot;
  471. if (nritems == 0)
  472. return 0;
  473. /* Check the 0 item */
  474. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  475. BTRFS_LEAF_DATA_SIZE(root)) {
  476. CORRUPT("invalid item offset size pair", leaf, root, 0);
  477. return -EIO;
  478. }
  479. /*
  480. * Check to make sure each items keys are in the correct order and their
  481. * offsets make sense. We only have to loop through nritems-1 because
  482. * we check the current slot against the next slot, which verifies the
  483. * next slot's offset+size makes sense and that the current's slot
  484. * offset is correct.
  485. */
  486. for (slot = 0; slot < nritems - 1; slot++) {
  487. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  488. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  489. /* Make sure the keys are in the right order */
  490. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  491. CORRUPT("bad key order", leaf, root, slot);
  492. return -EIO;
  493. }
  494. /*
  495. * Make sure the offset and ends are right, remember that the
  496. * item data starts at the end of the leaf and grows towards the
  497. * front.
  498. */
  499. if (btrfs_item_offset_nr(leaf, slot) !=
  500. btrfs_item_end_nr(leaf, slot + 1)) {
  501. CORRUPT("slot offset bad", leaf, root, slot);
  502. return -EIO;
  503. }
  504. /*
  505. * Check to make sure that we don't point outside of the leaf,
  506. * just incase all the items are consistent to eachother, but
  507. * all point outside of the leaf.
  508. */
  509. if (btrfs_item_end_nr(leaf, slot) >
  510. BTRFS_LEAF_DATA_SIZE(root)) {
  511. CORRUPT("slot end outside of leaf", leaf, root, slot);
  512. return -EIO;
  513. }
  514. }
  515. return 0;
  516. }
  517. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  518. u64 phy_offset, struct page *page,
  519. u64 start, u64 end, int mirror)
  520. {
  521. struct extent_io_tree *tree;
  522. u64 found_start;
  523. int found_level;
  524. struct extent_buffer *eb;
  525. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  526. int ret = 0;
  527. int reads_done;
  528. if (!page->private)
  529. goto out;
  530. tree = &BTRFS_I(page->mapping->host)->io_tree;
  531. eb = (struct extent_buffer *)page->private;
  532. /* the pending IO might have been the only thing that kept this buffer
  533. * in memory. Make sure we have a ref for all this other checks
  534. */
  535. extent_buffer_get(eb);
  536. reads_done = atomic_dec_and_test(&eb->io_pages);
  537. if (!reads_done)
  538. goto err;
  539. eb->read_mirror = mirror;
  540. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  541. ret = -EIO;
  542. goto err;
  543. }
  544. found_start = btrfs_header_bytenr(eb);
  545. if (found_start != eb->start) {
  546. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  547. "%llu %llu\n",
  548. (unsigned long long)found_start,
  549. (unsigned long long)eb->start);
  550. ret = -EIO;
  551. goto err;
  552. }
  553. if (check_tree_block_fsid(root, eb)) {
  554. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  555. (unsigned long long)eb->start);
  556. ret = -EIO;
  557. goto err;
  558. }
  559. found_level = btrfs_header_level(eb);
  560. if (found_level >= BTRFS_MAX_LEVEL) {
  561. btrfs_info(root->fs_info, "bad tree block level %d\n",
  562. (int)btrfs_header_level(eb));
  563. ret = -EIO;
  564. goto err;
  565. }
  566. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  567. eb, found_level);
  568. ret = csum_tree_block(root, eb, 1);
  569. if (ret) {
  570. ret = -EIO;
  571. goto err;
  572. }
  573. /*
  574. * If this is a leaf block and it is corrupt, set the corrupt bit so
  575. * that we don't try and read the other copies of this block, just
  576. * return -EIO.
  577. */
  578. if (found_level == 0 && check_leaf(root, eb)) {
  579. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  580. ret = -EIO;
  581. }
  582. if (!ret)
  583. set_extent_buffer_uptodate(eb);
  584. err:
  585. if (reads_done &&
  586. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  587. btree_readahead_hook(root, eb, eb->start, ret);
  588. if (ret) {
  589. /*
  590. * our io error hook is going to dec the io pages
  591. * again, we have to make sure it has something
  592. * to decrement
  593. */
  594. atomic_inc(&eb->io_pages);
  595. clear_extent_buffer_uptodate(eb);
  596. }
  597. free_extent_buffer(eb);
  598. out:
  599. return ret;
  600. }
  601. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  602. {
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  605. eb = (struct extent_buffer *)page->private;
  606. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  607. eb->read_mirror = failed_mirror;
  608. atomic_dec(&eb->io_pages);
  609. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  610. btree_readahead_hook(root, eb, eb->start, -EIO);
  611. return -EIO; /* we fixed nothing */
  612. }
  613. static void end_workqueue_bio(struct bio *bio, int err)
  614. {
  615. struct end_io_wq *end_io_wq = bio->bi_private;
  616. struct btrfs_fs_info *fs_info;
  617. fs_info = end_io_wq->info;
  618. end_io_wq->error = err;
  619. end_io_wq->work.func = end_workqueue_fn;
  620. end_io_wq->work.flags = 0;
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  623. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  624. &end_io_wq->work);
  625. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  626. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  629. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_worker(&fs_info->endio_write_workers,
  633. &end_io_wq->work);
  634. } else {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  636. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  637. &end_io_wq->work);
  638. else if (end_io_wq->metadata)
  639. btrfs_queue_worker(&fs_info->endio_meta_workers,
  640. &end_io_wq->work);
  641. else
  642. btrfs_queue_worker(&fs_info->endio_workers,
  643. &end_io_wq->work);
  644. }
  645. }
  646. /*
  647. * For the metadata arg you want
  648. *
  649. * 0 - if data
  650. * 1 - if normal metadta
  651. * 2 - if writing to the free space cache area
  652. * 3 - raid parity work
  653. */
  654. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  655. int metadata)
  656. {
  657. struct end_io_wq *end_io_wq;
  658. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  659. if (!end_io_wq)
  660. return -ENOMEM;
  661. end_io_wq->private = bio->bi_private;
  662. end_io_wq->end_io = bio->bi_end_io;
  663. end_io_wq->info = info;
  664. end_io_wq->error = 0;
  665. end_io_wq->bio = bio;
  666. end_io_wq->metadata = metadata;
  667. bio->bi_private = end_io_wq;
  668. bio->bi_end_io = end_workqueue_bio;
  669. return 0;
  670. }
  671. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  672. {
  673. unsigned long limit = min_t(unsigned long,
  674. info->workers.max_workers,
  675. info->fs_devices->open_devices);
  676. return 256 * limit;
  677. }
  678. static void run_one_async_start(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. int ret;
  682. async = container_of(work, struct async_submit_bio, work);
  683. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  684. async->mirror_num, async->bio_flags,
  685. async->bio_offset);
  686. if (ret)
  687. async->error = ret;
  688. }
  689. static void run_one_async_done(struct btrfs_work *work)
  690. {
  691. struct btrfs_fs_info *fs_info;
  692. struct async_submit_bio *async;
  693. int limit;
  694. async = container_of(work, struct async_submit_bio, work);
  695. fs_info = BTRFS_I(async->inode)->root->fs_info;
  696. limit = btrfs_async_submit_limit(fs_info);
  697. limit = limit * 2 / 3;
  698. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  699. waitqueue_active(&fs_info->async_submit_wait))
  700. wake_up(&fs_info->async_submit_wait);
  701. /* If an error occured we just want to clean up the bio and move on */
  702. if (async->error) {
  703. bio_endio(async->bio, async->error);
  704. return;
  705. }
  706. async->submit_bio_done(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. }
  710. static void run_one_async_free(struct btrfs_work *work)
  711. {
  712. struct async_submit_bio *async;
  713. async = container_of(work, struct async_submit_bio, work);
  714. kfree(async);
  715. }
  716. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  717. int rw, struct bio *bio, int mirror_num,
  718. unsigned long bio_flags,
  719. u64 bio_offset,
  720. extent_submit_bio_hook_t *submit_bio_start,
  721. extent_submit_bio_hook_t *submit_bio_done)
  722. {
  723. struct async_submit_bio *async;
  724. async = kmalloc(sizeof(*async), GFP_NOFS);
  725. if (!async)
  726. return -ENOMEM;
  727. async->inode = inode;
  728. async->rw = rw;
  729. async->bio = bio;
  730. async->mirror_num = mirror_num;
  731. async->submit_bio_start = submit_bio_start;
  732. async->submit_bio_done = submit_bio_done;
  733. async->work.func = run_one_async_start;
  734. async->work.ordered_func = run_one_async_done;
  735. async->work.ordered_free = run_one_async_free;
  736. async->work.flags = 0;
  737. async->bio_flags = bio_flags;
  738. async->bio_offset = bio_offset;
  739. async->error = 0;
  740. atomic_inc(&fs_info->nr_async_submits);
  741. if (rw & REQ_SYNC)
  742. btrfs_set_work_high_prio(&async->work);
  743. btrfs_queue_worker(&fs_info->workers, &async->work);
  744. while (atomic_read(&fs_info->async_submit_draining) &&
  745. atomic_read(&fs_info->nr_async_submits)) {
  746. wait_event(fs_info->async_submit_wait,
  747. (atomic_read(&fs_info->nr_async_submits) == 0));
  748. }
  749. return 0;
  750. }
  751. static int btree_csum_one_bio(struct bio *bio)
  752. {
  753. struct bio_vec *bvec = bio->bi_io_vec;
  754. int bio_index = 0;
  755. struct btrfs_root *root;
  756. int ret = 0;
  757. WARN_ON(bio->bi_vcnt <= 0);
  758. while (bio_index < bio->bi_vcnt) {
  759. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  760. ret = csum_dirty_buffer(root, bvec->bv_page);
  761. if (ret)
  762. break;
  763. bio_index++;
  764. bvec++;
  765. }
  766. return ret;
  767. }
  768. static int __btree_submit_bio_start(struct inode *inode, int rw,
  769. struct bio *bio, int mirror_num,
  770. unsigned long bio_flags,
  771. u64 bio_offset)
  772. {
  773. /*
  774. * when we're called for a write, we're already in the async
  775. * submission context. Just jump into btrfs_map_bio
  776. */
  777. return btree_csum_one_bio(bio);
  778. }
  779. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  780. int mirror_num, unsigned long bio_flags,
  781. u64 bio_offset)
  782. {
  783. int ret;
  784. /*
  785. * when we're called for a write, we're already in the async
  786. * submission context. Just jump into btrfs_map_bio
  787. */
  788. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  789. if (ret)
  790. bio_endio(bio, ret);
  791. return ret;
  792. }
  793. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  794. {
  795. if (bio_flags & EXTENT_BIO_TREE_LOG)
  796. return 0;
  797. #ifdef CONFIG_X86
  798. if (cpu_has_xmm4_2)
  799. return 0;
  800. #endif
  801. return 1;
  802. }
  803. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  804. int mirror_num, unsigned long bio_flags,
  805. u64 bio_offset)
  806. {
  807. int async = check_async_write(inode, bio_flags);
  808. int ret;
  809. if (!(rw & REQ_WRITE)) {
  810. /*
  811. * called for a read, do the setup so that checksum validation
  812. * can happen in the async kernel threads
  813. */
  814. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  815. bio, 1);
  816. if (ret)
  817. goto out_w_error;
  818. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  819. mirror_num, 0);
  820. } else if (!async) {
  821. ret = btree_csum_one_bio(bio);
  822. if (ret)
  823. goto out_w_error;
  824. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  825. mirror_num, 0);
  826. } else {
  827. /*
  828. * kthread helpers are used to submit writes so that
  829. * checksumming can happen in parallel across all CPUs
  830. */
  831. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  832. inode, rw, bio, mirror_num, 0,
  833. bio_offset,
  834. __btree_submit_bio_start,
  835. __btree_submit_bio_done);
  836. }
  837. if (ret) {
  838. out_w_error:
  839. bio_endio(bio, ret);
  840. }
  841. return ret;
  842. }
  843. #ifdef CONFIG_MIGRATION
  844. static int btree_migratepage(struct address_space *mapping,
  845. struct page *newpage, struct page *page,
  846. enum migrate_mode mode)
  847. {
  848. /*
  849. * we can't safely write a btree page from here,
  850. * we haven't done the locking hook
  851. */
  852. if (PageDirty(page))
  853. return -EAGAIN;
  854. /*
  855. * Buffers may be managed in a filesystem specific way.
  856. * We must have no buffers or drop them.
  857. */
  858. if (page_has_private(page) &&
  859. !try_to_release_page(page, GFP_KERNEL))
  860. return -EAGAIN;
  861. return migrate_page(mapping, newpage, page, mode);
  862. }
  863. #endif
  864. static int btree_writepages(struct address_space *mapping,
  865. struct writeback_control *wbc)
  866. {
  867. struct extent_io_tree *tree;
  868. struct btrfs_fs_info *fs_info;
  869. int ret;
  870. tree = &BTRFS_I(mapping->host)->io_tree;
  871. if (wbc->sync_mode == WB_SYNC_NONE) {
  872. if (wbc->for_kupdate)
  873. return 0;
  874. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  875. /* this is a bit racy, but that's ok */
  876. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  877. BTRFS_DIRTY_METADATA_THRESH);
  878. if (ret < 0)
  879. return 0;
  880. }
  881. return btree_write_cache_pages(mapping, wbc);
  882. }
  883. static int btree_readpage(struct file *file, struct page *page)
  884. {
  885. struct extent_io_tree *tree;
  886. tree = &BTRFS_I(page->mapping->host)->io_tree;
  887. return extent_read_full_page(tree, page, btree_get_extent, 0);
  888. }
  889. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  890. {
  891. if (PageWriteback(page) || PageDirty(page))
  892. return 0;
  893. return try_release_extent_buffer(page);
  894. }
  895. static void btree_invalidatepage(struct page *page, unsigned int offset,
  896. unsigned int length)
  897. {
  898. struct extent_io_tree *tree;
  899. tree = &BTRFS_I(page->mapping->host)->io_tree;
  900. extent_invalidatepage(tree, page, offset);
  901. btree_releasepage(page, GFP_NOFS);
  902. if (PagePrivate(page)) {
  903. printk(KERN_WARNING "btrfs warning page private not zero "
  904. "on page %llu\n", (unsigned long long)page_offset(page));
  905. ClearPagePrivate(page);
  906. set_page_private(page, 0);
  907. page_cache_release(page);
  908. }
  909. }
  910. static int btree_set_page_dirty(struct page *page)
  911. {
  912. #ifdef DEBUG
  913. struct extent_buffer *eb;
  914. BUG_ON(!PagePrivate(page));
  915. eb = (struct extent_buffer *)page->private;
  916. BUG_ON(!eb);
  917. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  918. BUG_ON(!atomic_read(&eb->refs));
  919. btrfs_assert_tree_locked(eb);
  920. #endif
  921. return __set_page_dirty_nobuffers(page);
  922. }
  923. static const struct address_space_operations btree_aops = {
  924. .readpage = btree_readpage,
  925. .writepages = btree_writepages,
  926. .releasepage = btree_releasepage,
  927. .invalidatepage = btree_invalidatepage,
  928. #ifdef CONFIG_MIGRATION
  929. .migratepage = btree_migratepage,
  930. #endif
  931. .set_page_dirty = btree_set_page_dirty,
  932. };
  933. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  934. u64 parent_transid)
  935. {
  936. struct extent_buffer *buf = NULL;
  937. struct inode *btree_inode = root->fs_info->btree_inode;
  938. int ret = 0;
  939. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  940. if (!buf)
  941. return 0;
  942. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  943. buf, 0, WAIT_NONE, btree_get_extent, 0);
  944. free_extent_buffer(buf);
  945. return ret;
  946. }
  947. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  948. int mirror_num, struct extent_buffer **eb)
  949. {
  950. struct extent_buffer *buf = NULL;
  951. struct inode *btree_inode = root->fs_info->btree_inode;
  952. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  953. int ret;
  954. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  955. if (!buf)
  956. return 0;
  957. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  958. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  959. btree_get_extent, mirror_num);
  960. if (ret) {
  961. free_extent_buffer(buf);
  962. return ret;
  963. }
  964. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  965. free_extent_buffer(buf);
  966. return -EIO;
  967. } else if (extent_buffer_uptodate(buf)) {
  968. *eb = buf;
  969. } else {
  970. free_extent_buffer(buf);
  971. }
  972. return 0;
  973. }
  974. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  975. u64 bytenr, u32 blocksize)
  976. {
  977. struct inode *btree_inode = root->fs_info->btree_inode;
  978. struct extent_buffer *eb;
  979. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  980. bytenr, blocksize);
  981. return eb;
  982. }
  983. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  984. u64 bytenr, u32 blocksize)
  985. {
  986. struct inode *btree_inode = root->fs_info->btree_inode;
  987. struct extent_buffer *eb;
  988. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  989. bytenr, blocksize);
  990. return eb;
  991. }
  992. int btrfs_write_tree_block(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  995. buf->start + buf->len - 1);
  996. }
  997. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  998. {
  999. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1000. buf->start, buf->start + buf->len - 1);
  1001. }
  1002. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1003. u32 blocksize, u64 parent_transid)
  1004. {
  1005. struct extent_buffer *buf = NULL;
  1006. int ret;
  1007. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1008. if (!buf)
  1009. return NULL;
  1010. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1011. if (ret) {
  1012. free_extent_buffer(buf);
  1013. return NULL;
  1014. }
  1015. return buf;
  1016. }
  1017. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1018. struct extent_buffer *buf)
  1019. {
  1020. struct btrfs_fs_info *fs_info = root->fs_info;
  1021. if (btrfs_header_generation(buf) ==
  1022. fs_info->running_transaction->transid) {
  1023. btrfs_assert_tree_locked(buf);
  1024. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1025. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1026. -buf->len,
  1027. fs_info->dirty_metadata_batch);
  1028. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1029. btrfs_set_lock_blocking(buf);
  1030. clear_extent_buffer_dirty(buf);
  1031. }
  1032. }
  1033. }
  1034. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1035. u32 stripesize, struct btrfs_root *root,
  1036. struct btrfs_fs_info *fs_info,
  1037. u64 objectid)
  1038. {
  1039. root->node = NULL;
  1040. root->commit_root = NULL;
  1041. root->sectorsize = sectorsize;
  1042. root->nodesize = nodesize;
  1043. root->leafsize = leafsize;
  1044. root->stripesize = stripesize;
  1045. root->ref_cows = 0;
  1046. root->track_dirty = 0;
  1047. root->in_radix = 0;
  1048. root->orphan_item_inserted = 0;
  1049. root->orphan_cleanup_state = 0;
  1050. root->objectid = objectid;
  1051. root->last_trans = 0;
  1052. root->highest_objectid = 0;
  1053. root->nr_delalloc_inodes = 0;
  1054. root->nr_ordered_extents = 0;
  1055. root->name = NULL;
  1056. root->inode_tree = RB_ROOT;
  1057. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1058. root->block_rsv = NULL;
  1059. root->orphan_block_rsv = NULL;
  1060. INIT_LIST_HEAD(&root->dirty_list);
  1061. INIT_LIST_HEAD(&root->root_list);
  1062. INIT_LIST_HEAD(&root->delalloc_inodes);
  1063. INIT_LIST_HEAD(&root->delalloc_root);
  1064. INIT_LIST_HEAD(&root->ordered_extents);
  1065. INIT_LIST_HEAD(&root->ordered_root);
  1066. INIT_LIST_HEAD(&root->logged_list[0]);
  1067. INIT_LIST_HEAD(&root->logged_list[1]);
  1068. spin_lock_init(&root->orphan_lock);
  1069. spin_lock_init(&root->inode_lock);
  1070. spin_lock_init(&root->delalloc_lock);
  1071. spin_lock_init(&root->ordered_extent_lock);
  1072. spin_lock_init(&root->accounting_lock);
  1073. spin_lock_init(&root->log_extents_lock[0]);
  1074. spin_lock_init(&root->log_extents_lock[1]);
  1075. mutex_init(&root->objectid_mutex);
  1076. mutex_init(&root->log_mutex);
  1077. init_waitqueue_head(&root->log_writer_wait);
  1078. init_waitqueue_head(&root->log_commit_wait[0]);
  1079. init_waitqueue_head(&root->log_commit_wait[1]);
  1080. atomic_set(&root->log_commit[0], 0);
  1081. atomic_set(&root->log_commit[1], 0);
  1082. atomic_set(&root->log_writers, 0);
  1083. atomic_set(&root->log_batch, 0);
  1084. atomic_set(&root->orphan_inodes, 0);
  1085. atomic_set(&root->refs, 1);
  1086. root->log_transid = 0;
  1087. root->last_log_commit = 0;
  1088. extent_io_tree_init(&root->dirty_log_pages,
  1089. fs_info->btree_inode->i_mapping);
  1090. memset(&root->root_key, 0, sizeof(root->root_key));
  1091. memset(&root->root_item, 0, sizeof(root->root_item));
  1092. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1093. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1094. root->defrag_trans_start = fs_info->generation;
  1095. init_completion(&root->kobj_unregister);
  1096. root->defrag_running = 0;
  1097. root->root_key.objectid = objectid;
  1098. root->anon_dev = 0;
  1099. spin_lock_init(&root->root_item_lock);
  1100. }
  1101. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1102. {
  1103. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1104. if (root)
  1105. root->fs_info = fs_info;
  1106. return root;
  1107. }
  1108. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1109. struct btrfs_fs_info *fs_info,
  1110. u64 objectid)
  1111. {
  1112. struct extent_buffer *leaf;
  1113. struct btrfs_root *tree_root = fs_info->tree_root;
  1114. struct btrfs_root *root;
  1115. struct btrfs_key key;
  1116. int ret = 0;
  1117. u64 bytenr;
  1118. uuid_le uuid;
  1119. root = btrfs_alloc_root(fs_info);
  1120. if (!root)
  1121. return ERR_PTR(-ENOMEM);
  1122. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1123. tree_root->sectorsize, tree_root->stripesize,
  1124. root, fs_info, objectid);
  1125. root->root_key.objectid = objectid;
  1126. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1127. root->root_key.offset = 0;
  1128. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1129. 0, objectid, NULL, 0, 0, 0);
  1130. if (IS_ERR(leaf)) {
  1131. ret = PTR_ERR(leaf);
  1132. leaf = NULL;
  1133. goto fail;
  1134. }
  1135. bytenr = leaf->start;
  1136. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1137. btrfs_set_header_bytenr(leaf, leaf->start);
  1138. btrfs_set_header_generation(leaf, trans->transid);
  1139. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1140. btrfs_set_header_owner(leaf, objectid);
  1141. root->node = leaf;
  1142. write_extent_buffer(leaf, fs_info->fsid,
  1143. (unsigned long)btrfs_header_fsid(leaf),
  1144. BTRFS_FSID_SIZE);
  1145. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1146. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1147. BTRFS_UUID_SIZE);
  1148. btrfs_mark_buffer_dirty(leaf);
  1149. root->commit_root = btrfs_root_node(root);
  1150. root->track_dirty = 1;
  1151. root->root_item.flags = 0;
  1152. root->root_item.byte_limit = 0;
  1153. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1154. btrfs_set_root_generation(&root->root_item, trans->transid);
  1155. btrfs_set_root_level(&root->root_item, 0);
  1156. btrfs_set_root_refs(&root->root_item, 1);
  1157. btrfs_set_root_used(&root->root_item, leaf->len);
  1158. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1159. btrfs_set_root_dirid(&root->root_item, 0);
  1160. uuid_le_gen(&uuid);
  1161. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1162. root->root_item.drop_level = 0;
  1163. key.objectid = objectid;
  1164. key.type = BTRFS_ROOT_ITEM_KEY;
  1165. key.offset = 0;
  1166. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1167. if (ret)
  1168. goto fail;
  1169. btrfs_tree_unlock(leaf);
  1170. return root;
  1171. fail:
  1172. if (leaf) {
  1173. btrfs_tree_unlock(leaf);
  1174. free_extent_buffer(leaf);
  1175. }
  1176. kfree(root);
  1177. return ERR_PTR(ret);
  1178. }
  1179. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1180. struct btrfs_fs_info *fs_info)
  1181. {
  1182. struct btrfs_root *root;
  1183. struct btrfs_root *tree_root = fs_info->tree_root;
  1184. struct extent_buffer *leaf;
  1185. root = btrfs_alloc_root(fs_info);
  1186. if (!root)
  1187. return ERR_PTR(-ENOMEM);
  1188. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1189. tree_root->sectorsize, tree_root->stripesize,
  1190. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1191. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1192. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1193. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1194. /*
  1195. * log trees do not get reference counted because they go away
  1196. * before a real commit is actually done. They do store pointers
  1197. * to file data extents, and those reference counts still get
  1198. * updated (along with back refs to the log tree).
  1199. */
  1200. root->ref_cows = 0;
  1201. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1202. BTRFS_TREE_LOG_OBJECTID, NULL,
  1203. 0, 0, 0);
  1204. if (IS_ERR(leaf)) {
  1205. kfree(root);
  1206. return ERR_CAST(leaf);
  1207. }
  1208. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1209. btrfs_set_header_bytenr(leaf, leaf->start);
  1210. btrfs_set_header_generation(leaf, trans->transid);
  1211. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1212. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1213. root->node = leaf;
  1214. write_extent_buffer(root->node, root->fs_info->fsid,
  1215. (unsigned long)btrfs_header_fsid(root->node),
  1216. BTRFS_FSID_SIZE);
  1217. btrfs_mark_buffer_dirty(root->node);
  1218. btrfs_tree_unlock(root->node);
  1219. return root;
  1220. }
  1221. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_fs_info *fs_info)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. log_root = alloc_log_tree(trans, fs_info);
  1226. if (IS_ERR(log_root))
  1227. return PTR_ERR(log_root);
  1228. WARN_ON(fs_info->log_root_tree);
  1229. fs_info->log_root_tree = log_root;
  1230. return 0;
  1231. }
  1232. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1233. struct btrfs_root *root)
  1234. {
  1235. struct btrfs_root *log_root;
  1236. struct btrfs_inode_item *inode_item;
  1237. log_root = alloc_log_tree(trans, root->fs_info);
  1238. if (IS_ERR(log_root))
  1239. return PTR_ERR(log_root);
  1240. log_root->last_trans = trans->transid;
  1241. log_root->root_key.offset = root->root_key.objectid;
  1242. inode_item = &log_root->root_item.inode;
  1243. btrfs_set_stack_inode_generation(inode_item, 1);
  1244. btrfs_set_stack_inode_size(inode_item, 3);
  1245. btrfs_set_stack_inode_nlink(inode_item, 1);
  1246. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1247. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1248. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1249. WARN_ON(root->log_root);
  1250. root->log_root = log_root;
  1251. root->log_transid = 0;
  1252. root->last_log_commit = 0;
  1253. return 0;
  1254. }
  1255. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1256. struct btrfs_key *key)
  1257. {
  1258. struct btrfs_root *root;
  1259. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1260. struct btrfs_path *path;
  1261. u64 generation;
  1262. u32 blocksize;
  1263. int ret;
  1264. path = btrfs_alloc_path();
  1265. if (!path)
  1266. return ERR_PTR(-ENOMEM);
  1267. root = btrfs_alloc_root(fs_info);
  1268. if (!root) {
  1269. ret = -ENOMEM;
  1270. goto alloc_fail;
  1271. }
  1272. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1273. tree_root->sectorsize, tree_root->stripesize,
  1274. root, fs_info, key->objectid);
  1275. ret = btrfs_find_root(tree_root, key, path,
  1276. &root->root_item, &root->root_key);
  1277. if (ret) {
  1278. if (ret > 0)
  1279. ret = -ENOENT;
  1280. goto find_fail;
  1281. }
  1282. generation = btrfs_root_generation(&root->root_item);
  1283. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1284. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1285. blocksize, generation);
  1286. if (!root->node) {
  1287. ret = -ENOMEM;
  1288. goto find_fail;
  1289. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1290. ret = -EIO;
  1291. goto read_fail;
  1292. }
  1293. root->commit_root = btrfs_root_node(root);
  1294. out:
  1295. btrfs_free_path(path);
  1296. return root;
  1297. read_fail:
  1298. free_extent_buffer(root->node);
  1299. find_fail:
  1300. kfree(root);
  1301. alloc_fail:
  1302. root = ERR_PTR(ret);
  1303. goto out;
  1304. }
  1305. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1306. struct btrfs_key *location)
  1307. {
  1308. struct btrfs_root *root;
  1309. root = btrfs_read_tree_root(tree_root, location);
  1310. if (IS_ERR(root))
  1311. return root;
  1312. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1313. root->ref_cows = 1;
  1314. btrfs_check_and_init_root_item(&root->root_item);
  1315. }
  1316. return root;
  1317. }
  1318. int btrfs_init_fs_root(struct btrfs_root *root)
  1319. {
  1320. int ret;
  1321. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1322. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1323. GFP_NOFS);
  1324. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1325. ret = -ENOMEM;
  1326. goto fail;
  1327. }
  1328. btrfs_init_free_ino_ctl(root);
  1329. mutex_init(&root->fs_commit_mutex);
  1330. spin_lock_init(&root->cache_lock);
  1331. init_waitqueue_head(&root->cache_wait);
  1332. ret = get_anon_bdev(&root->anon_dev);
  1333. if (ret)
  1334. goto fail;
  1335. return 0;
  1336. fail:
  1337. kfree(root->free_ino_ctl);
  1338. kfree(root->free_ino_pinned);
  1339. return ret;
  1340. }
  1341. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1342. u64 root_id)
  1343. {
  1344. struct btrfs_root *root;
  1345. spin_lock(&fs_info->fs_roots_radix_lock);
  1346. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1347. (unsigned long)root_id);
  1348. spin_unlock(&fs_info->fs_roots_radix_lock);
  1349. return root;
  1350. }
  1351. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1352. struct btrfs_root *root)
  1353. {
  1354. int ret;
  1355. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1356. if (ret)
  1357. return ret;
  1358. spin_lock(&fs_info->fs_roots_radix_lock);
  1359. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1360. (unsigned long)root->root_key.objectid,
  1361. root);
  1362. if (ret == 0)
  1363. root->in_radix = 1;
  1364. spin_unlock(&fs_info->fs_roots_radix_lock);
  1365. radix_tree_preload_end();
  1366. return ret;
  1367. }
  1368. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1369. struct btrfs_key *location)
  1370. {
  1371. struct btrfs_root *root;
  1372. int ret;
  1373. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1374. return fs_info->tree_root;
  1375. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1376. return fs_info->extent_root;
  1377. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1378. return fs_info->chunk_root;
  1379. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1380. return fs_info->dev_root;
  1381. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1382. return fs_info->csum_root;
  1383. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1384. return fs_info->quota_root ? fs_info->quota_root :
  1385. ERR_PTR(-ENOENT);
  1386. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1387. return fs_info->uuid_root ? fs_info->uuid_root :
  1388. ERR_PTR(-ENOENT);
  1389. again:
  1390. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1391. if (root)
  1392. return root;
  1393. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1394. if (IS_ERR(root))
  1395. return root;
  1396. if (btrfs_root_refs(&root->root_item) == 0) {
  1397. ret = -ENOENT;
  1398. goto fail;
  1399. }
  1400. ret = btrfs_init_fs_root(root);
  1401. if (ret)
  1402. goto fail;
  1403. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1404. if (ret < 0)
  1405. goto fail;
  1406. if (ret == 0)
  1407. root->orphan_item_inserted = 1;
  1408. ret = btrfs_insert_fs_root(fs_info, root);
  1409. if (ret) {
  1410. if (ret == -EEXIST) {
  1411. free_fs_root(root);
  1412. goto again;
  1413. }
  1414. goto fail;
  1415. }
  1416. return root;
  1417. fail:
  1418. free_fs_root(root);
  1419. return ERR_PTR(ret);
  1420. }
  1421. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1422. {
  1423. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1424. int ret = 0;
  1425. struct btrfs_device *device;
  1426. struct backing_dev_info *bdi;
  1427. rcu_read_lock();
  1428. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1429. if (!device->bdev)
  1430. continue;
  1431. bdi = blk_get_backing_dev_info(device->bdev);
  1432. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1433. ret = 1;
  1434. break;
  1435. }
  1436. }
  1437. rcu_read_unlock();
  1438. return ret;
  1439. }
  1440. /*
  1441. * If this fails, caller must call bdi_destroy() to get rid of the
  1442. * bdi again.
  1443. */
  1444. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1445. {
  1446. int err;
  1447. bdi->capabilities = BDI_CAP_MAP_COPY;
  1448. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1449. if (err)
  1450. return err;
  1451. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1452. bdi->congested_fn = btrfs_congested_fn;
  1453. bdi->congested_data = info;
  1454. return 0;
  1455. }
  1456. /*
  1457. * called by the kthread helper functions to finally call the bio end_io
  1458. * functions. This is where read checksum verification actually happens
  1459. */
  1460. static void end_workqueue_fn(struct btrfs_work *work)
  1461. {
  1462. struct bio *bio;
  1463. struct end_io_wq *end_io_wq;
  1464. struct btrfs_fs_info *fs_info;
  1465. int error;
  1466. end_io_wq = container_of(work, struct end_io_wq, work);
  1467. bio = end_io_wq->bio;
  1468. fs_info = end_io_wq->info;
  1469. error = end_io_wq->error;
  1470. bio->bi_private = end_io_wq->private;
  1471. bio->bi_end_io = end_io_wq->end_io;
  1472. kfree(end_io_wq);
  1473. bio_endio(bio, error);
  1474. }
  1475. static int cleaner_kthread(void *arg)
  1476. {
  1477. struct btrfs_root *root = arg;
  1478. int again;
  1479. do {
  1480. again = 0;
  1481. /* Make the cleaner go to sleep early. */
  1482. if (btrfs_need_cleaner_sleep(root))
  1483. goto sleep;
  1484. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1485. goto sleep;
  1486. /*
  1487. * Avoid the problem that we change the status of the fs
  1488. * during the above check and trylock.
  1489. */
  1490. if (btrfs_need_cleaner_sleep(root)) {
  1491. mutex_unlock(&root->fs_info->cleaner_mutex);
  1492. goto sleep;
  1493. }
  1494. btrfs_run_delayed_iputs(root);
  1495. again = btrfs_clean_one_deleted_snapshot(root);
  1496. mutex_unlock(&root->fs_info->cleaner_mutex);
  1497. /*
  1498. * The defragger has dealt with the R/O remount and umount,
  1499. * needn't do anything special here.
  1500. */
  1501. btrfs_run_defrag_inodes(root->fs_info);
  1502. sleep:
  1503. if (!try_to_freeze() && !again) {
  1504. set_current_state(TASK_INTERRUPTIBLE);
  1505. if (!kthread_should_stop())
  1506. schedule();
  1507. __set_current_state(TASK_RUNNING);
  1508. }
  1509. } while (!kthread_should_stop());
  1510. return 0;
  1511. }
  1512. static int transaction_kthread(void *arg)
  1513. {
  1514. struct btrfs_root *root = arg;
  1515. struct btrfs_trans_handle *trans;
  1516. struct btrfs_transaction *cur;
  1517. u64 transid;
  1518. unsigned long now;
  1519. unsigned long delay;
  1520. bool cannot_commit;
  1521. do {
  1522. cannot_commit = false;
  1523. delay = HZ * root->fs_info->commit_interval;
  1524. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1525. spin_lock(&root->fs_info->trans_lock);
  1526. cur = root->fs_info->running_transaction;
  1527. if (!cur) {
  1528. spin_unlock(&root->fs_info->trans_lock);
  1529. goto sleep;
  1530. }
  1531. now = get_seconds();
  1532. if (cur->state < TRANS_STATE_BLOCKED &&
  1533. (now < cur->start_time ||
  1534. now - cur->start_time < root->fs_info->commit_interval)) {
  1535. spin_unlock(&root->fs_info->trans_lock);
  1536. delay = HZ * 5;
  1537. goto sleep;
  1538. }
  1539. transid = cur->transid;
  1540. spin_unlock(&root->fs_info->trans_lock);
  1541. /* If the file system is aborted, this will always fail. */
  1542. trans = btrfs_attach_transaction(root);
  1543. if (IS_ERR(trans)) {
  1544. if (PTR_ERR(trans) != -ENOENT)
  1545. cannot_commit = true;
  1546. goto sleep;
  1547. }
  1548. if (transid == trans->transid) {
  1549. btrfs_commit_transaction(trans, root);
  1550. } else {
  1551. btrfs_end_transaction(trans, root);
  1552. }
  1553. sleep:
  1554. wake_up_process(root->fs_info->cleaner_kthread);
  1555. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1556. if (!try_to_freeze()) {
  1557. set_current_state(TASK_INTERRUPTIBLE);
  1558. if (!kthread_should_stop() &&
  1559. (!btrfs_transaction_blocked(root->fs_info) ||
  1560. cannot_commit))
  1561. schedule_timeout(delay);
  1562. __set_current_state(TASK_RUNNING);
  1563. }
  1564. } while (!kthread_should_stop());
  1565. return 0;
  1566. }
  1567. /*
  1568. * this will find the highest generation in the array of
  1569. * root backups. The index of the highest array is returned,
  1570. * or -1 if we can't find anything.
  1571. *
  1572. * We check to make sure the array is valid by comparing the
  1573. * generation of the latest root in the array with the generation
  1574. * in the super block. If they don't match we pitch it.
  1575. */
  1576. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1577. {
  1578. u64 cur;
  1579. int newest_index = -1;
  1580. struct btrfs_root_backup *root_backup;
  1581. int i;
  1582. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1583. root_backup = info->super_copy->super_roots + i;
  1584. cur = btrfs_backup_tree_root_gen(root_backup);
  1585. if (cur == newest_gen)
  1586. newest_index = i;
  1587. }
  1588. /* check to see if we actually wrapped around */
  1589. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1590. root_backup = info->super_copy->super_roots;
  1591. cur = btrfs_backup_tree_root_gen(root_backup);
  1592. if (cur == newest_gen)
  1593. newest_index = 0;
  1594. }
  1595. return newest_index;
  1596. }
  1597. /*
  1598. * find the oldest backup so we know where to store new entries
  1599. * in the backup array. This will set the backup_root_index
  1600. * field in the fs_info struct
  1601. */
  1602. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1603. u64 newest_gen)
  1604. {
  1605. int newest_index = -1;
  1606. newest_index = find_newest_super_backup(info, newest_gen);
  1607. /* if there was garbage in there, just move along */
  1608. if (newest_index == -1) {
  1609. info->backup_root_index = 0;
  1610. } else {
  1611. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1612. }
  1613. }
  1614. /*
  1615. * copy all the root pointers into the super backup array.
  1616. * this will bump the backup pointer by one when it is
  1617. * done
  1618. */
  1619. static void backup_super_roots(struct btrfs_fs_info *info)
  1620. {
  1621. int next_backup;
  1622. struct btrfs_root_backup *root_backup;
  1623. int last_backup;
  1624. next_backup = info->backup_root_index;
  1625. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1626. BTRFS_NUM_BACKUP_ROOTS;
  1627. /*
  1628. * just overwrite the last backup if we're at the same generation
  1629. * this happens only at umount
  1630. */
  1631. root_backup = info->super_for_commit->super_roots + last_backup;
  1632. if (btrfs_backup_tree_root_gen(root_backup) ==
  1633. btrfs_header_generation(info->tree_root->node))
  1634. next_backup = last_backup;
  1635. root_backup = info->super_for_commit->super_roots + next_backup;
  1636. /*
  1637. * make sure all of our padding and empty slots get zero filled
  1638. * regardless of which ones we use today
  1639. */
  1640. memset(root_backup, 0, sizeof(*root_backup));
  1641. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1642. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1643. btrfs_set_backup_tree_root_gen(root_backup,
  1644. btrfs_header_generation(info->tree_root->node));
  1645. btrfs_set_backup_tree_root_level(root_backup,
  1646. btrfs_header_level(info->tree_root->node));
  1647. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1648. btrfs_set_backup_chunk_root_gen(root_backup,
  1649. btrfs_header_generation(info->chunk_root->node));
  1650. btrfs_set_backup_chunk_root_level(root_backup,
  1651. btrfs_header_level(info->chunk_root->node));
  1652. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1653. btrfs_set_backup_extent_root_gen(root_backup,
  1654. btrfs_header_generation(info->extent_root->node));
  1655. btrfs_set_backup_extent_root_level(root_backup,
  1656. btrfs_header_level(info->extent_root->node));
  1657. /*
  1658. * we might commit during log recovery, which happens before we set
  1659. * the fs_root. Make sure it is valid before we fill it in.
  1660. */
  1661. if (info->fs_root && info->fs_root->node) {
  1662. btrfs_set_backup_fs_root(root_backup,
  1663. info->fs_root->node->start);
  1664. btrfs_set_backup_fs_root_gen(root_backup,
  1665. btrfs_header_generation(info->fs_root->node));
  1666. btrfs_set_backup_fs_root_level(root_backup,
  1667. btrfs_header_level(info->fs_root->node));
  1668. }
  1669. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1670. btrfs_set_backup_dev_root_gen(root_backup,
  1671. btrfs_header_generation(info->dev_root->node));
  1672. btrfs_set_backup_dev_root_level(root_backup,
  1673. btrfs_header_level(info->dev_root->node));
  1674. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1675. btrfs_set_backup_csum_root_gen(root_backup,
  1676. btrfs_header_generation(info->csum_root->node));
  1677. btrfs_set_backup_csum_root_level(root_backup,
  1678. btrfs_header_level(info->csum_root->node));
  1679. btrfs_set_backup_total_bytes(root_backup,
  1680. btrfs_super_total_bytes(info->super_copy));
  1681. btrfs_set_backup_bytes_used(root_backup,
  1682. btrfs_super_bytes_used(info->super_copy));
  1683. btrfs_set_backup_num_devices(root_backup,
  1684. btrfs_super_num_devices(info->super_copy));
  1685. /*
  1686. * if we don't copy this out to the super_copy, it won't get remembered
  1687. * for the next commit
  1688. */
  1689. memcpy(&info->super_copy->super_roots,
  1690. &info->super_for_commit->super_roots,
  1691. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1692. }
  1693. /*
  1694. * this copies info out of the root backup array and back into
  1695. * the in-memory super block. It is meant to help iterate through
  1696. * the array, so you send it the number of backups you've already
  1697. * tried and the last backup index you used.
  1698. *
  1699. * this returns -1 when it has tried all the backups
  1700. */
  1701. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1702. struct btrfs_super_block *super,
  1703. int *num_backups_tried, int *backup_index)
  1704. {
  1705. struct btrfs_root_backup *root_backup;
  1706. int newest = *backup_index;
  1707. if (*num_backups_tried == 0) {
  1708. u64 gen = btrfs_super_generation(super);
  1709. newest = find_newest_super_backup(info, gen);
  1710. if (newest == -1)
  1711. return -1;
  1712. *backup_index = newest;
  1713. *num_backups_tried = 1;
  1714. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1715. /* we've tried all the backups, all done */
  1716. return -1;
  1717. } else {
  1718. /* jump to the next oldest backup */
  1719. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1720. BTRFS_NUM_BACKUP_ROOTS;
  1721. *backup_index = newest;
  1722. *num_backups_tried += 1;
  1723. }
  1724. root_backup = super->super_roots + newest;
  1725. btrfs_set_super_generation(super,
  1726. btrfs_backup_tree_root_gen(root_backup));
  1727. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1728. btrfs_set_super_root_level(super,
  1729. btrfs_backup_tree_root_level(root_backup));
  1730. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1731. /*
  1732. * fixme: the total bytes and num_devices need to match or we should
  1733. * need a fsck
  1734. */
  1735. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1736. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1737. return 0;
  1738. }
  1739. /* helper to cleanup workers */
  1740. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1741. {
  1742. btrfs_stop_workers(&fs_info->generic_worker);
  1743. btrfs_stop_workers(&fs_info->fixup_workers);
  1744. btrfs_stop_workers(&fs_info->delalloc_workers);
  1745. btrfs_stop_workers(&fs_info->workers);
  1746. btrfs_stop_workers(&fs_info->endio_workers);
  1747. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1748. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1749. btrfs_stop_workers(&fs_info->rmw_workers);
  1750. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1751. btrfs_stop_workers(&fs_info->endio_write_workers);
  1752. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1753. btrfs_stop_workers(&fs_info->submit_workers);
  1754. btrfs_stop_workers(&fs_info->delayed_workers);
  1755. btrfs_stop_workers(&fs_info->caching_workers);
  1756. btrfs_stop_workers(&fs_info->readahead_workers);
  1757. btrfs_stop_workers(&fs_info->flush_workers);
  1758. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1759. }
  1760. /* helper to cleanup tree roots */
  1761. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1762. {
  1763. free_extent_buffer(info->tree_root->node);
  1764. free_extent_buffer(info->tree_root->commit_root);
  1765. info->tree_root->node = NULL;
  1766. info->tree_root->commit_root = NULL;
  1767. if (info->dev_root) {
  1768. free_extent_buffer(info->dev_root->node);
  1769. free_extent_buffer(info->dev_root->commit_root);
  1770. info->dev_root->node = NULL;
  1771. info->dev_root->commit_root = NULL;
  1772. }
  1773. if (info->extent_root) {
  1774. free_extent_buffer(info->extent_root->node);
  1775. free_extent_buffer(info->extent_root->commit_root);
  1776. info->extent_root->node = NULL;
  1777. info->extent_root->commit_root = NULL;
  1778. }
  1779. if (info->csum_root) {
  1780. free_extent_buffer(info->csum_root->node);
  1781. free_extent_buffer(info->csum_root->commit_root);
  1782. info->csum_root->node = NULL;
  1783. info->csum_root->commit_root = NULL;
  1784. }
  1785. if (info->quota_root) {
  1786. free_extent_buffer(info->quota_root->node);
  1787. free_extent_buffer(info->quota_root->commit_root);
  1788. info->quota_root->node = NULL;
  1789. info->quota_root->commit_root = NULL;
  1790. }
  1791. if (info->uuid_root) {
  1792. free_extent_buffer(info->uuid_root->node);
  1793. free_extent_buffer(info->uuid_root->commit_root);
  1794. info->uuid_root->node = NULL;
  1795. info->uuid_root->commit_root = NULL;
  1796. }
  1797. if (chunk_root) {
  1798. free_extent_buffer(info->chunk_root->node);
  1799. free_extent_buffer(info->chunk_root->commit_root);
  1800. info->chunk_root->node = NULL;
  1801. info->chunk_root->commit_root = NULL;
  1802. }
  1803. }
  1804. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1805. {
  1806. int ret;
  1807. struct btrfs_root *gang[8];
  1808. int i;
  1809. while (!list_empty(&fs_info->dead_roots)) {
  1810. gang[0] = list_entry(fs_info->dead_roots.next,
  1811. struct btrfs_root, root_list);
  1812. list_del(&gang[0]->root_list);
  1813. if (gang[0]->in_radix) {
  1814. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1815. } else {
  1816. free_extent_buffer(gang[0]->node);
  1817. free_extent_buffer(gang[0]->commit_root);
  1818. btrfs_put_fs_root(gang[0]);
  1819. }
  1820. }
  1821. while (1) {
  1822. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1823. (void **)gang, 0,
  1824. ARRAY_SIZE(gang));
  1825. if (!ret)
  1826. break;
  1827. for (i = 0; i < ret; i++)
  1828. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1829. }
  1830. }
  1831. int open_ctree(struct super_block *sb,
  1832. struct btrfs_fs_devices *fs_devices,
  1833. char *options)
  1834. {
  1835. u32 sectorsize;
  1836. u32 nodesize;
  1837. u32 leafsize;
  1838. u32 blocksize;
  1839. u32 stripesize;
  1840. u64 generation;
  1841. u64 features;
  1842. struct btrfs_key location;
  1843. struct buffer_head *bh;
  1844. struct btrfs_super_block *disk_super;
  1845. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1846. struct btrfs_root *tree_root;
  1847. struct btrfs_root *extent_root;
  1848. struct btrfs_root *csum_root;
  1849. struct btrfs_root *chunk_root;
  1850. struct btrfs_root *dev_root;
  1851. struct btrfs_root *quota_root;
  1852. struct btrfs_root *uuid_root;
  1853. struct btrfs_root *log_tree_root;
  1854. int ret;
  1855. int err = -EINVAL;
  1856. int num_backups_tried = 0;
  1857. int backup_index = 0;
  1858. bool create_uuid_tree;
  1859. bool check_uuid_tree;
  1860. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1861. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1862. if (!tree_root || !chunk_root) {
  1863. err = -ENOMEM;
  1864. goto fail;
  1865. }
  1866. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1867. if (ret) {
  1868. err = ret;
  1869. goto fail;
  1870. }
  1871. ret = setup_bdi(fs_info, &fs_info->bdi);
  1872. if (ret) {
  1873. err = ret;
  1874. goto fail_srcu;
  1875. }
  1876. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1877. if (ret) {
  1878. err = ret;
  1879. goto fail_bdi;
  1880. }
  1881. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1882. (1 + ilog2(nr_cpu_ids));
  1883. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1884. if (ret) {
  1885. err = ret;
  1886. goto fail_dirty_metadata_bytes;
  1887. }
  1888. fs_info->btree_inode = new_inode(sb);
  1889. if (!fs_info->btree_inode) {
  1890. err = -ENOMEM;
  1891. goto fail_delalloc_bytes;
  1892. }
  1893. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1894. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1895. INIT_LIST_HEAD(&fs_info->trans_list);
  1896. INIT_LIST_HEAD(&fs_info->dead_roots);
  1897. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1898. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1899. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1900. spin_lock_init(&fs_info->delalloc_root_lock);
  1901. spin_lock_init(&fs_info->trans_lock);
  1902. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1903. spin_lock_init(&fs_info->delayed_iput_lock);
  1904. spin_lock_init(&fs_info->defrag_inodes_lock);
  1905. spin_lock_init(&fs_info->free_chunk_lock);
  1906. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1907. spin_lock_init(&fs_info->super_lock);
  1908. rwlock_init(&fs_info->tree_mod_log_lock);
  1909. mutex_init(&fs_info->reloc_mutex);
  1910. seqlock_init(&fs_info->profiles_lock);
  1911. init_completion(&fs_info->kobj_unregister);
  1912. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1913. INIT_LIST_HEAD(&fs_info->space_info);
  1914. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1915. btrfs_mapping_init(&fs_info->mapping_tree);
  1916. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1917. BTRFS_BLOCK_RSV_GLOBAL);
  1918. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1919. BTRFS_BLOCK_RSV_DELALLOC);
  1920. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1921. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1922. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1923. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1924. BTRFS_BLOCK_RSV_DELOPS);
  1925. atomic_set(&fs_info->nr_async_submits, 0);
  1926. atomic_set(&fs_info->async_delalloc_pages, 0);
  1927. atomic_set(&fs_info->async_submit_draining, 0);
  1928. atomic_set(&fs_info->nr_async_bios, 0);
  1929. atomic_set(&fs_info->defrag_running, 0);
  1930. atomic64_set(&fs_info->tree_mod_seq, 0);
  1931. fs_info->sb = sb;
  1932. fs_info->max_inline = 8192 * 1024;
  1933. fs_info->metadata_ratio = 0;
  1934. fs_info->defrag_inodes = RB_ROOT;
  1935. fs_info->free_chunk_space = 0;
  1936. fs_info->tree_mod_log = RB_ROOT;
  1937. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1938. /* readahead state */
  1939. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1940. spin_lock_init(&fs_info->reada_lock);
  1941. fs_info->thread_pool_size = min_t(unsigned long,
  1942. num_online_cpus() + 2, 8);
  1943. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1944. spin_lock_init(&fs_info->ordered_root_lock);
  1945. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1946. GFP_NOFS);
  1947. if (!fs_info->delayed_root) {
  1948. err = -ENOMEM;
  1949. goto fail_iput;
  1950. }
  1951. btrfs_init_delayed_root(fs_info->delayed_root);
  1952. mutex_init(&fs_info->scrub_lock);
  1953. atomic_set(&fs_info->scrubs_running, 0);
  1954. atomic_set(&fs_info->scrub_pause_req, 0);
  1955. atomic_set(&fs_info->scrubs_paused, 0);
  1956. atomic_set(&fs_info->scrub_cancel_req, 0);
  1957. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1958. init_rwsem(&fs_info->scrub_super_lock);
  1959. fs_info->scrub_workers_refcnt = 0;
  1960. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1961. fs_info->check_integrity_print_mask = 0;
  1962. #endif
  1963. spin_lock_init(&fs_info->balance_lock);
  1964. mutex_init(&fs_info->balance_mutex);
  1965. atomic_set(&fs_info->balance_running, 0);
  1966. atomic_set(&fs_info->balance_pause_req, 0);
  1967. atomic_set(&fs_info->balance_cancel_req, 0);
  1968. fs_info->balance_ctl = NULL;
  1969. init_waitqueue_head(&fs_info->balance_wait_q);
  1970. sb->s_blocksize = 4096;
  1971. sb->s_blocksize_bits = blksize_bits(4096);
  1972. sb->s_bdi = &fs_info->bdi;
  1973. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1974. set_nlink(fs_info->btree_inode, 1);
  1975. /*
  1976. * we set the i_size on the btree inode to the max possible int.
  1977. * the real end of the address space is determined by all of
  1978. * the devices in the system
  1979. */
  1980. fs_info->btree_inode->i_size = OFFSET_MAX;
  1981. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1982. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1983. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1984. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1985. fs_info->btree_inode->i_mapping);
  1986. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1987. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1988. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1989. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1990. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1991. sizeof(struct btrfs_key));
  1992. set_bit(BTRFS_INODE_DUMMY,
  1993. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1994. insert_inode_hash(fs_info->btree_inode);
  1995. spin_lock_init(&fs_info->block_group_cache_lock);
  1996. fs_info->block_group_cache_tree = RB_ROOT;
  1997. fs_info->first_logical_byte = (u64)-1;
  1998. extent_io_tree_init(&fs_info->freed_extents[0],
  1999. fs_info->btree_inode->i_mapping);
  2000. extent_io_tree_init(&fs_info->freed_extents[1],
  2001. fs_info->btree_inode->i_mapping);
  2002. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2003. fs_info->do_barriers = 1;
  2004. mutex_init(&fs_info->ordered_operations_mutex);
  2005. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2006. mutex_init(&fs_info->tree_log_mutex);
  2007. mutex_init(&fs_info->chunk_mutex);
  2008. mutex_init(&fs_info->transaction_kthread_mutex);
  2009. mutex_init(&fs_info->cleaner_mutex);
  2010. mutex_init(&fs_info->volume_mutex);
  2011. init_rwsem(&fs_info->extent_commit_sem);
  2012. init_rwsem(&fs_info->cleanup_work_sem);
  2013. init_rwsem(&fs_info->subvol_sem);
  2014. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2015. fs_info->dev_replace.lock_owner = 0;
  2016. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2017. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2018. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2019. mutex_init(&fs_info->dev_replace.lock);
  2020. spin_lock_init(&fs_info->qgroup_lock);
  2021. mutex_init(&fs_info->qgroup_ioctl_lock);
  2022. fs_info->qgroup_tree = RB_ROOT;
  2023. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2024. fs_info->qgroup_seq = 1;
  2025. fs_info->quota_enabled = 0;
  2026. fs_info->pending_quota_state = 0;
  2027. fs_info->qgroup_ulist = NULL;
  2028. mutex_init(&fs_info->qgroup_rescan_lock);
  2029. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2030. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2031. init_waitqueue_head(&fs_info->transaction_throttle);
  2032. init_waitqueue_head(&fs_info->transaction_wait);
  2033. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2034. init_waitqueue_head(&fs_info->async_submit_wait);
  2035. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2036. if (ret) {
  2037. err = ret;
  2038. goto fail_alloc;
  2039. }
  2040. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2041. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2042. invalidate_bdev(fs_devices->latest_bdev);
  2043. /*
  2044. * Read super block and check the signature bytes only
  2045. */
  2046. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2047. if (!bh) {
  2048. err = -EINVAL;
  2049. goto fail_alloc;
  2050. }
  2051. /*
  2052. * We want to check superblock checksum, the type is stored inside.
  2053. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2054. */
  2055. if (btrfs_check_super_csum(bh->b_data)) {
  2056. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2057. err = -EINVAL;
  2058. goto fail_alloc;
  2059. }
  2060. /*
  2061. * super_copy is zeroed at allocation time and we never touch the
  2062. * following bytes up to INFO_SIZE, the checksum is calculated from
  2063. * the whole block of INFO_SIZE
  2064. */
  2065. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2066. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2067. sizeof(*fs_info->super_for_commit));
  2068. brelse(bh);
  2069. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2070. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2071. if (ret) {
  2072. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2073. err = -EINVAL;
  2074. goto fail_alloc;
  2075. }
  2076. disk_super = fs_info->super_copy;
  2077. if (!btrfs_super_root(disk_super))
  2078. goto fail_alloc;
  2079. /* check FS state, whether FS is broken. */
  2080. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2081. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2082. /*
  2083. * run through our array of backup supers and setup
  2084. * our ring pointer to the oldest one
  2085. */
  2086. generation = btrfs_super_generation(disk_super);
  2087. find_oldest_super_backup(fs_info, generation);
  2088. /*
  2089. * In the long term, we'll store the compression type in the super
  2090. * block, and it'll be used for per file compression control.
  2091. */
  2092. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2093. ret = btrfs_parse_options(tree_root, options);
  2094. if (ret) {
  2095. err = ret;
  2096. goto fail_alloc;
  2097. }
  2098. features = btrfs_super_incompat_flags(disk_super) &
  2099. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2100. if (features) {
  2101. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2102. "unsupported optional features (%Lx).\n",
  2103. (unsigned long long)features);
  2104. err = -EINVAL;
  2105. goto fail_alloc;
  2106. }
  2107. if (btrfs_super_leafsize(disk_super) !=
  2108. btrfs_super_nodesize(disk_super)) {
  2109. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2110. "blocksizes don't match. node %d leaf %d\n",
  2111. btrfs_super_nodesize(disk_super),
  2112. btrfs_super_leafsize(disk_super));
  2113. err = -EINVAL;
  2114. goto fail_alloc;
  2115. }
  2116. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2117. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2118. "blocksize (%d) was too large\n",
  2119. btrfs_super_leafsize(disk_super));
  2120. err = -EINVAL;
  2121. goto fail_alloc;
  2122. }
  2123. features = btrfs_super_incompat_flags(disk_super);
  2124. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2125. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2126. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2127. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2128. printk(KERN_ERR "btrfs: has skinny extents\n");
  2129. /*
  2130. * flag our filesystem as having big metadata blocks if
  2131. * they are bigger than the page size
  2132. */
  2133. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2134. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2135. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2136. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2137. }
  2138. nodesize = btrfs_super_nodesize(disk_super);
  2139. leafsize = btrfs_super_leafsize(disk_super);
  2140. sectorsize = btrfs_super_sectorsize(disk_super);
  2141. stripesize = btrfs_super_stripesize(disk_super);
  2142. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2143. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2144. /*
  2145. * mixed block groups end up with duplicate but slightly offset
  2146. * extent buffers for the same range. It leads to corruptions
  2147. */
  2148. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2149. (sectorsize != leafsize)) {
  2150. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2151. "are not allowed for mixed block groups on %s\n",
  2152. sb->s_id);
  2153. goto fail_alloc;
  2154. }
  2155. /*
  2156. * Needn't use the lock because there is no other task which will
  2157. * update the flag.
  2158. */
  2159. btrfs_set_super_incompat_flags(disk_super, features);
  2160. features = btrfs_super_compat_ro_flags(disk_super) &
  2161. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2162. if (!(sb->s_flags & MS_RDONLY) && features) {
  2163. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2164. "unsupported option features (%Lx).\n",
  2165. (unsigned long long)features);
  2166. err = -EINVAL;
  2167. goto fail_alloc;
  2168. }
  2169. btrfs_init_workers(&fs_info->generic_worker,
  2170. "genwork", 1, NULL);
  2171. btrfs_init_workers(&fs_info->workers, "worker",
  2172. fs_info->thread_pool_size,
  2173. &fs_info->generic_worker);
  2174. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2175. fs_info->thread_pool_size,
  2176. &fs_info->generic_worker);
  2177. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2178. fs_info->thread_pool_size,
  2179. &fs_info->generic_worker);
  2180. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2181. min_t(u64, fs_devices->num_devices,
  2182. fs_info->thread_pool_size),
  2183. &fs_info->generic_worker);
  2184. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2185. 2, &fs_info->generic_worker);
  2186. /* a higher idle thresh on the submit workers makes it much more
  2187. * likely that bios will be send down in a sane order to the
  2188. * devices
  2189. */
  2190. fs_info->submit_workers.idle_thresh = 64;
  2191. fs_info->workers.idle_thresh = 16;
  2192. fs_info->workers.ordered = 1;
  2193. fs_info->delalloc_workers.idle_thresh = 2;
  2194. fs_info->delalloc_workers.ordered = 1;
  2195. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2196. &fs_info->generic_worker);
  2197. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2198. fs_info->thread_pool_size,
  2199. &fs_info->generic_worker);
  2200. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2201. fs_info->thread_pool_size,
  2202. &fs_info->generic_worker);
  2203. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2204. "endio-meta-write", fs_info->thread_pool_size,
  2205. &fs_info->generic_worker);
  2206. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2207. "endio-raid56", fs_info->thread_pool_size,
  2208. &fs_info->generic_worker);
  2209. btrfs_init_workers(&fs_info->rmw_workers,
  2210. "rmw", fs_info->thread_pool_size,
  2211. &fs_info->generic_worker);
  2212. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2213. fs_info->thread_pool_size,
  2214. &fs_info->generic_worker);
  2215. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2216. 1, &fs_info->generic_worker);
  2217. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2218. fs_info->thread_pool_size,
  2219. &fs_info->generic_worker);
  2220. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2221. fs_info->thread_pool_size,
  2222. &fs_info->generic_worker);
  2223. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2224. &fs_info->generic_worker);
  2225. /*
  2226. * endios are largely parallel and should have a very
  2227. * low idle thresh
  2228. */
  2229. fs_info->endio_workers.idle_thresh = 4;
  2230. fs_info->endio_meta_workers.idle_thresh = 4;
  2231. fs_info->endio_raid56_workers.idle_thresh = 4;
  2232. fs_info->rmw_workers.idle_thresh = 2;
  2233. fs_info->endio_write_workers.idle_thresh = 2;
  2234. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2235. fs_info->readahead_workers.idle_thresh = 2;
  2236. /*
  2237. * btrfs_start_workers can really only fail because of ENOMEM so just
  2238. * return -ENOMEM if any of these fail.
  2239. */
  2240. ret = btrfs_start_workers(&fs_info->workers);
  2241. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2242. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2243. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2244. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2245. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2246. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2247. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2248. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2249. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2250. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2251. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2252. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2253. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2254. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2255. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2256. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2257. if (ret) {
  2258. err = -ENOMEM;
  2259. goto fail_sb_buffer;
  2260. }
  2261. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2262. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2263. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2264. tree_root->nodesize = nodesize;
  2265. tree_root->leafsize = leafsize;
  2266. tree_root->sectorsize = sectorsize;
  2267. tree_root->stripesize = stripesize;
  2268. sb->s_blocksize = sectorsize;
  2269. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2270. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2271. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2272. goto fail_sb_buffer;
  2273. }
  2274. if (sectorsize != PAGE_SIZE) {
  2275. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2276. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2277. goto fail_sb_buffer;
  2278. }
  2279. mutex_lock(&fs_info->chunk_mutex);
  2280. ret = btrfs_read_sys_array(tree_root);
  2281. mutex_unlock(&fs_info->chunk_mutex);
  2282. if (ret) {
  2283. printk(KERN_WARNING "btrfs: failed to read the system "
  2284. "array on %s\n", sb->s_id);
  2285. goto fail_sb_buffer;
  2286. }
  2287. blocksize = btrfs_level_size(tree_root,
  2288. btrfs_super_chunk_root_level(disk_super));
  2289. generation = btrfs_super_chunk_root_generation(disk_super);
  2290. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2291. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2292. chunk_root->node = read_tree_block(chunk_root,
  2293. btrfs_super_chunk_root(disk_super),
  2294. blocksize, generation);
  2295. if (!chunk_root->node ||
  2296. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2297. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2298. sb->s_id);
  2299. goto fail_tree_roots;
  2300. }
  2301. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2302. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2303. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2304. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2305. BTRFS_UUID_SIZE);
  2306. ret = btrfs_read_chunk_tree(chunk_root);
  2307. if (ret) {
  2308. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2309. sb->s_id);
  2310. goto fail_tree_roots;
  2311. }
  2312. /*
  2313. * keep the device that is marked to be the target device for the
  2314. * dev_replace procedure
  2315. */
  2316. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2317. if (!fs_devices->latest_bdev) {
  2318. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2319. sb->s_id);
  2320. goto fail_tree_roots;
  2321. }
  2322. retry_root_backup:
  2323. blocksize = btrfs_level_size(tree_root,
  2324. btrfs_super_root_level(disk_super));
  2325. generation = btrfs_super_generation(disk_super);
  2326. tree_root->node = read_tree_block(tree_root,
  2327. btrfs_super_root(disk_super),
  2328. blocksize, generation);
  2329. if (!tree_root->node ||
  2330. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2331. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2332. sb->s_id);
  2333. goto recovery_tree_root;
  2334. }
  2335. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2336. tree_root->commit_root = btrfs_root_node(tree_root);
  2337. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2338. location.type = BTRFS_ROOT_ITEM_KEY;
  2339. location.offset = 0;
  2340. extent_root = btrfs_read_tree_root(tree_root, &location);
  2341. if (IS_ERR(extent_root)) {
  2342. ret = PTR_ERR(extent_root);
  2343. goto recovery_tree_root;
  2344. }
  2345. extent_root->track_dirty = 1;
  2346. fs_info->extent_root = extent_root;
  2347. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2348. dev_root = btrfs_read_tree_root(tree_root, &location);
  2349. if (IS_ERR(dev_root)) {
  2350. ret = PTR_ERR(dev_root);
  2351. goto recovery_tree_root;
  2352. }
  2353. dev_root->track_dirty = 1;
  2354. fs_info->dev_root = dev_root;
  2355. btrfs_init_devices_late(fs_info);
  2356. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2357. csum_root = btrfs_read_tree_root(tree_root, &location);
  2358. if (IS_ERR(csum_root)) {
  2359. ret = PTR_ERR(csum_root);
  2360. goto recovery_tree_root;
  2361. }
  2362. csum_root->track_dirty = 1;
  2363. fs_info->csum_root = csum_root;
  2364. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2365. quota_root = btrfs_read_tree_root(tree_root, &location);
  2366. if (!IS_ERR(quota_root)) {
  2367. quota_root->track_dirty = 1;
  2368. fs_info->quota_enabled = 1;
  2369. fs_info->pending_quota_state = 1;
  2370. fs_info->quota_root = quota_root;
  2371. }
  2372. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2373. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2374. if (IS_ERR(uuid_root)) {
  2375. ret = PTR_ERR(uuid_root);
  2376. if (ret != -ENOENT)
  2377. goto recovery_tree_root;
  2378. create_uuid_tree = true;
  2379. check_uuid_tree = false;
  2380. } else {
  2381. uuid_root->track_dirty = 1;
  2382. fs_info->uuid_root = uuid_root;
  2383. create_uuid_tree = false;
  2384. check_uuid_tree =
  2385. generation != btrfs_super_uuid_tree_generation(disk_super);
  2386. }
  2387. fs_info->generation = generation;
  2388. fs_info->last_trans_committed = generation;
  2389. ret = btrfs_recover_balance(fs_info);
  2390. if (ret) {
  2391. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2392. goto fail_block_groups;
  2393. }
  2394. ret = btrfs_init_dev_stats(fs_info);
  2395. if (ret) {
  2396. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2397. ret);
  2398. goto fail_block_groups;
  2399. }
  2400. ret = btrfs_init_dev_replace(fs_info);
  2401. if (ret) {
  2402. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2403. goto fail_block_groups;
  2404. }
  2405. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2406. ret = btrfs_init_space_info(fs_info);
  2407. if (ret) {
  2408. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2409. goto fail_block_groups;
  2410. }
  2411. ret = btrfs_read_block_groups(extent_root);
  2412. if (ret) {
  2413. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2414. goto fail_block_groups;
  2415. }
  2416. fs_info->num_tolerated_disk_barrier_failures =
  2417. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2418. if (fs_info->fs_devices->missing_devices >
  2419. fs_info->num_tolerated_disk_barrier_failures &&
  2420. !(sb->s_flags & MS_RDONLY)) {
  2421. printk(KERN_WARNING
  2422. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2423. goto fail_block_groups;
  2424. }
  2425. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2426. "btrfs-cleaner");
  2427. if (IS_ERR(fs_info->cleaner_kthread))
  2428. goto fail_block_groups;
  2429. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2430. tree_root,
  2431. "btrfs-transaction");
  2432. if (IS_ERR(fs_info->transaction_kthread))
  2433. goto fail_cleaner;
  2434. if (!btrfs_test_opt(tree_root, SSD) &&
  2435. !btrfs_test_opt(tree_root, NOSSD) &&
  2436. !fs_info->fs_devices->rotating) {
  2437. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2438. "mode\n");
  2439. btrfs_set_opt(fs_info->mount_opt, SSD);
  2440. }
  2441. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2442. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2443. ret = btrfsic_mount(tree_root, fs_devices,
  2444. btrfs_test_opt(tree_root,
  2445. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2446. 1 : 0,
  2447. fs_info->check_integrity_print_mask);
  2448. if (ret)
  2449. printk(KERN_WARNING "btrfs: failed to initialize"
  2450. " integrity check module %s\n", sb->s_id);
  2451. }
  2452. #endif
  2453. ret = btrfs_read_qgroup_config(fs_info);
  2454. if (ret)
  2455. goto fail_trans_kthread;
  2456. /* do not make disk changes in broken FS */
  2457. if (btrfs_super_log_root(disk_super) != 0) {
  2458. u64 bytenr = btrfs_super_log_root(disk_super);
  2459. if (fs_devices->rw_devices == 0) {
  2460. printk(KERN_WARNING "Btrfs log replay required "
  2461. "on RO media\n");
  2462. err = -EIO;
  2463. goto fail_qgroup;
  2464. }
  2465. blocksize =
  2466. btrfs_level_size(tree_root,
  2467. btrfs_super_log_root_level(disk_super));
  2468. log_tree_root = btrfs_alloc_root(fs_info);
  2469. if (!log_tree_root) {
  2470. err = -ENOMEM;
  2471. goto fail_qgroup;
  2472. }
  2473. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2474. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2475. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2476. blocksize,
  2477. generation + 1);
  2478. if (!log_tree_root->node ||
  2479. !extent_buffer_uptodate(log_tree_root->node)) {
  2480. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2481. free_extent_buffer(log_tree_root->node);
  2482. kfree(log_tree_root);
  2483. goto fail_trans_kthread;
  2484. }
  2485. /* returns with log_tree_root freed on success */
  2486. ret = btrfs_recover_log_trees(log_tree_root);
  2487. if (ret) {
  2488. btrfs_error(tree_root->fs_info, ret,
  2489. "Failed to recover log tree");
  2490. free_extent_buffer(log_tree_root->node);
  2491. kfree(log_tree_root);
  2492. goto fail_trans_kthread;
  2493. }
  2494. if (sb->s_flags & MS_RDONLY) {
  2495. ret = btrfs_commit_super(tree_root);
  2496. if (ret)
  2497. goto fail_trans_kthread;
  2498. }
  2499. }
  2500. ret = btrfs_find_orphan_roots(tree_root);
  2501. if (ret)
  2502. goto fail_trans_kthread;
  2503. if (!(sb->s_flags & MS_RDONLY)) {
  2504. ret = btrfs_cleanup_fs_roots(fs_info);
  2505. if (ret)
  2506. goto fail_trans_kthread;
  2507. ret = btrfs_recover_relocation(tree_root);
  2508. if (ret < 0) {
  2509. printk(KERN_WARNING
  2510. "btrfs: failed to recover relocation\n");
  2511. err = -EINVAL;
  2512. goto fail_qgroup;
  2513. }
  2514. }
  2515. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2516. location.type = BTRFS_ROOT_ITEM_KEY;
  2517. location.offset = 0;
  2518. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2519. if (IS_ERR(fs_info->fs_root)) {
  2520. err = PTR_ERR(fs_info->fs_root);
  2521. goto fail_qgroup;
  2522. }
  2523. if (sb->s_flags & MS_RDONLY)
  2524. return 0;
  2525. down_read(&fs_info->cleanup_work_sem);
  2526. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2527. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2528. up_read(&fs_info->cleanup_work_sem);
  2529. close_ctree(tree_root);
  2530. return ret;
  2531. }
  2532. up_read(&fs_info->cleanup_work_sem);
  2533. ret = btrfs_resume_balance_async(fs_info);
  2534. if (ret) {
  2535. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2536. close_ctree(tree_root);
  2537. return ret;
  2538. }
  2539. ret = btrfs_resume_dev_replace_async(fs_info);
  2540. if (ret) {
  2541. pr_warn("btrfs: failed to resume dev_replace\n");
  2542. close_ctree(tree_root);
  2543. return ret;
  2544. }
  2545. btrfs_qgroup_rescan_resume(fs_info);
  2546. if (create_uuid_tree) {
  2547. pr_info("btrfs: creating UUID tree\n");
  2548. ret = btrfs_create_uuid_tree(fs_info);
  2549. if (ret) {
  2550. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2551. ret);
  2552. close_ctree(tree_root);
  2553. return ret;
  2554. }
  2555. } else if (check_uuid_tree ||
  2556. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2557. pr_info("btrfs: checking UUID tree\n");
  2558. ret = btrfs_check_uuid_tree(fs_info);
  2559. if (ret) {
  2560. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2561. ret);
  2562. close_ctree(tree_root);
  2563. return ret;
  2564. }
  2565. } else {
  2566. fs_info->update_uuid_tree_gen = 1;
  2567. }
  2568. return 0;
  2569. fail_qgroup:
  2570. btrfs_free_qgroup_config(fs_info);
  2571. fail_trans_kthread:
  2572. kthread_stop(fs_info->transaction_kthread);
  2573. btrfs_cleanup_transaction(fs_info->tree_root);
  2574. del_fs_roots(fs_info);
  2575. fail_cleaner:
  2576. kthread_stop(fs_info->cleaner_kthread);
  2577. /*
  2578. * make sure we're done with the btree inode before we stop our
  2579. * kthreads
  2580. */
  2581. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2582. fail_block_groups:
  2583. btrfs_put_block_group_cache(fs_info);
  2584. btrfs_free_block_groups(fs_info);
  2585. fail_tree_roots:
  2586. free_root_pointers(fs_info, 1);
  2587. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2588. fail_sb_buffer:
  2589. btrfs_stop_all_workers(fs_info);
  2590. fail_alloc:
  2591. fail_iput:
  2592. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2593. iput(fs_info->btree_inode);
  2594. fail_delalloc_bytes:
  2595. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2596. fail_dirty_metadata_bytes:
  2597. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2598. fail_bdi:
  2599. bdi_destroy(&fs_info->bdi);
  2600. fail_srcu:
  2601. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2602. fail:
  2603. btrfs_free_stripe_hash_table(fs_info);
  2604. btrfs_close_devices(fs_info->fs_devices);
  2605. return err;
  2606. recovery_tree_root:
  2607. if (!btrfs_test_opt(tree_root, RECOVERY))
  2608. goto fail_tree_roots;
  2609. free_root_pointers(fs_info, 0);
  2610. /* don't use the log in recovery mode, it won't be valid */
  2611. btrfs_set_super_log_root(disk_super, 0);
  2612. /* we can't trust the free space cache either */
  2613. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2614. ret = next_root_backup(fs_info, fs_info->super_copy,
  2615. &num_backups_tried, &backup_index);
  2616. if (ret == -1)
  2617. goto fail_block_groups;
  2618. goto retry_root_backup;
  2619. }
  2620. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2621. {
  2622. if (uptodate) {
  2623. set_buffer_uptodate(bh);
  2624. } else {
  2625. struct btrfs_device *device = (struct btrfs_device *)
  2626. bh->b_private;
  2627. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2628. "I/O error on %s\n",
  2629. rcu_str_deref(device->name));
  2630. /* note, we dont' set_buffer_write_io_error because we have
  2631. * our own ways of dealing with the IO errors
  2632. */
  2633. clear_buffer_uptodate(bh);
  2634. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2635. }
  2636. unlock_buffer(bh);
  2637. put_bh(bh);
  2638. }
  2639. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2640. {
  2641. struct buffer_head *bh;
  2642. struct buffer_head *latest = NULL;
  2643. struct btrfs_super_block *super;
  2644. int i;
  2645. u64 transid = 0;
  2646. u64 bytenr;
  2647. /* we would like to check all the supers, but that would make
  2648. * a btrfs mount succeed after a mkfs from a different FS.
  2649. * So, we need to add a special mount option to scan for
  2650. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2651. */
  2652. for (i = 0; i < 1; i++) {
  2653. bytenr = btrfs_sb_offset(i);
  2654. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2655. i_size_read(bdev->bd_inode))
  2656. break;
  2657. bh = __bread(bdev, bytenr / 4096,
  2658. BTRFS_SUPER_INFO_SIZE);
  2659. if (!bh)
  2660. continue;
  2661. super = (struct btrfs_super_block *)bh->b_data;
  2662. if (btrfs_super_bytenr(super) != bytenr ||
  2663. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2664. brelse(bh);
  2665. continue;
  2666. }
  2667. if (!latest || btrfs_super_generation(super) > transid) {
  2668. brelse(latest);
  2669. latest = bh;
  2670. transid = btrfs_super_generation(super);
  2671. } else {
  2672. brelse(bh);
  2673. }
  2674. }
  2675. return latest;
  2676. }
  2677. /*
  2678. * this should be called twice, once with wait == 0 and
  2679. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2680. * we write are pinned.
  2681. *
  2682. * They are released when wait == 1 is done.
  2683. * max_mirrors must be the same for both runs, and it indicates how
  2684. * many supers on this one device should be written.
  2685. *
  2686. * max_mirrors == 0 means to write them all.
  2687. */
  2688. static int write_dev_supers(struct btrfs_device *device,
  2689. struct btrfs_super_block *sb,
  2690. int do_barriers, int wait, int max_mirrors)
  2691. {
  2692. struct buffer_head *bh;
  2693. int i;
  2694. int ret;
  2695. int errors = 0;
  2696. u32 crc;
  2697. u64 bytenr;
  2698. if (max_mirrors == 0)
  2699. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2700. for (i = 0; i < max_mirrors; i++) {
  2701. bytenr = btrfs_sb_offset(i);
  2702. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2703. break;
  2704. if (wait) {
  2705. bh = __find_get_block(device->bdev, bytenr / 4096,
  2706. BTRFS_SUPER_INFO_SIZE);
  2707. if (!bh) {
  2708. errors++;
  2709. continue;
  2710. }
  2711. wait_on_buffer(bh);
  2712. if (!buffer_uptodate(bh))
  2713. errors++;
  2714. /* drop our reference */
  2715. brelse(bh);
  2716. /* drop the reference from the wait == 0 run */
  2717. brelse(bh);
  2718. continue;
  2719. } else {
  2720. btrfs_set_super_bytenr(sb, bytenr);
  2721. crc = ~(u32)0;
  2722. crc = btrfs_csum_data((char *)sb +
  2723. BTRFS_CSUM_SIZE, crc,
  2724. BTRFS_SUPER_INFO_SIZE -
  2725. BTRFS_CSUM_SIZE);
  2726. btrfs_csum_final(crc, sb->csum);
  2727. /*
  2728. * one reference for us, and we leave it for the
  2729. * caller
  2730. */
  2731. bh = __getblk(device->bdev, bytenr / 4096,
  2732. BTRFS_SUPER_INFO_SIZE);
  2733. if (!bh) {
  2734. printk(KERN_ERR "btrfs: couldn't get super "
  2735. "buffer head for bytenr %Lu\n", bytenr);
  2736. errors++;
  2737. continue;
  2738. }
  2739. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2740. /* one reference for submit_bh */
  2741. get_bh(bh);
  2742. set_buffer_uptodate(bh);
  2743. lock_buffer(bh);
  2744. bh->b_end_io = btrfs_end_buffer_write_sync;
  2745. bh->b_private = device;
  2746. }
  2747. /*
  2748. * we fua the first super. The others we allow
  2749. * to go down lazy.
  2750. */
  2751. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2752. if (ret)
  2753. errors++;
  2754. }
  2755. return errors < i ? 0 : -1;
  2756. }
  2757. /*
  2758. * endio for the write_dev_flush, this will wake anyone waiting
  2759. * for the barrier when it is done
  2760. */
  2761. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2762. {
  2763. if (err) {
  2764. if (err == -EOPNOTSUPP)
  2765. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2766. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2767. }
  2768. if (bio->bi_private)
  2769. complete(bio->bi_private);
  2770. bio_put(bio);
  2771. }
  2772. /*
  2773. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2774. * sent down. With wait == 1, it waits for the previous flush.
  2775. *
  2776. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2777. * capable
  2778. */
  2779. static int write_dev_flush(struct btrfs_device *device, int wait)
  2780. {
  2781. struct bio *bio;
  2782. int ret = 0;
  2783. if (device->nobarriers)
  2784. return 0;
  2785. if (wait) {
  2786. bio = device->flush_bio;
  2787. if (!bio)
  2788. return 0;
  2789. wait_for_completion(&device->flush_wait);
  2790. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2791. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2792. rcu_str_deref(device->name));
  2793. device->nobarriers = 1;
  2794. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2795. ret = -EIO;
  2796. btrfs_dev_stat_inc_and_print(device,
  2797. BTRFS_DEV_STAT_FLUSH_ERRS);
  2798. }
  2799. /* drop the reference from the wait == 0 run */
  2800. bio_put(bio);
  2801. device->flush_bio = NULL;
  2802. return ret;
  2803. }
  2804. /*
  2805. * one reference for us, and we leave it for the
  2806. * caller
  2807. */
  2808. device->flush_bio = NULL;
  2809. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2810. if (!bio)
  2811. return -ENOMEM;
  2812. bio->bi_end_io = btrfs_end_empty_barrier;
  2813. bio->bi_bdev = device->bdev;
  2814. init_completion(&device->flush_wait);
  2815. bio->bi_private = &device->flush_wait;
  2816. device->flush_bio = bio;
  2817. bio_get(bio);
  2818. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2819. return 0;
  2820. }
  2821. /*
  2822. * send an empty flush down to each device in parallel,
  2823. * then wait for them
  2824. */
  2825. static int barrier_all_devices(struct btrfs_fs_info *info)
  2826. {
  2827. struct list_head *head;
  2828. struct btrfs_device *dev;
  2829. int errors_send = 0;
  2830. int errors_wait = 0;
  2831. int ret;
  2832. /* send down all the barriers */
  2833. head = &info->fs_devices->devices;
  2834. list_for_each_entry_rcu(dev, head, dev_list) {
  2835. if (!dev->bdev) {
  2836. errors_send++;
  2837. continue;
  2838. }
  2839. if (!dev->in_fs_metadata || !dev->writeable)
  2840. continue;
  2841. ret = write_dev_flush(dev, 0);
  2842. if (ret)
  2843. errors_send++;
  2844. }
  2845. /* wait for all the barriers */
  2846. list_for_each_entry_rcu(dev, head, dev_list) {
  2847. if (!dev->bdev) {
  2848. errors_wait++;
  2849. continue;
  2850. }
  2851. if (!dev->in_fs_metadata || !dev->writeable)
  2852. continue;
  2853. ret = write_dev_flush(dev, 1);
  2854. if (ret)
  2855. errors_wait++;
  2856. }
  2857. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2858. errors_wait > info->num_tolerated_disk_barrier_failures)
  2859. return -EIO;
  2860. return 0;
  2861. }
  2862. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2863. struct btrfs_fs_info *fs_info)
  2864. {
  2865. struct btrfs_ioctl_space_info space;
  2866. struct btrfs_space_info *sinfo;
  2867. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2868. BTRFS_BLOCK_GROUP_SYSTEM,
  2869. BTRFS_BLOCK_GROUP_METADATA,
  2870. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2871. int num_types = 4;
  2872. int i;
  2873. int c;
  2874. int num_tolerated_disk_barrier_failures =
  2875. (int)fs_info->fs_devices->num_devices;
  2876. for (i = 0; i < num_types; i++) {
  2877. struct btrfs_space_info *tmp;
  2878. sinfo = NULL;
  2879. rcu_read_lock();
  2880. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2881. if (tmp->flags == types[i]) {
  2882. sinfo = tmp;
  2883. break;
  2884. }
  2885. }
  2886. rcu_read_unlock();
  2887. if (!sinfo)
  2888. continue;
  2889. down_read(&sinfo->groups_sem);
  2890. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2891. if (!list_empty(&sinfo->block_groups[c])) {
  2892. u64 flags;
  2893. btrfs_get_block_group_info(
  2894. &sinfo->block_groups[c], &space);
  2895. if (space.total_bytes == 0 ||
  2896. space.used_bytes == 0)
  2897. continue;
  2898. flags = space.flags;
  2899. /*
  2900. * return
  2901. * 0: if dup, single or RAID0 is configured for
  2902. * any of metadata, system or data, else
  2903. * 1: if RAID5 is configured, or if RAID1 or
  2904. * RAID10 is configured and only two mirrors
  2905. * are used, else
  2906. * 2: if RAID6 is configured, else
  2907. * num_mirrors - 1: if RAID1 or RAID10 is
  2908. * configured and more than
  2909. * 2 mirrors are used.
  2910. */
  2911. if (num_tolerated_disk_barrier_failures > 0 &&
  2912. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2913. BTRFS_BLOCK_GROUP_RAID0)) ||
  2914. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2915. == 0)))
  2916. num_tolerated_disk_barrier_failures = 0;
  2917. else if (num_tolerated_disk_barrier_failures > 1) {
  2918. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2919. BTRFS_BLOCK_GROUP_RAID5 |
  2920. BTRFS_BLOCK_GROUP_RAID10)) {
  2921. num_tolerated_disk_barrier_failures = 1;
  2922. } else if (flags &
  2923. BTRFS_BLOCK_GROUP_RAID6) {
  2924. num_tolerated_disk_barrier_failures = 2;
  2925. }
  2926. }
  2927. }
  2928. }
  2929. up_read(&sinfo->groups_sem);
  2930. }
  2931. return num_tolerated_disk_barrier_failures;
  2932. }
  2933. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2934. {
  2935. struct list_head *head;
  2936. struct btrfs_device *dev;
  2937. struct btrfs_super_block *sb;
  2938. struct btrfs_dev_item *dev_item;
  2939. int ret;
  2940. int do_barriers;
  2941. int max_errors;
  2942. int total_errors = 0;
  2943. u64 flags;
  2944. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2945. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2946. backup_super_roots(root->fs_info);
  2947. sb = root->fs_info->super_for_commit;
  2948. dev_item = &sb->dev_item;
  2949. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2950. head = &root->fs_info->fs_devices->devices;
  2951. if (do_barriers) {
  2952. ret = barrier_all_devices(root->fs_info);
  2953. if (ret) {
  2954. mutex_unlock(
  2955. &root->fs_info->fs_devices->device_list_mutex);
  2956. btrfs_error(root->fs_info, ret,
  2957. "errors while submitting device barriers.");
  2958. return ret;
  2959. }
  2960. }
  2961. list_for_each_entry_rcu(dev, head, dev_list) {
  2962. if (!dev->bdev) {
  2963. total_errors++;
  2964. continue;
  2965. }
  2966. if (!dev->in_fs_metadata || !dev->writeable)
  2967. continue;
  2968. btrfs_set_stack_device_generation(dev_item, 0);
  2969. btrfs_set_stack_device_type(dev_item, dev->type);
  2970. btrfs_set_stack_device_id(dev_item, dev->devid);
  2971. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2972. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2973. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2974. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2975. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2976. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2977. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2978. flags = btrfs_super_flags(sb);
  2979. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2980. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2981. if (ret)
  2982. total_errors++;
  2983. }
  2984. if (total_errors > max_errors) {
  2985. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2986. total_errors);
  2987. /* This shouldn't happen. FUA is masked off if unsupported */
  2988. BUG();
  2989. }
  2990. total_errors = 0;
  2991. list_for_each_entry_rcu(dev, head, dev_list) {
  2992. if (!dev->bdev)
  2993. continue;
  2994. if (!dev->in_fs_metadata || !dev->writeable)
  2995. continue;
  2996. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2997. if (ret)
  2998. total_errors++;
  2999. }
  3000. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3001. if (total_errors > max_errors) {
  3002. btrfs_error(root->fs_info, -EIO,
  3003. "%d errors while writing supers", total_errors);
  3004. return -EIO;
  3005. }
  3006. return 0;
  3007. }
  3008. int write_ctree_super(struct btrfs_trans_handle *trans,
  3009. struct btrfs_root *root, int max_mirrors)
  3010. {
  3011. int ret;
  3012. ret = write_all_supers(root, max_mirrors);
  3013. return ret;
  3014. }
  3015. /* Drop a fs root from the radix tree and free it. */
  3016. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3017. struct btrfs_root *root)
  3018. {
  3019. spin_lock(&fs_info->fs_roots_radix_lock);
  3020. radix_tree_delete(&fs_info->fs_roots_radix,
  3021. (unsigned long)root->root_key.objectid);
  3022. spin_unlock(&fs_info->fs_roots_radix_lock);
  3023. if (btrfs_root_refs(&root->root_item) == 0)
  3024. synchronize_srcu(&fs_info->subvol_srcu);
  3025. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3026. btrfs_free_log(NULL, root);
  3027. btrfs_free_log_root_tree(NULL, fs_info);
  3028. }
  3029. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3030. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3031. free_fs_root(root);
  3032. }
  3033. static void free_fs_root(struct btrfs_root *root)
  3034. {
  3035. iput(root->cache_inode);
  3036. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3037. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3038. root->orphan_block_rsv = NULL;
  3039. if (root->anon_dev)
  3040. free_anon_bdev(root->anon_dev);
  3041. free_extent_buffer(root->node);
  3042. free_extent_buffer(root->commit_root);
  3043. kfree(root->free_ino_ctl);
  3044. kfree(root->free_ino_pinned);
  3045. kfree(root->name);
  3046. btrfs_put_fs_root(root);
  3047. }
  3048. void btrfs_free_fs_root(struct btrfs_root *root)
  3049. {
  3050. free_fs_root(root);
  3051. }
  3052. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3053. {
  3054. u64 root_objectid = 0;
  3055. struct btrfs_root *gang[8];
  3056. int i;
  3057. int ret;
  3058. while (1) {
  3059. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3060. (void **)gang, root_objectid,
  3061. ARRAY_SIZE(gang));
  3062. if (!ret)
  3063. break;
  3064. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3065. for (i = 0; i < ret; i++) {
  3066. int err;
  3067. root_objectid = gang[i]->root_key.objectid;
  3068. err = btrfs_orphan_cleanup(gang[i]);
  3069. if (err)
  3070. return err;
  3071. }
  3072. root_objectid++;
  3073. }
  3074. return 0;
  3075. }
  3076. int btrfs_commit_super(struct btrfs_root *root)
  3077. {
  3078. struct btrfs_trans_handle *trans;
  3079. int ret;
  3080. mutex_lock(&root->fs_info->cleaner_mutex);
  3081. btrfs_run_delayed_iputs(root);
  3082. mutex_unlock(&root->fs_info->cleaner_mutex);
  3083. wake_up_process(root->fs_info->cleaner_kthread);
  3084. /* wait until ongoing cleanup work done */
  3085. down_write(&root->fs_info->cleanup_work_sem);
  3086. up_write(&root->fs_info->cleanup_work_sem);
  3087. trans = btrfs_join_transaction(root);
  3088. if (IS_ERR(trans))
  3089. return PTR_ERR(trans);
  3090. ret = btrfs_commit_transaction(trans, root);
  3091. if (ret)
  3092. return ret;
  3093. /* run commit again to drop the original snapshot */
  3094. trans = btrfs_join_transaction(root);
  3095. if (IS_ERR(trans))
  3096. return PTR_ERR(trans);
  3097. ret = btrfs_commit_transaction(trans, root);
  3098. if (ret)
  3099. return ret;
  3100. ret = btrfs_write_and_wait_transaction(NULL, root);
  3101. if (ret) {
  3102. btrfs_error(root->fs_info, ret,
  3103. "Failed to sync btree inode to disk.");
  3104. return ret;
  3105. }
  3106. ret = write_ctree_super(NULL, root, 0);
  3107. return ret;
  3108. }
  3109. int close_ctree(struct btrfs_root *root)
  3110. {
  3111. struct btrfs_fs_info *fs_info = root->fs_info;
  3112. int ret;
  3113. fs_info->closing = 1;
  3114. smp_mb();
  3115. /* wait for the uuid_scan task to finish */
  3116. down(&fs_info->uuid_tree_rescan_sem);
  3117. /* avoid complains from lockdep et al., set sem back to initial state */
  3118. up(&fs_info->uuid_tree_rescan_sem);
  3119. /* pause restriper - we want to resume on mount */
  3120. btrfs_pause_balance(fs_info);
  3121. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3122. btrfs_scrub_cancel(fs_info);
  3123. /* wait for any defraggers to finish */
  3124. wait_event(fs_info->transaction_wait,
  3125. (atomic_read(&fs_info->defrag_running) == 0));
  3126. /* clear out the rbtree of defraggable inodes */
  3127. btrfs_cleanup_defrag_inodes(fs_info);
  3128. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3129. ret = btrfs_commit_super(root);
  3130. if (ret)
  3131. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3132. }
  3133. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3134. btrfs_error_commit_super(root);
  3135. btrfs_put_block_group_cache(fs_info);
  3136. kthread_stop(fs_info->transaction_kthread);
  3137. kthread_stop(fs_info->cleaner_kthread);
  3138. fs_info->closing = 2;
  3139. smp_mb();
  3140. btrfs_free_qgroup_config(root->fs_info);
  3141. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3142. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3143. percpu_counter_sum(&fs_info->delalloc_bytes));
  3144. }
  3145. btrfs_free_block_groups(fs_info);
  3146. btrfs_stop_all_workers(fs_info);
  3147. del_fs_roots(fs_info);
  3148. free_root_pointers(fs_info, 1);
  3149. iput(fs_info->btree_inode);
  3150. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3151. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3152. btrfsic_unmount(root, fs_info->fs_devices);
  3153. #endif
  3154. btrfs_close_devices(fs_info->fs_devices);
  3155. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3156. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3157. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3158. bdi_destroy(&fs_info->bdi);
  3159. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3160. btrfs_free_stripe_hash_table(fs_info);
  3161. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3162. root->orphan_block_rsv = NULL;
  3163. return 0;
  3164. }
  3165. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3166. int atomic)
  3167. {
  3168. int ret;
  3169. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3170. ret = extent_buffer_uptodate(buf);
  3171. if (!ret)
  3172. return ret;
  3173. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3174. parent_transid, atomic);
  3175. if (ret == -EAGAIN)
  3176. return ret;
  3177. return !ret;
  3178. }
  3179. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3180. {
  3181. return set_extent_buffer_uptodate(buf);
  3182. }
  3183. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3184. {
  3185. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3186. u64 transid = btrfs_header_generation(buf);
  3187. int was_dirty;
  3188. btrfs_assert_tree_locked(buf);
  3189. if (transid != root->fs_info->generation)
  3190. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3191. "found %llu running %llu\n",
  3192. (unsigned long long)buf->start,
  3193. (unsigned long long)transid,
  3194. (unsigned long long)root->fs_info->generation);
  3195. was_dirty = set_extent_buffer_dirty(buf);
  3196. if (!was_dirty)
  3197. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3198. buf->len,
  3199. root->fs_info->dirty_metadata_batch);
  3200. }
  3201. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3202. int flush_delayed)
  3203. {
  3204. /*
  3205. * looks as though older kernels can get into trouble with
  3206. * this code, they end up stuck in balance_dirty_pages forever
  3207. */
  3208. int ret;
  3209. if (current->flags & PF_MEMALLOC)
  3210. return;
  3211. if (flush_delayed)
  3212. btrfs_balance_delayed_items(root);
  3213. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3214. BTRFS_DIRTY_METADATA_THRESH);
  3215. if (ret > 0) {
  3216. balance_dirty_pages_ratelimited(
  3217. root->fs_info->btree_inode->i_mapping);
  3218. }
  3219. return;
  3220. }
  3221. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3222. {
  3223. __btrfs_btree_balance_dirty(root, 1);
  3224. }
  3225. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3226. {
  3227. __btrfs_btree_balance_dirty(root, 0);
  3228. }
  3229. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3230. {
  3231. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3232. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3233. }
  3234. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3235. int read_only)
  3236. {
  3237. /*
  3238. * Placeholder for checks
  3239. */
  3240. return 0;
  3241. }
  3242. static void btrfs_error_commit_super(struct btrfs_root *root)
  3243. {
  3244. mutex_lock(&root->fs_info->cleaner_mutex);
  3245. btrfs_run_delayed_iputs(root);
  3246. mutex_unlock(&root->fs_info->cleaner_mutex);
  3247. down_write(&root->fs_info->cleanup_work_sem);
  3248. up_write(&root->fs_info->cleanup_work_sem);
  3249. /* cleanup FS via transaction */
  3250. btrfs_cleanup_transaction(root);
  3251. }
  3252. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3253. struct btrfs_root *root)
  3254. {
  3255. struct btrfs_inode *btrfs_inode;
  3256. struct list_head splice;
  3257. INIT_LIST_HEAD(&splice);
  3258. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3259. spin_lock(&root->fs_info->ordered_root_lock);
  3260. list_splice_init(&t->ordered_operations, &splice);
  3261. while (!list_empty(&splice)) {
  3262. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3263. ordered_operations);
  3264. list_del_init(&btrfs_inode->ordered_operations);
  3265. spin_unlock(&root->fs_info->ordered_root_lock);
  3266. btrfs_invalidate_inodes(btrfs_inode->root);
  3267. spin_lock(&root->fs_info->ordered_root_lock);
  3268. }
  3269. spin_unlock(&root->fs_info->ordered_root_lock);
  3270. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3271. }
  3272. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3273. {
  3274. struct btrfs_ordered_extent *ordered;
  3275. spin_lock(&root->ordered_extent_lock);
  3276. /*
  3277. * This will just short circuit the ordered completion stuff which will
  3278. * make sure the ordered extent gets properly cleaned up.
  3279. */
  3280. list_for_each_entry(ordered, &root->ordered_extents,
  3281. root_extent_list)
  3282. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3283. spin_unlock(&root->ordered_extent_lock);
  3284. }
  3285. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3286. {
  3287. struct btrfs_root *root;
  3288. struct list_head splice;
  3289. INIT_LIST_HEAD(&splice);
  3290. spin_lock(&fs_info->ordered_root_lock);
  3291. list_splice_init(&fs_info->ordered_roots, &splice);
  3292. while (!list_empty(&splice)) {
  3293. root = list_first_entry(&splice, struct btrfs_root,
  3294. ordered_root);
  3295. list_del_init(&root->ordered_root);
  3296. btrfs_destroy_ordered_extents(root);
  3297. cond_resched_lock(&fs_info->ordered_root_lock);
  3298. }
  3299. spin_unlock(&fs_info->ordered_root_lock);
  3300. }
  3301. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3302. struct btrfs_root *root)
  3303. {
  3304. struct rb_node *node;
  3305. struct btrfs_delayed_ref_root *delayed_refs;
  3306. struct btrfs_delayed_ref_node *ref;
  3307. int ret = 0;
  3308. delayed_refs = &trans->delayed_refs;
  3309. spin_lock(&delayed_refs->lock);
  3310. if (delayed_refs->num_entries == 0) {
  3311. spin_unlock(&delayed_refs->lock);
  3312. printk(KERN_INFO "delayed_refs has NO entry\n");
  3313. return ret;
  3314. }
  3315. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3316. struct btrfs_delayed_ref_head *head = NULL;
  3317. bool pin_bytes = false;
  3318. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3319. atomic_set(&ref->refs, 1);
  3320. if (btrfs_delayed_ref_is_head(ref)) {
  3321. head = btrfs_delayed_node_to_head(ref);
  3322. if (!mutex_trylock(&head->mutex)) {
  3323. atomic_inc(&ref->refs);
  3324. spin_unlock(&delayed_refs->lock);
  3325. /* Need to wait for the delayed ref to run */
  3326. mutex_lock(&head->mutex);
  3327. mutex_unlock(&head->mutex);
  3328. btrfs_put_delayed_ref(ref);
  3329. spin_lock(&delayed_refs->lock);
  3330. continue;
  3331. }
  3332. if (head->must_insert_reserved)
  3333. pin_bytes = true;
  3334. btrfs_free_delayed_extent_op(head->extent_op);
  3335. delayed_refs->num_heads--;
  3336. if (list_empty(&head->cluster))
  3337. delayed_refs->num_heads_ready--;
  3338. list_del_init(&head->cluster);
  3339. }
  3340. ref->in_tree = 0;
  3341. rb_erase(&ref->rb_node, &delayed_refs->root);
  3342. delayed_refs->num_entries--;
  3343. spin_unlock(&delayed_refs->lock);
  3344. if (head) {
  3345. if (pin_bytes)
  3346. btrfs_pin_extent(root, ref->bytenr,
  3347. ref->num_bytes, 1);
  3348. mutex_unlock(&head->mutex);
  3349. }
  3350. btrfs_put_delayed_ref(ref);
  3351. cond_resched();
  3352. spin_lock(&delayed_refs->lock);
  3353. }
  3354. spin_unlock(&delayed_refs->lock);
  3355. return ret;
  3356. }
  3357. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3358. {
  3359. struct btrfs_pending_snapshot *snapshot;
  3360. struct list_head splice;
  3361. INIT_LIST_HEAD(&splice);
  3362. list_splice_init(&t->pending_snapshots, &splice);
  3363. while (!list_empty(&splice)) {
  3364. snapshot = list_entry(splice.next,
  3365. struct btrfs_pending_snapshot,
  3366. list);
  3367. snapshot->error = -ECANCELED;
  3368. list_del_init(&snapshot->list);
  3369. }
  3370. }
  3371. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3372. {
  3373. struct btrfs_inode *btrfs_inode;
  3374. struct list_head splice;
  3375. INIT_LIST_HEAD(&splice);
  3376. spin_lock(&root->delalloc_lock);
  3377. list_splice_init(&root->delalloc_inodes, &splice);
  3378. while (!list_empty(&splice)) {
  3379. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3380. delalloc_inodes);
  3381. list_del_init(&btrfs_inode->delalloc_inodes);
  3382. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3383. &btrfs_inode->runtime_flags);
  3384. spin_unlock(&root->delalloc_lock);
  3385. btrfs_invalidate_inodes(btrfs_inode->root);
  3386. spin_lock(&root->delalloc_lock);
  3387. }
  3388. spin_unlock(&root->delalloc_lock);
  3389. }
  3390. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3391. {
  3392. struct btrfs_root *root;
  3393. struct list_head splice;
  3394. INIT_LIST_HEAD(&splice);
  3395. spin_lock(&fs_info->delalloc_root_lock);
  3396. list_splice_init(&fs_info->delalloc_roots, &splice);
  3397. while (!list_empty(&splice)) {
  3398. root = list_first_entry(&splice, struct btrfs_root,
  3399. delalloc_root);
  3400. list_del_init(&root->delalloc_root);
  3401. root = btrfs_grab_fs_root(root);
  3402. BUG_ON(!root);
  3403. spin_unlock(&fs_info->delalloc_root_lock);
  3404. btrfs_destroy_delalloc_inodes(root);
  3405. btrfs_put_fs_root(root);
  3406. spin_lock(&fs_info->delalloc_root_lock);
  3407. }
  3408. spin_unlock(&fs_info->delalloc_root_lock);
  3409. }
  3410. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3411. struct extent_io_tree *dirty_pages,
  3412. int mark)
  3413. {
  3414. int ret;
  3415. struct extent_buffer *eb;
  3416. u64 start = 0;
  3417. u64 end;
  3418. while (1) {
  3419. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3420. mark, NULL);
  3421. if (ret)
  3422. break;
  3423. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3424. while (start <= end) {
  3425. eb = btrfs_find_tree_block(root, start,
  3426. root->leafsize);
  3427. start += root->leafsize;
  3428. if (!eb)
  3429. continue;
  3430. wait_on_extent_buffer_writeback(eb);
  3431. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3432. &eb->bflags))
  3433. clear_extent_buffer_dirty(eb);
  3434. free_extent_buffer_stale(eb);
  3435. }
  3436. }
  3437. return ret;
  3438. }
  3439. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3440. struct extent_io_tree *pinned_extents)
  3441. {
  3442. struct extent_io_tree *unpin;
  3443. u64 start;
  3444. u64 end;
  3445. int ret;
  3446. bool loop = true;
  3447. unpin = pinned_extents;
  3448. again:
  3449. while (1) {
  3450. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3451. EXTENT_DIRTY, NULL);
  3452. if (ret)
  3453. break;
  3454. /* opt_discard */
  3455. if (btrfs_test_opt(root, DISCARD))
  3456. ret = btrfs_error_discard_extent(root, start,
  3457. end + 1 - start,
  3458. NULL);
  3459. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3460. btrfs_error_unpin_extent_range(root, start, end);
  3461. cond_resched();
  3462. }
  3463. if (loop) {
  3464. if (unpin == &root->fs_info->freed_extents[0])
  3465. unpin = &root->fs_info->freed_extents[1];
  3466. else
  3467. unpin = &root->fs_info->freed_extents[0];
  3468. loop = false;
  3469. goto again;
  3470. }
  3471. return 0;
  3472. }
  3473. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3474. struct btrfs_root *root)
  3475. {
  3476. btrfs_destroy_delayed_refs(cur_trans, root);
  3477. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3478. cur_trans->dirty_pages.dirty_bytes);
  3479. cur_trans->state = TRANS_STATE_COMMIT_START;
  3480. wake_up(&root->fs_info->transaction_blocked_wait);
  3481. btrfs_evict_pending_snapshots(cur_trans);
  3482. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3483. wake_up(&root->fs_info->transaction_wait);
  3484. btrfs_destroy_delayed_inodes(root);
  3485. btrfs_assert_delayed_root_empty(root);
  3486. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3487. EXTENT_DIRTY);
  3488. btrfs_destroy_pinned_extent(root,
  3489. root->fs_info->pinned_extents);
  3490. cur_trans->state =TRANS_STATE_COMPLETED;
  3491. wake_up(&cur_trans->commit_wait);
  3492. /*
  3493. memset(cur_trans, 0, sizeof(*cur_trans));
  3494. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3495. */
  3496. }
  3497. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3498. {
  3499. struct btrfs_transaction *t;
  3500. LIST_HEAD(list);
  3501. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3502. spin_lock(&root->fs_info->trans_lock);
  3503. list_splice_init(&root->fs_info->trans_list, &list);
  3504. root->fs_info->running_transaction = NULL;
  3505. spin_unlock(&root->fs_info->trans_lock);
  3506. while (!list_empty(&list)) {
  3507. t = list_entry(list.next, struct btrfs_transaction, list);
  3508. btrfs_destroy_ordered_operations(t, root);
  3509. btrfs_destroy_all_ordered_extents(root->fs_info);
  3510. btrfs_destroy_delayed_refs(t, root);
  3511. /*
  3512. * FIXME: cleanup wait for commit
  3513. * We needn't acquire the lock here, because we are during
  3514. * the umount, there is no other task which will change it.
  3515. */
  3516. t->state = TRANS_STATE_COMMIT_START;
  3517. smp_mb();
  3518. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3519. wake_up(&root->fs_info->transaction_blocked_wait);
  3520. btrfs_evict_pending_snapshots(t);
  3521. t->state = TRANS_STATE_UNBLOCKED;
  3522. smp_mb();
  3523. if (waitqueue_active(&root->fs_info->transaction_wait))
  3524. wake_up(&root->fs_info->transaction_wait);
  3525. btrfs_destroy_delayed_inodes(root);
  3526. btrfs_assert_delayed_root_empty(root);
  3527. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3528. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3529. EXTENT_DIRTY);
  3530. btrfs_destroy_pinned_extent(root,
  3531. root->fs_info->pinned_extents);
  3532. t->state = TRANS_STATE_COMPLETED;
  3533. smp_mb();
  3534. if (waitqueue_active(&t->commit_wait))
  3535. wake_up(&t->commit_wait);
  3536. atomic_set(&t->use_count, 0);
  3537. list_del_init(&t->list);
  3538. memset(t, 0, sizeof(*t));
  3539. kmem_cache_free(btrfs_transaction_cachep, t);
  3540. }
  3541. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3542. return 0;
  3543. }
  3544. static struct extent_io_ops btree_extent_io_ops = {
  3545. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3546. .readpage_io_failed_hook = btree_io_failed_hook,
  3547. .submit_bio_hook = btree_submit_bio_hook,
  3548. /* note we're sharing with inode.c for the merge bio hook */
  3549. .merge_bio_hook = btrfs_merge_bio_hook,
  3550. };