amba-pl08x.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the
  23. * file called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
  29. * any channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Only the former works sanely with scatter lists, so we only implement
  70. * the DMAC flow control method. However, peripherals which use the LBREQ
  71. * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72. * these hardware restrictions prevents them from using scatter DMA.
  73. *
  74. * Global TODO:
  75. * - Break out common code from arch/arm/mach-s3c64xx and share
  76. */
  77. #include <linux/device.h>
  78. #include <linux/init.h>
  79. #include <linux/module.h>
  80. #include <linux/interrupt.h>
  81. #include <linux/slab.h>
  82. #include <linux/dmapool.h>
  83. #include <linux/dmaengine.h>
  84. #include <linux/amba/bus.h>
  85. #include <linux/amba/pl08x.h>
  86. #include <linux/debugfs.h>
  87. #include <linux/seq_file.h>
  88. #include <asm/hardware/pl080.h>
  89. #define DRIVER_NAME "pl08xdmac"
  90. /**
  91. * struct vendor_data - vendor-specific config parameters
  92. * for PL08x derivatives
  93. * @channels: the number of channels available in this variant
  94. * @dualmaster: whether this version supports dual AHB masters
  95. * or not.
  96. */
  97. struct vendor_data {
  98. u8 channels;
  99. bool dualmaster;
  100. };
  101. /*
  102. * PL08X private data structures
  103. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  104. * start & end do not - their bus bit info is in cctl. Also note that these
  105. * are fixed 32-bit quantities.
  106. */
  107. struct pl08x_lli {
  108. u32 src;
  109. u32 dst;
  110. u32 lli;
  111. u32 cctl;
  112. };
  113. /**
  114. * struct pl08x_driver_data - the local state holder for the PL08x
  115. * @slave: slave engine for this instance
  116. * @memcpy: memcpy engine for this instance
  117. * @base: virtual memory base (remapped) for the PL08x
  118. * @adev: the corresponding AMBA (PrimeCell) bus entry
  119. * @vd: vendor data for this PL08x variant
  120. * @pd: platform data passed in from the platform/machine
  121. * @phy_chans: array of data for the physical channels
  122. * @pool: a pool for the LLI descriptors
  123. * @pool_ctr: counter of LLIs in the pool
  124. * @lock: a spinlock for this struct
  125. */
  126. struct pl08x_driver_data {
  127. struct dma_device slave;
  128. struct dma_device memcpy;
  129. void __iomem *base;
  130. struct amba_device *adev;
  131. const struct vendor_data *vd;
  132. struct pl08x_platform_data *pd;
  133. struct pl08x_phy_chan *phy_chans;
  134. struct dma_pool *pool;
  135. int pool_ctr;
  136. spinlock_t lock;
  137. };
  138. /*
  139. * PL08X specific defines
  140. */
  141. /*
  142. * Memory boundaries: the manual for PL08x says that the controller
  143. * cannot read past a 1KiB boundary, so these defines are used to
  144. * create transfer LLIs that do not cross such boundaries.
  145. */
  146. #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
  147. #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
  148. /* Minimum period between work queue runs */
  149. #define PL08X_WQ_PERIODMIN 20
  150. /* Size (bytes) of each LLI buffer allocated for one transfer */
  151. # define PL08X_LLI_TSFR_SIZE 0x2000
  152. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  153. #define PL08X_MAX_ALLOCS 0x40
  154. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  155. #define PL08X_ALIGN 8
  156. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  157. {
  158. return container_of(chan, struct pl08x_dma_chan, chan);
  159. }
  160. /*
  161. * Physical channel handling
  162. */
  163. /* Whether a certain channel is busy or not */
  164. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  165. {
  166. unsigned int val;
  167. val = readl(ch->base + PL080_CH_CONFIG);
  168. return val & PL080_CONFIG_ACTIVE;
  169. }
  170. /*
  171. * Set the initial DMA register values i.e. those for the first LLI
  172. * The next LLI pointer and the configuration interrupt bit have
  173. * been set when the LLIs were constructed. Poke them into the hardware
  174. * and start the transfer.
  175. */
  176. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  177. struct pl08x_txd *txd)
  178. {
  179. struct pl08x_driver_data *pl08x = plchan->host;
  180. struct pl08x_phy_chan *phychan = plchan->phychan;
  181. struct pl08x_lli *lli = &txd->llis_va[0];
  182. u32 val;
  183. plchan->at = txd;
  184. /* Wait for channel inactive */
  185. while (pl08x_phy_channel_busy(phychan))
  186. cpu_relax();
  187. dev_vdbg(&pl08x->adev->dev,
  188. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  189. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  190. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  191. txd->ccfg);
  192. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  193. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  194. writel(lli->lli, phychan->base + PL080_CH_LLI);
  195. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  196. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  197. /* Enable the DMA channel */
  198. /* Do not access config register until channel shows as disabled */
  199. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  200. cpu_relax();
  201. /* Do not access config register until channel shows as inactive */
  202. val = readl(phychan->base + PL080_CH_CONFIG);
  203. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  204. val = readl(phychan->base + PL080_CH_CONFIG);
  205. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  206. }
  207. /*
  208. * Overall DMAC remains enabled always.
  209. *
  210. * Disabling individual channels could lose data.
  211. *
  212. * Disable the peripheral DMA after disabling the DMAC
  213. * in order to allow the DMAC FIFO to drain, and
  214. * hence allow the channel to show inactive
  215. *
  216. */
  217. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  218. {
  219. u32 val;
  220. /* Set the HALT bit and wait for the FIFO to drain */
  221. val = readl(ch->base + PL080_CH_CONFIG);
  222. val |= PL080_CONFIG_HALT;
  223. writel(val, ch->base + PL080_CH_CONFIG);
  224. /* Wait for channel inactive */
  225. while (pl08x_phy_channel_busy(ch))
  226. cpu_relax();
  227. }
  228. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  229. {
  230. u32 val;
  231. /* Clear the HALT bit */
  232. val = readl(ch->base + PL080_CH_CONFIG);
  233. val &= ~PL080_CONFIG_HALT;
  234. writel(val, ch->base + PL080_CH_CONFIG);
  235. }
  236. /* Stops the channel */
  237. static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
  238. {
  239. u32 val;
  240. pl08x_pause_phy_chan(ch);
  241. /* Disable channel */
  242. val = readl(ch->base + PL080_CH_CONFIG);
  243. val &= ~PL080_CONFIG_ENABLE;
  244. val &= ~PL080_CONFIG_ERR_IRQ_MASK;
  245. val &= ~PL080_CONFIG_TC_IRQ_MASK;
  246. writel(val, ch->base + PL080_CH_CONFIG);
  247. }
  248. static inline u32 get_bytes_in_cctl(u32 cctl)
  249. {
  250. /* The source width defines the number of bytes */
  251. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  252. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  253. case PL080_WIDTH_8BIT:
  254. break;
  255. case PL080_WIDTH_16BIT:
  256. bytes *= 2;
  257. break;
  258. case PL080_WIDTH_32BIT:
  259. bytes *= 4;
  260. break;
  261. }
  262. return bytes;
  263. }
  264. /* The channel should be paused when calling this */
  265. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  266. {
  267. struct pl08x_phy_chan *ch;
  268. struct pl08x_txd *txd;
  269. unsigned long flags;
  270. size_t bytes = 0;
  271. spin_lock_irqsave(&plchan->lock, flags);
  272. ch = plchan->phychan;
  273. txd = plchan->at;
  274. /*
  275. * Follow the LLIs to get the number of remaining
  276. * bytes in the currently active transaction.
  277. */
  278. if (ch && txd) {
  279. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  280. /* First get the remaining bytes in the active transfer */
  281. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  282. if (clli) {
  283. struct pl08x_lli *llis_va = txd->llis_va;
  284. dma_addr_t llis_bus = txd->llis_bus;
  285. int index;
  286. BUG_ON(clli < llis_bus || clli >= llis_bus +
  287. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  288. /*
  289. * Locate the next LLI - as this is an array,
  290. * it's simple maths to find.
  291. */
  292. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  293. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  294. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  295. /*
  296. * A LLI pointer of 0 terminates the LLI list
  297. */
  298. if (!llis_va[index].lli)
  299. break;
  300. }
  301. }
  302. }
  303. /* Sum up all queued transactions */
  304. if (!list_empty(&plchan->desc_list)) {
  305. struct pl08x_txd *txdi;
  306. list_for_each_entry(txdi, &plchan->desc_list, node) {
  307. bytes += txdi->len;
  308. }
  309. }
  310. spin_unlock_irqrestore(&plchan->lock, flags);
  311. return bytes;
  312. }
  313. /*
  314. * Allocate a physical channel for a virtual channel
  315. */
  316. static struct pl08x_phy_chan *
  317. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  318. struct pl08x_dma_chan *virt_chan)
  319. {
  320. struct pl08x_phy_chan *ch = NULL;
  321. unsigned long flags;
  322. int i;
  323. /*
  324. * Try to locate a physical channel to be used for
  325. * this transfer. If all are taken return NULL and
  326. * the requester will have to cope by using some fallback
  327. * PIO mode or retrying later.
  328. */
  329. for (i = 0; i < pl08x->vd->channels; i++) {
  330. ch = &pl08x->phy_chans[i];
  331. spin_lock_irqsave(&ch->lock, flags);
  332. if (!ch->serving) {
  333. ch->serving = virt_chan;
  334. ch->signal = -1;
  335. spin_unlock_irqrestore(&ch->lock, flags);
  336. break;
  337. }
  338. spin_unlock_irqrestore(&ch->lock, flags);
  339. }
  340. if (i == pl08x->vd->channels) {
  341. /* No physical channel available, cope with it */
  342. return NULL;
  343. }
  344. return ch;
  345. }
  346. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  347. struct pl08x_phy_chan *ch)
  348. {
  349. unsigned long flags;
  350. /* Stop the channel and clear its interrupts */
  351. pl08x_stop_phy_chan(ch);
  352. writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
  353. writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
  354. /* Mark it as free */
  355. spin_lock_irqsave(&ch->lock, flags);
  356. ch->serving = NULL;
  357. spin_unlock_irqrestore(&ch->lock, flags);
  358. }
  359. /*
  360. * LLI handling
  361. */
  362. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  363. {
  364. switch (coded) {
  365. case PL080_WIDTH_8BIT:
  366. return 1;
  367. case PL080_WIDTH_16BIT:
  368. return 2;
  369. case PL080_WIDTH_32BIT:
  370. return 4;
  371. default:
  372. break;
  373. }
  374. BUG();
  375. return 0;
  376. }
  377. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  378. size_t tsize)
  379. {
  380. u32 retbits = cctl;
  381. /* Remove all src, dst and transfer size bits */
  382. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  383. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  384. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  385. /* Then set the bits according to the parameters */
  386. switch (srcwidth) {
  387. case 1:
  388. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  389. break;
  390. case 2:
  391. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  392. break;
  393. case 4:
  394. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  395. break;
  396. default:
  397. BUG();
  398. break;
  399. }
  400. switch (dstwidth) {
  401. case 1:
  402. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  403. break;
  404. case 2:
  405. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  406. break;
  407. case 4:
  408. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  409. break;
  410. default:
  411. BUG();
  412. break;
  413. }
  414. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  415. return retbits;
  416. }
  417. /*
  418. * Autoselect a master bus to use for the transfer
  419. * this prefers the destination bus if both available
  420. * if fixed address on one bus the other will be chosen
  421. */
  422. static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
  423. struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
  424. struct pl08x_bus_data **sbus, u32 cctl)
  425. {
  426. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  427. *mbus = src_bus;
  428. *sbus = dst_bus;
  429. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  430. *mbus = dst_bus;
  431. *sbus = src_bus;
  432. } else {
  433. if (dst_bus->buswidth == 4) {
  434. *mbus = dst_bus;
  435. *sbus = src_bus;
  436. } else if (src_bus->buswidth == 4) {
  437. *mbus = src_bus;
  438. *sbus = dst_bus;
  439. } else if (dst_bus->buswidth == 2) {
  440. *mbus = dst_bus;
  441. *sbus = src_bus;
  442. } else if (src_bus->buswidth == 2) {
  443. *mbus = src_bus;
  444. *sbus = dst_bus;
  445. } else {
  446. /* src_bus->buswidth == 1 */
  447. *mbus = dst_bus;
  448. *sbus = src_bus;
  449. }
  450. }
  451. }
  452. /*
  453. * Fills in one LLI for a certain transfer descriptor
  454. * and advance the counter
  455. */
  456. static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
  457. struct pl08x_txd *txd, int num_llis, int len,
  458. u32 cctl, u32 *remainder)
  459. {
  460. struct pl08x_lli *llis_va = txd->llis_va;
  461. dma_addr_t llis_bus = txd->llis_bus;
  462. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  463. llis_va[num_llis].cctl = cctl;
  464. llis_va[num_llis].src = txd->srcbus.addr;
  465. llis_va[num_llis].dst = txd->dstbus.addr;
  466. /*
  467. * On versions with dual masters, you can optionally AND on
  468. * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
  469. * in new LLIs with that controller, but we always try to
  470. * choose AHB1 to point into memory. The idea is to have AHB2
  471. * fixed on the peripheral and AHB1 messing around in the
  472. * memory. So we don't manipulate this bit currently.
  473. */
  474. llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
  475. if (cctl & PL080_CONTROL_SRC_INCR)
  476. txd->srcbus.addr += len;
  477. if (cctl & PL080_CONTROL_DST_INCR)
  478. txd->dstbus.addr += len;
  479. BUG_ON(*remainder < len);
  480. *remainder -= len;
  481. return num_llis + 1;
  482. }
  483. /*
  484. * Return number of bytes to fill to boundary, or len
  485. */
  486. static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
  487. {
  488. u32 boundary;
  489. boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
  490. << PL08X_BOUNDARY_SHIFT;
  491. if (boundary < addr + len)
  492. return boundary - addr;
  493. else
  494. return len;
  495. }
  496. /*
  497. * This fills in the table of LLIs for the transfer descriptor
  498. * Note that we assume we never have to change the burst sizes
  499. * Return 0 for error
  500. */
  501. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  502. struct pl08x_txd *txd)
  503. {
  504. struct pl08x_bus_data *mbus, *sbus;
  505. size_t remainder;
  506. int num_llis = 0;
  507. u32 cctl;
  508. size_t max_bytes_per_lli;
  509. size_t total_bytes = 0;
  510. struct pl08x_lli *llis_va;
  511. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
  512. &txd->llis_bus);
  513. if (!txd->llis_va) {
  514. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  515. return 0;
  516. }
  517. pl08x->pool_ctr++;
  518. /* Get the default CCTL */
  519. cctl = txd->cctl;
  520. /*
  521. * On the PL080 we have two bus masters and we
  522. * should select one for source and one for
  523. * destination. We try to use AHB2 for the
  524. * bus which does not increment (typically the
  525. * peripheral) else we just choose something.
  526. */
  527. cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  528. if (pl08x->vd->dualmaster) {
  529. if (cctl & PL080_CONTROL_SRC_INCR)
  530. /* Source increments, use AHB2 for destination */
  531. cctl |= PL080_CONTROL_DST_AHB2;
  532. else if (cctl & PL080_CONTROL_DST_INCR)
  533. /* Destination increments, use AHB2 for source */
  534. cctl |= PL080_CONTROL_SRC_AHB2;
  535. else
  536. /* Just pick something, source AHB1 dest AHB2 */
  537. cctl |= PL080_CONTROL_DST_AHB2;
  538. }
  539. /* Find maximum width of the source bus */
  540. txd->srcbus.maxwidth =
  541. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  542. PL080_CONTROL_SWIDTH_SHIFT);
  543. /* Find maximum width of the destination bus */
  544. txd->dstbus.maxwidth =
  545. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  546. PL080_CONTROL_DWIDTH_SHIFT);
  547. /* Set up the bus widths to the maximum */
  548. txd->srcbus.buswidth = txd->srcbus.maxwidth;
  549. txd->dstbus.buswidth = txd->dstbus.maxwidth;
  550. dev_vdbg(&pl08x->adev->dev,
  551. "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
  552. __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
  553. /*
  554. * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
  555. */
  556. max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
  557. PL080_CONTROL_TRANSFER_SIZE_MASK;
  558. dev_vdbg(&pl08x->adev->dev,
  559. "%s max bytes per lli = %zu\n",
  560. __func__, max_bytes_per_lli);
  561. /* We need to count this down to zero */
  562. remainder = txd->len;
  563. dev_vdbg(&pl08x->adev->dev,
  564. "%s remainder = %zu\n",
  565. __func__, remainder);
  566. /*
  567. * Choose bus to align to
  568. * - prefers destination bus if both available
  569. * - if fixed address on one bus chooses other
  570. * - modifies cctl to choose an appropriate master
  571. */
  572. pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
  573. &mbus, &sbus, cctl);
  574. /*
  575. * The lowest bit of the LLI register
  576. * is also used to indicate which master to
  577. * use for reading the LLIs.
  578. */
  579. if (txd->len < mbus->buswidth) {
  580. /*
  581. * Less than a bus width available
  582. * - send as single bytes
  583. */
  584. while (remainder) {
  585. dev_vdbg(&pl08x->adev->dev,
  586. "%s single byte LLIs for a transfer of "
  587. "less than a bus width (remain 0x%08x)\n",
  588. __func__, remainder);
  589. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  590. num_llis =
  591. pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
  592. cctl, &remainder);
  593. total_bytes++;
  594. }
  595. } else {
  596. /*
  597. * Make one byte LLIs until master bus is aligned
  598. * - slave will then be aligned also
  599. */
  600. while ((mbus->addr) % (mbus->buswidth)) {
  601. dev_vdbg(&pl08x->adev->dev,
  602. "%s adjustment lli for less than bus width "
  603. "(remain 0x%08x)\n",
  604. __func__, remainder);
  605. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  606. num_llis = pl08x_fill_lli_for_desc
  607. (pl08x, txd, num_llis, 1, cctl, &remainder);
  608. total_bytes++;
  609. }
  610. /*
  611. * Master now aligned
  612. * - if slave is not then we must set its width down
  613. */
  614. if (sbus->addr % sbus->buswidth) {
  615. dev_dbg(&pl08x->adev->dev,
  616. "%s set down bus width to one byte\n",
  617. __func__);
  618. sbus->buswidth = 1;
  619. }
  620. /*
  621. * Make largest possible LLIs until less than one bus
  622. * width left
  623. */
  624. while (remainder > (mbus->buswidth - 1)) {
  625. size_t lli_len, target_len, tsize, odd_bytes;
  626. /*
  627. * If enough left try to send max possible,
  628. * otherwise try to send the remainder
  629. */
  630. target_len = remainder;
  631. if (remainder > max_bytes_per_lli)
  632. target_len = max_bytes_per_lli;
  633. /*
  634. * Set bus lengths for incrementing buses
  635. * to number of bytes which fill to next memory
  636. * boundary
  637. */
  638. if (cctl & PL080_CONTROL_SRC_INCR)
  639. txd->srcbus.fill_bytes =
  640. pl08x_pre_boundary(
  641. txd->srcbus.addr,
  642. remainder);
  643. else
  644. txd->srcbus.fill_bytes =
  645. max_bytes_per_lli;
  646. if (cctl & PL080_CONTROL_DST_INCR)
  647. txd->dstbus.fill_bytes =
  648. pl08x_pre_boundary(
  649. txd->dstbus.addr,
  650. remainder);
  651. else
  652. txd->dstbus.fill_bytes =
  653. max_bytes_per_lli;
  654. /*
  655. * Find the nearest
  656. */
  657. lli_len = min(txd->srcbus.fill_bytes,
  658. txd->dstbus.fill_bytes);
  659. BUG_ON(lli_len > remainder);
  660. if (lli_len <= 0) {
  661. dev_err(&pl08x->adev->dev,
  662. "%s lli_len is %zu, <= 0\n",
  663. __func__, lli_len);
  664. return 0;
  665. }
  666. if (lli_len == target_len) {
  667. /*
  668. * Can send what we wanted
  669. */
  670. /*
  671. * Maintain alignment
  672. */
  673. lli_len = (lli_len/mbus->buswidth) *
  674. mbus->buswidth;
  675. odd_bytes = 0;
  676. } else {
  677. /*
  678. * So now we know how many bytes to transfer
  679. * to get to the nearest boundary
  680. * The next LLI will past the boundary
  681. * - however we may be working to a boundary
  682. * on the slave bus
  683. * We need to ensure the master stays aligned
  684. */
  685. odd_bytes = lli_len % mbus->buswidth;
  686. /*
  687. * - and that we are working in multiples
  688. * of the bus widths
  689. */
  690. lli_len -= odd_bytes;
  691. }
  692. if (lli_len) {
  693. /*
  694. * Check against minimum bus alignment:
  695. * Calculate actual transfer size in relation
  696. * to bus width an get a maximum remainder of
  697. * the smallest bus width - 1
  698. */
  699. /* FIXME: use round_down()? */
  700. tsize = lli_len / min(mbus->buswidth,
  701. sbus->buswidth);
  702. lli_len = tsize * min(mbus->buswidth,
  703. sbus->buswidth);
  704. if (target_len != lli_len) {
  705. dev_vdbg(&pl08x->adev->dev,
  706. "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
  707. __func__, target_len, lli_len, txd->len);
  708. }
  709. cctl = pl08x_cctl_bits(cctl,
  710. txd->srcbus.buswidth,
  711. txd->dstbus.buswidth,
  712. tsize);
  713. dev_vdbg(&pl08x->adev->dev,
  714. "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
  715. __func__, lli_len, remainder);
  716. num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
  717. num_llis, lli_len, cctl,
  718. &remainder);
  719. total_bytes += lli_len;
  720. }
  721. if (odd_bytes) {
  722. /*
  723. * Creep past the boundary,
  724. * maintaining master alignment
  725. */
  726. int j;
  727. for (j = 0; (j < mbus->buswidth)
  728. && (remainder); j++) {
  729. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  730. dev_vdbg(&pl08x->adev->dev,
  731. "%s align with boundary, single byte (remain 0x%08zx)\n",
  732. __func__, remainder);
  733. num_llis =
  734. pl08x_fill_lli_for_desc(pl08x,
  735. txd, num_llis, 1,
  736. cctl, &remainder);
  737. total_bytes++;
  738. }
  739. }
  740. }
  741. /*
  742. * Send any odd bytes
  743. */
  744. while (remainder) {
  745. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  746. dev_vdbg(&pl08x->adev->dev,
  747. "%s align with boundary, single odd byte (remain %zu)\n",
  748. __func__, remainder);
  749. num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
  750. 1, cctl, &remainder);
  751. total_bytes++;
  752. }
  753. }
  754. if (total_bytes != txd->len) {
  755. dev_err(&pl08x->adev->dev,
  756. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  757. __func__, total_bytes, txd->len);
  758. return 0;
  759. }
  760. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  761. dev_err(&pl08x->adev->dev,
  762. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  763. __func__, (u32) MAX_NUM_TSFR_LLIS);
  764. return 0;
  765. }
  766. llis_va = txd->llis_va;
  767. /*
  768. * The final LLI terminates the LLI.
  769. */
  770. llis_va[num_llis - 1].lli = 0;
  771. /*
  772. * The final LLI element shall also fire an interrupt
  773. */
  774. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  775. #ifdef VERBOSE_DEBUG
  776. {
  777. int i;
  778. for (i = 0; i < num_llis; i++) {
  779. dev_vdbg(&pl08x->adev->dev,
  780. "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
  781. i,
  782. &llis_va[i],
  783. llis_va[i].src,
  784. llis_va[i].dst,
  785. llis_va[i].cctl,
  786. llis_va[i].lli
  787. );
  788. }
  789. }
  790. #endif
  791. return num_llis;
  792. }
  793. /* You should call this with the struct pl08x lock held */
  794. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  795. struct pl08x_txd *txd)
  796. {
  797. /* Free the LLI */
  798. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  799. pl08x->pool_ctr--;
  800. kfree(txd);
  801. }
  802. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  803. struct pl08x_dma_chan *plchan)
  804. {
  805. struct pl08x_txd *txdi = NULL;
  806. struct pl08x_txd *next;
  807. if (!list_empty(&plchan->desc_list)) {
  808. list_for_each_entry_safe(txdi,
  809. next, &plchan->desc_list, node) {
  810. list_del(&txdi->node);
  811. pl08x_free_txd(pl08x, txdi);
  812. }
  813. }
  814. }
  815. /*
  816. * The DMA ENGINE API
  817. */
  818. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  819. {
  820. return 0;
  821. }
  822. static void pl08x_free_chan_resources(struct dma_chan *chan)
  823. {
  824. }
  825. /*
  826. * This should be called with the channel plchan->lock held
  827. */
  828. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  829. struct pl08x_txd *txd)
  830. {
  831. struct pl08x_driver_data *pl08x = plchan->host;
  832. struct pl08x_phy_chan *ch;
  833. int ret;
  834. /* Check if we already have a channel */
  835. if (plchan->phychan)
  836. return 0;
  837. ch = pl08x_get_phy_channel(pl08x, plchan);
  838. if (!ch) {
  839. /* No physical channel available, cope with it */
  840. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  841. return -EBUSY;
  842. }
  843. /*
  844. * OK we have a physical channel: for memcpy() this is all we
  845. * need, but for slaves the physical signals may be muxed!
  846. * Can the platform allow us to use this channel?
  847. */
  848. if (plchan->slave &&
  849. ch->signal < 0 &&
  850. pl08x->pd->get_signal) {
  851. ret = pl08x->pd->get_signal(plchan);
  852. if (ret < 0) {
  853. dev_dbg(&pl08x->adev->dev,
  854. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  855. ch->id, plchan->name);
  856. /* Release physical channel & return */
  857. pl08x_put_phy_channel(pl08x, ch);
  858. return -EBUSY;
  859. }
  860. ch->signal = ret;
  861. /* Assign the flow control signal to this channel */
  862. if (txd->direction == DMA_TO_DEVICE)
  863. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  864. else if (txd->direction == DMA_FROM_DEVICE)
  865. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  866. }
  867. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  868. ch->id,
  869. ch->signal,
  870. plchan->name);
  871. plchan->phychan = ch;
  872. return 0;
  873. }
  874. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  875. {
  876. struct pl08x_driver_data *pl08x = plchan->host;
  877. if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
  878. pl08x->pd->put_signal(plchan);
  879. plchan->phychan->signal = -1;
  880. }
  881. pl08x_put_phy_channel(pl08x, plchan->phychan);
  882. plchan->phychan = NULL;
  883. }
  884. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  885. {
  886. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  887. plchan->chan.cookie += 1;
  888. if (plchan->chan.cookie < 0)
  889. plchan->chan.cookie = 1;
  890. tx->cookie = plchan->chan.cookie;
  891. /* This unlock follows the lock in the prep() function */
  892. spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
  893. return tx->cookie;
  894. }
  895. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  896. struct dma_chan *chan, unsigned long flags)
  897. {
  898. struct dma_async_tx_descriptor *retval = NULL;
  899. return retval;
  900. }
  901. /*
  902. * Code accessing dma_async_is_complete() in a tight loop
  903. * may give problems - could schedule where indicated.
  904. * If slaves are relying on interrupts to signal completion this
  905. * function must not be called with interrupts disabled
  906. */
  907. static enum dma_status
  908. pl08x_dma_tx_status(struct dma_chan *chan,
  909. dma_cookie_t cookie,
  910. struct dma_tx_state *txstate)
  911. {
  912. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  913. dma_cookie_t last_used;
  914. dma_cookie_t last_complete;
  915. enum dma_status ret;
  916. u32 bytesleft = 0;
  917. last_used = plchan->chan.cookie;
  918. last_complete = plchan->lc;
  919. ret = dma_async_is_complete(cookie, last_complete, last_used);
  920. if (ret == DMA_SUCCESS) {
  921. dma_set_tx_state(txstate, last_complete, last_used, 0);
  922. return ret;
  923. }
  924. /*
  925. * schedule(); could be inserted here
  926. */
  927. /*
  928. * This cookie not complete yet
  929. */
  930. last_used = plchan->chan.cookie;
  931. last_complete = plchan->lc;
  932. /* Get number of bytes left in the active transactions and queue */
  933. bytesleft = pl08x_getbytes_chan(plchan);
  934. dma_set_tx_state(txstate, last_complete, last_used,
  935. bytesleft);
  936. if (plchan->state == PL08X_CHAN_PAUSED)
  937. return DMA_PAUSED;
  938. /* Whether waiting or running, we're in progress */
  939. return DMA_IN_PROGRESS;
  940. }
  941. /* PrimeCell DMA extension */
  942. struct burst_table {
  943. int burstwords;
  944. u32 reg;
  945. };
  946. static const struct burst_table burst_sizes[] = {
  947. {
  948. .burstwords = 256,
  949. .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
  950. (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
  951. },
  952. {
  953. .burstwords = 128,
  954. .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
  955. (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
  956. },
  957. {
  958. .burstwords = 64,
  959. .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
  960. (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
  961. },
  962. {
  963. .burstwords = 32,
  964. .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
  965. (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
  966. },
  967. {
  968. .burstwords = 16,
  969. .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
  970. (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
  971. },
  972. {
  973. .burstwords = 8,
  974. .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
  975. (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
  976. },
  977. {
  978. .burstwords = 4,
  979. .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
  980. (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
  981. },
  982. {
  983. .burstwords = 1,
  984. .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  985. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
  986. },
  987. };
  988. static void dma_set_runtime_config(struct dma_chan *chan,
  989. struct dma_slave_config *config)
  990. {
  991. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  992. struct pl08x_driver_data *pl08x = plchan->host;
  993. struct pl08x_channel_data *cd = plchan->cd;
  994. enum dma_slave_buswidth addr_width;
  995. u32 maxburst;
  996. u32 cctl = 0;
  997. int i;
  998. /* Transfer direction */
  999. plchan->runtime_direction = config->direction;
  1000. if (config->direction == DMA_TO_DEVICE) {
  1001. plchan->runtime_addr = config->dst_addr;
  1002. addr_width = config->dst_addr_width;
  1003. maxburst = config->dst_maxburst;
  1004. } else if (config->direction == DMA_FROM_DEVICE) {
  1005. plchan->runtime_addr = config->src_addr;
  1006. addr_width = config->src_addr_width;
  1007. maxburst = config->src_maxburst;
  1008. } else {
  1009. dev_err(&pl08x->adev->dev,
  1010. "bad runtime_config: alien transfer direction\n");
  1011. return;
  1012. }
  1013. switch (addr_width) {
  1014. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1015. cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1016. (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1017. break;
  1018. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1019. cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1020. (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1021. break;
  1022. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1023. cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1024. (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1025. break;
  1026. default:
  1027. dev_err(&pl08x->adev->dev,
  1028. "bad runtime_config: alien address width\n");
  1029. return;
  1030. }
  1031. /*
  1032. * Now decide on a maxburst:
  1033. * If this channel will only request single transfers, set this
  1034. * down to ONE element. Also select one element if no maxburst
  1035. * is specified.
  1036. */
  1037. if (plchan->cd->single || maxburst == 0) {
  1038. cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  1039. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
  1040. } else {
  1041. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1042. if (burst_sizes[i].burstwords <= maxburst)
  1043. break;
  1044. cctl |= burst_sizes[i].reg;
  1045. }
  1046. /* Modify the default channel data to fit PrimeCell request */
  1047. cd->cctl = cctl;
  1048. dev_dbg(&pl08x->adev->dev,
  1049. "configured channel %s (%s) for %s, data width %d, "
  1050. "maxburst %d words, LE, CCTL=0x%08x\n",
  1051. dma_chan_name(chan), plchan->name,
  1052. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1053. addr_width,
  1054. maxburst,
  1055. cctl);
  1056. }
  1057. /*
  1058. * Slave transactions callback to the slave device to allow
  1059. * synchronization of slave DMA signals with the DMAC enable
  1060. */
  1061. static void pl08x_issue_pending(struct dma_chan *chan)
  1062. {
  1063. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1064. unsigned long flags;
  1065. spin_lock_irqsave(&plchan->lock, flags);
  1066. /* Something is already active, or we're waiting for a channel... */
  1067. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  1068. spin_unlock_irqrestore(&plchan->lock, flags);
  1069. return;
  1070. }
  1071. /* Take the first element in the queue and execute it */
  1072. if (!list_empty(&plchan->desc_list)) {
  1073. struct pl08x_txd *next;
  1074. next = list_first_entry(&plchan->desc_list,
  1075. struct pl08x_txd,
  1076. node);
  1077. list_del(&next->node);
  1078. plchan->state = PL08X_CHAN_RUNNING;
  1079. pl08x_start_txd(plchan, next);
  1080. }
  1081. spin_unlock_irqrestore(&plchan->lock, flags);
  1082. }
  1083. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  1084. struct pl08x_txd *txd)
  1085. {
  1086. int num_llis;
  1087. struct pl08x_driver_data *pl08x = plchan->host;
  1088. int ret;
  1089. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  1090. if (!num_llis) {
  1091. kfree(txd);
  1092. return -EINVAL;
  1093. }
  1094. spin_lock_irqsave(&plchan->lock, plchan->lockflags);
  1095. list_add_tail(&txd->node, &plchan->desc_list);
  1096. /*
  1097. * See if we already have a physical channel allocated,
  1098. * else this is the time to try to get one.
  1099. */
  1100. ret = prep_phy_channel(plchan, txd);
  1101. if (ret) {
  1102. /*
  1103. * No physical channel available, we will
  1104. * stack up the memcpy channels until there is a channel
  1105. * available to handle it whereas slave transfers may
  1106. * have been denied due to platform channel muxing restrictions
  1107. * and since there is no guarantee that this will ever be
  1108. * resolved, and since the signal must be acquired AFTER
  1109. * acquiring the physical channel, we will let them be NACK:ed
  1110. * with -EBUSY here. The drivers can alway retry the prep()
  1111. * call if they are eager on doing this using DMA.
  1112. */
  1113. if (plchan->slave) {
  1114. pl08x_free_txd_list(pl08x, plchan);
  1115. spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
  1116. return -EBUSY;
  1117. }
  1118. /* Do this memcpy whenever there is a channel ready */
  1119. plchan->state = PL08X_CHAN_WAITING;
  1120. plchan->waiting = txd;
  1121. } else
  1122. /*
  1123. * Else we're all set, paused and ready to roll,
  1124. * status will switch to PL08X_CHAN_RUNNING when
  1125. * we call issue_pending(). If there is something
  1126. * running on the channel already we don't change
  1127. * its state.
  1128. */
  1129. if (plchan->state == PL08X_CHAN_IDLE)
  1130. plchan->state = PL08X_CHAN_PAUSED;
  1131. /*
  1132. * Notice that we leave plchan->lock locked on purpose:
  1133. * it will be unlocked in the subsequent tx_submit()
  1134. * call. This is a consequence of the current API.
  1135. */
  1136. return 0;
  1137. }
  1138. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
  1139. {
  1140. struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
  1141. if (txd) {
  1142. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1143. txd->tx.tx_submit = pl08x_tx_submit;
  1144. INIT_LIST_HEAD(&txd->node);
  1145. /* Always enable error and terminal interrupts */
  1146. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1147. PL080_CONFIG_TC_IRQ_MASK;
  1148. }
  1149. return txd;
  1150. }
  1151. /*
  1152. * Initialize a descriptor to be used by memcpy submit
  1153. */
  1154. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1155. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1156. size_t len, unsigned long flags)
  1157. {
  1158. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1159. struct pl08x_driver_data *pl08x = plchan->host;
  1160. struct pl08x_txd *txd;
  1161. int ret;
  1162. txd = pl08x_get_txd(plchan);
  1163. if (!txd) {
  1164. dev_err(&pl08x->adev->dev,
  1165. "%s no memory for descriptor\n", __func__);
  1166. return NULL;
  1167. }
  1168. txd->direction = DMA_NONE;
  1169. txd->srcbus.addr = src;
  1170. txd->dstbus.addr = dest;
  1171. /* Set platform data for m2m */
  1172. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1173. txd->cctl = pl08x->pd->memcpy_channel.cctl;
  1174. /* Both to be incremented or the code will break */
  1175. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1176. txd->len = len;
  1177. ret = pl08x_prep_channel_resources(plchan, txd);
  1178. if (ret)
  1179. return NULL;
  1180. /*
  1181. * NB: the channel lock is held at this point so tx_submit()
  1182. * must be called in direct succession.
  1183. */
  1184. return &txd->tx;
  1185. }
  1186. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1187. struct dma_chan *chan, struct scatterlist *sgl,
  1188. unsigned int sg_len, enum dma_data_direction direction,
  1189. unsigned long flags)
  1190. {
  1191. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1192. struct pl08x_driver_data *pl08x = plchan->host;
  1193. struct pl08x_txd *txd;
  1194. int ret;
  1195. /*
  1196. * Current implementation ASSUMES only one sg
  1197. */
  1198. if (sg_len != 1) {
  1199. dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
  1200. __func__);
  1201. BUG();
  1202. }
  1203. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1204. __func__, sgl->length, plchan->name);
  1205. txd = pl08x_get_txd(plchan);
  1206. if (!txd) {
  1207. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1208. return NULL;
  1209. }
  1210. if (direction != plchan->runtime_direction)
  1211. dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
  1212. "the direction configured for the PrimeCell\n",
  1213. __func__);
  1214. /*
  1215. * Set up addresses, the PrimeCell configured address
  1216. * will take precedence since this may configure the
  1217. * channel target address dynamically at runtime.
  1218. */
  1219. txd->direction = direction;
  1220. txd->cctl = plchan->cd->cctl &
  1221. ~(PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1222. PL080_CONTROL_PROT_MASK);
  1223. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1224. txd->cctl |= PL080_CONTROL_PROT_SYS;
  1225. if (direction == DMA_TO_DEVICE) {
  1226. txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1227. txd->cctl |= PL080_CONTROL_SRC_INCR;
  1228. txd->srcbus.addr = sgl->dma_address;
  1229. if (plchan->runtime_addr)
  1230. txd->dstbus.addr = plchan->runtime_addr;
  1231. else
  1232. txd->dstbus.addr = plchan->cd->addr;
  1233. } else if (direction == DMA_FROM_DEVICE) {
  1234. txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1235. txd->cctl |= PL080_CONTROL_DST_INCR;
  1236. if (plchan->runtime_addr)
  1237. txd->srcbus.addr = plchan->runtime_addr;
  1238. else
  1239. txd->srcbus.addr = plchan->cd->addr;
  1240. txd->dstbus.addr = sgl->dma_address;
  1241. } else {
  1242. dev_err(&pl08x->adev->dev,
  1243. "%s direction unsupported\n", __func__);
  1244. return NULL;
  1245. }
  1246. txd->len = sgl->length;
  1247. ret = pl08x_prep_channel_resources(plchan, txd);
  1248. if (ret)
  1249. return NULL;
  1250. /*
  1251. * NB: the channel lock is held at this point so tx_submit()
  1252. * must be called in direct succession.
  1253. */
  1254. return &txd->tx;
  1255. }
  1256. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1257. unsigned long arg)
  1258. {
  1259. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1260. struct pl08x_driver_data *pl08x = plchan->host;
  1261. unsigned long flags;
  1262. int ret = 0;
  1263. /* Controls applicable to inactive channels */
  1264. if (cmd == DMA_SLAVE_CONFIG) {
  1265. dma_set_runtime_config(chan,
  1266. (struct dma_slave_config *)
  1267. arg);
  1268. return 0;
  1269. }
  1270. /*
  1271. * Anything succeeds on channels with no physical allocation and
  1272. * no queued transfers.
  1273. */
  1274. spin_lock_irqsave(&plchan->lock, flags);
  1275. if (!plchan->phychan && !plchan->at) {
  1276. spin_unlock_irqrestore(&plchan->lock, flags);
  1277. return 0;
  1278. }
  1279. switch (cmd) {
  1280. case DMA_TERMINATE_ALL:
  1281. plchan->state = PL08X_CHAN_IDLE;
  1282. if (plchan->phychan) {
  1283. pl08x_stop_phy_chan(plchan->phychan);
  1284. /*
  1285. * Mark physical channel as free and free any slave
  1286. * signal
  1287. */
  1288. release_phy_channel(plchan);
  1289. }
  1290. /* Dequeue jobs and free LLIs */
  1291. if (plchan->at) {
  1292. pl08x_free_txd(pl08x, plchan->at);
  1293. plchan->at = NULL;
  1294. }
  1295. /* Dequeue jobs not yet fired as well */
  1296. pl08x_free_txd_list(pl08x, plchan);
  1297. break;
  1298. case DMA_PAUSE:
  1299. pl08x_pause_phy_chan(plchan->phychan);
  1300. plchan->state = PL08X_CHAN_PAUSED;
  1301. break;
  1302. case DMA_RESUME:
  1303. pl08x_resume_phy_chan(plchan->phychan);
  1304. plchan->state = PL08X_CHAN_RUNNING;
  1305. break;
  1306. default:
  1307. /* Unknown command */
  1308. ret = -ENXIO;
  1309. break;
  1310. }
  1311. spin_unlock_irqrestore(&plchan->lock, flags);
  1312. return ret;
  1313. }
  1314. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1315. {
  1316. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1317. char *name = chan_id;
  1318. /* Check that the channel is not taken! */
  1319. if (!strcmp(plchan->name, name))
  1320. return true;
  1321. return false;
  1322. }
  1323. /*
  1324. * Just check that the device is there and active
  1325. * TODO: turn this bit on/off depending on the number of
  1326. * physical channels actually used, if it is zero... well
  1327. * shut it off. That will save some power. Cut the clock
  1328. * at the same time.
  1329. */
  1330. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1331. {
  1332. u32 val;
  1333. val = readl(pl08x->base + PL080_CONFIG);
  1334. val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
  1335. /* We implicitly clear bit 1 and that means little-endian mode */
  1336. val |= PL080_CONFIG_ENABLE;
  1337. writel(val, pl08x->base + PL080_CONFIG);
  1338. }
  1339. static void pl08x_tasklet(unsigned long data)
  1340. {
  1341. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1342. struct pl08x_driver_data *pl08x = plchan->host;
  1343. unsigned long flags;
  1344. spin_lock_irqsave(&plchan->lock, flags);
  1345. if (plchan->at) {
  1346. dma_async_tx_callback callback =
  1347. plchan->at->tx.callback;
  1348. void *callback_param =
  1349. plchan->at->tx.callback_param;
  1350. /*
  1351. * Update last completed
  1352. */
  1353. plchan->lc = plchan->at->tx.cookie;
  1354. /*
  1355. * Callback to signal completion
  1356. */
  1357. if (callback)
  1358. callback(callback_param);
  1359. /*
  1360. * Free the descriptor
  1361. */
  1362. pl08x_free_txd(pl08x, plchan->at);
  1363. plchan->at = NULL;
  1364. }
  1365. /*
  1366. * If a new descriptor is queued, set it up
  1367. * plchan->at is NULL here
  1368. */
  1369. if (!list_empty(&plchan->desc_list)) {
  1370. struct pl08x_txd *next;
  1371. next = list_first_entry(&plchan->desc_list,
  1372. struct pl08x_txd,
  1373. node);
  1374. list_del(&next->node);
  1375. pl08x_start_txd(plchan, next);
  1376. } else {
  1377. struct pl08x_dma_chan *waiting = NULL;
  1378. /*
  1379. * No more jobs, so free up the physical channel
  1380. * Free any allocated signal on slave transfers too
  1381. */
  1382. release_phy_channel(plchan);
  1383. plchan->state = PL08X_CHAN_IDLE;
  1384. /*
  1385. * And NOW before anyone else can grab that free:d
  1386. * up physical channel, see if there is some memcpy
  1387. * pending that seriously needs to start because of
  1388. * being stacked up while we were choking the
  1389. * physical channels with data.
  1390. */
  1391. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1392. chan.device_node) {
  1393. if (waiting->state == PL08X_CHAN_WAITING &&
  1394. waiting->waiting != NULL) {
  1395. int ret;
  1396. /* This should REALLY not fail now */
  1397. ret = prep_phy_channel(waiting,
  1398. waiting->waiting);
  1399. BUG_ON(ret);
  1400. waiting->state = PL08X_CHAN_RUNNING;
  1401. waiting->waiting = NULL;
  1402. pl08x_issue_pending(&waiting->chan);
  1403. break;
  1404. }
  1405. }
  1406. }
  1407. spin_unlock_irqrestore(&plchan->lock, flags);
  1408. }
  1409. static irqreturn_t pl08x_irq(int irq, void *dev)
  1410. {
  1411. struct pl08x_driver_data *pl08x = dev;
  1412. u32 mask = 0;
  1413. u32 val;
  1414. int i;
  1415. val = readl(pl08x->base + PL080_ERR_STATUS);
  1416. if (val) {
  1417. /*
  1418. * An error interrupt (on one or more channels)
  1419. */
  1420. dev_err(&pl08x->adev->dev,
  1421. "%s error interrupt, register value 0x%08x\n",
  1422. __func__, val);
  1423. /*
  1424. * Simply clear ALL PL08X error interrupts,
  1425. * regardless of channel and cause
  1426. * FIXME: should be 0x00000003 on PL081 really.
  1427. */
  1428. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1429. }
  1430. val = readl(pl08x->base + PL080_INT_STATUS);
  1431. for (i = 0; i < pl08x->vd->channels; i++) {
  1432. if ((1 << i) & val) {
  1433. /* Locate physical channel */
  1434. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1435. struct pl08x_dma_chan *plchan = phychan->serving;
  1436. /* Schedule tasklet on this channel */
  1437. tasklet_schedule(&plchan->tasklet);
  1438. mask |= (1 << i);
  1439. }
  1440. }
  1441. /*
  1442. * Clear only the terminal interrupts on channels we processed
  1443. */
  1444. writel(mask, pl08x->base + PL080_TC_CLEAR);
  1445. return mask ? IRQ_HANDLED : IRQ_NONE;
  1446. }
  1447. /*
  1448. * Initialise the DMAC memcpy/slave channels.
  1449. * Make a local wrapper to hold required data
  1450. */
  1451. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1452. struct dma_device *dmadev,
  1453. unsigned int channels,
  1454. bool slave)
  1455. {
  1456. struct pl08x_dma_chan *chan;
  1457. int i;
  1458. INIT_LIST_HEAD(&dmadev->channels);
  1459. /*
  1460. * Register as many many memcpy as we have physical channels,
  1461. * we won't always be able to use all but the code will have
  1462. * to cope with that situation.
  1463. */
  1464. for (i = 0; i < channels; i++) {
  1465. chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
  1466. if (!chan) {
  1467. dev_err(&pl08x->adev->dev,
  1468. "%s no memory for channel\n", __func__);
  1469. return -ENOMEM;
  1470. }
  1471. chan->host = pl08x;
  1472. chan->state = PL08X_CHAN_IDLE;
  1473. if (slave) {
  1474. chan->slave = true;
  1475. chan->name = pl08x->pd->slave_channels[i].bus_id;
  1476. chan->cd = &pl08x->pd->slave_channels[i];
  1477. } else {
  1478. chan->cd = &pl08x->pd->memcpy_channel;
  1479. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1480. if (!chan->name) {
  1481. kfree(chan);
  1482. return -ENOMEM;
  1483. }
  1484. }
  1485. if (chan->cd->circular_buffer) {
  1486. dev_err(&pl08x->adev->dev,
  1487. "channel %s: circular buffers not supported\n",
  1488. chan->name);
  1489. kfree(chan);
  1490. continue;
  1491. }
  1492. dev_info(&pl08x->adev->dev,
  1493. "initialize virtual channel \"%s\"\n",
  1494. chan->name);
  1495. chan->chan.device = dmadev;
  1496. chan->chan.cookie = 0;
  1497. chan->lc = 0;
  1498. spin_lock_init(&chan->lock);
  1499. INIT_LIST_HEAD(&chan->desc_list);
  1500. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1501. (unsigned long) chan);
  1502. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1503. }
  1504. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1505. i, slave ? "slave" : "memcpy");
  1506. return i;
  1507. }
  1508. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1509. {
  1510. struct pl08x_dma_chan *chan = NULL;
  1511. struct pl08x_dma_chan *next;
  1512. list_for_each_entry_safe(chan,
  1513. next, &dmadev->channels, chan.device_node) {
  1514. list_del(&chan->chan.device_node);
  1515. kfree(chan);
  1516. }
  1517. }
  1518. #ifdef CONFIG_DEBUG_FS
  1519. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1520. {
  1521. switch (state) {
  1522. case PL08X_CHAN_IDLE:
  1523. return "idle";
  1524. case PL08X_CHAN_RUNNING:
  1525. return "running";
  1526. case PL08X_CHAN_PAUSED:
  1527. return "paused";
  1528. case PL08X_CHAN_WAITING:
  1529. return "waiting";
  1530. default:
  1531. break;
  1532. }
  1533. return "UNKNOWN STATE";
  1534. }
  1535. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1536. {
  1537. struct pl08x_driver_data *pl08x = s->private;
  1538. struct pl08x_dma_chan *chan;
  1539. struct pl08x_phy_chan *ch;
  1540. unsigned long flags;
  1541. int i;
  1542. seq_printf(s, "PL08x physical channels:\n");
  1543. seq_printf(s, "CHANNEL:\tUSER:\n");
  1544. seq_printf(s, "--------\t-----\n");
  1545. for (i = 0; i < pl08x->vd->channels; i++) {
  1546. struct pl08x_dma_chan *virt_chan;
  1547. ch = &pl08x->phy_chans[i];
  1548. spin_lock_irqsave(&ch->lock, flags);
  1549. virt_chan = ch->serving;
  1550. seq_printf(s, "%d\t\t%s\n",
  1551. ch->id, virt_chan ? virt_chan->name : "(none)");
  1552. spin_unlock_irqrestore(&ch->lock, flags);
  1553. }
  1554. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1555. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1556. seq_printf(s, "--------\t------\n");
  1557. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1558. seq_printf(s, "%s\t\t%s\n", chan->name,
  1559. pl08x_state_str(chan->state));
  1560. }
  1561. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1562. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1563. seq_printf(s, "--------\t------\n");
  1564. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1565. seq_printf(s, "%s\t\t%s\n", chan->name,
  1566. pl08x_state_str(chan->state));
  1567. }
  1568. return 0;
  1569. }
  1570. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1571. {
  1572. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1573. }
  1574. static const struct file_operations pl08x_debugfs_operations = {
  1575. .open = pl08x_debugfs_open,
  1576. .read = seq_read,
  1577. .llseek = seq_lseek,
  1578. .release = single_release,
  1579. };
  1580. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1581. {
  1582. /* Expose a simple debugfs interface to view all clocks */
  1583. (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
  1584. NULL, pl08x,
  1585. &pl08x_debugfs_operations);
  1586. }
  1587. #else
  1588. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1589. {
  1590. }
  1591. #endif
  1592. static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
  1593. {
  1594. struct pl08x_driver_data *pl08x;
  1595. const struct vendor_data *vd = id->data;
  1596. int ret = 0;
  1597. int i;
  1598. ret = amba_request_regions(adev, NULL);
  1599. if (ret)
  1600. return ret;
  1601. /* Create the driver state holder */
  1602. pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
  1603. if (!pl08x) {
  1604. ret = -ENOMEM;
  1605. goto out_no_pl08x;
  1606. }
  1607. /* Initialize memcpy engine */
  1608. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1609. pl08x->memcpy.dev = &adev->dev;
  1610. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1611. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1612. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1613. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1614. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1615. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1616. pl08x->memcpy.device_control = pl08x_control;
  1617. /* Initialize slave engine */
  1618. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1619. pl08x->slave.dev = &adev->dev;
  1620. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1621. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1622. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1623. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1624. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1625. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1626. pl08x->slave.device_control = pl08x_control;
  1627. /* Get the platform data */
  1628. pl08x->pd = dev_get_platdata(&adev->dev);
  1629. if (!pl08x->pd) {
  1630. dev_err(&adev->dev, "no platform data supplied\n");
  1631. goto out_no_platdata;
  1632. }
  1633. /* Assign useful pointers to the driver state */
  1634. pl08x->adev = adev;
  1635. pl08x->vd = vd;
  1636. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1637. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1638. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1639. if (!pl08x->pool) {
  1640. ret = -ENOMEM;
  1641. goto out_no_lli_pool;
  1642. }
  1643. spin_lock_init(&pl08x->lock);
  1644. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1645. if (!pl08x->base) {
  1646. ret = -ENOMEM;
  1647. goto out_no_ioremap;
  1648. }
  1649. /* Turn on the PL08x */
  1650. pl08x_ensure_on(pl08x);
  1651. /*
  1652. * Attach the interrupt handler
  1653. */
  1654. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1655. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1656. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1657. DRIVER_NAME, pl08x);
  1658. if (ret) {
  1659. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1660. __func__, adev->irq[0]);
  1661. goto out_no_irq;
  1662. }
  1663. /* Initialize physical channels */
  1664. pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
  1665. GFP_KERNEL);
  1666. if (!pl08x->phy_chans) {
  1667. dev_err(&adev->dev, "%s failed to allocate "
  1668. "physical channel holders\n",
  1669. __func__);
  1670. goto out_no_phychans;
  1671. }
  1672. for (i = 0; i < vd->channels; i++) {
  1673. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1674. ch->id = i;
  1675. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1676. spin_lock_init(&ch->lock);
  1677. ch->serving = NULL;
  1678. ch->signal = -1;
  1679. dev_info(&adev->dev,
  1680. "physical channel %d is %s\n", i,
  1681. pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1682. }
  1683. /* Register as many memcpy channels as there are physical channels */
  1684. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1685. pl08x->vd->channels, false);
  1686. if (ret <= 0) {
  1687. dev_warn(&pl08x->adev->dev,
  1688. "%s failed to enumerate memcpy channels - %d\n",
  1689. __func__, ret);
  1690. goto out_no_memcpy;
  1691. }
  1692. pl08x->memcpy.chancnt = ret;
  1693. /* Register slave channels */
  1694. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1695. pl08x->pd->num_slave_channels,
  1696. true);
  1697. if (ret <= 0) {
  1698. dev_warn(&pl08x->adev->dev,
  1699. "%s failed to enumerate slave channels - %d\n",
  1700. __func__, ret);
  1701. goto out_no_slave;
  1702. }
  1703. pl08x->slave.chancnt = ret;
  1704. ret = dma_async_device_register(&pl08x->memcpy);
  1705. if (ret) {
  1706. dev_warn(&pl08x->adev->dev,
  1707. "%s failed to register memcpy as an async device - %d\n",
  1708. __func__, ret);
  1709. goto out_no_memcpy_reg;
  1710. }
  1711. ret = dma_async_device_register(&pl08x->slave);
  1712. if (ret) {
  1713. dev_warn(&pl08x->adev->dev,
  1714. "%s failed to register slave as an async device - %d\n",
  1715. __func__, ret);
  1716. goto out_no_slave_reg;
  1717. }
  1718. amba_set_drvdata(adev, pl08x);
  1719. init_pl08x_debugfs(pl08x);
  1720. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1721. amba_part(adev), amba_rev(adev),
  1722. (unsigned long long)adev->res.start, adev->irq[0]);
  1723. return 0;
  1724. out_no_slave_reg:
  1725. dma_async_device_unregister(&pl08x->memcpy);
  1726. out_no_memcpy_reg:
  1727. pl08x_free_virtual_channels(&pl08x->slave);
  1728. out_no_slave:
  1729. pl08x_free_virtual_channels(&pl08x->memcpy);
  1730. out_no_memcpy:
  1731. kfree(pl08x->phy_chans);
  1732. out_no_phychans:
  1733. free_irq(adev->irq[0], pl08x);
  1734. out_no_irq:
  1735. iounmap(pl08x->base);
  1736. out_no_ioremap:
  1737. dma_pool_destroy(pl08x->pool);
  1738. out_no_lli_pool:
  1739. out_no_platdata:
  1740. kfree(pl08x);
  1741. out_no_pl08x:
  1742. amba_release_regions(adev);
  1743. return ret;
  1744. }
  1745. /* PL080 has 8 channels and the PL080 have just 2 */
  1746. static struct vendor_data vendor_pl080 = {
  1747. .channels = 8,
  1748. .dualmaster = true,
  1749. };
  1750. static struct vendor_data vendor_pl081 = {
  1751. .channels = 2,
  1752. .dualmaster = false,
  1753. };
  1754. static struct amba_id pl08x_ids[] = {
  1755. /* PL080 */
  1756. {
  1757. .id = 0x00041080,
  1758. .mask = 0x000fffff,
  1759. .data = &vendor_pl080,
  1760. },
  1761. /* PL081 */
  1762. {
  1763. .id = 0x00041081,
  1764. .mask = 0x000fffff,
  1765. .data = &vendor_pl081,
  1766. },
  1767. /* Nomadik 8815 PL080 variant */
  1768. {
  1769. .id = 0x00280880,
  1770. .mask = 0x00ffffff,
  1771. .data = &vendor_pl080,
  1772. },
  1773. { 0, 0 },
  1774. };
  1775. static struct amba_driver pl08x_amba_driver = {
  1776. .drv.name = DRIVER_NAME,
  1777. .id_table = pl08x_ids,
  1778. .probe = pl08x_probe,
  1779. };
  1780. static int __init pl08x_init(void)
  1781. {
  1782. int retval;
  1783. retval = amba_driver_register(&pl08x_amba_driver);
  1784. if (retval)
  1785. printk(KERN_WARNING DRIVER_NAME
  1786. "failed to register as an AMBA device (%d)\n",
  1787. retval);
  1788. return retval;
  1789. }
  1790. subsys_initcall(pl08x_init);