i915_gem.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. int
  60. i915_gem_check_is_wedged(struct drm_device *dev)
  61. {
  62. struct drm_i915_private *dev_priv = dev->dev_private;
  63. struct completion *x = &dev_priv->error_completion;
  64. unsigned long flags;
  65. int ret;
  66. if (!atomic_read(&dev_priv->mm.wedged))
  67. return 0;
  68. ret = wait_for_completion_interruptible(x);
  69. if (ret)
  70. return ret;
  71. /* Success, we reset the GPU! */
  72. if (!atomic_read(&dev_priv->mm.wedged))
  73. return 0;
  74. /* GPU is hung, bump the completion count to account for
  75. * the token we just consumed so that we never hit zero and
  76. * end up waiting upon a subsequent completion event that
  77. * will never happen.
  78. */
  79. spin_lock_irqsave(&x->wait.lock, flags);
  80. x->done++;
  81. spin_unlock_irqrestore(&x->wait.lock, flags);
  82. return -EIO;
  83. }
  84. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  85. {
  86. struct drm_i915_private *dev_priv = dev->dev_private;
  87. int ret;
  88. ret = i915_gem_check_is_wedged(dev);
  89. if (ret)
  90. return ret;
  91. ret = mutex_lock_interruptible(&dev->struct_mutex);
  92. if (ret)
  93. return ret;
  94. if (atomic_read(&dev_priv->mm.wedged)) {
  95. mutex_unlock(&dev->struct_mutex);
  96. return -EAGAIN;
  97. }
  98. return 0;
  99. }
  100. static inline bool
  101. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  102. {
  103. return obj_priv->gtt_space &&
  104. !obj_priv->active &&
  105. obj_priv->pin_count == 0;
  106. }
  107. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  108. unsigned long end)
  109. {
  110. drm_i915_private_t *dev_priv = dev->dev_private;
  111. if (start >= end ||
  112. (start & (PAGE_SIZE - 1)) != 0 ||
  113. (end & (PAGE_SIZE - 1)) != 0) {
  114. return -EINVAL;
  115. }
  116. drm_mm_init(&dev_priv->mm.gtt_space, start,
  117. end - start);
  118. dev->gtt_total = (uint32_t) (end - start);
  119. return 0;
  120. }
  121. int
  122. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  123. struct drm_file *file_priv)
  124. {
  125. struct drm_i915_gem_init *args = data;
  126. int ret;
  127. mutex_lock(&dev->struct_mutex);
  128. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  129. mutex_unlock(&dev->struct_mutex);
  130. return ret;
  131. }
  132. int
  133. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  134. struct drm_file *file_priv)
  135. {
  136. struct drm_i915_gem_get_aperture *args = data;
  137. if (!(dev->driver->driver_features & DRIVER_GEM))
  138. return -ENODEV;
  139. args->aper_size = dev->gtt_total;
  140. args->aper_available_size = (args->aper_size -
  141. atomic_read(&dev->pin_memory));
  142. return 0;
  143. }
  144. /**
  145. * Creates a new mm object and returns a handle to it.
  146. */
  147. int
  148. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  149. struct drm_file *file_priv)
  150. {
  151. struct drm_i915_gem_create *args = data;
  152. struct drm_gem_object *obj;
  153. int ret;
  154. u32 handle;
  155. args->size = roundup(args->size, PAGE_SIZE);
  156. /* Allocate the new object */
  157. obj = i915_gem_alloc_object(dev, args->size);
  158. if (obj == NULL)
  159. return -ENOMEM;
  160. ret = drm_gem_handle_create(file_priv, obj, &handle);
  161. if (ret) {
  162. drm_gem_object_unreference_unlocked(obj);
  163. return ret;
  164. }
  165. /* Sink the floating reference from kref_init(handlecount) */
  166. drm_gem_object_handle_unreference_unlocked(obj);
  167. args->handle = handle;
  168. return 0;
  169. }
  170. static inline int
  171. fast_shmem_read(struct page **pages,
  172. loff_t page_base, int page_offset,
  173. char __user *data,
  174. int length)
  175. {
  176. char __iomem *vaddr;
  177. int unwritten;
  178. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  179. if (vaddr == NULL)
  180. return -ENOMEM;
  181. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  182. kunmap_atomic(vaddr, KM_USER0);
  183. if (unwritten)
  184. return -EFAULT;
  185. return 0;
  186. }
  187. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  188. {
  189. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  190. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj_priv->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  258. struct drm_i915_gem_pread *args,
  259. struct drm_file *file_priv)
  260. {
  261. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  262. ssize_t remain;
  263. loff_t offset, page_base;
  264. char __user *user_data;
  265. int page_offset, page_length;
  266. int ret;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. ret = i915_mutex_lock_interruptible(dev);
  270. if (ret)
  271. return ret;
  272. ret = i915_gem_object_get_pages(obj, 0);
  273. if (ret != 0)
  274. goto fail_unlock;
  275. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  276. args->size);
  277. if (ret != 0)
  278. goto fail_put_pages;
  279. obj_priv = to_intel_bo(obj);
  280. offset = args->offset;
  281. while (remain > 0) {
  282. /* Operation in this page
  283. *
  284. * page_base = page offset within aperture
  285. * page_offset = offset within page
  286. * page_length = bytes to copy for this page
  287. */
  288. page_base = (offset & ~(PAGE_SIZE-1));
  289. page_offset = offset & (PAGE_SIZE-1);
  290. page_length = remain;
  291. if ((page_offset + remain) > PAGE_SIZE)
  292. page_length = PAGE_SIZE - page_offset;
  293. ret = fast_shmem_read(obj_priv->pages,
  294. page_base, page_offset,
  295. user_data, page_length);
  296. if (ret)
  297. goto fail_put_pages;
  298. remain -= page_length;
  299. user_data += page_length;
  300. offset += page_length;
  301. }
  302. fail_put_pages:
  303. i915_gem_object_put_pages(obj);
  304. fail_unlock:
  305. mutex_unlock(&dev->struct_mutex);
  306. return ret;
  307. }
  308. static int
  309. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  310. {
  311. int ret;
  312. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  313. /* If we've insufficient memory to map in the pages, attempt
  314. * to make some space by throwing out some old buffers.
  315. */
  316. if (ret == -ENOMEM) {
  317. struct drm_device *dev = obj->dev;
  318. ret = i915_gem_evict_something(dev, obj->size,
  319. i915_gem_get_gtt_alignment(obj));
  320. if (ret)
  321. return ret;
  322. ret = i915_gem_object_get_pages(obj, 0);
  323. }
  324. return ret;
  325. }
  326. /**
  327. * This is the fallback shmem pread path, which allocates temporary storage
  328. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  329. * can copy out of the object's backing pages while holding the struct mutex
  330. * and not take page faults.
  331. */
  332. static int
  333. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  334. struct drm_i915_gem_pread *args,
  335. struct drm_file *file_priv)
  336. {
  337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  338. struct mm_struct *mm = current->mm;
  339. struct page **user_pages;
  340. ssize_t remain;
  341. loff_t offset, pinned_pages, i;
  342. loff_t first_data_page, last_data_page, num_pages;
  343. int shmem_page_index, shmem_page_offset;
  344. int data_page_index, data_page_offset;
  345. int page_length;
  346. int ret;
  347. uint64_t data_ptr = args->data_ptr;
  348. int do_bit17_swizzling;
  349. remain = args->size;
  350. /* Pin the user pages containing the data. We can't fault while
  351. * holding the struct mutex, yet we want to hold it while
  352. * dereferencing the user data.
  353. */
  354. first_data_page = data_ptr / PAGE_SIZE;
  355. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  356. num_pages = last_data_page - first_data_page + 1;
  357. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  358. if (user_pages == NULL)
  359. return -ENOMEM;
  360. down_read(&mm->mmap_sem);
  361. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  362. num_pages, 1, 0, user_pages, NULL);
  363. up_read(&mm->mmap_sem);
  364. if (pinned_pages < num_pages) {
  365. ret = -EFAULT;
  366. goto fail_put_user_pages;
  367. }
  368. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  369. ret = i915_mutex_lock_interruptible(dev);
  370. if (ret)
  371. goto fail_put_user_pages;
  372. ret = i915_gem_object_get_pages_or_evict(obj);
  373. if (ret)
  374. goto fail_unlock;
  375. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  376. args->size);
  377. if (ret != 0)
  378. goto fail_put_pages;
  379. obj_priv = to_intel_bo(obj);
  380. offset = args->offset;
  381. while (remain > 0) {
  382. /* Operation in this page
  383. *
  384. * shmem_page_index = page number within shmem file
  385. * shmem_page_offset = offset within page in shmem file
  386. * data_page_index = page number in get_user_pages return
  387. * data_page_offset = offset with data_page_index page.
  388. * page_length = bytes to copy for this page
  389. */
  390. shmem_page_index = offset / PAGE_SIZE;
  391. shmem_page_offset = offset & ~PAGE_MASK;
  392. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  393. data_page_offset = data_ptr & ~PAGE_MASK;
  394. page_length = remain;
  395. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  396. page_length = PAGE_SIZE - shmem_page_offset;
  397. if ((data_page_offset + page_length) > PAGE_SIZE)
  398. page_length = PAGE_SIZE - data_page_offset;
  399. if (do_bit17_swizzling) {
  400. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  401. shmem_page_offset,
  402. user_pages[data_page_index],
  403. data_page_offset,
  404. page_length,
  405. 1);
  406. } else {
  407. slow_shmem_copy(user_pages[data_page_index],
  408. data_page_offset,
  409. obj_priv->pages[shmem_page_index],
  410. shmem_page_offset,
  411. page_length);
  412. }
  413. remain -= page_length;
  414. data_ptr += page_length;
  415. offset += page_length;
  416. }
  417. fail_put_pages:
  418. i915_gem_object_put_pages(obj);
  419. fail_unlock:
  420. mutex_unlock(&dev->struct_mutex);
  421. fail_put_user_pages:
  422. for (i = 0; i < pinned_pages; i++) {
  423. SetPageDirty(user_pages[i]);
  424. page_cache_release(user_pages[i]);
  425. }
  426. drm_free_large(user_pages);
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file_priv)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_gem_object *obj;
  440. struct drm_i915_gem_object *obj_priv;
  441. int ret;
  442. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  443. if (obj == NULL)
  444. return -ENOENT;
  445. obj_priv = to_intel_bo(obj);
  446. /* Bounds check source.
  447. *
  448. * XXX: This could use review for overflow issues...
  449. */
  450. if (args->offset > obj->size || args->size > obj->size ||
  451. args->offset + args->size > obj->size) {
  452. drm_gem_object_unreference_unlocked(obj);
  453. return -EINVAL;
  454. }
  455. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  456. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  457. } else {
  458. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  459. if (ret != 0)
  460. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  461. file_priv);
  462. }
  463. drm_gem_object_unreference_unlocked(obj);
  464. return ret;
  465. }
  466. /* This is the fast write path which cannot handle
  467. * page faults in the source data
  468. */
  469. static inline int
  470. fast_user_write(struct io_mapping *mapping,
  471. loff_t page_base, int page_offset,
  472. char __user *user_data,
  473. int length)
  474. {
  475. char *vaddr_atomic;
  476. unsigned long unwritten;
  477. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  481. if (unwritten)
  482. return -EFAULT;
  483. return 0;
  484. }
  485. /* Here's the write path which can sleep for
  486. * page faults
  487. */
  488. static inline void
  489. slow_kernel_write(struct io_mapping *mapping,
  490. loff_t gtt_base, int gtt_offset,
  491. struct page *user_page, int user_offset,
  492. int length)
  493. {
  494. char __iomem *dst_vaddr;
  495. char *src_vaddr;
  496. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  497. src_vaddr = kmap(user_page);
  498. memcpy_toio(dst_vaddr + gtt_offset,
  499. src_vaddr + user_offset,
  500. length);
  501. kunmap(user_page);
  502. io_mapping_unmap(dst_vaddr);
  503. }
  504. static inline int
  505. fast_shmem_write(struct page **pages,
  506. loff_t page_base, int page_offset,
  507. char __user *data,
  508. int length)
  509. {
  510. char __iomem *vaddr;
  511. unsigned long unwritten;
  512. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  513. if (vaddr == NULL)
  514. return -ENOMEM;
  515. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  516. kunmap_atomic(vaddr, KM_USER0);
  517. if (unwritten)
  518. return -EFAULT;
  519. return 0;
  520. }
  521. /**
  522. * This is the fast pwrite path, where we copy the data directly from the
  523. * user into the GTT, uncached.
  524. */
  525. static int
  526. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  527. struct drm_i915_gem_pwrite *args,
  528. struct drm_file *file_priv)
  529. {
  530. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  531. drm_i915_private_t *dev_priv = dev->dev_private;
  532. ssize_t remain;
  533. loff_t offset, page_base;
  534. char __user *user_data;
  535. int page_offset, page_length;
  536. int ret;
  537. user_data = (char __user *) (uintptr_t) args->data_ptr;
  538. remain = args->size;
  539. if (!access_ok(VERIFY_READ, user_data, remain))
  540. return -EFAULT;
  541. ret = i915_mutex_lock_interruptible(dev);
  542. if (ret)
  543. return ret;
  544. ret = i915_gem_object_pin(obj, 0);
  545. if (ret) {
  546. mutex_unlock(&dev->struct_mutex);
  547. return ret;
  548. }
  549. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  550. if (ret)
  551. goto fail;
  552. obj_priv = to_intel_bo(obj);
  553. offset = obj_priv->gtt_offset + args->offset;
  554. while (remain > 0) {
  555. /* Operation in this page
  556. *
  557. * page_base = page offset within aperture
  558. * page_offset = offset within page
  559. * page_length = bytes to copy for this page
  560. */
  561. page_base = (offset & ~(PAGE_SIZE-1));
  562. page_offset = offset & (PAGE_SIZE-1);
  563. page_length = remain;
  564. if ((page_offset + remain) > PAGE_SIZE)
  565. page_length = PAGE_SIZE - page_offset;
  566. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  567. page_offset, user_data, page_length);
  568. /* If we get a fault while copying data, then (presumably) our
  569. * source page isn't available. Return the error and we'll
  570. * retry in the slow path.
  571. */
  572. if (ret)
  573. goto fail;
  574. remain -= page_length;
  575. user_data += page_length;
  576. offset += page_length;
  577. }
  578. fail:
  579. i915_gem_object_unpin(obj);
  580. mutex_unlock(&dev->struct_mutex);
  581. return ret;
  582. }
  583. /**
  584. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  585. * the memory and maps it using kmap_atomic for copying.
  586. *
  587. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  588. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  589. */
  590. static int
  591. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  592. struct drm_i915_gem_pwrite *args,
  593. struct drm_file *file_priv)
  594. {
  595. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  596. drm_i915_private_t *dev_priv = dev->dev_private;
  597. ssize_t remain;
  598. loff_t gtt_page_base, offset;
  599. loff_t first_data_page, last_data_page, num_pages;
  600. loff_t pinned_pages, i;
  601. struct page **user_pages;
  602. struct mm_struct *mm = current->mm;
  603. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  604. int ret;
  605. uint64_t data_ptr = args->data_ptr;
  606. remain = args->size;
  607. /* Pin the user pages containing the data. We can't fault while
  608. * holding the struct mutex, and all of the pwrite implementations
  609. * want to hold it while dereferencing the user data.
  610. */
  611. first_data_page = data_ptr / PAGE_SIZE;
  612. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  613. num_pages = last_data_page - first_data_page + 1;
  614. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  615. if (user_pages == NULL)
  616. return -ENOMEM;
  617. down_read(&mm->mmap_sem);
  618. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  619. num_pages, 0, 0, user_pages, NULL);
  620. up_read(&mm->mmap_sem);
  621. if (pinned_pages < num_pages) {
  622. ret = -EFAULT;
  623. goto out_unpin_pages;
  624. }
  625. ret = i915_mutex_lock_interruptible(dev);
  626. if (ret)
  627. goto out_unpin_pages;
  628. ret = i915_gem_object_pin(obj, 0);
  629. if (ret)
  630. goto out_unlock;
  631. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  632. if (ret)
  633. goto out_unpin_object;
  634. obj_priv = to_intel_bo(obj);
  635. offset = obj_priv->gtt_offset + args->offset;
  636. while (remain > 0) {
  637. /* Operation in this page
  638. *
  639. * gtt_page_base = page offset within aperture
  640. * gtt_page_offset = offset within page in aperture
  641. * data_page_index = page number in get_user_pages return
  642. * data_page_offset = offset with data_page_index page.
  643. * page_length = bytes to copy for this page
  644. */
  645. gtt_page_base = offset & PAGE_MASK;
  646. gtt_page_offset = offset & ~PAGE_MASK;
  647. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  648. data_page_offset = data_ptr & ~PAGE_MASK;
  649. page_length = remain;
  650. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  651. page_length = PAGE_SIZE - gtt_page_offset;
  652. if ((data_page_offset + page_length) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - data_page_offset;
  654. slow_kernel_write(dev_priv->mm.gtt_mapping,
  655. gtt_page_base, gtt_page_offset,
  656. user_pages[data_page_index],
  657. data_page_offset,
  658. page_length);
  659. remain -= page_length;
  660. offset += page_length;
  661. data_ptr += page_length;
  662. }
  663. out_unpin_object:
  664. i915_gem_object_unpin(obj);
  665. out_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. out_unpin_pages:
  668. for (i = 0; i < pinned_pages; i++)
  669. page_cache_release(user_pages[i]);
  670. drm_free_large(user_pages);
  671. return ret;
  672. }
  673. /**
  674. * This is the fast shmem pwrite path, which attempts to directly
  675. * copy_from_user into the kmapped pages backing the object.
  676. */
  677. static int
  678. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  679. struct drm_i915_gem_pwrite *args,
  680. struct drm_file *file_priv)
  681. {
  682. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  683. ssize_t remain;
  684. loff_t offset, page_base;
  685. char __user *user_data;
  686. int page_offset, page_length;
  687. int ret;
  688. user_data = (char __user *) (uintptr_t) args->data_ptr;
  689. remain = args->size;
  690. ret = i915_mutex_lock_interruptible(dev);
  691. if (ret)
  692. return ret;
  693. ret = i915_gem_object_get_pages(obj, 0);
  694. if (ret != 0)
  695. goto fail_unlock;
  696. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  697. if (ret != 0)
  698. goto fail_put_pages;
  699. obj_priv = to_intel_bo(obj);
  700. offset = args->offset;
  701. obj_priv->dirty = 1;
  702. while (remain > 0) {
  703. /* Operation in this page
  704. *
  705. * page_base = page offset within aperture
  706. * page_offset = offset within page
  707. * page_length = bytes to copy for this page
  708. */
  709. page_base = (offset & ~(PAGE_SIZE-1));
  710. page_offset = offset & (PAGE_SIZE-1);
  711. page_length = remain;
  712. if ((page_offset + remain) > PAGE_SIZE)
  713. page_length = PAGE_SIZE - page_offset;
  714. ret = fast_shmem_write(obj_priv->pages,
  715. page_base, page_offset,
  716. user_data, page_length);
  717. if (ret)
  718. goto fail_put_pages;
  719. remain -= page_length;
  720. user_data += page_length;
  721. offset += page_length;
  722. }
  723. fail_put_pages:
  724. i915_gem_object_put_pages(obj);
  725. fail_unlock:
  726. mutex_unlock(&dev->struct_mutex);
  727. return ret;
  728. }
  729. /**
  730. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  731. * the memory and maps it using kmap_atomic for copying.
  732. *
  733. * This avoids taking mmap_sem for faulting on the user's address while the
  734. * struct_mutex is held.
  735. */
  736. static int
  737. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  738. struct drm_i915_gem_pwrite *args,
  739. struct drm_file *file_priv)
  740. {
  741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  742. struct mm_struct *mm = current->mm;
  743. struct page **user_pages;
  744. ssize_t remain;
  745. loff_t offset, pinned_pages, i;
  746. loff_t first_data_page, last_data_page, num_pages;
  747. int shmem_page_index, shmem_page_offset;
  748. int data_page_index, data_page_offset;
  749. int page_length;
  750. int ret;
  751. uint64_t data_ptr = args->data_ptr;
  752. int do_bit17_swizzling;
  753. remain = args->size;
  754. /* Pin the user pages containing the data. We can't fault while
  755. * holding the struct mutex, and all of the pwrite implementations
  756. * want to hold it while dereferencing the user data.
  757. */
  758. first_data_page = data_ptr / PAGE_SIZE;
  759. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  760. num_pages = last_data_page - first_data_page + 1;
  761. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  762. if (user_pages == NULL)
  763. return -ENOMEM;
  764. down_read(&mm->mmap_sem);
  765. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  766. num_pages, 0, 0, user_pages, NULL);
  767. up_read(&mm->mmap_sem);
  768. if (pinned_pages < num_pages) {
  769. ret = -EFAULT;
  770. goto fail_put_user_pages;
  771. }
  772. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  773. ret = i915_mutex_lock_interruptible(dev);
  774. if (ret)
  775. goto fail_put_user_pages;
  776. ret = i915_gem_object_get_pages_or_evict(obj);
  777. if (ret)
  778. goto fail_unlock;
  779. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  780. if (ret != 0)
  781. goto fail_put_pages;
  782. obj_priv = to_intel_bo(obj);
  783. offset = args->offset;
  784. obj_priv->dirty = 1;
  785. while (remain > 0) {
  786. /* Operation in this page
  787. *
  788. * shmem_page_index = page number within shmem file
  789. * shmem_page_offset = offset within page in shmem file
  790. * data_page_index = page number in get_user_pages return
  791. * data_page_offset = offset with data_page_index page.
  792. * page_length = bytes to copy for this page
  793. */
  794. shmem_page_index = offset / PAGE_SIZE;
  795. shmem_page_offset = offset & ~PAGE_MASK;
  796. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  797. data_page_offset = data_ptr & ~PAGE_MASK;
  798. page_length = remain;
  799. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  800. page_length = PAGE_SIZE - shmem_page_offset;
  801. if ((data_page_offset + page_length) > PAGE_SIZE)
  802. page_length = PAGE_SIZE - data_page_offset;
  803. if (do_bit17_swizzling) {
  804. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  805. shmem_page_offset,
  806. user_pages[data_page_index],
  807. data_page_offset,
  808. page_length,
  809. 0);
  810. } else {
  811. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  812. shmem_page_offset,
  813. user_pages[data_page_index],
  814. data_page_offset,
  815. page_length);
  816. }
  817. remain -= page_length;
  818. data_ptr += page_length;
  819. offset += page_length;
  820. }
  821. fail_put_pages:
  822. i915_gem_object_put_pages(obj);
  823. fail_unlock:
  824. mutex_unlock(&dev->struct_mutex);
  825. fail_put_user_pages:
  826. for (i = 0; i < pinned_pages; i++)
  827. page_cache_release(user_pages[i]);
  828. drm_free_large(user_pages);
  829. return ret;
  830. }
  831. /**
  832. * Writes data to the object referenced by handle.
  833. *
  834. * On error, the contents of the buffer that were to be modified are undefined.
  835. */
  836. int
  837. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  838. struct drm_file *file_priv)
  839. {
  840. struct drm_i915_gem_pwrite *args = data;
  841. struct drm_gem_object *obj;
  842. struct drm_i915_gem_object *obj_priv;
  843. int ret = 0;
  844. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  845. if (obj == NULL)
  846. return -ENOENT;
  847. obj_priv = to_intel_bo(obj);
  848. /* Bounds check destination.
  849. *
  850. * XXX: This could use review for overflow issues...
  851. */
  852. if (args->offset > obj->size || args->size > obj->size ||
  853. args->offset + args->size > obj->size) {
  854. drm_gem_object_unreference_unlocked(obj);
  855. return -EINVAL;
  856. }
  857. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  858. * it would end up going through the fenced access, and we'll get
  859. * different detiling behavior between reading and writing.
  860. * pread/pwrite currently are reading and writing from the CPU
  861. * perspective, requiring manual detiling by the client.
  862. */
  863. if (obj_priv->phys_obj)
  864. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  865. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  866. dev->gtt_total != 0 &&
  867. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  868. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  869. if (ret == -EFAULT) {
  870. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  871. file_priv);
  872. }
  873. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  874. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  875. } else {
  876. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  877. if (ret == -EFAULT) {
  878. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  879. file_priv);
  880. }
  881. }
  882. #if WATCH_PWRITE
  883. if (ret)
  884. DRM_INFO("pwrite failed %d\n", ret);
  885. #endif
  886. drm_gem_object_unreference_unlocked(obj);
  887. return ret;
  888. }
  889. /**
  890. * Called when user space prepares to use an object with the CPU, either
  891. * through the mmap ioctl's mapping or a GTT mapping.
  892. */
  893. int
  894. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  895. struct drm_file *file_priv)
  896. {
  897. struct drm_i915_private *dev_priv = dev->dev_private;
  898. struct drm_i915_gem_set_domain *args = data;
  899. struct drm_gem_object *obj;
  900. struct drm_i915_gem_object *obj_priv;
  901. uint32_t read_domains = args->read_domains;
  902. uint32_t write_domain = args->write_domain;
  903. int ret;
  904. if (!(dev->driver->driver_features & DRIVER_GEM))
  905. return -ENODEV;
  906. /* Only handle setting domains to types used by the CPU. */
  907. if (write_domain & I915_GEM_GPU_DOMAINS)
  908. return -EINVAL;
  909. if (read_domains & I915_GEM_GPU_DOMAINS)
  910. return -EINVAL;
  911. /* Having something in the write domain implies it's in the read
  912. * domain, and only that read domain. Enforce that in the request.
  913. */
  914. if (write_domain != 0 && read_domains != write_domain)
  915. return -EINVAL;
  916. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  917. if (obj == NULL)
  918. return -ENOENT;
  919. obj_priv = to_intel_bo(obj);
  920. ret = i915_mutex_lock_interruptible(dev);
  921. if (ret) {
  922. drm_gem_object_unreference_unlocked(obj);
  923. return ret;
  924. }
  925. intel_mark_busy(dev, obj);
  926. #if WATCH_BUF
  927. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  928. obj, obj->size, read_domains, write_domain);
  929. #endif
  930. if (read_domains & I915_GEM_DOMAIN_GTT) {
  931. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  932. /* Update the LRU on the fence for the CPU access that's
  933. * about to occur.
  934. */
  935. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  936. struct drm_i915_fence_reg *reg =
  937. &dev_priv->fence_regs[obj_priv->fence_reg];
  938. list_move_tail(&reg->lru_list,
  939. &dev_priv->mm.fence_list);
  940. }
  941. /* Silently promote "you're not bound, there was nothing to do"
  942. * to success, since the client was just asking us to
  943. * make sure everything was done.
  944. */
  945. if (ret == -EINVAL)
  946. ret = 0;
  947. } else {
  948. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  949. }
  950. /* Maintain LRU order of "inactive" objects */
  951. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  952. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  953. drm_gem_object_unreference(obj);
  954. mutex_unlock(&dev->struct_mutex);
  955. return ret;
  956. }
  957. /**
  958. * Called when user space has done writes to this buffer
  959. */
  960. int
  961. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  962. struct drm_file *file_priv)
  963. {
  964. struct drm_i915_gem_sw_finish *args = data;
  965. struct drm_gem_object *obj;
  966. struct drm_i915_gem_object *obj_priv;
  967. int ret = 0;
  968. if (!(dev->driver->driver_features & DRIVER_GEM))
  969. return -ENODEV;
  970. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  971. if (obj == NULL)
  972. return -ENOENT;
  973. ret = i915_mutex_lock_interruptible(dev);
  974. if (ret) {
  975. drm_gem_object_unreference_unlocked(obj);
  976. return ret;
  977. }
  978. #if WATCH_BUF
  979. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  980. __func__, args->handle, obj, obj->size);
  981. #endif
  982. obj_priv = to_intel_bo(obj);
  983. /* Pinned buffers may be scanout, so flush the cache */
  984. if (obj_priv->pin_count)
  985. i915_gem_object_flush_cpu_write_domain(obj);
  986. drm_gem_object_unreference(obj);
  987. mutex_unlock(&dev->struct_mutex);
  988. return ret;
  989. }
  990. /**
  991. * Maps the contents of an object, returning the address it is mapped
  992. * into.
  993. *
  994. * While the mapping holds a reference on the contents of the object, it doesn't
  995. * imply a ref on the object itself.
  996. */
  997. int
  998. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  999. struct drm_file *file_priv)
  1000. {
  1001. struct drm_i915_gem_mmap *args = data;
  1002. struct drm_gem_object *obj;
  1003. loff_t offset;
  1004. unsigned long addr;
  1005. if (!(dev->driver->driver_features & DRIVER_GEM))
  1006. return -ENODEV;
  1007. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1008. if (obj == NULL)
  1009. return -ENOENT;
  1010. offset = args->offset;
  1011. down_write(&current->mm->mmap_sem);
  1012. addr = do_mmap(obj->filp, 0, args->size,
  1013. PROT_READ | PROT_WRITE, MAP_SHARED,
  1014. args->offset);
  1015. up_write(&current->mm->mmap_sem);
  1016. drm_gem_object_unreference_unlocked(obj);
  1017. if (IS_ERR((void *)addr))
  1018. return addr;
  1019. args->addr_ptr = (uint64_t) addr;
  1020. return 0;
  1021. }
  1022. /**
  1023. * i915_gem_fault - fault a page into the GTT
  1024. * vma: VMA in question
  1025. * vmf: fault info
  1026. *
  1027. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1028. * from userspace. The fault handler takes care of binding the object to
  1029. * the GTT (if needed), allocating and programming a fence register (again,
  1030. * only if needed based on whether the old reg is still valid or the object
  1031. * is tiled) and inserting a new PTE into the faulting process.
  1032. *
  1033. * Note that the faulting process may involve evicting existing objects
  1034. * from the GTT and/or fence registers to make room. So performance may
  1035. * suffer if the GTT working set is large or there are few fence registers
  1036. * left.
  1037. */
  1038. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1039. {
  1040. struct drm_gem_object *obj = vma->vm_private_data;
  1041. struct drm_device *dev = obj->dev;
  1042. drm_i915_private_t *dev_priv = dev->dev_private;
  1043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1044. pgoff_t page_offset;
  1045. unsigned long pfn;
  1046. int ret = 0;
  1047. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1048. /* We don't use vmf->pgoff since that has the fake offset */
  1049. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1050. PAGE_SHIFT;
  1051. /* Now bind it into the GTT if needed */
  1052. mutex_lock(&dev->struct_mutex);
  1053. if (!obj_priv->gtt_space) {
  1054. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1055. if (ret)
  1056. goto unlock;
  1057. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1058. if (ret)
  1059. goto unlock;
  1060. }
  1061. /* Need a new fence register? */
  1062. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1063. ret = i915_gem_object_get_fence_reg(obj, true);
  1064. if (ret)
  1065. goto unlock;
  1066. }
  1067. if (i915_gem_object_is_inactive(obj_priv))
  1068. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1069. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1070. page_offset;
  1071. /* Finally, remap it using the new GTT offset */
  1072. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1073. unlock:
  1074. mutex_unlock(&dev->struct_mutex);
  1075. switch (ret) {
  1076. case 0:
  1077. case -ERESTARTSYS:
  1078. return VM_FAULT_NOPAGE;
  1079. case -ENOMEM:
  1080. case -EAGAIN:
  1081. return VM_FAULT_OOM;
  1082. default:
  1083. return VM_FAULT_SIGBUS;
  1084. }
  1085. }
  1086. /**
  1087. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1088. * @obj: obj in question
  1089. *
  1090. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1091. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1092. * up the object based on the offset and sets up the various memory mapping
  1093. * structures.
  1094. *
  1095. * This routine allocates and attaches a fake offset for @obj.
  1096. */
  1097. static int
  1098. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1099. {
  1100. struct drm_device *dev = obj->dev;
  1101. struct drm_gem_mm *mm = dev->mm_private;
  1102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1103. struct drm_map_list *list;
  1104. struct drm_local_map *map;
  1105. int ret = 0;
  1106. /* Set the object up for mmap'ing */
  1107. list = &obj->map_list;
  1108. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1109. if (!list->map)
  1110. return -ENOMEM;
  1111. map = list->map;
  1112. map->type = _DRM_GEM;
  1113. map->size = obj->size;
  1114. map->handle = obj;
  1115. /* Get a DRM GEM mmap offset allocated... */
  1116. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1117. obj->size / PAGE_SIZE, 0, 0);
  1118. if (!list->file_offset_node) {
  1119. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1120. ret = -ENOSPC;
  1121. goto out_free_list;
  1122. }
  1123. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1124. obj->size / PAGE_SIZE, 0);
  1125. if (!list->file_offset_node) {
  1126. ret = -ENOMEM;
  1127. goto out_free_list;
  1128. }
  1129. list->hash.key = list->file_offset_node->start;
  1130. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1131. if (ret) {
  1132. DRM_ERROR("failed to add to map hash\n");
  1133. goto out_free_mm;
  1134. }
  1135. /* By now we should be all set, any drm_mmap request on the offset
  1136. * below will get to our mmap & fault handler */
  1137. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1138. return 0;
  1139. out_free_mm:
  1140. drm_mm_put_block(list->file_offset_node);
  1141. out_free_list:
  1142. kfree(list->map);
  1143. return ret;
  1144. }
  1145. /**
  1146. * i915_gem_release_mmap - remove physical page mappings
  1147. * @obj: obj in question
  1148. *
  1149. * Preserve the reservation of the mmapping with the DRM core code, but
  1150. * relinquish ownership of the pages back to the system.
  1151. *
  1152. * It is vital that we remove the page mapping if we have mapped a tiled
  1153. * object through the GTT and then lose the fence register due to
  1154. * resource pressure. Similarly if the object has been moved out of the
  1155. * aperture, than pages mapped into userspace must be revoked. Removing the
  1156. * mapping will then trigger a page fault on the next user access, allowing
  1157. * fixup by i915_gem_fault().
  1158. */
  1159. void
  1160. i915_gem_release_mmap(struct drm_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->dev;
  1163. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1164. if (dev->dev_mapping)
  1165. unmap_mapping_range(dev->dev_mapping,
  1166. obj_priv->mmap_offset, obj->size, 1);
  1167. }
  1168. static void
  1169. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1170. {
  1171. struct drm_device *dev = obj->dev;
  1172. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1173. struct drm_gem_mm *mm = dev->mm_private;
  1174. struct drm_map_list *list;
  1175. list = &obj->map_list;
  1176. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1177. if (list->file_offset_node) {
  1178. drm_mm_put_block(list->file_offset_node);
  1179. list->file_offset_node = NULL;
  1180. }
  1181. if (list->map) {
  1182. kfree(list->map);
  1183. list->map = NULL;
  1184. }
  1185. obj_priv->mmap_offset = 0;
  1186. }
  1187. /**
  1188. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1189. * @obj: object to check
  1190. *
  1191. * Return the required GTT alignment for an object, taking into account
  1192. * potential fence register mapping if needed.
  1193. */
  1194. static uint32_t
  1195. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1196. {
  1197. struct drm_device *dev = obj->dev;
  1198. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1199. int start, i;
  1200. /*
  1201. * Minimum alignment is 4k (GTT page size), but might be greater
  1202. * if a fence register is needed for the object.
  1203. */
  1204. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1205. return 4096;
  1206. /*
  1207. * Previous chips need to be aligned to the size of the smallest
  1208. * fence register that can contain the object.
  1209. */
  1210. if (INTEL_INFO(dev)->gen == 3)
  1211. start = 1024*1024;
  1212. else
  1213. start = 512*1024;
  1214. for (i = start; i < obj->size; i <<= 1)
  1215. ;
  1216. return i;
  1217. }
  1218. /**
  1219. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1220. * @dev: DRM device
  1221. * @data: GTT mapping ioctl data
  1222. * @file_priv: GEM object info
  1223. *
  1224. * Simply returns the fake offset to userspace so it can mmap it.
  1225. * The mmap call will end up in drm_gem_mmap(), which will set things
  1226. * up so we can get faults in the handler above.
  1227. *
  1228. * The fault handler will take care of binding the object into the GTT
  1229. * (since it may have been evicted to make room for something), allocating
  1230. * a fence register, and mapping the appropriate aperture address into
  1231. * userspace.
  1232. */
  1233. int
  1234. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1235. struct drm_file *file_priv)
  1236. {
  1237. struct drm_i915_gem_mmap_gtt *args = data;
  1238. struct drm_gem_object *obj;
  1239. struct drm_i915_gem_object *obj_priv;
  1240. int ret;
  1241. if (!(dev->driver->driver_features & DRIVER_GEM))
  1242. return -ENODEV;
  1243. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1244. if (obj == NULL)
  1245. return -ENOENT;
  1246. ret = i915_mutex_lock_interruptible(dev);
  1247. if (ret) {
  1248. drm_gem_object_unreference_unlocked(obj);
  1249. return ret;
  1250. }
  1251. obj_priv = to_intel_bo(obj);
  1252. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1253. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1254. drm_gem_object_unreference(obj);
  1255. mutex_unlock(&dev->struct_mutex);
  1256. return -EINVAL;
  1257. }
  1258. if (!obj_priv->mmap_offset) {
  1259. ret = i915_gem_create_mmap_offset(obj);
  1260. if (ret) {
  1261. drm_gem_object_unreference(obj);
  1262. mutex_unlock(&dev->struct_mutex);
  1263. return ret;
  1264. }
  1265. }
  1266. args->offset = obj_priv->mmap_offset;
  1267. /*
  1268. * Pull it into the GTT so that we have a page list (makes the
  1269. * initial fault faster and any subsequent flushing possible).
  1270. */
  1271. if (!obj_priv->agp_mem) {
  1272. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1273. if (ret) {
  1274. drm_gem_object_unreference(obj);
  1275. mutex_unlock(&dev->struct_mutex);
  1276. return ret;
  1277. }
  1278. }
  1279. drm_gem_object_unreference(obj);
  1280. mutex_unlock(&dev->struct_mutex);
  1281. return 0;
  1282. }
  1283. void
  1284. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1285. {
  1286. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1287. int page_count = obj->size / PAGE_SIZE;
  1288. int i;
  1289. BUG_ON(obj_priv->pages_refcount == 0);
  1290. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1291. if (--obj_priv->pages_refcount != 0)
  1292. return;
  1293. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1294. i915_gem_object_save_bit_17_swizzle(obj);
  1295. if (obj_priv->madv == I915_MADV_DONTNEED)
  1296. obj_priv->dirty = 0;
  1297. for (i = 0; i < page_count; i++) {
  1298. if (obj_priv->dirty)
  1299. set_page_dirty(obj_priv->pages[i]);
  1300. if (obj_priv->madv == I915_MADV_WILLNEED)
  1301. mark_page_accessed(obj_priv->pages[i]);
  1302. page_cache_release(obj_priv->pages[i]);
  1303. }
  1304. obj_priv->dirty = 0;
  1305. drm_free_large(obj_priv->pages);
  1306. obj_priv->pages = NULL;
  1307. }
  1308. static void
  1309. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1310. struct intel_ring_buffer *ring)
  1311. {
  1312. struct drm_i915_private *dev_priv = obj->dev->dev_private;
  1313. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1314. BUG_ON(ring == NULL);
  1315. obj_priv->ring = ring;
  1316. /* Add a reference if we're newly entering the active list. */
  1317. if (!obj_priv->active) {
  1318. drm_gem_object_reference(obj);
  1319. obj_priv->active = 1;
  1320. }
  1321. /* Move from whatever list we were on to the tail of execution. */
  1322. list_move_tail(&obj_priv->list, &ring->active_list);
  1323. obj_priv->last_rendering_seqno = dev_priv->next_seqno;
  1324. }
  1325. static void
  1326. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1327. {
  1328. struct drm_device *dev = obj->dev;
  1329. drm_i915_private_t *dev_priv = dev->dev_private;
  1330. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1331. BUG_ON(!obj_priv->active);
  1332. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1333. obj_priv->last_rendering_seqno = 0;
  1334. }
  1335. /* Immediately discard the backing storage */
  1336. static void
  1337. i915_gem_object_truncate(struct drm_gem_object *obj)
  1338. {
  1339. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1340. struct inode *inode;
  1341. /* Our goal here is to return as much of the memory as
  1342. * is possible back to the system as we are called from OOM.
  1343. * To do this we must instruct the shmfs to drop all of its
  1344. * backing pages, *now*. Here we mirror the actions taken
  1345. * when by shmem_delete_inode() to release the backing store.
  1346. */
  1347. inode = obj->filp->f_path.dentry->d_inode;
  1348. truncate_inode_pages(inode->i_mapping, 0);
  1349. if (inode->i_op->truncate_range)
  1350. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1351. obj_priv->madv = __I915_MADV_PURGED;
  1352. }
  1353. static inline int
  1354. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1355. {
  1356. return obj_priv->madv == I915_MADV_DONTNEED;
  1357. }
  1358. static void
  1359. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1360. {
  1361. struct drm_device *dev = obj->dev;
  1362. drm_i915_private_t *dev_priv = dev->dev_private;
  1363. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1364. i915_verify_inactive(dev, __FILE__, __LINE__);
  1365. if (obj_priv->pin_count != 0)
  1366. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1367. else
  1368. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1369. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1370. obj_priv->last_rendering_seqno = 0;
  1371. obj_priv->ring = NULL;
  1372. if (obj_priv->active) {
  1373. obj_priv->active = 0;
  1374. drm_gem_object_unreference(obj);
  1375. }
  1376. i915_verify_inactive(dev, __FILE__, __LINE__);
  1377. }
  1378. static void
  1379. i915_gem_process_flushing_list(struct drm_device *dev,
  1380. uint32_t flush_domains,
  1381. struct intel_ring_buffer *ring)
  1382. {
  1383. drm_i915_private_t *dev_priv = dev->dev_private;
  1384. struct drm_i915_gem_object *obj_priv, *next;
  1385. list_for_each_entry_safe(obj_priv, next,
  1386. &dev_priv->mm.gpu_write_list,
  1387. gpu_write_list) {
  1388. struct drm_gem_object *obj = &obj_priv->base;
  1389. if (obj->write_domain & flush_domains &&
  1390. obj_priv->ring == ring) {
  1391. uint32_t old_write_domain = obj->write_domain;
  1392. obj->write_domain = 0;
  1393. list_del_init(&obj_priv->gpu_write_list);
  1394. i915_gem_object_move_to_active(obj, ring);
  1395. /* update the fence lru list */
  1396. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1397. struct drm_i915_fence_reg *reg =
  1398. &dev_priv->fence_regs[obj_priv->fence_reg];
  1399. list_move_tail(&reg->lru_list,
  1400. &dev_priv->mm.fence_list);
  1401. }
  1402. trace_i915_gem_object_change_domain(obj,
  1403. obj->read_domains,
  1404. old_write_domain);
  1405. }
  1406. }
  1407. }
  1408. uint32_t
  1409. i915_add_request(struct drm_device *dev,
  1410. struct drm_file *file,
  1411. struct drm_i915_gem_request *request,
  1412. struct intel_ring_buffer *ring)
  1413. {
  1414. drm_i915_private_t *dev_priv = dev->dev_private;
  1415. struct drm_i915_file_private *file_priv = NULL;
  1416. uint32_t seqno;
  1417. int was_empty;
  1418. if (file != NULL)
  1419. file_priv = file->driver_priv;
  1420. if (request == NULL) {
  1421. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1422. if (request == NULL)
  1423. return 0;
  1424. }
  1425. seqno = ring->add_request(dev, ring, 0);
  1426. request->seqno = seqno;
  1427. request->ring = ring;
  1428. request->emitted_jiffies = jiffies;
  1429. was_empty = list_empty(&ring->request_list);
  1430. list_add_tail(&request->list, &ring->request_list);
  1431. if (file_priv) {
  1432. spin_lock(&file_priv->mm.lock);
  1433. request->file_priv = file_priv;
  1434. list_add_tail(&request->client_list,
  1435. &file_priv->mm.request_list);
  1436. spin_unlock(&file_priv->mm.lock);
  1437. }
  1438. if (!dev_priv->mm.suspended) {
  1439. mod_timer(&dev_priv->hangcheck_timer,
  1440. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1441. if (was_empty)
  1442. queue_delayed_work(dev_priv->wq,
  1443. &dev_priv->mm.retire_work, HZ);
  1444. }
  1445. return seqno;
  1446. }
  1447. /**
  1448. * Command execution barrier
  1449. *
  1450. * Ensures that all commands in the ring are finished
  1451. * before signalling the CPU
  1452. */
  1453. static void
  1454. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1455. {
  1456. uint32_t flush_domains = 0;
  1457. /* The sampler always gets flushed on i965 (sigh) */
  1458. if (INTEL_INFO(dev)->gen >= 4)
  1459. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1460. ring->flush(dev, ring,
  1461. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1462. }
  1463. static inline void
  1464. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1465. {
  1466. struct drm_i915_file_private *file_priv = request->file_priv;
  1467. if (!file_priv)
  1468. return;
  1469. spin_lock(&file_priv->mm.lock);
  1470. list_del(&request->client_list);
  1471. request->file_priv = NULL;
  1472. spin_unlock(&file_priv->mm.lock);
  1473. }
  1474. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1475. struct intel_ring_buffer *ring)
  1476. {
  1477. while (!list_empty(&ring->request_list)) {
  1478. struct drm_i915_gem_request *request;
  1479. request = list_first_entry(&ring->request_list,
  1480. struct drm_i915_gem_request,
  1481. list);
  1482. list_del(&request->list);
  1483. i915_gem_request_remove_from_client(request);
  1484. kfree(request);
  1485. }
  1486. while (!list_empty(&ring->active_list)) {
  1487. struct drm_i915_gem_object *obj_priv;
  1488. obj_priv = list_first_entry(&ring->active_list,
  1489. struct drm_i915_gem_object,
  1490. list);
  1491. obj_priv->base.write_domain = 0;
  1492. list_del_init(&obj_priv->gpu_write_list);
  1493. i915_gem_object_move_to_inactive(&obj_priv->base);
  1494. }
  1495. }
  1496. void i915_gem_reset_lists(struct drm_device *dev)
  1497. {
  1498. struct drm_i915_private *dev_priv = dev->dev_private;
  1499. struct drm_i915_gem_object *obj_priv;
  1500. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1501. if (HAS_BSD(dev))
  1502. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1503. /* Remove anything from the flushing lists. The GPU cache is likely
  1504. * to be lost on reset along with the data, so simply move the
  1505. * lost bo to the inactive list.
  1506. */
  1507. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1508. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1509. struct drm_i915_gem_object,
  1510. list);
  1511. obj_priv->base.write_domain = 0;
  1512. list_del_init(&obj_priv->gpu_write_list);
  1513. i915_gem_object_move_to_inactive(&obj_priv->base);
  1514. }
  1515. /* Move everything out of the GPU domains to ensure we do any
  1516. * necessary invalidation upon reuse.
  1517. */
  1518. list_for_each_entry(obj_priv,
  1519. &dev_priv->mm.inactive_list,
  1520. list)
  1521. {
  1522. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1523. }
  1524. }
  1525. /**
  1526. * This function clears the request list as sequence numbers are passed.
  1527. */
  1528. static void
  1529. i915_gem_retire_requests_ring(struct drm_device *dev,
  1530. struct intel_ring_buffer *ring)
  1531. {
  1532. drm_i915_private_t *dev_priv = dev->dev_private;
  1533. uint32_t seqno;
  1534. if (!ring->status_page.page_addr ||
  1535. list_empty(&ring->request_list))
  1536. return;
  1537. seqno = ring->get_seqno(dev, ring);
  1538. while (!list_empty(&ring->request_list)) {
  1539. struct drm_i915_gem_request *request;
  1540. request = list_first_entry(&ring->request_list,
  1541. struct drm_i915_gem_request,
  1542. list);
  1543. if (!i915_seqno_passed(seqno, request->seqno))
  1544. break;
  1545. trace_i915_gem_request_retire(dev, request->seqno);
  1546. list_del(&request->list);
  1547. i915_gem_request_remove_from_client(request);
  1548. kfree(request);
  1549. }
  1550. /* Move any buffers on the active list that are no longer referenced
  1551. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1552. */
  1553. while (!list_empty(&ring->active_list)) {
  1554. struct drm_gem_object *obj;
  1555. struct drm_i915_gem_object *obj_priv;
  1556. obj_priv = list_first_entry(&ring->active_list,
  1557. struct drm_i915_gem_object,
  1558. list);
  1559. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1560. break;
  1561. obj = &obj_priv->base;
  1562. #if WATCH_LRU
  1563. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1564. __func__, request->seqno, obj);
  1565. #endif
  1566. if (obj->write_domain != 0)
  1567. i915_gem_object_move_to_flushing(obj);
  1568. else
  1569. i915_gem_object_move_to_inactive(obj);
  1570. }
  1571. if (unlikely (dev_priv->trace_irq_seqno &&
  1572. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1573. ring->user_irq_put(dev, ring);
  1574. dev_priv->trace_irq_seqno = 0;
  1575. }
  1576. }
  1577. void
  1578. i915_gem_retire_requests(struct drm_device *dev)
  1579. {
  1580. drm_i915_private_t *dev_priv = dev->dev_private;
  1581. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1582. struct drm_i915_gem_object *obj_priv, *tmp;
  1583. /* We must be careful that during unbind() we do not
  1584. * accidentally infinitely recurse into retire requests.
  1585. * Currently:
  1586. * retire -> free -> unbind -> wait -> retire_ring
  1587. */
  1588. list_for_each_entry_safe(obj_priv, tmp,
  1589. &dev_priv->mm.deferred_free_list,
  1590. list)
  1591. i915_gem_free_object_tail(&obj_priv->base);
  1592. }
  1593. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1594. if (HAS_BSD(dev))
  1595. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1596. }
  1597. static void
  1598. i915_gem_retire_work_handler(struct work_struct *work)
  1599. {
  1600. drm_i915_private_t *dev_priv;
  1601. struct drm_device *dev;
  1602. dev_priv = container_of(work, drm_i915_private_t,
  1603. mm.retire_work.work);
  1604. dev = dev_priv->dev;
  1605. mutex_lock(&dev->struct_mutex);
  1606. i915_gem_retire_requests(dev);
  1607. if (!dev_priv->mm.suspended &&
  1608. (!list_empty(&dev_priv->render_ring.request_list) ||
  1609. (HAS_BSD(dev) &&
  1610. !list_empty(&dev_priv->bsd_ring.request_list))))
  1611. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1612. mutex_unlock(&dev->struct_mutex);
  1613. }
  1614. int
  1615. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1616. bool interruptible, struct intel_ring_buffer *ring)
  1617. {
  1618. drm_i915_private_t *dev_priv = dev->dev_private;
  1619. u32 ier;
  1620. int ret = 0;
  1621. BUG_ON(seqno == 0);
  1622. if (atomic_read(&dev_priv->mm.wedged))
  1623. return -EAGAIN;
  1624. if (seqno == dev_priv->next_seqno) {
  1625. seqno = i915_add_request(dev, NULL, NULL, ring);
  1626. if (seqno == 0)
  1627. return -ENOMEM;
  1628. }
  1629. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1630. if (HAS_PCH_SPLIT(dev))
  1631. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1632. else
  1633. ier = I915_READ(IER);
  1634. if (!ier) {
  1635. DRM_ERROR("something (likely vbetool) disabled "
  1636. "interrupts, re-enabling\n");
  1637. i915_driver_irq_preinstall(dev);
  1638. i915_driver_irq_postinstall(dev);
  1639. }
  1640. trace_i915_gem_request_wait_begin(dev, seqno);
  1641. ring->waiting_gem_seqno = seqno;
  1642. ring->user_irq_get(dev, ring);
  1643. if (interruptible)
  1644. ret = wait_event_interruptible(ring->irq_queue,
  1645. i915_seqno_passed(
  1646. ring->get_seqno(dev, ring), seqno)
  1647. || atomic_read(&dev_priv->mm.wedged));
  1648. else
  1649. wait_event(ring->irq_queue,
  1650. i915_seqno_passed(
  1651. ring->get_seqno(dev, ring), seqno)
  1652. || atomic_read(&dev_priv->mm.wedged));
  1653. ring->user_irq_put(dev, ring);
  1654. ring->waiting_gem_seqno = 0;
  1655. trace_i915_gem_request_wait_end(dev, seqno);
  1656. }
  1657. if (atomic_read(&dev_priv->mm.wedged))
  1658. ret = -EAGAIN;
  1659. if (ret && ret != -ERESTARTSYS)
  1660. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1661. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1662. dev_priv->next_seqno);
  1663. /* Directly dispatch request retiring. While we have the work queue
  1664. * to handle this, the waiter on a request often wants an associated
  1665. * buffer to have made it to the inactive list, and we would need
  1666. * a separate wait queue to handle that.
  1667. */
  1668. if (ret == 0)
  1669. i915_gem_retire_requests_ring(dev, ring);
  1670. return ret;
  1671. }
  1672. /**
  1673. * Waits for a sequence number to be signaled, and cleans up the
  1674. * request and object lists appropriately for that event.
  1675. */
  1676. static int
  1677. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1678. struct intel_ring_buffer *ring)
  1679. {
  1680. return i915_do_wait_request(dev, seqno, 1, ring);
  1681. }
  1682. static void
  1683. i915_gem_flush_ring(struct drm_device *dev,
  1684. struct drm_file *file_priv,
  1685. struct intel_ring_buffer *ring,
  1686. uint32_t invalidate_domains,
  1687. uint32_t flush_domains)
  1688. {
  1689. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1690. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1691. }
  1692. static void
  1693. i915_gem_flush(struct drm_device *dev,
  1694. struct drm_file *file_priv,
  1695. uint32_t invalidate_domains,
  1696. uint32_t flush_domains,
  1697. uint32_t flush_rings)
  1698. {
  1699. drm_i915_private_t *dev_priv = dev->dev_private;
  1700. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1701. drm_agp_chipset_flush(dev);
  1702. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1703. if (flush_rings & RING_RENDER)
  1704. i915_gem_flush_ring(dev, file_priv,
  1705. &dev_priv->render_ring,
  1706. invalidate_domains, flush_domains);
  1707. if (flush_rings & RING_BSD)
  1708. i915_gem_flush_ring(dev, file_priv,
  1709. &dev_priv->bsd_ring,
  1710. invalidate_domains, flush_domains);
  1711. }
  1712. }
  1713. /**
  1714. * Ensures that all rendering to the object has completed and the object is
  1715. * safe to unbind from the GTT or access from the CPU.
  1716. */
  1717. static int
  1718. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1719. bool interruptible)
  1720. {
  1721. struct drm_device *dev = obj->dev;
  1722. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1723. int ret;
  1724. /* This function only exists to support waiting for existing rendering,
  1725. * not for emitting required flushes.
  1726. */
  1727. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1728. /* If there is rendering queued on the buffer being evicted, wait for
  1729. * it.
  1730. */
  1731. if (obj_priv->active) {
  1732. #if WATCH_BUF
  1733. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1734. __func__, obj, obj_priv->last_rendering_seqno);
  1735. #endif
  1736. ret = i915_do_wait_request(dev,
  1737. obj_priv->last_rendering_seqno,
  1738. interruptible,
  1739. obj_priv->ring);
  1740. if (ret)
  1741. return ret;
  1742. }
  1743. return 0;
  1744. }
  1745. /**
  1746. * Unbinds an object from the GTT aperture.
  1747. */
  1748. int
  1749. i915_gem_object_unbind(struct drm_gem_object *obj)
  1750. {
  1751. struct drm_device *dev = obj->dev;
  1752. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1753. int ret = 0;
  1754. #if WATCH_BUF
  1755. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1756. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1757. #endif
  1758. if (obj_priv->gtt_space == NULL)
  1759. return 0;
  1760. if (obj_priv->pin_count != 0) {
  1761. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1762. return -EINVAL;
  1763. }
  1764. /* blow away mappings if mapped through GTT */
  1765. i915_gem_release_mmap(obj);
  1766. /* Move the object to the CPU domain to ensure that
  1767. * any possible CPU writes while it's not in the GTT
  1768. * are flushed when we go to remap it. This will
  1769. * also ensure that all pending GPU writes are finished
  1770. * before we unbind.
  1771. */
  1772. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1773. if (ret == -ERESTARTSYS)
  1774. return ret;
  1775. /* Continue on if we fail due to EIO, the GPU is hung so we
  1776. * should be safe and we need to cleanup or else we might
  1777. * cause memory corruption through use-after-free.
  1778. */
  1779. /* release the fence reg _after_ flushing */
  1780. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1781. i915_gem_clear_fence_reg(obj);
  1782. if (obj_priv->agp_mem != NULL) {
  1783. drm_unbind_agp(obj_priv->agp_mem);
  1784. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1785. obj_priv->agp_mem = NULL;
  1786. }
  1787. i915_gem_object_put_pages(obj);
  1788. BUG_ON(obj_priv->pages_refcount);
  1789. if (obj_priv->gtt_space) {
  1790. atomic_dec(&dev->gtt_count);
  1791. atomic_sub(obj->size, &dev->gtt_memory);
  1792. drm_mm_put_block(obj_priv->gtt_space);
  1793. obj_priv->gtt_space = NULL;
  1794. }
  1795. list_del_init(&obj_priv->list);
  1796. if (i915_gem_object_is_purgeable(obj_priv))
  1797. i915_gem_object_truncate(obj);
  1798. trace_i915_gem_object_unbind(obj);
  1799. return ret;
  1800. }
  1801. int
  1802. i915_gpu_idle(struct drm_device *dev)
  1803. {
  1804. drm_i915_private_t *dev_priv = dev->dev_private;
  1805. bool lists_empty;
  1806. u32 seqno;
  1807. int ret;
  1808. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1809. list_empty(&dev_priv->render_ring.active_list) &&
  1810. (!HAS_BSD(dev) ||
  1811. list_empty(&dev_priv->bsd_ring.active_list)));
  1812. if (lists_empty)
  1813. return 0;
  1814. /* Flush everything onto the inactive list. */
  1815. seqno = dev_priv->next_seqno;
  1816. i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
  1817. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1818. ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
  1819. if (ret)
  1820. return ret;
  1821. if (HAS_BSD(dev)) {
  1822. seqno = dev_priv->next_seqno;
  1823. i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
  1824. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1825. ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
  1826. if (ret)
  1827. return ret;
  1828. }
  1829. return 0;
  1830. }
  1831. int
  1832. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1833. gfp_t gfpmask)
  1834. {
  1835. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1836. int page_count, i;
  1837. struct address_space *mapping;
  1838. struct inode *inode;
  1839. struct page *page;
  1840. BUG_ON(obj_priv->pages_refcount
  1841. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1842. if (obj_priv->pages_refcount++ != 0)
  1843. return 0;
  1844. /* Get the list of pages out of our struct file. They'll be pinned
  1845. * at this point until we release them.
  1846. */
  1847. page_count = obj->size / PAGE_SIZE;
  1848. BUG_ON(obj_priv->pages != NULL);
  1849. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1850. if (obj_priv->pages == NULL) {
  1851. obj_priv->pages_refcount--;
  1852. return -ENOMEM;
  1853. }
  1854. inode = obj->filp->f_path.dentry->d_inode;
  1855. mapping = inode->i_mapping;
  1856. for (i = 0; i < page_count; i++) {
  1857. page = read_cache_page_gfp(mapping, i,
  1858. GFP_HIGHUSER |
  1859. __GFP_COLD |
  1860. __GFP_RECLAIMABLE |
  1861. gfpmask);
  1862. if (IS_ERR(page))
  1863. goto err_pages;
  1864. obj_priv->pages[i] = page;
  1865. }
  1866. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1867. i915_gem_object_do_bit_17_swizzle(obj);
  1868. return 0;
  1869. err_pages:
  1870. while (i--)
  1871. page_cache_release(obj_priv->pages[i]);
  1872. drm_free_large(obj_priv->pages);
  1873. obj_priv->pages = NULL;
  1874. obj_priv->pages_refcount--;
  1875. return PTR_ERR(page);
  1876. }
  1877. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1878. {
  1879. struct drm_gem_object *obj = reg->obj;
  1880. struct drm_device *dev = obj->dev;
  1881. drm_i915_private_t *dev_priv = dev->dev_private;
  1882. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1883. int regnum = obj_priv->fence_reg;
  1884. uint64_t val;
  1885. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1886. 0xfffff000) << 32;
  1887. val |= obj_priv->gtt_offset & 0xfffff000;
  1888. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1889. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1890. if (obj_priv->tiling_mode == I915_TILING_Y)
  1891. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1892. val |= I965_FENCE_REG_VALID;
  1893. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1894. }
  1895. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1896. {
  1897. struct drm_gem_object *obj = reg->obj;
  1898. struct drm_device *dev = obj->dev;
  1899. drm_i915_private_t *dev_priv = dev->dev_private;
  1900. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1901. int regnum = obj_priv->fence_reg;
  1902. uint64_t val;
  1903. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1904. 0xfffff000) << 32;
  1905. val |= obj_priv->gtt_offset & 0xfffff000;
  1906. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1907. if (obj_priv->tiling_mode == I915_TILING_Y)
  1908. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1909. val |= I965_FENCE_REG_VALID;
  1910. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1911. }
  1912. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1913. {
  1914. struct drm_gem_object *obj = reg->obj;
  1915. struct drm_device *dev = obj->dev;
  1916. drm_i915_private_t *dev_priv = dev->dev_private;
  1917. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1918. int regnum = obj_priv->fence_reg;
  1919. int tile_width;
  1920. uint32_t fence_reg, val;
  1921. uint32_t pitch_val;
  1922. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1923. (obj_priv->gtt_offset & (obj->size - 1))) {
  1924. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1925. __func__, obj_priv->gtt_offset, obj->size);
  1926. return;
  1927. }
  1928. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1929. HAS_128_BYTE_Y_TILING(dev))
  1930. tile_width = 128;
  1931. else
  1932. tile_width = 512;
  1933. /* Note: pitch better be a power of two tile widths */
  1934. pitch_val = obj_priv->stride / tile_width;
  1935. pitch_val = ffs(pitch_val) - 1;
  1936. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1937. HAS_128_BYTE_Y_TILING(dev))
  1938. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1939. else
  1940. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1941. val = obj_priv->gtt_offset;
  1942. if (obj_priv->tiling_mode == I915_TILING_Y)
  1943. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1944. val |= I915_FENCE_SIZE_BITS(obj->size);
  1945. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1946. val |= I830_FENCE_REG_VALID;
  1947. if (regnum < 8)
  1948. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1949. else
  1950. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1951. I915_WRITE(fence_reg, val);
  1952. }
  1953. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1954. {
  1955. struct drm_gem_object *obj = reg->obj;
  1956. struct drm_device *dev = obj->dev;
  1957. drm_i915_private_t *dev_priv = dev->dev_private;
  1958. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1959. int regnum = obj_priv->fence_reg;
  1960. uint32_t val;
  1961. uint32_t pitch_val;
  1962. uint32_t fence_size_bits;
  1963. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1964. (obj_priv->gtt_offset & (obj->size - 1))) {
  1965. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1966. __func__, obj_priv->gtt_offset);
  1967. return;
  1968. }
  1969. pitch_val = obj_priv->stride / 128;
  1970. pitch_val = ffs(pitch_val) - 1;
  1971. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1972. val = obj_priv->gtt_offset;
  1973. if (obj_priv->tiling_mode == I915_TILING_Y)
  1974. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1975. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1976. WARN_ON(fence_size_bits & ~0x00000f00);
  1977. val |= fence_size_bits;
  1978. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1979. val |= I830_FENCE_REG_VALID;
  1980. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1981. }
  1982. static int i915_find_fence_reg(struct drm_device *dev,
  1983. bool interruptible)
  1984. {
  1985. struct drm_i915_fence_reg *reg = NULL;
  1986. struct drm_i915_gem_object *obj_priv = NULL;
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. struct drm_gem_object *obj = NULL;
  1989. int i, avail, ret;
  1990. /* First try to find a free reg */
  1991. avail = 0;
  1992. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1993. reg = &dev_priv->fence_regs[i];
  1994. if (!reg->obj)
  1995. return i;
  1996. obj_priv = to_intel_bo(reg->obj);
  1997. if (!obj_priv->pin_count)
  1998. avail++;
  1999. }
  2000. if (avail == 0)
  2001. return -ENOSPC;
  2002. /* None available, try to steal one or wait for a user to finish */
  2003. i = I915_FENCE_REG_NONE;
  2004. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2005. lru_list) {
  2006. obj = reg->obj;
  2007. obj_priv = to_intel_bo(obj);
  2008. if (obj_priv->pin_count)
  2009. continue;
  2010. /* found one! */
  2011. i = obj_priv->fence_reg;
  2012. break;
  2013. }
  2014. BUG_ON(i == I915_FENCE_REG_NONE);
  2015. /* We only have a reference on obj from the active list. put_fence_reg
  2016. * might drop that one, causing a use-after-free in it. So hold a
  2017. * private reference to obj like the other callers of put_fence_reg
  2018. * (set_tiling ioctl) do. */
  2019. drm_gem_object_reference(obj);
  2020. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2021. drm_gem_object_unreference(obj);
  2022. if (ret != 0)
  2023. return ret;
  2024. return i;
  2025. }
  2026. /**
  2027. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2028. * @obj: object to map through a fence reg
  2029. *
  2030. * When mapping objects through the GTT, userspace wants to be able to write
  2031. * to them without having to worry about swizzling if the object is tiled.
  2032. *
  2033. * This function walks the fence regs looking for a free one for @obj,
  2034. * stealing one if it can't find any.
  2035. *
  2036. * It then sets up the reg based on the object's properties: address, pitch
  2037. * and tiling format.
  2038. */
  2039. int
  2040. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2041. bool interruptible)
  2042. {
  2043. struct drm_device *dev = obj->dev;
  2044. struct drm_i915_private *dev_priv = dev->dev_private;
  2045. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2046. struct drm_i915_fence_reg *reg = NULL;
  2047. int ret;
  2048. /* Just update our place in the LRU if our fence is getting used. */
  2049. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2050. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2051. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2052. return 0;
  2053. }
  2054. switch (obj_priv->tiling_mode) {
  2055. case I915_TILING_NONE:
  2056. WARN(1, "allocating a fence for non-tiled object?\n");
  2057. break;
  2058. case I915_TILING_X:
  2059. if (!obj_priv->stride)
  2060. return -EINVAL;
  2061. WARN((obj_priv->stride & (512 - 1)),
  2062. "object 0x%08x is X tiled but has non-512B pitch\n",
  2063. obj_priv->gtt_offset);
  2064. break;
  2065. case I915_TILING_Y:
  2066. if (!obj_priv->stride)
  2067. return -EINVAL;
  2068. WARN((obj_priv->stride & (128 - 1)),
  2069. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2070. obj_priv->gtt_offset);
  2071. break;
  2072. }
  2073. ret = i915_find_fence_reg(dev, interruptible);
  2074. if (ret < 0)
  2075. return ret;
  2076. obj_priv->fence_reg = ret;
  2077. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2078. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2079. reg->obj = obj;
  2080. switch (INTEL_INFO(dev)->gen) {
  2081. case 6:
  2082. sandybridge_write_fence_reg(reg);
  2083. break;
  2084. case 5:
  2085. case 4:
  2086. i965_write_fence_reg(reg);
  2087. break;
  2088. case 3:
  2089. i915_write_fence_reg(reg);
  2090. break;
  2091. case 2:
  2092. i830_write_fence_reg(reg);
  2093. break;
  2094. }
  2095. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2096. obj_priv->tiling_mode);
  2097. return 0;
  2098. }
  2099. /**
  2100. * i915_gem_clear_fence_reg - clear out fence register info
  2101. * @obj: object to clear
  2102. *
  2103. * Zeroes out the fence register itself and clears out the associated
  2104. * data structures in dev_priv and obj_priv.
  2105. */
  2106. static void
  2107. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2108. {
  2109. struct drm_device *dev = obj->dev;
  2110. drm_i915_private_t *dev_priv = dev->dev_private;
  2111. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2112. struct drm_i915_fence_reg *reg =
  2113. &dev_priv->fence_regs[obj_priv->fence_reg];
  2114. uint32_t fence_reg;
  2115. switch (INTEL_INFO(dev)->gen) {
  2116. case 6:
  2117. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2118. (obj_priv->fence_reg * 8), 0);
  2119. break;
  2120. case 5:
  2121. case 4:
  2122. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2123. break;
  2124. case 3:
  2125. if (obj_priv->fence_reg > 8)
  2126. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2127. else
  2128. case 2:
  2129. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2130. I915_WRITE(fence_reg, 0);
  2131. break;
  2132. }
  2133. reg->obj = NULL;
  2134. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2135. list_del_init(&reg->lru_list);
  2136. }
  2137. /**
  2138. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2139. * to the buffer to finish, and then resets the fence register.
  2140. * @obj: tiled object holding a fence register.
  2141. * @bool: whether the wait upon the fence is interruptible
  2142. *
  2143. * Zeroes out the fence register itself and clears out the associated
  2144. * data structures in dev_priv and obj_priv.
  2145. */
  2146. int
  2147. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2148. bool interruptible)
  2149. {
  2150. struct drm_device *dev = obj->dev;
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2153. struct drm_i915_fence_reg *reg;
  2154. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2155. return 0;
  2156. /* If we've changed tiling, GTT-mappings of the object
  2157. * need to re-fault to ensure that the correct fence register
  2158. * setup is in place.
  2159. */
  2160. i915_gem_release_mmap(obj);
  2161. /* On the i915, GPU access to tiled buffers is via a fence,
  2162. * therefore we must wait for any outstanding access to complete
  2163. * before clearing the fence.
  2164. */
  2165. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2166. if (reg->gpu) {
  2167. int ret;
  2168. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2169. if (ret)
  2170. return ret;
  2171. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2172. if (ret)
  2173. return ret;
  2174. reg->gpu = false;
  2175. }
  2176. i915_gem_object_flush_gtt_write_domain(obj);
  2177. i915_gem_clear_fence_reg(obj);
  2178. return 0;
  2179. }
  2180. /**
  2181. * Finds free space in the GTT aperture and binds the object there.
  2182. */
  2183. static int
  2184. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2185. {
  2186. struct drm_device *dev = obj->dev;
  2187. drm_i915_private_t *dev_priv = dev->dev_private;
  2188. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2189. struct drm_mm_node *free_space;
  2190. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2191. int ret;
  2192. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2193. DRM_ERROR("Attempting to bind a purgeable object\n");
  2194. return -EINVAL;
  2195. }
  2196. if (alignment == 0)
  2197. alignment = i915_gem_get_gtt_alignment(obj);
  2198. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2199. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2200. return -EINVAL;
  2201. }
  2202. /* If the object is bigger than the entire aperture, reject it early
  2203. * before evicting everything in a vain attempt to find space.
  2204. */
  2205. if (obj->size > dev->gtt_total) {
  2206. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2207. return -E2BIG;
  2208. }
  2209. search_free:
  2210. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2211. obj->size, alignment, 0);
  2212. if (free_space != NULL) {
  2213. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2214. alignment);
  2215. if (obj_priv->gtt_space != NULL)
  2216. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2217. }
  2218. if (obj_priv->gtt_space == NULL) {
  2219. /* If the gtt is empty and we're still having trouble
  2220. * fitting our object in, we're out of memory.
  2221. */
  2222. #if WATCH_LRU
  2223. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2224. #endif
  2225. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2226. if (ret)
  2227. return ret;
  2228. goto search_free;
  2229. }
  2230. #if WATCH_BUF
  2231. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2232. obj->size, obj_priv->gtt_offset);
  2233. #endif
  2234. ret = i915_gem_object_get_pages(obj, gfpmask);
  2235. if (ret) {
  2236. drm_mm_put_block(obj_priv->gtt_space);
  2237. obj_priv->gtt_space = NULL;
  2238. if (ret == -ENOMEM) {
  2239. /* first try to clear up some space from the GTT */
  2240. ret = i915_gem_evict_something(dev, obj->size,
  2241. alignment);
  2242. if (ret) {
  2243. /* now try to shrink everyone else */
  2244. if (gfpmask) {
  2245. gfpmask = 0;
  2246. goto search_free;
  2247. }
  2248. return ret;
  2249. }
  2250. goto search_free;
  2251. }
  2252. return ret;
  2253. }
  2254. /* Create an AGP memory structure pointing at our pages, and bind it
  2255. * into the GTT.
  2256. */
  2257. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2258. obj_priv->pages,
  2259. obj->size >> PAGE_SHIFT,
  2260. obj_priv->gtt_offset,
  2261. obj_priv->agp_type);
  2262. if (obj_priv->agp_mem == NULL) {
  2263. i915_gem_object_put_pages(obj);
  2264. drm_mm_put_block(obj_priv->gtt_space);
  2265. obj_priv->gtt_space = NULL;
  2266. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2267. if (ret)
  2268. return ret;
  2269. goto search_free;
  2270. }
  2271. atomic_inc(&dev->gtt_count);
  2272. atomic_add(obj->size, &dev->gtt_memory);
  2273. /* keep track of bounds object by adding it to the inactive list */
  2274. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2275. /* Assert that the object is not currently in any GPU domain. As it
  2276. * wasn't in the GTT, there shouldn't be any way it could have been in
  2277. * a GPU cache
  2278. */
  2279. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2280. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2281. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2282. return 0;
  2283. }
  2284. void
  2285. i915_gem_clflush_object(struct drm_gem_object *obj)
  2286. {
  2287. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2288. /* If we don't have a page list set up, then we're not pinned
  2289. * to GPU, and we can ignore the cache flush because it'll happen
  2290. * again at bind time.
  2291. */
  2292. if (obj_priv->pages == NULL)
  2293. return;
  2294. trace_i915_gem_object_clflush(obj);
  2295. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2296. }
  2297. /** Flushes any GPU write domain for the object if it's dirty. */
  2298. static int
  2299. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2300. bool pipelined)
  2301. {
  2302. struct drm_device *dev = obj->dev;
  2303. uint32_t old_write_domain;
  2304. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2305. return 0;
  2306. /* Queue the GPU write cache flushing we need. */
  2307. old_write_domain = obj->write_domain;
  2308. i915_gem_flush_ring(dev, NULL,
  2309. to_intel_bo(obj)->ring,
  2310. 0, obj->write_domain);
  2311. BUG_ON(obj->write_domain);
  2312. trace_i915_gem_object_change_domain(obj,
  2313. obj->read_domains,
  2314. old_write_domain);
  2315. if (pipelined)
  2316. return 0;
  2317. return i915_gem_object_wait_rendering(obj, true);
  2318. }
  2319. /** Flushes the GTT write domain for the object if it's dirty. */
  2320. static void
  2321. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2322. {
  2323. uint32_t old_write_domain;
  2324. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2325. return;
  2326. /* No actual flushing is required for the GTT write domain. Writes
  2327. * to it immediately go to main memory as far as we know, so there's
  2328. * no chipset flush. It also doesn't land in render cache.
  2329. */
  2330. old_write_domain = obj->write_domain;
  2331. obj->write_domain = 0;
  2332. trace_i915_gem_object_change_domain(obj,
  2333. obj->read_domains,
  2334. old_write_domain);
  2335. }
  2336. /** Flushes the CPU write domain for the object if it's dirty. */
  2337. static void
  2338. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2339. {
  2340. struct drm_device *dev = obj->dev;
  2341. uint32_t old_write_domain;
  2342. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2343. return;
  2344. i915_gem_clflush_object(obj);
  2345. drm_agp_chipset_flush(dev);
  2346. old_write_domain = obj->write_domain;
  2347. obj->write_domain = 0;
  2348. trace_i915_gem_object_change_domain(obj,
  2349. obj->read_domains,
  2350. old_write_domain);
  2351. }
  2352. /**
  2353. * Moves a single object to the GTT read, and possibly write domain.
  2354. *
  2355. * This function returns when the move is complete, including waiting on
  2356. * flushes to occur.
  2357. */
  2358. int
  2359. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2360. {
  2361. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2362. uint32_t old_write_domain, old_read_domains;
  2363. int ret;
  2364. /* Not valid to be called on unbound objects. */
  2365. if (obj_priv->gtt_space == NULL)
  2366. return -EINVAL;
  2367. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2368. if (ret != 0)
  2369. return ret;
  2370. i915_gem_object_flush_cpu_write_domain(obj);
  2371. if (write) {
  2372. ret = i915_gem_object_wait_rendering(obj, true);
  2373. if (ret)
  2374. return ret;
  2375. }
  2376. old_write_domain = obj->write_domain;
  2377. old_read_domains = obj->read_domains;
  2378. /* It should now be out of any other write domains, and we can update
  2379. * the domain values for our changes.
  2380. */
  2381. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2382. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2383. if (write) {
  2384. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2385. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2386. obj_priv->dirty = 1;
  2387. }
  2388. trace_i915_gem_object_change_domain(obj,
  2389. old_read_domains,
  2390. old_write_domain);
  2391. return 0;
  2392. }
  2393. /*
  2394. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2395. * wait, as in modesetting process we're not supposed to be interrupted.
  2396. */
  2397. int
  2398. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2399. bool pipelined)
  2400. {
  2401. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2402. uint32_t old_read_domains;
  2403. int ret;
  2404. /* Not valid to be called on unbound objects. */
  2405. if (obj_priv->gtt_space == NULL)
  2406. return -EINVAL;
  2407. ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
  2408. if (ret)
  2409. return ret;
  2410. i915_gem_object_flush_cpu_write_domain(obj);
  2411. old_read_domains = obj->read_domains;
  2412. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2413. trace_i915_gem_object_change_domain(obj,
  2414. old_read_domains,
  2415. obj->write_domain);
  2416. return 0;
  2417. }
  2418. /**
  2419. * Moves a single object to the CPU read, and possibly write domain.
  2420. *
  2421. * This function returns when the move is complete, including waiting on
  2422. * flushes to occur.
  2423. */
  2424. static int
  2425. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2426. {
  2427. uint32_t old_write_domain, old_read_domains;
  2428. int ret;
  2429. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2430. if (ret != 0)
  2431. return ret;
  2432. i915_gem_object_flush_gtt_write_domain(obj);
  2433. /* If we have a partially-valid cache of the object in the CPU,
  2434. * finish invalidating it and free the per-page flags.
  2435. */
  2436. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2437. if (write) {
  2438. ret = i915_gem_object_wait_rendering(obj, true);
  2439. if (ret)
  2440. return ret;
  2441. }
  2442. old_write_domain = obj->write_domain;
  2443. old_read_domains = obj->read_domains;
  2444. /* Flush the CPU cache if it's still invalid. */
  2445. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2446. i915_gem_clflush_object(obj);
  2447. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2448. }
  2449. /* It should now be out of any other write domains, and we can update
  2450. * the domain values for our changes.
  2451. */
  2452. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2453. /* If we're writing through the CPU, then the GPU read domains will
  2454. * need to be invalidated at next use.
  2455. */
  2456. if (write) {
  2457. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2458. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2459. }
  2460. trace_i915_gem_object_change_domain(obj,
  2461. old_read_domains,
  2462. old_write_domain);
  2463. return 0;
  2464. }
  2465. /*
  2466. * Set the next domain for the specified object. This
  2467. * may not actually perform the necessary flushing/invaliding though,
  2468. * as that may want to be batched with other set_domain operations
  2469. *
  2470. * This is (we hope) the only really tricky part of gem. The goal
  2471. * is fairly simple -- track which caches hold bits of the object
  2472. * and make sure they remain coherent. A few concrete examples may
  2473. * help to explain how it works. For shorthand, we use the notation
  2474. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2475. * a pair of read and write domain masks.
  2476. *
  2477. * Case 1: the batch buffer
  2478. *
  2479. * 1. Allocated
  2480. * 2. Written by CPU
  2481. * 3. Mapped to GTT
  2482. * 4. Read by GPU
  2483. * 5. Unmapped from GTT
  2484. * 6. Freed
  2485. *
  2486. * Let's take these a step at a time
  2487. *
  2488. * 1. Allocated
  2489. * Pages allocated from the kernel may still have
  2490. * cache contents, so we set them to (CPU, CPU) always.
  2491. * 2. Written by CPU (using pwrite)
  2492. * The pwrite function calls set_domain (CPU, CPU) and
  2493. * this function does nothing (as nothing changes)
  2494. * 3. Mapped by GTT
  2495. * This function asserts that the object is not
  2496. * currently in any GPU-based read or write domains
  2497. * 4. Read by GPU
  2498. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2499. * As write_domain is zero, this function adds in the
  2500. * current read domains (CPU+COMMAND, 0).
  2501. * flush_domains is set to CPU.
  2502. * invalidate_domains is set to COMMAND
  2503. * clflush is run to get data out of the CPU caches
  2504. * then i915_dev_set_domain calls i915_gem_flush to
  2505. * emit an MI_FLUSH and drm_agp_chipset_flush
  2506. * 5. Unmapped from GTT
  2507. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2508. * flush_domains and invalidate_domains end up both zero
  2509. * so no flushing/invalidating happens
  2510. * 6. Freed
  2511. * yay, done
  2512. *
  2513. * Case 2: The shared render buffer
  2514. *
  2515. * 1. Allocated
  2516. * 2. Mapped to GTT
  2517. * 3. Read/written by GPU
  2518. * 4. set_domain to (CPU,CPU)
  2519. * 5. Read/written by CPU
  2520. * 6. Read/written by GPU
  2521. *
  2522. * 1. Allocated
  2523. * Same as last example, (CPU, CPU)
  2524. * 2. Mapped to GTT
  2525. * Nothing changes (assertions find that it is not in the GPU)
  2526. * 3. Read/written by GPU
  2527. * execbuffer calls set_domain (RENDER, RENDER)
  2528. * flush_domains gets CPU
  2529. * invalidate_domains gets GPU
  2530. * clflush (obj)
  2531. * MI_FLUSH and drm_agp_chipset_flush
  2532. * 4. set_domain (CPU, CPU)
  2533. * flush_domains gets GPU
  2534. * invalidate_domains gets CPU
  2535. * wait_rendering (obj) to make sure all drawing is complete.
  2536. * This will include an MI_FLUSH to get the data from GPU
  2537. * to memory
  2538. * clflush (obj) to invalidate the CPU cache
  2539. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2540. * 5. Read/written by CPU
  2541. * cache lines are loaded and dirtied
  2542. * 6. Read written by GPU
  2543. * Same as last GPU access
  2544. *
  2545. * Case 3: The constant buffer
  2546. *
  2547. * 1. Allocated
  2548. * 2. Written by CPU
  2549. * 3. Read by GPU
  2550. * 4. Updated (written) by CPU again
  2551. * 5. Read by GPU
  2552. *
  2553. * 1. Allocated
  2554. * (CPU, CPU)
  2555. * 2. Written by CPU
  2556. * (CPU, CPU)
  2557. * 3. Read by GPU
  2558. * (CPU+RENDER, 0)
  2559. * flush_domains = CPU
  2560. * invalidate_domains = RENDER
  2561. * clflush (obj)
  2562. * MI_FLUSH
  2563. * drm_agp_chipset_flush
  2564. * 4. Updated (written) by CPU again
  2565. * (CPU, CPU)
  2566. * flush_domains = 0 (no previous write domain)
  2567. * invalidate_domains = 0 (no new read domains)
  2568. * 5. Read by GPU
  2569. * (CPU+RENDER, 0)
  2570. * flush_domains = CPU
  2571. * invalidate_domains = RENDER
  2572. * clflush (obj)
  2573. * MI_FLUSH
  2574. * drm_agp_chipset_flush
  2575. */
  2576. static void
  2577. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2578. {
  2579. struct drm_device *dev = obj->dev;
  2580. struct drm_i915_private *dev_priv = dev->dev_private;
  2581. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2582. uint32_t invalidate_domains = 0;
  2583. uint32_t flush_domains = 0;
  2584. uint32_t old_read_domains;
  2585. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2586. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2587. intel_mark_busy(dev, obj);
  2588. #if WATCH_BUF
  2589. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2590. __func__, obj,
  2591. obj->read_domains, obj->pending_read_domains,
  2592. obj->write_domain, obj->pending_write_domain);
  2593. #endif
  2594. /*
  2595. * If the object isn't moving to a new write domain,
  2596. * let the object stay in multiple read domains
  2597. */
  2598. if (obj->pending_write_domain == 0)
  2599. obj->pending_read_domains |= obj->read_domains;
  2600. else
  2601. obj_priv->dirty = 1;
  2602. /*
  2603. * Flush the current write domain if
  2604. * the new read domains don't match. Invalidate
  2605. * any read domains which differ from the old
  2606. * write domain
  2607. */
  2608. if (obj->write_domain &&
  2609. obj->write_domain != obj->pending_read_domains) {
  2610. flush_domains |= obj->write_domain;
  2611. invalidate_domains |=
  2612. obj->pending_read_domains & ~obj->write_domain;
  2613. }
  2614. /*
  2615. * Invalidate any read caches which may have
  2616. * stale data. That is, any new read domains.
  2617. */
  2618. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2619. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2620. #if WATCH_BUF
  2621. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2622. __func__, flush_domains, invalidate_domains);
  2623. #endif
  2624. i915_gem_clflush_object(obj);
  2625. }
  2626. old_read_domains = obj->read_domains;
  2627. /* The actual obj->write_domain will be updated with
  2628. * pending_write_domain after we emit the accumulated flush for all
  2629. * of our domain changes in execbuffers (which clears objects'
  2630. * write_domains). So if we have a current write domain that we
  2631. * aren't changing, set pending_write_domain to that.
  2632. */
  2633. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2634. obj->pending_write_domain = obj->write_domain;
  2635. obj->read_domains = obj->pending_read_domains;
  2636. dev->invalidate_domains |= invalidate_domains;
  2637. dev->flush_domains |= flush_domains;
  2638. if (obj_priv->ring)
  2639. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2640. #if WATCH_BUF
  2641. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2642. __func__,
  2643. obj->read_domains, obj->write_domain,
  2644. dev->invalidate_domains, dev->flush_domains);
  2645. #endif
  2646. trace_i915_gem_object_change_domain(obj,
  2647. old_read_domains,
  2648. obj->write_domain);
  2649. }
  2650. /**
  2651. * Moves the object from a partially CPU read to a full one.
  2652. *
  2653. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2654. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2655. */
  2656. static void
  2657. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2658. {
  2659. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2660. if (!obj_priv->page_cpu_valid)
  2661. return;
  2662. /* If we're partially in the CPU read domain, finish moving it in.
  2663. */
  2664. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2665. int i;
  2666. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2667. if (obj_priv->page_cpu_valid[i])
  2668. continue;
  2669. drm_clflush_pages(obj_priv->pages + i, 1);
  2670. }
  2671. }
  2672. /* Free the page_cpu_valid mappings which are now stale, whether
  2673. * or not we've got I915_GEM_DOMAIN_CPU.
  2674. */
  2675. kfree(obj_priv->page_cpu_valid);
  2676. obj_priv->page_cpu_valid = NULL;
  2677. }
  2678. /**
  2679. * Set the CPU read domain on a range of the object.
  2680. *
  2681. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2682. * not entirely valid. The page_cpu_valid member of the object flags which
  2683. * pages have been flushed, and will be respected by
  2684. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2685. * of the whole object.
  2686. *
  2687. * This function returns when the move is complete, including waiting on
  2688. * flushes to occur.
  2689. */
  2690. static int
  2691. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2692. uint64_t offset, uint64_t size)
  2693. {
  2694. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2695. uint32_t old_read_domains;
  2696. int i, ret;
  2697. if (offset == 0 && size == obj->size)
  2698. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2699. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2700. if (ret != 0)
  2701. return ret;
  2702. i915_gem_object_flush_gtt_write_domain(obj);
  2703. /* If we're already fully in the CPU read domain, we're done. */
  2704. if (obj_priv->page_cpu_valid == NULL &&
  2705. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2706. return 0;
  2707. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2708. * newly adding I915_GEM_DOMAIN_CPU
  2709. */
  2710. if (obj_priv->page_cpu_valid == NULL) {
  2711. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2712. GFP_KERNEL);
  2713. if (obj_priv->page_cpu_valid == NULL)
  2714. return -ENOMEM;
  2715. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2716. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2717. /* Flush the cache on any pages that are still invalid from the CPU's
  2718. * perspective.
  2719. */
  2720. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2721. i++) {
  2722. if (obj_priv->page_cpu_valid[i])
  2723. continue;
  2724. drm_clflush_pages(obj_priv->pages + i, 1);
  2725. obj_priv->page_cpu_valid[i] = 1;
  2726. }
  2727. /* It should now be out of any other write domains, and we can update
  2728. * the domain values for our changes.
  2729. */
  2730. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2731. old_read_domains = obj->read_domains;
  2732. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2733. trace_i915_gem_object_change_domain(obj,
  2734. old_read_domains,
  2735. obj->write_domain);
  2736. return 0;
  2737. }
  2738. /**
  2739. * Pin an object to the GTT and evaluate the relocations landing in it.
  2740. */
  2741. static int
  2742. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2743. struct drm_file *file_priv,
  2744. struct drm_i915_gem_exec_object2 *entry,
  2745. struct drm_i915_gem_relocation_entry *relocs)
  2746. {
  2747. struct drm_device *dev = obj->dev;
  2748. drm_i915_private_t *dev_priv = dev->dev_private;
  2749. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2750. int i, ret;
  2751. void __iomem *reloc_page;
  2752. bool need_fence;
  2753. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2754. obj_priv->tiling_mode != I915_TILING_NONE;
  2755. /* Check fence reg constraints and rebind if necessary */
  2756. if (need_fence &&
  2757. !i915_gem_object_fence_offset_ok(obj,
  2758. obj_priv->tiling_mode)) {
  2759. ret = i915_gem_object_unbind(obj);
  2760. if (ret)
  2761. return ret;
  2762. }
  2763. /* Choose the GTT offset for our buffer and put it there. */
  2764. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2765. if (ret)
  2766. return ret;
  2767. /*
  2768. * Pre-965 chips need a fence register set up in order to
  2769. * properly handle blits to/from tiled surfaces.
  2770. */
  2771. if (need_fence) {
  2772. ret = i915_gem_object_get_fence_reg(obj, true);
  2773. if (ret != 0) {
  2774. i915_gem_object_unpin(obj);
  2775. return ret;
  2776. }
  2777. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2778. }
  2779. entry->offset = obj_priv->gtt_offset;
  2780. /* Apply the relocations, using the GTT aperture to avoid cache
  2781. * flushing requirements.
  2782. */
  2783. for (i = 0; i < entry->relocation_count; i++) {
  2784. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2785. struct drm_gem_object *target_obj;
  2786. struct drm_i915_gem_object *target_obj_priv;
  2787. uint32_t reloc_val, reloc_offset;
  2788. uint32_t __iomem *reloc_entry;
  2789. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2790. reloc->target_handle);
  2791. if (target_obj == NULL) {
  2792. i915_gem_object_unpin(obj);
  2793. return -ENOENT;
  2794. }
  2795. target_obj_priv = to_intel_bo(target_obj);
  2796. #if WATCH_RELOC
  2797. DRM_INFO("%s: obj %p offset %08x target %d "
  2798. "read %08x write %08x gtt %08x "
  2799. "presumed %08x delta %08x\n",
  2800. __func__,
  2801. obj,
  2802. (int) reloc->offset,
  2803. (int) reloc->target_handle,
  2804. (int) reloc->read_domains,
  2805. (int) reloc->write_domain,
  2806. (int) target_obj_priv->gtt_offset,
  2807. (int) reloc->presumed_offset,
  2808. reloc->delta);
  2809. #endif
  2810. /* The target buffer should have appeared before us in the
  2811. * exec_object list, so it should have a GTT space bound by now.
  2812. */
  2813. if (target_obj_priv->gtt_space == NULL) {
  2814. DRM_ERROR("No GTT space found for object %d\n",
  2815. reloc->target_handle);
  2816. drm_gem_object_unreference(target_obj);
  2817. i915_gem_object_unpin(obj);
  2818. return -EINVAL;
  2819. }
  2820. /* Validate that the target is in a valid r/w GPU domain */
  2821. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2822. DRM_ERROR("reloc with multiple write domains: "
  2823. "obj %p target %d offset %d "
  2824. "read %08x write %08x",
  2825. obj, reloc->target_handle,
  2826. (int) reloc->offset,
  2827. reloc->read_domains,
  2828. reloc->write_domain);
  2829. return -EINVAL;
  2830. }
  2831. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2832. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2833. DRM_ERROR("reloc with read/write CPU domains: "
  2834. "obj %p target %d offset %d "
  2835. "read %08x write %08x",
  2836. obj, reloc->target_handle,
  2837. (int) reloc->offset,
  2838. reloc->read_domains,
  2839. reloc->write_domain);
  2840. drm_gem_object_unreference(target_obj);
  2841. i915_gem_object_unpin(obj);
  2842. return -EINVAL;
  2843. }
  2844. if (reloc->write_domain && target_obj->pending_write_domain &&
  2845. reloc->write_domain != target_obj->pending_write_domain) {
  2846. DRM_ERROR("Write domain conflict: "
  2847. "obj %p target %d offset %d "
  2848. "new %08x old %08x\n",
  2849. obj, reloc->target_handle,
  2850. (int) reloc->offset,
  2851. reloc->write_domain,
  2852. target_obj->pending_write_domain);
  2853. drm_gem_object_unreference(target_obj);
  2854. i915_gem_object_unpin(obj);
  2855. return -EINVAL;
  2856. }
  2857. target_obj->pending_read_domains |= reloc->read_domains;
  2858. target_obj->pending_write_domain |= reloc->write_domain;
  2859. /* If the relocation already has the right value in it, no
  2860. * more work needs to be done.
  2861. */
  2862. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2863. drm_gem_object_unreference(target_obj);
  2864. continue;
  2865. }
  2866. /* Check that the relocation address is valid... */
  2867. if (reloc->offset > obj->size - 4) {
  2868. DRM_ERROR("Relocation beyond object bounds: "
  2869. "obj %p target %d offset %d size %d.\n",
  2870. obj, reloc->target_handle,
  2871. (int) reloc->offset, (int) obj->size);
  2872. drm_gem_object_unreference(target_obj);
  2873. i915_gem_object_unpin(obj);
  2874. return -EINVAL;
  2875. }
  2876. if (reloc->offset & 3) {
  2877. DRM_ERROR("Relocation not 4-byte aligned: "
  2878. "obj %p target %d offset %d.\n",
  2879. obj, reloc->target_handle,
  2880. (int) reloc->offset);
  2881. drm_gem_object_unreference(target_obj);
  2882. i915_gem_object_unpin(obj);
  2883. return -EINVAL;
  2884. }
  2885. /* and points to somewhere within the target object. */
  2886. if (reloc->delta >= target_obj->size) {
  2887. DRM_ERROR("Relocation beyond target object bounds: "
  2888. "obj %p target %d delta %d size %d.\n",
  2889. obj, reloc->target_handle,
  2890. (int) reloc->delta, (int) target_obj->size);
  2891. drm_gem_object_unreference(target_obj);
  2892. i915_gem_object_unpin(obj);
  2893. return -EINVAL;
  2894. }
  2895. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2896. if (ret != 0) {
  2897. drm_gem_object_unreference(target_obj);
  2898. i915_gem_object_unpin(obj);
  2899. return -EINVAL;
  2900. }
  2901. /* Map the page containing the relocation we're going to
  2902. * perform.
  2903. */
  2904. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2905. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2906. (reloc_offset &
  2907. ~(PAGE_SIZE - 1)),
  2908. KM_USER0);
  2909. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2910. (reloc_offset & (PAGE_SIZE - 1)));
  2911. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2912. #if WATCH_BUF
  2913. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2914. obj, (unsigned int) reloc->offset,
  2915. readl(reloc_entry), reloc_val);
  2916. #endif
  2917. writel(reloc_val, reloc_entry);
  2918. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2919. /* The updated presumed offset for this entry will be
  2920. * copied back out to the user.
  2921. */
  2922. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2923. drm_gem_object_unreference(target_obj);
  2924. }
  2925. #if WATCH_BUF
  2926. if (0)
  2927. i915_gem_dump_object(obj, 128, __func__, ~0);
  2928. #endif
  2929. return 0;
  2930. }
  2931. /* Throttle our rendering by waiting until the ring has completed our requests
  2932. * emitted over 20 msec ago.
  2933. *
  2934. * Note that if we were to use the current jiffies each time around the loop,
  2935. * we wouldn't escape the function with any frames outstanding if the time to
  2936. * render a frame was over 20ms.
  2937. *
  2938. * This should get us reasonable parallelism between CPU and GPU but also
  2939. * relatively low latency when blocking on a particular request to finish.
  2940. */
  2941. static int
  2942. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2943. {
  2944. struct drm_i915_private *dev_priv = dev->dev_private;
  2945. struct drm_i915_file_private *file_priv = file->driver_priv;
  2946. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2947. struct drm_i915_gem_request *request;
  2948. struct intel_ring_buffer *ring = NULL;
  2949. u32 seqno = 0;
  2950. int ret;
  2951. spin_lock(&file_priv->mm.lock);
  2952. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2953. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2954. break;
  2955. ring = request->ring;
  2956. seqno = request->seqno;
  2957. }
  2958. spin_unlock(&file_priv->mm.lock);
  2959. if (seqno == 0)
  2960. return 0;
  2961. ret = 0;
  2962. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2963. /* And wait for the seqno passing without holding any locks and
  2964. * causing extra latency for others. This is safe as the irq
  2965. * generation is designed to be run atomically and so is
  2966. * lockless.
  2967. */
  2968. ring->user_irq_get(dev, ring);
  2969. ret = wait_event_interruptible(ring->irq_queue,
  2970. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  2971. || atomic_read(&dev_priv->mm.wedged));
  2972. ring->user_irq_put(dev, ring);
  2973. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2974. ret = -EIO;
  2975. }
  2976. if (ret == 0)
  2977. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2978. return ret;
  2979. }
  2980. static int
  2981. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2982. uint32_t buffer_count,
  2983. struct drm_i915_gem_relocation_entry **relocs)
  2984. {
  2985. uint32_t reloc_count = 0, reloc_index = 0, i;
  2986. int ret;
  2987. *relocs = NULL;
  2988. for (i = 0; i < buffer_count; i++) {
  2989. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2990. return -EINVAL;
  2991. reloc_count += exec_list[i].relocation_count;
  2992. }
  2993. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2994. if (*relocs == NULL) {
  2995. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2996. return -ENOMEM;
  2997. }
  2998. for (i = 0; i < buffer_count; i++) {
  2999. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3000. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3001. ret = copy_from_user(&(*relocs)[reloc_index],
  3002. user_relocs,
  3003. exec_list[i].relocation_count *
  3004. sizeof(**relocs));
  3005. if (ret != 0) {
  3006. drm_free_large(*relocs);
  3007. *relocs = NULL;
  3008. return -EFAULT;
  3009. }
  3010. reloc_index += exec_list[i].relocation_count;
  3011. }
  3012. return 0;
  3013. }
  3014. static int
  3015. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3016. uint32_t buffer_count,
  3017. struct drm_i915_gem_relocation_entry *relocs)
  3018. {
  3019. uint32_t reloc_count = 0, i;
  3020. int ret = 0;
  3021. if (relocs == NULL)
  3022. return 0;
  3023. for (i = 0; i < buffer_count; i++) {
  3024. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3025. int unwritten;
  3026. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3027. unwritten = copy_to_user(user_relocs,
  3028. &relocs[reloc_count],
  3029. exec_list[i].relocation_count *
  3030. sizeof(*relocs));
  3031. if (unwritten) {
  3032. ret = -EFAULT;
  3033. goto err;
  3034. }
  3035. reloc_count += exec_list[i].relocation_count;
  3036. }
  3037. err:
  3038. drm_free_large(relocs);
  3039. return ret;
  3040. }
  3041. static int
  3042. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3043. uint64_t exec_offset)
  3044. {
  3045. uint32_t exec_start, exec_len;
  3046. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3047. exec_len = (uint32_t) exec->batch_len;
  3048. if ((exec_start | exec_len) & 0x7)
  3049. return -EINVAL;
  3050. if (!exec_start)
  3051. return -EINVAL;
  3052. return 0;
  3053. }
  3054. static int
  3055. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3056. struct drm_gem_object **object_list,
  3057. int count)
  3058. {
  3059. drm_i915_private_t *dev_priv = dev->dev_private;
  3060. struct drm_i915_gem_object *obj_priv;
  3061. DEFINE_WAIT(wait);
  3062. int i, ret = 0;
  3063. for (;;) {
  3064. prepare_to_wait(&dev_priv->pending_flip_queue,
  3065. &wait, TASK_INTERRUPTIBLE);
  3066. for (i = 0; i < count; i++) {
  3067. obj_priv = to_intel_bo(object_list[i]);
  3068. if (atomic_read(&obj_priv->pending_flip) > 0)
  3069. break;
  3070. }
  3071. if (i == count)
  3072. break;
  3073. if (!signal_pending(current)) {
  3074. mutex_unlock(&dev->struct_mutex);
  3075. schedule();
  3076. mutex_lock(&dev->struct_mutex);
  3077. continue;
  3078. }
  3079. ret = -ERESTARTSYS;
  3080. break;
  3081. }
  3082. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3083. return ret;
  3084. }
  3085. static int
  3086. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3087. struct drm_file *file_priv,
  3088. struct drm_i915_gem_execbuffer2 *args,
  3089. struct drm_i915_gem_exec_object2 *exec_list)
  3090. {
  3091. drm_i915_private_t *dev_priv = dev->dev_private;
  3092. struct drm_gem_object **object_list = NULL;
  3093. struct drm_gem_object *batch_obj;
  3094. struct drm_i915_gem_object *obj_priv;
  3095. struct drm_clip_rect *cliprects = NULL;
  3096. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3097. struct drm_i915_gem_request *request = NULL;
  3098. int ret, ret2, i, pinned = 0;
  3099. uint64_t exec_offset;
  3100. uint32_t reloc_index;
  3101. int pin_tries, flips;
  3102. struct intel_ring_buffer *ring = NULL;
  3103. ret = i915_gem_check_is_wedged(dev);
  3104. if (ret)
  3105. return ret;
  3106. #if WATCH_EXEC
  3107. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3108. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3109. #endif
  3110. if (args->flags & I915_EXEC_BSD) {
  3111. if (!HAS_BSD(dev)) {
  3112. DRM_ERROR("execbuf with wrong flag\n");
  3113. return -EINVAL;
  3114. }
  3115. ring = &dev_priv->bsd_ring;
  3116. } else {
  3117. ring = &dev_priv->render_ring;
  3118. }
  3119. if (args->buffer_count < 1) {
  3120. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3121. return -EINVAL;
  3122. }
  3123. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3124. if (object_list == NULL) {
  3125. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3126. args->buffer_count);
  3127. ret = -ENOMEM;
  3128. goto pre_mutex_err;
  3129. }
  3130. if (args->num_cliprects != 0) {
  3131. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3132. GFP_KERNEL);
  3133. if (cliprects == NULL) {
  3134. ret = -ENOMEM;
  3135. goto pre_mutex_err;
  3136. }
  3137. ret = copy_from_user(cliprects,
  3138. (struct drm_clip_rect __user *)
  3139. (uintptr_t) args->cliprects_ptr,
  3140. sizeof(*cliprects) * args->num_cliprects);
  3141. if (ret != 0) {
  3142. DRM_ERROR("copy %d cliprects failed: %d\n",
  3143. args->num_cliprects, ret);
  3144. ret = -EFAULT;
  3145. goto pre_mutex_err;
  3146. }
  3147. }
  3148. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3149. if (request == NULL) {
  3150. ret = -ENOMEM;
  3151. goto pre_mutex_err;
  3152. }
  3153. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3154. &relocs);
  3155. if (ret != 0)
  3156. goto pre_mutex_err;
  3157. ret = i915_mutex_lock_interruptible(dev);
  3158. if (ret)
  3159. goto pre_mutex_err;
  3160. i915_verify_inactive(dev, __FILE__, __LINE__);
  3161. if (dev_priv->mm.suspended) {
  3162. mutex_unlock(&dev->struct_mutex);
  3163. ret = -EBUSY;
  3164. goto pre_mutex_err;
  3165. }
  3166. /* Look up object handles */
  3167. flips = 0;
  3168. for (i = 0; i < args->buffer_count; i++) {
  3169. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3170. exec_list[i].handle);
  3171. if (object_list[i] == NULL) {
  3172. DRM_ERROR("Invalid object handle %d at index %d\n",
  3173. exec_list[i].handle, i);
  3174. /* prevent error path from reading uninitialized data */
  3175. args->buffer_count = i + 1;
  3176. ret = -ENOENT;
  3177. goto err;
  3178. }
  3179. obj_priv = to_intel_bo(object_list[i]);
  3180. if (obj_priv->in_execbuffer) {
  3181. DRM_ERROR("Object %p appears more than once in object list\n",
  3182. object_list[i]);
  3183. /* prevent error path from reading uninitialized data */
  3184. args->buffer_count = i + 1;
  3185. ret = -EINVAL;
  3186. goto err;
  3187. }
  3188. obj_priv->in_execbuffer = true;
  3189. flips += atomic_read(&obj_priv->pending_flip);
  3190. }
  3191. if (flips > 0) {
  3192. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3193. args->buffer_count);
  3194. if (ret)
  3195. goto err;
  3196. }
  3197. /* Pin and relocate */
  3198. for (pin_tries = 0; ; pin_tries++) {
  3199. ret = 0;
  3200. reloc_index = 0;
  3201. for (i = 0; i < args->buffer_count; i++) {
  3202. object_list[i]->pending_read_domains = 0;
  3203. object_list[i]->pending_write_domain = 0;
  3204. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3205. file_priv,
  3206. &exec_list[i],
  3207. &relocs[reloc_index]);
  3208. if (ret)
  3209. break;
  3210. pinned = i + 1;
  3211. reloc_index += exec_list[i].relocation_count;
  3212. }
  3213. /* success */
  3214. if (ret == 0)
  3215. break;
  3216. /* error other than GTT full, or we've already tried again */
  3217. if (ret != -ENOSPC || pin_tries >= 1) {
  3218. if (ret != -ERESTARTSYS) {
  3219. unsigned long long total_size = 0;
  3220. int num_fences = 0;
  3221. for (i = 0; i < args->buffer_count; i++) {
  3222. obj_priv = to_intel_bo(object_list[i]);
  3223. total_size += object_list[i]->size;
  3224. num_fences +=
  3225. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3226. obj_priv->tiling_mode != I915_TILING_NONE;
  3227. }
  3228. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3229. pinned+1, args->buffer_count,
  3230. total_size, num_fences,
  3231. ret);
  3232. DRM_ERROR("%d objects [%d pinned], "
  3233. "%d object bytes [%d pinned], "
  3234. "%d/%d gtt bytes\n",
  3235. atomic_read(&dev->object_count),
  3236. atomic_read(&dev->pin_count),
  3237. atomic_read(&dev->object_memory),
  3238. atomic_read(&dev->pin_memory),
  3239. atomic_read(&dev->gtt_memory),
  3240. dev->gtt_total);
  3241. }
  3242. goto err;
  3243. }
  3244. /* unpin all of our buffers */
  3245. for (i = 0; i < pinned; i++)
  3246. i915_gem_object_unpin(object_list[i]);
  3247. pinned = 0;
  3248. /* evict everyone we can from the aperture */
  3249. ret = i915_gem_evict_everything(dev);
  3250. if (ret && ret != -ENOSPC)
  3251. goto err;
  3252. }
  3253. /* Set the pending read domains for the batch buffer to COMMAND */
  3254. batch_obj = object_list[args->buffer_count-1];
  3255. if (batch_obj->pending_write_domain) {
  3256. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3257. ret = -EINVAL;
  3258. goto err;
  3259. }
  3260. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3261. /* Sanity check the batch buffer, prior to moving objects */
  3262. exec_offset = exec_list[args->buffer_count - 1].offset;
  3263. ret = i915_gem_check_execbuffer (args, exec_offset);
  3264. if (ret != 0) {
  3265. DRM_ERROR("execbuf with invalid offset/length\n");
  3266. goto err;
  3267. }
  3268. i915_verify_inactive(dev, __FILE__, __LINE__);
  3269. /* Zero the global flush/invalidate flags. These
  3270. * will be modified as new domains are computed
  3271. * for each object
  3272. */
  3273. dev->invalidate_domains = 0;
  3274. dev->flush_domains = 0;
  3275. dev_priv->mm.flush_rings = 0;
  3276. for (i = 0; i < args->buffer_count; i++) {
  3277. struct drm_gem_object *obj = object_list[i];
  3278. /* Compute new gpu domains and update invalidate/flush */
  3279. i915_gem_object_set_to_gpu_domain(obj);
  3280. }
  3281. i915_verify_inactive(dev, __FILE__, __LINE__);
  3282. if (dev->invalidate_domains | dev->flush_domains) {
  3283. #if WATCH_EXEC
  3284. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3285. __func__,
  3286. dev->invalidate_domains,
  3287. dev->flush_domains);
  3288. #endif
  3289. i915_gem_flush(dev, file_priv,
  3290. dev->invalidate_domains,
  3291. dev->flush_domains,
  3292. dev_priv->mm.flush_rings);
  3293. }
  3294. for (i = 0; i < args->buffer_count; i++) {
  3295. struct drm_gem_object *obj = object_list[i];
  3296. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3297. uint32_t old_write_domain = obj->write_domain;
  3298. obj->write_domain = obj->pending_write_domain;
  3299. if (obj->write_domain)
  3300. list_move_tail(&obj_priv->gpu_write_list,
  3301. &dev_priv->mm.gpu_write_list);
  3302. else
  3303. list_del_init(&obj_priv->gpu_write_list);
  3304. trace_i915_gem_object_change_domain(obj,
  3305. obj->read_domains,
  3306. old_write_domain);
  3307. }
  3308. i915_verify_inactive(dev, __FILE__, __LINE__);
  3309. #if WATCH_COHERENCY
  3310. for (i = 0; i < args->buffer_count; i++) {
  3311. i915_gem_object_check_coherency(object_list[i],
  3312. exec_list[i].handle);
  3313. }
  3314. #endif
  3315. #if WATCH_EXEC
  3316. i915_gem_dump_object(batch_obj,
  3317. args->batch_len,
  3318. __func__,
  3319. ~0);
  3320. #endif
  3321. /* Exec the batchbuffer */
  3322. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3323. cliprects, exec_offset);
  3324. if (ret) {
  3325. DRM_ERROR("dispatch failed %d\n", ret);
  3326. goto err;
  3327. }
  3328. /*
  3329. * Ensure that the commands in the batch buffer are
  3330. * finished before the interrupt fires
  3331. */
  3332. i915_retire_commands(dev, ring);
  3333. i915_verify_inactive(dev, __FILE__, __LINE__);
  3334. for (i = 0; i < args->buffer_count; i++) {
  3335. struct drm_gem_object *obj = object_list[i];
  3336. obj_priv = to_intel_bo(obj);
  3337. i915_gem_object_move_to_active(obj, ring);
  3338. #if WATCH_LRU
  3339. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3340. #endif
  3341. }
  3342. i915_add_request(dev, file_priv, request, ring);
  3343. request = NULL;
  3344. #if WATCH_LRU
  3345. i915_dump_lru(dev, __func__);
  3346. #endif
  3347. i915_verify_inactive(dev, __FILE__, __LINE__);
  3348. err:
  3349. for (i = 0; i < pinned; i++)
  3350. i915_gem_object_unpin(object_list[i]);
  3351. for (i = 0; i < args->buffer_count; i++) {
  3352. if (object_list[i]) {
  3353. obj_priv = to_intel_bo(object_list[i]);
  3354. obj_priv->in_execbuffer = false;
  3355. }
  3356. drm_gem_object_unreference(object_list[i]);
  3357. }
  3358. mutex_unlock(&dev->struct_mutex);
  3359. pre_mutex_err:
  3360. /* Copy the updated relocations out regardless of current error
  3361. * state. Failure to update the relocs would mean that the next
  3362. * time userland calls execbuf, it would do so with presumed offset
  3363. * state that didn't match the actual object state.
  3364. */
  3365. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3366. relocs);
  3367. if (ret2 != 0) {
  3368. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3369. if (ret == 0)
  3370. ret = ret2;
  3371. }
  3372. drm_free_large(object_list);
  3373. kfree(cliprects);
  3374. kfree(request);
  3375. return ret;
  3376. }
  3377. /*
  3378. * Legacy execbuffer just creates an exec2 list from the original exec object
  3379. * list array and passes it to the real function.
  3380. */
  3381. int
  3382. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3383. struct drm_file *file_priv)
  3384. {
  3385. struct drm_i915_gem_execbuffer *args = data;
  3386. struct drm_i915_gem_execbuffer2 exec2;
  3387. struct drm_i915_gem_exec_object *exec_list = NULL;
  3388. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3389. int ret, i;
  3390. #if WATCH_EXEC
  3391. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3392. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3393. #endif
  3394. if (args->buffer_count < 1) {
  3395. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3396. return -EINVAL;
  3397. }
  3398. /* Copy in the exec list from userland */
  3399. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3400. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3401. if (exec_list == NULL || exec2_list == NULL) {
  3402. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3403. args->buffer_count);
  3404. drm_free_large(exec_list);
  3405. drm_free_large(exec2_list);
  3406. return -ENOMEM;
  3407. }
  3408. ret = copy_from_user(exec_list,
  3409. (struct drm_i915_relocation_entry __user *)
  3410. (uintptr_t) args->buffers_ptr,
  3411. sizeof(*exec_list) * args->buffer_count);
  3412. if (ret != 0) {
  3413. DRM_ERROR("copy %d exec entries failed %d\n",
  3414. args->buffer_count, ret);
  3415. drm_free_large(exec_list);
  3416. drm_free_large(exec2_list);
  3417. return -EFAULT;
  3418. }
  3419. for (i = 0; i < args->buffer_count; i++) {
  3420. exec2_list[i].handle = exec_list[i].handle;
  3421. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3422. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3423. exec2_list[i].alignment = exec_list[i].alignment;
  3424. exec2_list[i].offset = exec_list[i].offset;
  3425. if (INTEL_INFO(dev)->gen < 4)
  3426. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3427. else
  3428. exec2_list[i].flags = 0;
  3429. }
  3430. exec2.buffers_ptr = args->buffers_ptr;
  3431. exec2.buffer_count = args->buffer_count;
  3432. exec2.batch_start_offset = args->batch_start_offset;
  3433. exec2.batch_len = args->batch_len;
  3434. exec2.DR1 = args->DR1;
  3435. exec2.DR4 = args->DR4;
  3436. exec2.num_cliprects = args->num_cliprects;
  3437. exec2.cliprects_ptr = args->cliprects_ptr;
  3438. exec2.flags = I915_EXEC_RENDER;
  3439. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3440. if (!ret) {
  3441. /* Copy the new buffer offsets back to the user's exec list. */
  3442. for (i = 0; i < args->buffer_count; i++)
  3443. exec_list[i].offset = exec2_list[i].offset;
  3444. /* ... and back out to userspace */
  3445. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3446. (uintptr_t) args->buffers_ptr,
  3447. exec_list,
  3448. sizeof(*exec_list) * args->buffer_count);
  3449. if (ret) {
  3450. ret = -EFAULT;
  3451. DRM_ERROR("failed to copy %d exec entries "
  3452. "back to user (%d)\n",
  3453. args->buffer_count, ret);
  3454. }
  3455. }
  3456. drm_free_large(exec_list);
  3457. drm_free_large(exec2_list);
  3458. return ret;
  3459. }
  3460. int
  3461. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3462. struct drm_file *file_priv)
  3463. {
  3464. struct drm_i915_gem_execbuffer2 *args = data;
  3465. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3466. int ret;
  3467. #if WATCH_EXEC
  3468. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3469. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3470. #endif
  3471. if (args->buffer_count < 1) {
  3472. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3473. return -EINVAL;
  3474. }
  3475. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3476. if (exec2_list == NULL) {
  3477. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3478. args->buffer_count);
  3479. return -ENOMEM;
  3480. }
  3481. ret = copy_from_user(exec2_list,
  3482. (struct drm_i915_relocation_entry __user *)
  3483. (uintptr_t) args->buffers_ptr,
  3484. sizeof(*exec2_list) * args->buffer_count);
  3485. if (ret != 0) {
  3486. DRM_ERROR("copy %d exec entries failed %d\n",
  3487. args->buffer_count, ret);
  3488. drm_free_large(exec2_list);
  3489. return -EFAULT;
  3490. }
  3491. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3492. if (!ret) {
  3493. /* Copy the new buffer offsets back to the user's exec list. */
  3494. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3495. (uintptr_t) args->buffers_ptr,
  3496. exec2_list,
  3497. sizeof(*exec2_list) * args->buffer_count);
  3498. if (ret) {
  3499. ret = -EFAULT;
  3500. DRM_ERROR("failed to copy %d exec entries "
  3501. "back to user (%d)\n",
  3502. args->buffer_count, ret);
  3503. }
  3504. }
  3505. drm_free_large(exec2_list);
  3506. return ret;
  3507. }
  3508. int
  3509. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3510. {
  3511. struct drm_device *dev = obj->dev;
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3514. int ret;
  3515. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3516. i915_verify_inactive(dev, __FILE__, __LINE__);
  3517. if (obj_priv->gtt_space != NULL) {
  3518. if (alignment == 0)
  3519. alignment = i915_gem_get_gtt_alignment(obj);
  3520. if (obj_priv->gtt_offset & (alignment - 1)) {
  3521. WARN(obj_priv->pin_count,
  3522. "bo is already pinned with incorrect alignment:"
  3523. " offset=%x, req.alignment=%x\n",
  3524. obj_priv->gtt_offset, alignment);
  3525. ret = i915_gem_object_unbind(obj);
  3526. if (ret)
  3527. return ret;
  3528. }
  3529. }
  3530. if (obj_priv->gtt_space == NULL) {
  3531. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3532. if (ret)
  3533. return ret;
  3534. }
  3535. obj_priv->pin_count++;
  3536. /* If the object is not active and not pending a flush,
  3537. * remove it from the inactive list
  3538. */
  3539. if (obj_priv->pin_count == 1) {
  3540. atomic_inc(&dev->pin_count);
  3541. atomic_add(obj->size, &dev->pin_memory);
  3542. if (!obj_priv->active)
  3543. list_move_tail(&obj_priv->list,
  3544. &dev_priv->mm.pinned_list);
  3545. }
  3546. i915_verify_inactive(dev, __FILE__, __LINE__);
  3547. return 0;
  3548. }
  3549. void
  3550. i915_gem_object_unpin(struct drm_gem_object *obj)
  3551. {
  3552. struct drm_device *dev = obj->dev;
  3553. drm_i915_private_t *dev_priv = dev->dev_private;
  3554. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3555. i915_verify_inactive(dev, __FILE__, __LINE__);
  3556. obj_priv->pin_count--;
  3557. BUG_ON(obj_priv->pin_count < 0);
  3558. BUG_ON(obj_priv->gtt_space == NULL);
  3559. /* If the object is no longer pinned, and is
  3560. * neither active nor being flushed, then stick it on
  3561. * the inactive list
  3562. */
  3563. if (obj_priv->pin_count == 0) {
  3564. if (!obj_priv->active)
  3565. list_move_tail(&obj_priv->list,
  3566. &dev_priv->mm.inactive_list);
  3567. atomic_dec(&dev->pin_count);
  3568. atomic_sub(obj->size, &dev->pin_memory);
  3569. }
  3570. i915_verify_inactive(dev, __FILE__, __LINE__);
  3571. }
  3572. int
  3573. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3574. struct drm_file *file_priv)
  3575. {
  3576. struct drm_i915_gem_pin *args = data;
  3577. struct drm_gem_object *obj;
  3578. struct drm_i915_gem_object *obj_priv;
  3579. int ret;
  3580. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3581. if (obj == NULL) {
  3582. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3583. args->handle);
  3584. return -ENOENT;
  3585. }
  3586. obj_priv = to_intel_bo(obj);
  3587. ret = i915_mutex_lock_interruptible(dev);
  3588. if (ret) {
  3589. drm_gem_object_unreference_unlocked(obj);
  3590. return ret;
  3591. }
  3592. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3593. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3594. drm_gem_object_unreference(obj);
  3595. mutex_unlock(&dev->struct_mutex);
  3596. return -EINVAL;
  3597. }
  3598. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3599. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3600. args->handle);
  3601. drm_gem_object_unreference(obj);
  3602. mutex_unlock(&dev->struct_mutex);
  3603. return -EINVAL;
  3604. }
  3605. obj_priv->user_pin_count++;
  3606. obj_priv->pin_filp = file_priv;
  3607. if (obj_priv->user_pin_count == 1) {
  3608. ret = i915_gem_object_pin(obj, args->alignment);
  3609. if (ret != 0) {
  3610. drm_gem_object_unreference(obj);
  3611. mutex_unlock(&dev->struct_mutex);
  3612. return ret;
  3613. }
  3614. }
  3615. /* XXX - flush the CPU caches for pinned objects
  3616. * as the X server doesn't manage domains yet
  3617. */
  3618. i915_gem_object_flush_cpu_write_domain(obj);
  3619. args->offset = obj_priv->gtt_offset;
  3620. drm_gem_object_unreference(obj);
  3621. mutex_unlock(&dev->struct_mutex);
  3622. return 0;
  3623. }
  3624. int
  3625. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3626. struct drm_file *file_priv)
  3627. {
  3628. struct drm_i915_gem_pin *args = data;
  3629. struct drm_gem_object *obj;
  3630. struct drm_i915_gem_object *obj_priv;
  3631. int ret;
  3632. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3633. if (obj == NULL) {
  3634. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3635. args->handle);
  3636. return -ENOENT;
  3637. }
  3638. obj_priv = to_intel_bo(obj);
  3639. ret = i915_mutex_lock_interruptible(dev);
  3640. if (ret) {
  3641. drm_gem_object_unreference_unlocked(obj);
  3642. return ret;
  3643. }
  3644. if (obj_priv->pin_filp != file_priv) {
  3645. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3646. args->handle);
  3647. drm_gem_object_unreference(obj);
  3648. mutex_unlock(&dev->struct_mutex);
  3649. return -EINVAL;
  3650. }
  3651. obj_priv->user_pin_count--;
  3652. if (obj_priv->user_pin_count == 0) {
  3653. obj_priv->pin_filp = NULL;
  3654. i915_gem_object_unpin(obj);
  3655. }
  3656. drm_gem_object_unreference(obj);
  3657. mutex_unlock(&dev->struct_mutex);
  3658. return 0;
  3659. }
  3660. int
  3661. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3662. struct drm_file *file_priv)
  3663. {
  3664. struct drm_i915_gem_busy *args = data;
  3665. struct drm_gem_object *obj;
  3666. struct drm_i915_gem_object *obj_priv;
  3667. int ret;
  3668. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3669. if (obj == NULL) {
  3670. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3671. args->handle);
  3672. return -ENOENT;
  3673. }
  3674. ret = i915_mutex_lock_interruptible(dev);
  3675. if (ret) {
  3676. drm_gem_object_unreference_unlocked(obj);
  3677. return ret;
  3678. }
  3679. /* Count all active objects as busy, even if they are currently not used
  3680. * by the gpu. Users of this interface expect objects to eventually
  3681. * become non-busy without any further actions, therefore emit any
  3682. * necessary flushes here.
  3683. */
  3684. obj_priv = to_intel_bo(obj);
  3685. args->busy = obj_priv->active;
  3686. if (args->busy) {
  3687. /* Unconditionally flush objects, even when the gpu still uses this
  3688. * object. Userspace calling this function indicates that it wants to
  3689. * use this buffer rather sooner than later, so issuing the required
  3690. * flush earlier is beneficial.
  3691. */
  3692. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3693. i915_gem_flush_ring(dev, file_priv,
  3694. obj_priv->ring,
  3695. 0, obj->write_domain);
  3696. /* Update the active list for the hardware's current position.
  3697. * Otherwise this only updates on a delayed timer or when irqs
  3698. * are actually unmasked, and our working set ends up being
  3699. * larger than required.
  3700. */
  3701. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3702. args->busy = obj_priv->active;
  3703. }
  3704. drm_gem_object_unreference(obj);
  3705. mutex_unlock(&dev->struct_mutex);
  3706. return 0;
  3707. }
  3708. int
  3709. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3710. struct drm_file *file_priv)
  3711. {
  3712. return i915_gem_ring_throttle(dev, file_priv);
  3713. }
  3714. int
  3715. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3716. struct drm_file *file_priv)
  3717. {
  3718. struct drm_i915_gem_madvise *args = data;
  3719. struct drm_gem_object *obj;
  3720. struct drm_i915_gem_object *obj_priv;
  3721. int ret;
  3722. switch (args->madv) {
  3723. case I915_MADV_DONTNEED:
  3724. case I915_MADV_WILLNEED:
  3725. break;
  3726. default:
  3727. return -EINVAL;
  3728. }
  3729. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3730. if (obj == NULL) {
  3731. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3732. args->handle);
  3733. return -ENOENT;
  3734. }
  3735. obj_priv = to_intel_bo(obj);
  3736. ret = i915_mutex_lock_interruptible(dev);
  3737. if (ret) {
  3738. drm_gem_object_unreference_unlocked(obj);
  3739. return ret;
  3740. }
  3741. if (obj_priv->pin_count) {
  3742. drm_gem_object_unreference(obj);
  3743. mutex_unlock(&dev->struct_mutex);
  3744. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3745. return -EINVAL;
  3746. }
  3747. if (obj_priv->madv != __I915_MADV_PURGED)
  3748. obj_priv->madv = args->madv;
  3749. /* if the object is no longer bound, discard its backing storage */
  3750. if (i915_gem_object_is_purgeable(obj_priv) &&
  3751. obj_priv->gtt_space == NULL)
  3752. i915_gem_object_truncate(obj);
  3753. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3754. drm_gem_object_unreference(obj);
  3755. mutex_unlock(&dev->struct_mutex);
  3756. return 0;
  3757. }
  3758. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3759. size_t size)
  3760. {
  3761. struct drm_i915_gem_object *obj;
  3762. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3763. if (obj == NULL)
  3764. return NULL;
  3765. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3766. kfree(obj);
  3767. return NULL;
  3768. }
  3769. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3770. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3771. obj->agp_type = AGP_USER_MEMORY;
  3772. obj->base.driver_private = NULL;
  3773. obj->fence_reg = I915_FENCE_REG_NONE;
  3774. INIT_LIST_HEAD(&obj->list);
  3775. INIT_LIST_HEAD(&obj->gpu_write_list);
  3776. obj->madv = I915_MADV_WILLNEED;
  3777. trace_i915_gem_object_create(&obj->base);
  3778. return &obj->base;
  3779. }
  3780. int i915_gem_init_object(struct drm_gem_object *obj)
  3781. {
  3782. BUG();
  3783. return 0;
  3784. }
  3785. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3786. {
  3787. struct drm_device *dev = obj->dev;
  3788. drm_i915_private_t *dev_priv = dev->dev_private;
  3789. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3790. int ret;
  3791. ret = i915_gem_object_unbind(obj);
  3792. if (ret == -ERESTARTSYS) {
  3793. list_move(&obj_priv->list,
  3794. &dev_priv->mm.deferred_free_list);
  3795. return;
  3796. }
  3797. if (obj_priv->mmap_offset)
  3798. i915_gem_free_mmap_offset(obj);
  3799. drm_gem_object_release(obj);
  3800. kfree(obj_priv->page_cpu_valid);
  3801. kfree(obj_priv->bit_17);
  3802. kfree(obj_priv);
  3803. }
  3804. void i915_gem_free_object(struct drm_gem_object *obj)
  3805. {
  3806. struct drm_device *dev = obj->dev;
  3807. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3808. trace_i915_gem_object_destroy(obj);
  3809. while (obj_priv->pin_count > 0)
  3810. i915_gem_object_unpin(obj);
  3811. if (obj_priv->phys_obj)
  3812. i915_gem_detach_phys_object(dev, obj);
  3813. i915_gem_free_object_tail(obj);
  3814. }
  3815. int
  3816. i915_gem_idle(struct drm_device *dev)
  3817. {
  3818. drm_i915_private_t *dev_priv = dev->dev_private;
  3819. int ret;
  3820. mutex_lock(&dev->struct_mutex);
  3821. if (dev_priv->mm.suspended ||
  3822. (dev_priv->render_ring.gem_object == NULL) ||
  3823. (HAS_BSD(dev) &&
  3824. dev_priv->bsd_ring.gem_object == NULL)) {
  3825. mutex_unlock(&dev->struct_mutex);
  3826. return 0;
  3827. }
  3828. ret = i915_gpu_idle(dev);
  3829. if (ret) {
  3830. mutex_unlock(&dev->struct_mutex);
  3831. return ret;
  3832. }
  3833. /* Under UMS, be paranoid and evict. */
  3834. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3835. ret = i915_gem_evict_inactive(dev);
  3836. if (ret) {
  3837. mutex_unlock(&dev->struct_mutex);
  3838. return ret;
  3839. }
  3840. }
  3841. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3842. * We need to replace this with a semaphore, or something.
  3843. * And not confound mm.suspended!
  3844. */
  3845. dev_priv->mm.suspended = 1;
  3846. del_timer_sync(&dev_priv->hangcheck_timer);
  3847. i915_kernel_lost_context(dev);
  3848. i915_gem_cleanup_ringbuffer(dev);
  3849. mutex_unlock(&dev->struct_mutex);
  3850. /* Cancel the retire work handler, which should be idle now. */
  3851. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3852. return 0;
  3853. }
  3854. /*
  3855. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3856. * over cache flushing.
  3857. */
  3858. static int
  3859. i915_gem_init_pipe_control(struct drm_device *dev)
  3860. {
  3861. drm_i915_private_t *dev_priv = dev->dev_private;
  3862. struct drm_gem_object *obj;
  3863. struct drm_i915_gem_object *obj_priv;
  3864. int ret;
  3865. obj = i915_gem_alloc_object(dev, 4096);
  3866. if (obj == NULL) {
  3867. DRM_ERROR("Failed to allocate seqno page\n");
  3868. ret = -ENOMEM;
  3869. goto err;
  3870. }
  3871. obj_priv = to_intel_bo(obj);
  3872. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3873. ret = i915_gem_object_pin(obj, 4096);
  3874. if (ret)
  3875. goto err_unref;
  3876. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3877. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3878. if (dev_priv->seqno_page == NULL)
  3879. goto err_unpin;
  3880. dev_priv->seqno_obj = obj;
  3881. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3882. return 0;
  3883. err_unpin:
  3884. i915_gem_object_unpin(obj);
  3885. err_unref:
  3886. drm_gem_object_unreference(obj);
  3887. err:
  3888. return ret;
  3889. }
  3890. static void
  3891. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3892. {
  3893. drm_i915_private_t *dev_priv = dev->dev_private;
  3894. struct drm_gem_object *obj;
  3895. struct drm_i915_gem_object *obj_priv;
  3896. obj = dev_priv->seqno_obj;
  3897. obj_priv = to_intel_bo(obj);
  3898. kunmap(obj_priv->pages[0]);
  3899. i915_gem_object_unpin(obj);
  3900. drm_gem_object_unreference(obj);
  3901. dev_priv->seqno_obj = NULL;
  3902. dev_priv->seqno_page = NULL;
  3903. }
  3904. int
  3905. i915_gem_init_ringbuffer(struct drm_device *dev)
  3906. {
  3907. drm_i915_private_t *dev_priv = dev->dev_private;
  3908. int ret;
  3909. if (HAS_PIPE_CONTROL(dev)) {
  3910. ret = i915_gem_init_pipe_control(dev);
  3911. if (ret)
  3912. return ret;
  3913. }
  3914. ret = intel_init_render_ring_buffer(dev);
  3915. if (ret)
  3916. goto cleanup_pipe_control;
  3917. if (HAS_BSD(dev)) {
  3918. ret = intel_init_bsd_ring_buffer(dev);
  3919. if (ret)
  3920. goto cleanup_render_ring;
  3921. }
  3922. dev_priv->next_seqno = 1;
  3923. return 0;
  3924. cleanup_render_ring:
  3925. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3926. cleanup_pipe_control:
  3927. if (HAS_PIPE_CONTROL(dev))
  3928. i915_gem_cleanup_pipe_control(dev);
  3929. return ret;
  3930. }
  3931. void
  3932. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3933. {
  3934. drm_i915_private_t *dev_priv = dev->dev_private;
  3935. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3936. if (HAS_BSD(dev))
  3937. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3938. if (HAS_PIPE_CONTROL(dev))
  3939. i915_gem_cleanup_pipe_control(dev);
  3940. }
  3941. int
  3942. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3943. struct drm_file *file_priv)
  3944. {
  3945. drm_i915_private_t *dev_priv = dev->dev_private;
  3946. int ret;
  3947. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3948. return 0;
  3949. if (atomic_read(&dev_priv->mm.wedged)) {
  3950. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3951. atomic_set(&dev_priv->mm.wedged, 0);
  3952. }
  3953. mutex_lock(&dev->struct_mutex);
  3954. dev_priv->mm.suspended = 0;
  3955. ret = i915_gem_init_ringbuffer(dev);
  3956. if (ret != 0) {
  3957. mutex_unlock(&dev->struct_mutex);
  3958. return ret;
  3959. }
  3960. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3961. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3962. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3963. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3964. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3965. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3966. mutex_unlock(&dev->struct_mutex);
  3967. ret = drm_irq_install(dev);
  3968. if (ret)
  3969. goto cleanup_ringbuffer;
  3970. return 0;
  3971. cleanup_ringbuffer:
  3972. mutex_lock(&dev->struct_mutex);
  3973. i915_gem_cleanup_ringbuffer(dev);
  3974. dev_priv->mm.suspended = 1;
  3975. mutex_unlock(&dev->struct_mutex);
  3976. return ret;
  3977. }
  3978. int
  3979. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3980. struct drm_file *file_priv)
  3981. {
  3982. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3983. return 0;
  3984. drm_irq_uninstall(dev);
  3985. return i915_gem_idle(dev);
  3986. }
  3987. void
  3988. i915_gem_lastclose(struct drm_device *dev)
  3989. {
  3990. int ret;
  3991. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3992. return;
  3993. ret = i915_gem_idle(dev);
  3994. if (ret)
  3995. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3996. }
  3997. void
  3998. i915_gem_load(struct drm_device *dev)
  3999. {
  4000. int i;
  4001. drm_i915_private_t *dev_priv = dev->dev_private;
  4002. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4003. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  4004. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4005. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4006. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4007. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4008. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  4009. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  4010. if (HAS_BSD(dev)) {
  4011. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  4012. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  4013. }
  4014. for (i = 0; i < 16; i++)
  4015. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4016. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4017. i915_gem_retire_work_handler);
  4018. init_completion(&dev_priv->error_completion);
  4019. spin_lock(&shrink_list_lock);
  4020. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4021. spin_unlock(&shrink_list_lock);
  4022. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4023. if (IS_GEN3(dev)) {
  4024. u32 tmp = I915_READ(MI_ARB_STATE);
  4025. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4026. /* arb state is a masked write, so set bit + bit in mask */
  4027. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4028. I915_WRITE(MI_ARB_STATE, tmp);
  4029. }
  4030. }
  4031. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4032. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4033. dev_priv->fence_reg_start = 3;
  4034. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4035. dev_priv->num_fence_regs = 16;
  4036. else
  4037. dev_priv->num_fence_regs = 8;
  4038. /* Initialize fence registers to zero */
  4039. switch (INTEL_INFO(dev)->gen) {
  4040. case 6:
  4041. for (i = 0; i < 16; i++)
  4042. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4043. break;
  4044. case 5:
  4045. case 4:
  4046. for (i = 0; i < 16; i++)
  4047. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4048. break;
  4049. case 3:
  4050. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4051. for (i = 0; i < 8; i++)
  4052. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4053. case 2:
  4054. for (i = 0; i < 8; i++)
  4055. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4056. break;
  4057. }
  4058. i915_gem_detect_bit_6_swizzle(dev);
  4059. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4060. }
  4061. /*
  4062. * Create a physically contiguous memory object for this object
  4063. * e.g. for cursor + overlay regs
  4064. */
  4065. static int i915_gem_init_phys_object(struct drm_device *dev,
  4066. int id, int size, int align)
  4067. {
  4068. drm_i915_private_t *dev_priv = dev->dev_private;
  4069. struct drm_i915_gem_phys_object *phys_obj;
  4070. int ret;
  4071. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4072. return 0;
  4073. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4074. if (!phys_obj)
  4075. return -ENOMEM;
  4076. phys_obj->id = id;
  4077. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4078. if (!phys_obj->handle) {
  4079. ret = -ENOMEM;
  4080. goto kfree_obj;
  4081. }
  4082. #ifdef CONFIG_X86
  4083. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4084. #endif
  4085. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4086. return 0;
  4087. kfree_obj:
  4088. kfree(phys_obj);
  4089. return ret;
  4090. }
  4091. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4092. {
  4093. drm_i915_private_t *dev_priv = dev->dev_private;
  4094. struct drm_i915_gem_phys_object *phys_obj;
  4095. if (!dev_priv->mm.phys_objs[id - 1])
  4096. return;
  4097. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4098. if (phys_obj->cur_obj) {
  4099. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4100. }
  4101. #ifdef CONFIG_X86
  4102. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4103. #endif
  4104. drm_pci_free(dev, phys_obj->handle);
  4105. kfree(phys_obj);
  4106. dev_priv->mm.phys_objs[id - 1] = NULL;
  4107. }
  4108. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4109. {
  4110. int i;
  4111. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4112. i915_gem_free_phys_object(dev, i);
  4113. }
  4114. void i915_gem_detach_phys_object(struct drm_device *dev,
  4115. struct drm_gem_object *obj)
  4116. {
  4117. struct drm_i915_gem_object *obj_priv;
  4118. int i;
  4119. int ret;
  4120. int page_count;
  4121. obj_priv = to_intel_bo(obj);
  4122. if (!obj_priv->phys_obj)
  4123. return;
  4124. ret = i915_gem_object_get_pages(obj, 0);
  4125. if (ret)
  4126. goto out;
  4127. page_count = obj->size / PAGE_SIZE;
  4128. for (i = 0; i < page_count; i++) {
  4129. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4130. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4131. memcpy(dst, src, PAGE_SIZE);
  4132. kunmap_atomic(dst, KM_USER0);
  4133. }
  4134. drm_clflush_pages(obj_priv->pages, page_count);
  4135. drm_agp_chipset_flush(dev);
  4136. i915_gem_object_put_pages(obj);
  4137. out:
  4138. obj_priv->phys_obj->cur_obj = NULL;
  4139. obj_priv->phys_obj = NULL;
  4140. }
  4141. int
  4142. i915_gem_attach_phys_object(struct drm_device *dev,
  4143. struct drm_gem_object *obj,
  4144. int id,
  4145. int align)
  4146. {
  4147. drm_i915_private_t *dev_priv = dev->dev_private;
  4148. struct drm_i915_gem_object *obj_priv;
  4149. int ret = 0;
  4150. int page_count;
  4151. int i;
  4152. if (id > I915_MAX_PHYS_OBJECT)
  4153. return -EINVAL;
  4154. obj_priv = to_intel_bo(obj);
  4155. if (obj_priv->phys_obj) {
  4156. if (obj_priv->phys_obj->id == id)
  4157. return 0;
  4158. i915_gem_detach_phys_object(dev, obj);
  4159. }
  4160. /* create a new object */
  4161. if (!dev_priv->mm.phys_objs[id - 1]) {
  4162. ret = i915_gem_init_phys_object(dev, id,
  4163. obj->size, align);
  4164. if (ret) {
  4165. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4166. goto out;
  4167. }
  4168. }
  4169. /* bind to the object */
  4170. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4171. obj_priv->phys_obj->cur_obj = obj;
  4172. ret = i915_gem_object_get_pages(obj, 0);
  4173. if (ret) {
  4174. DRM_ERROR("failed to get page list\n");
  4175. goto out;
  4176. }
  4177. page_count = obj->size / PAGE_SIZE;
  4178. for (i = 0; i < page_count; i++) {
  4179. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4180. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4181. memcpy(dst, src, PAGE_SIZE);
  4182. kunmap_atomic(src, KM_USER0);
  4183. }
  4184. i915_gem_object_put_pages(obj);
  4185. return 0;
  4186. out:
  4187. return ret;
  4188. }
  4189. static int
  4190. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4191. struct drm_i915_gem_pwrite *args,
  4192. struct drm_file *file_priv)
  4193. {
  4194. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4195. void *obj_addr;
  4196. int ret;
  4197. char __user *user_data;
  4198. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4199. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4200. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4201. ret = copy_from_user(obj_addr, user_data, args->size);
  4202. if (ret)
  4203. return -EFAULT;
  4204. drm_agp_chipset_flush(dev);
  4205. return 0;
  4206. }
  4207. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4208. {
  4209. struct drm_i915_file_private *file_priv = file->driver_priv;
  4210. /* Clean up our request list when the client is going away, so that
  4211. * later retire_requests won't dereference our soon-to-be-gone
  4212. * file_priv.
  4213. */
  4214. spin_lock(&file_priv->mm.lock);
  4215. while (!list_empty(&file_priv->mm.request_list)) {
  4216. struct drm_i915_gem_request *request;
  4217. request = list_first_entry(&file_priv->mm.request_list,
  4218. struct drm_i915_gem_request,
  4219. client_list);
  4220. list_del(&request->client_list);
  4221. request->file_priv = NULL;
  4222. }
  4223. spin_unlock(&file_priv->mm.lock);
  4224. }
  4225. static int
  4226. i915_gpu_is_active(struct drm_device *dev)
  4227. {
  4228. drm_i915_private_t *dev_priv = dev->dev_private;
  4229. int lists_empty;
  4230. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4231. list_empty(&dev_priv->render_ring.active_list);
  4232. if (HAS_BSD(dev))
  4233. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4234. return !lists_empty;
  4235. }
  4236. static int
  4237. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4238. {
  4239. drm_i915_private_t *dev_priv, *next_dev;
  4240. struct drm_i915_gem_object *obj_priv, *next_obj;
  4241. int cnt = 0;
  4242. int would_deadlock = 1;
  4243. /* "fast-path" to count number of available objects */
  4244. if (nr_to_scan == 0) {
  4245. spin_lock(&shrink_list_lock);
  4246. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4247. struct drm_device *dev = dev_priv->dev;
  4248. if (mutex_trylock(&dev->struct_mutex)) {
  4249. list_for_each_entry(obj_priv,
  4250. &dev_priv->mm.inactive_list,
  4251. list)
  4252. cnt++;
  4253. mutex_unlock(&dev->struct_mutex);
  4254. }
  4255. }
  4256. spin_unlock(&shrink_list_lock);
  4257. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4258. }
  4259. spin_lock(&shrink_list_lock);
  4260. rescan:
  4261. /* first scan for clean buffers */
  4262. list_for_each_entry_safe(dev_priv, next_dev,
  4263. &shrink_list, mm.shrink_list) {
  4264. struct drm_device *dev = dev_priv->dev;
  4265. if (! mutex_trylock(&dev->struct_mutex))
  4266. continue;
  4267. spin_unlock(&shrink_list_lock);
  4268. i915_gem_retire_requests(dev);
  4269. list_for_each_entry_safe(obj_priv, next_obj,
  4270. &dev_priv->mm.inactive_list,
  4271. list) {
  4272. if (i915_gem_object_is_purgeable(obj_priv)) {
  4273. i915_gem_object_unbind(&obj_priv->base);
  4274. if (--nr_to_scan <= 0)
  4275. break;
  4276. }
  4277. }
  4278. spin_lock(&shrink_list_lock);
  4279. mutex_unlock(&dev->struct_mutex);
  4280. would_deadlock = 0;
  4281. if (nr_to_scan <= 0)
  4282. break;
  4283. }
  4284. /* second pass, evict/count anything still on the inactive list */
  4285. list_for_each_entry_safe(dev_priv, next_dev,
  4286. &shrink_list, mm.shrink_list) {
  4287. struct drm_device *dev = dev_priv->dev;
  4288. if (! mutex_trylock(&dev->struct_mutex))
  4289. continue;
  4290. spin_unlock(&shrink_list_lock);
  4291. list_for_each_entry_safe(obj_priv, next_obj,
  4292. &dev_priv->mm.inactive_list,
  4293. list) {
  4294. if (nr_to_scan > 0) {
  4295. i915_gem_object_unbind(&obj_priv->base);
  4296. nr_to_scan--;
  4297. } else
  4298. cnt++;
  4299. }
  4300. spin_lock(&shrink_list_lock);
  4301. mutex_unlock(&dev->struct_mutex);
  4302. would_deadlock = 0;
  4303. }
  4304. if (nr_to_scan) {
  4305. int active = 0;
  4306. /*
  4307. * We are desperate for pages, so as a last resort, wait
  4308. * for the GPU to finish and discard whatever we can.
  4309. * This has a dramatic impact to reduce the number of
  4310. * OOM-killer events whilst running the GPU aggressively.
  4311. */
  4312. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4313. struct drm_device *dev = dev_priv->dev;
  4314. if (!mutex_trylock(&dev->struct_mutex))
  4315. continue;
  4316. spin_unlock(&shrink_list_lock);
  4317. if (i915_gpu_is_active(dev)) {
  4318. i915_gpu_idle(dev);
  4319. active++;
  4320. }
  4321. spin_lock(&shrink_list_lock);
  4322. mutex_unlock(&dev->struct_mutex);
  4323. }
  4324. if (active)
  4325. goto rescan;
  4326. }
  4327. spin_unlock(&shrink_list_lock);
  4328. if (would_deadlock)
  4329. return -1;
  4330. else if (cnt > 0)
  4331. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4332. else
  4333. return 0;
  4334. }
  4335. static struct shrinker shrinker = {
  4336. .shrink = i915_gem_shrink,
  4337. .seeks = DEFAULT_SEEKS,
  4338. };
  4339. __init void
  4340. i915_gem_shrinker_init(void)
  4341. {
  4342. register_shrinker(&shrinker);
  4343. }
  4344. __exit void
  4345. i915_gem_shrinker_exit(void)
  4346. {
  4347. unregister_shrinker(&shrinker);
  4348. }