init_64.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <linux/gfp.h>
  32. #include <asm/processor.h>
  33. #include <asm/bios_ebda.h>
  34. #include <asm/system.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/dma.h>
  39. #include <asm/fixmap.h>
  40. #include <asm/e820.h>
  41. #include <asm/apic.h>
  42. #include <asm/tlb.h>
  43. #include <asm/mmu_context.h>
  44. #include <asm/proto.h>
  45. #include <asm/smp.h>
  46. #include <asm/sections.h>
  47. #include <asm/kdebug.h>
  48. #include <asm/numa.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/init.h>
  51. #include <linux/bootmem.h>
  52. static unsigned long dma_reserve __initdata;
  53. static int __init parse_direct_gbpages_off(char *arg)
  54. {
  55. direct_gbpages = 0;
  56. return 0;
  57. }
  58. early_param("nogbpages", parse_direct_gbpages_off);
  59. static int __init parse_direct_gbpages_on(char *arg)
  60. {
  61. direct_gbpages = 1;
  62. return 0;
  63. }
  64. early_param("gbpages", parse_direct_gbpages_on);
  65. /*
  66. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  67. * physical space so we can cache the place of the first one and move
  68. * around without checking the pgd every time.
  69. */
  70. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  71. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  72. int force_personality32;
  73. /*
  74. * noexec32=on|off
  75. * Control non executable heap for 32bit processes.
  76. * To control the stack too use noexec=off
  77. *
  78. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  79. * off PROT_READ implies PROT_EXEC
  80. */
  81. static int __init nonx32_setup(char *str)
  82. {
  83. if (!strcmp(str, "on"))
  84. force_personality32 &= ~READ_IMPLIES_EXEC;
  85. else if (!strcmp(str, "off"))
  86. force_personality32 |= READ_IMPLIES_EXEC;
  87. return 1;
  88. }
  89. __setup("noexec32=", nonx32_setup);
  90. /*
  91. * When memory was added/removed make sure all the processes MM have
  92. * suitable PGD entries in the local PGD level page.
  93. */
  94. void sync_global_pgds(unsigned long start, unsigned long end)
  95. {
  96. unsigned long address;
  97. for (address = start; address <= end; address += PGDIR_SIZE) {
  98. const pgd_t *pgd_ref = pgd_offset_k(address);
  99. unsigned long flags;
  100. struct page *page;
  101. if (pgd_none(*pgd_ref))
  102. continue;
  103. spin_lock_irqsave(&pgd_lock, flags);
  104. list_for_each_entry(page, &pgd_list, lru) {
  105. pgd_t *pgd;
  106. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  107. if (pgd_none(*pgd))
  108. set_pgd(pgd, *pgd_ref);
  109. else
  110. BUG_ON(pgd_page_vaddr(*pgd)
  111. != pgd_page_vaddr(*pgd_ref));
  112. }
  113. spin_unlock_irqrestore(&pgd_lock, flags);
  114. }
  115. }
  116. /*
  117. * NOTE: This function is marked __ref because it calls __init function
  118. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  119. */
  120. static __ref void *spp_getpage(void)
  121. {
  122. void *ptr;
  123. if (after_bootmem)
  124. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  125. else
  126. ptr = alloc_bootmem_pages(PAGE_SIZE);
  127. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  128. panic("set_pte_phys: cannot allocate page data %s\n",
  129. after_bootmem ? "after bootmem" : "");
  130. }
  131. pr_debug("spp_getpage %p\n", ptr);
  132. return ptr;
  133. }
  134. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  135. {
  136. if (pgd_none(*pgd)) {
  137. pud_t *pud = (pud_t *)spp_getpage();
  138. pgd_populate(&init_mm, pgd, pud);
  139. if (pud != pud_offset(pgd, 0))
  140. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  141. pud, pud_offset(pgd, 0));
  142. }
  143. return pud_offset(pgd, vaddr);
  144. }
  145. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  146. {
  147. if (pud_none(*pud)) {
  148. pmd_t *pmd = (pmd_t *) spp_getpage();
  149. pud_populate(&init_mm, pud, pmd);
  150. if (pmd != pmd_offset(pud, 0))
  151. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  152. pmd, pmd_offset(pud, 0));
  153. }
  154. return pmd_offset(pud, vaddr);
  155. }
  156. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  157. {
  158. if (pmd_none(*pmd)) {
  159. pte_t *pte = (pte_t *) spp_getpage();
  160. pmd_populate_kernel(&init_mm, pmd, pte);
  161. if (pte != pte_offset_kernel(pmd, 0))
  162. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  163. }
  164. return pte_offset_kernel(pmd, vaddr);
  165. }
  166. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  167. {
  168. pud_t *pud;
  169. pmd_t *pmd;
  170. pte_t *pte;
  171. pud = pud_page + pud_index(vaddr);
  172. pmd = fill_pmd(pud, vaddr);
  173. pte = fill_pte(pmd, vaddr);
  174. set_pte(pte, new_pte);
  175. /*
  176. * It's enough to flush this one mapping.
  177. * (PGE mappings get flushed as well)
  178. */
  179. __flush_tlb_one(vaddr);
  180. }
  181. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  182. {
  183. pgd_t *pgd;
  184. pud_t *pud_page;
  185. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  186. pgd = pgd_offset_k(vaddr);
  187. if (pgd_none(*pgd)) {
  188. printk(KERN_ERR
  189. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  190. return;
  191. }
  192. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  193. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  194. }
  195. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  196. {
  197. pgd_t *pgd;
  198. pud_t *pud;
  199. pgd = pgd_offset_k(vaddr);
  200. pud = fill_pud(pgd, vaddr);
  201. return fill_pmd(pud, vaddr);
  202. }
  203. pte_t * __init populate_extra_pte(unsigned long vaddr)
  204. {
  205. pmd_t *pmd;
  206. pmd = populate_extra_pmd(vaddr);
  207. return fill_pte(pmd, vaddr);
  208. }
  209. /*
  210. * Create large page table mappings for a range of physical addresses.
  211. */
  212. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  213. pgprot_t prot)
  214. {
  215. pgd_t *pgd;
  216. pud_t *pud;
  217. pmd_t *pmd;
  218. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  219. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  220. pgd = pgd_offset_k((unsigned long)__va(phys));
  221. if (pgd_none(*pgd)) {
  222. pud = (pud_t *) spp_getpage();
  223. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  224. _PAGE_USER));
  225. }
  226. pud = pud_offset(pgd, (unsigned long)__va(phys));
  227. if (pud_none(*pud)) {
  228. pmd = (pmd_t *) spp_getpage();
  229. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  230. _PAGE_USER));
  231. }
  232. pmd = pmd_offset(pud, phys);
  233. BUG_ON(!pmd_none(*pmd));
  234. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  235. }
  236. }
  237. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  238. {
  239. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  240. }
  241. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  242. {
  243. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  244. }
  245. /*
  246. * The head.S code sets up the kernel high mapping:
  247. *
  248. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  249. *
  250. * phys_addr holds the negative offset to the kernel, which is added
  251. * to the compile time generated pmds. This results in invalid pmds up
  252. * to the point where we hit the physaddr 0 mapping.
  253. *
  254. * We limit the mappings to the region from _text to _end. _end is
  255. * rounded up to the 2MB boundary. This catches the invalid pmds as
  256. * well, as they are located before _text:
  257. */
  258. void __init cleanup_highmap(void)
  259. {
  260. unsigned long vaddr = __START_KERNEL_map;
  261. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  262. pmd_t *pmd = level2_kernel_pgt;
  263. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  264. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  265. if (pmd_none(*pmd))
  266. continue;
  267. if (vaddr < (unsigned long) _text || vaddr > end)
  268. set_pmd(pmd, __pmd(0));
  269. }
  270. }
  271. static __ref void *alloc_low_page(unsigned long *phys)
  272. {
  273. unsigned long pfn = e820_table_end++;
  274. void *adr;
  275. if (after_bootmem) {
  276. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  277. *phys = __pa(adr);
  278. return adr;
  279. }
  280. if (pfn >= e820_table_top)
  281. panic("alloc_low_page: ran out of memory");
  282. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  283. memset(adr, 0, PAGE_SIZE);
  284. *phys = pfn * PAGE_SIZE;
  285. return adr;
  286. }
  287. static __ref void unmap_low_page(void *adr)
  288. {
  289. if (after_bootmem)
  290. return;
  291. early_iounmap(adr, PAGE_SIZE);
  292. }
  293. static unsigned long __meminit
  294. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  295. pgprot_t prot)
  296. {
  297. unsigned pages = 0;
  298. unsigned long last_map_addr = end;
  299. int i;
  300. pte_t *pte = pte_page + pte_index(addr);
  301. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  302. if (addr >= end) {
  303. if (!after_bootmem) {
  304. for(; i < PTRS_PER_PTE; i++, pte++)
  305. set_pte(pte, __pte(0));
  306. }
  307. break;
  308. }
  309. /*
  310. * We will re-use the existing mapping.
  311. * Xen for example has some special requirements, like mapping
  312. * pagetable pages as RO. So assume someone who pre-setup
  313. * these mappings are more intelligent.
  314. */
  315. if (pte_val(*pte)) {
  316. pages++;
  317. continue;
  318. }
  319. if (0)
  320. printk(" pte=%p addr=%lx pte=%016lx\n",
  321. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  322. pages++;
  323. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  324. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  325. }
  326. update_page_count(PG_LEVEL_4K, pages);
  327. return last_map_addr;
  328. }
  329. static unsigned long __meminit
  330. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  331. pgprot_t prot)
  332. {
  333. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  334. return phys_pte_init(pte, address, end, prot);
  335. }
  336. static unsigned long __meminit
  337. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  338. unsigned long page_size_mask, pgprot_t prot)
  339. {
  340. unsigned long pages = 0;
  341. unsigned long last_map_addr = end;
  342. int i = pmd_index(address);
  343. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  344. unsigned long pte_phys;
  345. pmd_t *pmd = pmd_page + pmd_index(address);
  346. pte_t *pte;
  347. pgprot_t new_prot = prot;
  348. if (address >= end) {
  349. if (!after_bootmem) {
  350. for (; i < PTRS_PER_PMD; i++, pmd++)
  351. set_pmd(pmd, __pmd(0));
  352. }
  353. break;
  354. }
  355. if (pmd_val(*pmd)) {
  356. if (!pmd_large(*pmd)) {
  357. spin_lock(&init_mm.page_table_lock);
  358. last_map_addr = phys_pte_update(pmd, address,
  359. end, prot);
  360. spin_unlock(&init_mm.page_table_lock);
  361. continue;
  362. }
  363. /*
  364. * If we are ok with PG_LEVEL_2M mapping, then we will
  365. * use the existing mapping,
  366. *
  367. * Otherwise, we will split the large page mapping but
  368. * use the same existing protection bits except for
  369. * large page, so that we don't violate Intel's TLB
  370. * Application note (317080) which says, while changing
  371. * the page sizes, new and old translations should
  372. * not differ with respect to page frame and
  373. * attributes.
  374. */
  375. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  376. pages++;
  377. continue;
  378. }
  379. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  380. }
  381. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  382. pages++;
  383. spin_lock(&init_mm.page_table_lock);
  384. set_pte((pte_t *)pmd,
  385. pfn_pte(address >> PAGE_SHIFT,
  386. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  387. spin_unlock(&init_mm.page_table_lock);
  388. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  389. continue;
  390. }
  391. pte = alloc_low_page(&pte_phys);
  392. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  393. unmap_low_page(pte);
  394. spin_lock(&init_mm.page_table_lock);
  395. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  396. spin_unlock(&init_mm.page_table_lock);
  397. }
  398. update_page_count(PG_LEVEL_2M, pages);
  399. return last_map_addr;
  400. }
  401. static unsigned long __meminit
  402. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  403. unsigned long page_size_mask, pgprot_t prot)
  404. {
  405. pmd_t *pmd = pmd_offset(pud, 0);
  406. unsigned long last_map_addr;
  407. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  408. __flush_tlb_all();
  409. return last_map_addr;
  410. }
  411. static unsigned long __meminit
  412. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  413. unsigned long page_size_mask)
  414. {
  415. unsigned long pages = 0;
  416. unsigned long last_map_addr = end;
  417. int i = pud_index(addr);
  418. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  419. unsigned long pmd_phys;
  420. pud_t *pud = pud_page + pud_index(addr);
  421. pmd_t *pmd;
  422. pgprot_t prot = PAGE_KERNEL;
  423. if (addr >= end)
  424. break;
  425. if (!after_bootmem &&
  426. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  427. set_pud(pud, __pud(0));
  428. continue;
  429. }
  430. if (pud_val(*pud)) {
  431. if (!pud_large(*pud)) {
  432. last_map_addr = phys_pmd_update(pud, addr, end,
  433. page_size_mask, prot);
  434. continue;
  435. }
  436. /*
  437. * If we are ok with PG_LEVEL_1G mapping, then we will
  438. * use the existing mapping.
  439. *
  440. * Otherwise, we will split the gbpage mapping but use
  441. * the same existing protection bits except for large
  442. * page, so that we don't violate Intel's TLB
  443. * Application note (317080) which says, while changing
  444. * the page sizes, new and old translations should
  445. * not differ with respect to page frame and
  446. * attributes.
  447. */
  448. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  449. pages++;
  450. continue;
  451. }
  452. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  453. }
  454. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  455. pages++;
  456. spin_lock(&init_mm.page_table_lock);
  457. set_pte((pte_t *)pud,
  458. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  459. spin_unlock(&init_mm.page_table_lock);
  460. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  461. continue;
  462. }
  463. pmd = alloc_low_page(&pmd_phys);
  464. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  465. prot);
  466. unmap_low_page(pmd);
  467. spin_lock(&init_mm.page_table_lock);
  468. pud_populate(&init_mm, pud, __va(pmd_phys));
  469. spin_unlock(&init_mm.page_table_lock);
  470. }
  471. __flush_tlb_all();
  472. update_page_count(PG_LEVEL_1G, pages);
  473. return last_map_addr;
  474. }
  475. static unsigned long __meminit
  476. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  477. unsigned long page_size_mask)
  478. {
  479. pud_t *pud;
  480. pud = (pud_t *)pgd_page_vaddr(*pgd);
  481. return phys_pud_init(pud, addr, end, page_size_mask);
  482. }
  483. unsigned long __meminit
  484. kernel_physical_mapping_init(unsigned long start,
  485. unsigned long end,
  486. unsigned long page_size_mask)
  487. {
  488. bool pgd_changed = false;
  489. unsigned long next, last_map_addr = end;
  490. unsigned long addr;
  491. start = (unsigned long)__va(start);
  492. end = (unsigned long)__va(end);
  493. addr = start;
  494. for (; start < end; start = next) {
  495. pgd_t *pgd = pgd_offset_k(start);
  496. unsigned long pud_phys;
  497. pud_t *pud;
  498. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  499. if (next > end)
  500. next = end;
  501. if (pgd_val(*pgd)) {
  502. last_map_addr = phys_pud_update(pgd, __pa(start),
  503. __pa(end), page_size_mask);
  504. continue;
  505. }
  506. pud = alloc_low_page(&pud_phys);
  507. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  508. page_size_mask);
  509. unmap_low_page(pud);
  510. spin_lock(&init_mm.page_table_lock);
  511. pgd_populate(&init_mm, pgd, __va(pud_phys));
  512. spin_unlock(&init_mm.page_table_lock);
  513. pgd_changed = true;
  514. }
  515. if (pgd_changed)
  516. sync_global_pgds(addr, end);
  517. __flush_tlb_all();
  518. return last_map_addr;
  519. }
  520. #ifndef CONFIG_NUMA
  521. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  522. int acpi, int k8)
  523. {
  524. #ifndef CONFIG_NO_BOOTMEM
  525. unsigned long bootmap_size, bootmap;
  526. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  527. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  528. PAGE_SIZE);
  529. if (bootmap == -1L)
  530. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  531. reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
  532. /* don't touch min_low_pfn */
  533. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  534. 0, end_pfn);
  535. e820_register_active_regions(0, start_pfn, end_pfn);
  536. free_bootmem_with_active_regions(0, end_pfn);
  537. #else
  538. e820_register_active_regions(0, start_pfn, end_pfn);
  539. #endif
  540. }
  541. #endif
  542. void __init paging_init(void)
  543. {
  544. unsigned long max_zone_pfns[MAX_NR_ZONES];
  545. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  546. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  547. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  548. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  549. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  550. sparse_init();
  551. /*
  552. * clear the default setting with node 0
  553. * note: don't use nodes_clear here, that is really clearing when
  554. * numa support is not compiled in, and later node_set_state
  555. * will not set it back.
  556. */
  557. node_clear_state(0, N_NORMAL_MEMORY);
  558. free_area_init_nodes(max_zone_pfns);
  559. }
  560. /*
  561. * Memory hotplug specific functions
  562. */
  563. #ifdef CONFIG_MEMORY_HOTPLUG
  564. /*
  565. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  566. * updating.
  567. */
  568. static void update_end_of_memory_vars(u64 start, u64 size)
  569. {
  570. unsigned long end_pfn = PFN_UP(start + size);
  571. if (end_pfn > max_pfn) {
  572. max_pfn = end_pfn;
  573. max_low_pfn = end_pfn;
  574. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  575. }
  576. }
  577. /*
  578. * Memory is added always to NORMAL zone. This means you will never get
  579. * additional DMA/DMA32 memory.
  580. */
  581. int arch_add_memory(int nid, u64 start, u64 size)
  582. {
  583. struct pglist_data *pgdat = NODE_DATA(nid);
  584. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  585. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  586. unsigned long nr_pages = size >> PAGE_SHIFT;
  587. int ret;
  588. last_mapped_pfn = init_memory_mapping(start, start + size);
  589. if (last_mapped_pfn > max_pfn_mapped)
  590. max_pfn_mapped = last_mapped_pfn;
  591. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  592. WARN_ON_ONCE(ret);
  593. /* update max_pfn, max_low_pfn and high_memory */
  594. update_end_of_memory_vars(start, size);
  595. return ret;
  596. }
  597. EXPORT_SYMBOL_GPL(arch_add_memory);
  598. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  599. int memory_add_physaddr_to_nid(u64 start)
  600. {
  601. return 0;
  602. }
  603. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  604. #endif
  605. #endif /* CONFIG_MEMORY_HOTPLUG */
  606. static struct kcore_list kcore_vsyscall;
  607. void __init mem_init(void)
  608. {
  609. long codesize, reservedpages, datasize, initsize;
  610. unsigned long absent_pages;
  611. pci_iommu_alloc();
  612. /* clear_bss() already clear the empty_zero_page */
  613. reservedpages = 0;
  614. /* this will put all low memory onto the freelists */
  615. #ifdef CONFIG_NUMA
  616. totalram_pages = numa_free_all_bootmem();
  617. #else
  618. totalram_pages = free_all_bootmem();
  619. #endif
  620. absent_pages = absent_pages_in_range(0, max_pfn);
  621. reservedpages = max_pfn - totalram_pages - absent_pages;
  622. after_bootmem = 1;
  623. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  624. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  625. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  626. /* Register memory areas for /proc/kcore */
  627. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  628. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  629. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  630. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  631. nr_free_pages() << (PAGE_SHIFT-10),
  632. max_pfn << (PAGE_SHIFT-10),
  633. codesize >> 10,
  634. absent_pages << (PAGE_SHIFT-10),
  635. reservedpages << (PAGE_SHIFT-10),
  636. datasize >> 10,
  637. initsize >> 10);
  638. }
  639. #ifdef CONFIG_DEBUG_RODATA
  640. const int rodata_test_data = 0xC3;
  641. EXPORT_SYMBOL_GPL(rodata_test_data);
  642. int kernel_set_to_readonly;
  643. void set_kernel_text_rw(void)
  644. {
  645. unsigned long start = PFN_ALIGN(_text);
  646. unsigned long end = PFN_ALIGN(__stop___ex_table);
  647. if (!kernel_set_to_readonly)
  648. return;
  649. pr_debug("Set kernel text: %lx - %lx for read write\n",
  650. start, end);
  651. /*
  652. * Make the kernel identity mapping for text RW. Kernel text
  653. * mapping will always be RO. Refer to the comment in
  654. * static_protections() in pageattr.c
  655. */
  656. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  657. }
  658. void set_kernel_text_ro(void)
  659. {
  660. unsigned long start = PFN_ALIGN(_text);
  661. unsigned long end = PFN_ALIGN(__stop___ex_table);
  662. if (!kernel_set_to_readonly)
  663. return;
  664. pr_debug("Set kernel text: %lx - %lx for read only\n",
  665. start, end);
  666. /*
  667. * Set the kernel identity mapping for text RO.
  668. */
  669. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  670. }
  671. void mark_rodata_ro(void)
  672. {
  673. unsigned long start = PFN_ALIGN(_text);
  674. unsigned long rodata_start =
  675. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  676. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  677. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  678. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  679. unsigned long data_start = (unsigned long) &_sdata;
  680. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  681. (end - start) >> 10);
  682. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  683. kernel_set_to_readonly = 1;
  684. /*
  685. * The rodata section (but not the kernel text!) should also be
  686. * not-executable.
  687. */
  688. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  689. rodata_test();
  690. #ifdef CONFIG_CPA_DEBUG
  691. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  692. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  693. printk(KERN_INFO "Testing CPA: again\n");
  694. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  695. #endif
  696. free_init_pages("unused kernel memory",
  697. (unsigned long) page_address(virt_to_page(text_end)),
  698. (unsigned long)
  699. page_address(virt_to_page(rodata_start)));
  700. free_init_pages("unused kernel memory",
  701. (unsigned long) page_address(virt_to_page(rodata_end)),
  702. (unsigned long) page_address(virt_to_page(data_start)));
  703. }
  704. #endif
  705. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  706. int flags)
  707. {
  708. #ifdef CONFIG_NUMA
  709. int nid, next_nid;
  710. int ret;
  711. #endif
  712. unsigned long pfn = phys >> PAGE_SHIFT;
  713. if (pfn >= max_pfn) {
  714. /*
  715. * This can happen with kdump kernels when accessing
  716. * firmware tables:
  717. */
  718. if (pfn < max_pfn_mapped)
  719. return -EFAULT;
  720. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  721. phys, len);
  722. return -EFAULT;
  723. }
  724. /* Should check here against the e820 map to avoid double free */
  725. #ifdef CONFIG_NUMA
  726. nid = phys_to_nid(phys);
  727. next_nid = phys_to_nid(phys + len - 1);
  728. if (nid == next_nid)
  729. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  730. else
  731. ret = reserve_bootmem(phys, len, flags);
  732. if (ret != 0)
  733. return ret;
  734. #else
  735. reserve_bootmem(phys, len, flags);
  736. #endif
  737. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  738. dma_reserve += len / PAGE_SIZE;
  739. set_dma_reserve(dma_reserve);
  740. }
  741. return 0;
  742. }
  743. int kern_addr_valid(unsigned long addr)
  744. {
  745. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  746. pgd_t *pgd;
  747. pud_t *pud;
  748. pmd_t *pmd;
  749. pte_t *pte;
  750. if (above != 0 && above != -1UL)
  751. return 0;
  752. pgd = pgd_offset_k(addr);
  753. if (pgd_none(*pgd))
  754. return 0;
  755. pud = pud_offset(pgd, addr);
  756. if (pud_none(*pud))
  757. return 0;
  758. pmd = pmd_offset(pud, addr);
  759. if (pmd_none(*pmd))
  760. return 0;
  761. if (pmd_large(*pmd))
  762. return pfn_valid(pmd_pfn(*pmd));
  763. pte = pte_offset_kernel(pmd, addr);
  764. if (pte_none(*pte))
  765. return 0;
  766. return pfn_valid(pte_pfn(*pte));
  767. }
  768. /*
  769. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  770. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  771. * not need special handling anymore:
  772. */
  773. static struct vm_area_struct gate_vma = {
  774. .vm_start = VSYSCALL_START,
  775. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  776. .vm_page_prot = PAGE_READONLY_EXEC,
  777. .vm_flags = VM_READ | VM_EXEC
  778. };
  779. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  780. {
  781. #ifdef CONFIG_IA32_EMULATION
  782. if (test_tsk_thread_flag(tsk, TIF_IA32))
  783. return NULL;
  784. #endif
  785. return &gate_vma;
  786. }
  787. int in_gate_area(struct task_struct *task, unsigned long addr)
  788. {
  789. struct vm_area_struct *vma = get_gate_vma(task);
  790. if (!vma)
  791. return 0;
  792. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  793. }
  794. /*
  795. * Use this when you have no reliable task/vma, typically from interrupt
  796. * context. It is less reliable than using the task's vma and may give
  797. * false positives:
  798. */
  799. int in_gate_area_no_task(unsigned long addr)
  800. {
  801. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  802. }
  803. const char *arch_vma_name(struct vm_area_struct *vma)
  804. {
  805. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  806. return "[vdso]";
  807. if (vma == &gate_vma)
  808. return "[vsyscall]";
  809. return NULL;
  810. }
  811. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  812. /*
  813. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  814. */
  815. static long __meminitdata addr_start, addr_end;
  816. static void __meminitdata *p_start, *p_end;
  817. static int __meminitdata node_start;
  818. int __meminit
  819. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  820. {
  821. unsigned long addr = (unsigned long)start_page;
  822. unsigned long end = (unsigned long)(start_page + size);
  823. unsigned long next;
  824. pgd_t *pgd;
  825. pud_t *pud;
  826. pmd_t *pmd;
  827. for (; addr < end; addr = next) {
  828. void *p = NULL;
  829. pgd = vmemmap_pgd_populate(addr, node);
  830. if (!pgd)
  831. return -ENOMEM;
  832. pud = vmemmap_pud_populate(pgd, addr, node);
  833. if (!pud)
  834. return -ENOMEM;
  835. if (!cpu_has_pse) {
  836. next = (addr + PAGE_SIZE) & PAGE_MASK;
  837. pmd = vmemmap_pmd_populate(pud, addr, node);
  838. if (!pmd)
  839. return -ENOMEM;
  840. p = vmemmap_pte_populate(pmd, addr, node);
  841. if (!p)
  842. return -ENOMEM;
  843. addr_end = addr + PAGE_SIZE;
  844. p_end = p + PAGE_SIZE;
  845. } else {
  846. next = pmd_addr_end(addr, end);
  847. pmd = pmd_offset(pud, addr);
  848. if (pmd_none(*pmd)) {
  849. pte_t entry;
  850. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  851. if (!p)
  852. return -ENOMEM;
  853. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  854. PAGE_KERNEL_LARGE);
  855. set_pmd(pmd, __pmd(pte_val(entry)));
  856. /* check to see if we have contiguous blocks */
  857. if (p_end != p || node_start != node) {
  858. if (p_start)
  859. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  860. addr_start, addr_end-1, p_start, p_end-1, node_start);
  861. addr_start = addr;
  862. node_start = node;
  863. p_start = p;
  864. }
  865. addr_end = addr + PMD_SIZE;
  866. p_end = p + PMD_SIZE;
  867. } else
  868. vmemmap_verify((pte_t *)pmd, node, addr, next);
  869. }
  870. }
  871. sync_global_pgds((unsigned long)start_page, end);
  872. return 0;
  873. }
  874. void __meminit vmemmap_populate_print_last(void)
  875. {
  876. if (p_start) {
  877. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  878. addr_start, addr_end-1, p_start, p_end-1, node_start);
  879. p_start = NULL;
  880. p_end = NULL;
  881. node_start = 0;
  882. }
  883. }
  884. #endif