disk-io.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  63. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  64. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  65. struct extent_io_tree *dirty_pages,
  66. int mark);
  67. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  68. struct extent_io_tree *pinned_extents);
  69. /*
  70. * end_io_wq structs are used to do processing in task context when an IO is
  71. * complete. This is used during reads to verify checksums, and it is used
  72. * by writes to insert metadata for new file extents after IO is complete.
  73. */
  74. struct end_io_wq {
  75. struct bio *bio;
  76. bio_end_io_t *end_io;
  77. void *private;
  78. struct btrfs_fs_info *info;
  79. int error;
  80. int metadata;
  81. struct list_head list;
  82. struct btrfs_work work;
  83. };
  84. /*
  85. * async submit bios are used to offload expensive checksumming
  86. * onto the worker threads. They checksum file and metadata bios
  87. * just before they are sent down the IO stack.
  88. */
  89. struct async_submit_bio {
  90. struct inode *inode;
  91. struct bio *bio;
  92. struct list_head list;
  93. extent_submit_bio_hook_t *submit_bio_start;
  94. extent_submit_bio_hook_t *submit_bio_done;
  95. int rw;
  96. int mirror_num;
  97. unsigned long bio_flags;
  98. /*
  99. * bio_offset is optional, can be used if the pages in the bio
  100. * can't tell us where in the file the bio should go
  101. */
  102. u64 bio_offset;
  103. struct btrfs_work work;
  104. int error;
  105. };
  106. /*
  107. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  108. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  109. * the level the eb occupies in the tree.
  110. *
  111. * Different roots are used for different purposes and may nest inside each
  112. * other and they require separate keysets. As lockdep keys should be
  113. * static, assign keysets according to the purpose of the root as indicated
  114. * by btrfs_root->objectid. This ensures that all special purpose roots
  115. * have separate keysets.
  116. *
  117. * Lock-nesting across peer nodes is always done with the immediate parent
  118. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  119. * subclass to avoid triggering lockdep warning in such cases.
  120. *
  121. * The key is set by the readpage_end_io_hook after the buffer has passed
  122. * csum validation but before the pages are unlocked. It is also set by
  123. * btrfs_init_new_buffer on freshly allocated blocks.
  124. *
  125. * We also add a check to make sure the highest level of the tree is the
  126. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  127. * needs update as well.
  128. */
  129. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  130. # if BTRFS_MAX_LEVEL != 8
  131. # error
  132. # endif
  133. static struct btrfs_lockdep_keyset {
  134. u64 id; /* root objectid */
  135. const char *name_stem; /* lock name stem */
  136. char names[BTRFS_MAX_LEVEL + 1][20];
  137. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  138. } btrfs_lockdep_keysets[] = {
  139. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  140. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  141. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  142. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  143. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  144. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  145. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  146. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  147. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  148. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  149. { .id = 0, .name_stem = "tree" },
  150. };
  151. void __init btrfs_init_lockdep(void)
  152. {
  153. int i, j;
  154. /* initialize lockdep class names */
  155. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  156. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  157. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  158. snprintf(ks->names[j], sizeof(ks->names[j]),
  159. "btrfs-%s-%02d", ks->name_stem, j);
  160. }
  161. }
  162. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  163. int level)
  164. {
  165. struct btrfs_lockdep_keyset *ks;
  166. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  167. /* find the matching keyset, id 0 is the default entry */
  168. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  169. if (ks->id == objectid)
  170. break;
  171. lockdep_set_class_and_name(&eb->lock,
  172. &ks->keys[level], ks->names[level]);
  173. }
  174. #endif
  175. /*
  176. * extents on the btree inode are pretty simple, there's one extent
  177. * that covers the entire device
  178. */
  179. static struct extent_map *btree_get_extent(struct inode *inode,
  180. struct page *page, size_t pg_offset, u64 start, u64 len,
  181. int create)
  182. {
  183. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  184. struct extent_map *em;
  185. int ret;
  186. read_lock(&em_tree->lock);
  187. em = lookup_extent_mapping(em_tree, start, len);
  188. if (em) {
  189. em->bdev =
  190. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  191. read_unlock(&em_tree->lock);
  192. goto out;
  193. }
  194. read_unlock(&em_tree->lock);
  195. em = alloc_extent_map();
  196. if (!em) {
  197. em = ERR_PTR(-ENOMEM);
  198. goto out;
  199. }
  200. em->start = 0;
  201. em->len = (u64)-1;
  202. em->block_len = (u64)-1;
  203. em->block_start = 0;
  204. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  205. write_lock(&em_tree->lock);
  206. ret = add_extent_mapping(em_tree, em, 0);
  207. if (ret == -EEXIST) {
  208. free_extent_map(em);
  209. em = lookup_extent_mapping(em_tree, start, len);
  210. if (!em)
  211. em = ERR_PTR(-EIO);
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = ERR_PTR(ret);
  215. }
  216. write_unlock(&em_tree->lock);
  217. out:
  218. return em;
  219. }
  220. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  221. {
  222. return crc32c(seed, data, len);
  223. }
  224. void btrfs_csum_final(u32 crc, char *result)
  225. {
  226. put_unaligned_le32(~crc, result);
  227. }
  228. /*
  229. * compute the csum for a btree block, and either verify it or write it
  230. * into the csum field of the block.
  231. */
  232. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  233. int verify)
  234. {
  235. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  236. char *result = NULL;
  237. unsigned long len;
  238. unsigned long cur_len;
  239. unsigned long offset = BTRFS_CSUM_SIZE;
  240. char *kaddr;
  241. unsigned long map_start;
  242. unsigned long map_len;
  243. int err;
  244. u32 crc = ~(u32)0;
  245. unsigned long inline_result;
  246. len = buf->len - offset;
  247. while (len > 0) {
  248. err = map_private_extent_buffer(buf, offset, 32,
  249. &kaddr, &map_start, &map_len);
  250. if (err)
  251. return 1;
  252. cur_len = min(len, map_len - (offset - map_start));
  253. crc = btrfs_csum_data(kaddr + offset - map_start,
  254. crc, cur_len);
  255. len -= cur_len;
  256. offset += cur_len;
  257. }
  258. if (csum_size > sizeof(inline_result)) {
  259. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  260. if (!result)
  261. return 1;
  262. } else {
  263. result = (char *)&inline_result;
  264. }
  265. btrfs_csum_final(crc, result);
  266. if (verify) {
  267. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  268. u32 val;
  269. u32 found = 0;
  270. memcpy(&found, result, csum_size);
  271. read_extent_buffer(buf, &val, 0, csum_size);
  272. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  273. "failed on %llu wanted %X found %X "
  274. "level %d\n",
  275. root->fs_info->sb->s_id,
  276. (unsigned long long)buf->start, val, found,
  277. btrfs_header_level(buf));
  278. if (result != (char *)&inline_result)
  279. kfree(result);
  280. return 1;
  281. }
  282. } else {
  283. write_extent_buffer(buf, result, 0, csum_size);
  284. }
  285. if (result != (char *)&inline_result)
  286. kfree(result);
  287. return 0;
  288. }
  289. /*
  290. * we can't consider a given block up to date unless the transid of the
  291. * block matches the transid in the parent node's pointer. This is how we
  292. * detect blocks that either didn't get written at all or got written
  293. * in the wrong place.
  294. */
  295. static int verify_parent_transid(struct extent_io_tree *io_tree,
  296. struct extent_buffer *eb, u64 parent_transid,
  297. int atomic)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. if (atomic)
  304. return -EAGAIN;
  305. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  306. 0, &cached_state);
  307. if (extent_buffer_uptodate(eb) &&
  308. btrfs_header_generation(eb) == parent_transid) {
  309. ret = 0;
  310. goto out;
  311. }
  312. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  313. "found %llu\n",
  314. (unsigned long long)eb->start,
  315. (unsigned long long)parent_transid,
  316. (unsigned long long)btrfs_header_generation(eb));
  317. ret = 1;
  318. clear_extent_buffer_uptodate(eb);
  319. out:
  320. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  321. &cached_state, GFP_NOFS);
  322. return ret;
  323. }
  324. /*
  325. * helper to read a given tree block, doing retries as required when
  326. * the checksums don't match and we have alternate mirrors to try.
  327. */
  328. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  329. struct extent_buffer *eb,
  330. u64 start, u64 parent_transid)
  331. {
  332. struct extent_io_tree *io_tree;
  333. int failed = 0;
  334. int ret;
  335. int num_copies = 0;
  336. int mirror_num = 0;
  337. int failed_mirror = 0;
  338. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  339. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  340. while (1) {
  341. ret = read_extent_buffer_pages(io_tree, eb, start,
  342. WAIT_COMPLETE,
  343. btree_get_extent, mirror_num);
  344. if (!ret) {
  345. if (!verify_parent_transid(io_tree, eb,
  346. parent_transid, 0))
  347. break;
  348. else
  349. ret = -EIO;
  350. }
  351. /*
  352. * This buffer's crc is fine, but its contents are corrupted, so
  353. * there is no reason to read the other copies, they won't be
  354. * any less wrong.
  355. */
  356. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  357. break;
  358. num_copies = btrfs_num_copies(root->fs_info,
  359. eb->start, eb->len);
  360. if (num_copies == 1)
  361. break;
  362. if (!failed_mirror) {
  363. failed = 1;
  364. failed_mirror = eb->read_mirror;
  365. }
  366. mirror_num++;
  367. if (mirror_num == failed_mirror)
  368. mirror_num++;
  369. if (mirror_num > num_copies)
  370. break;
  371. }
  372. if (failed && !ret && failed_mirror)
  373. repair_eb_io_failure(root, eb, failed_mirror);
  374. return ret;
  375. }
  376. /*
  377. * checksum a dirty tree block before IO. This has extra checks to make sure
  378. * we only fill in the checksum field in the first page of a multi-page block
  379. */
  380. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  381. {
  382. struct extent_io_tree *tree;
  383. u64 start = page_offset(page);
  384. u64 found_start;
  385. struct extent_buffer *eb;
  386. tree = &BTRFS_I(page->mapping->host)->io_tree;
  387. eb = (struct extent_buffer *)page->private;
  388. if (page != eb->pages[0])
  389. return 0;
  390. found_start = btrfs_header_bytenr(eb);
  391. if (found_start != start) {
  392. WARN_ON(1);
  393. return 0;
  394. }
  395. if (!PageUptodate(page)) {
  396. WARN_ON(1);
  397. return 0;
  398. }
  399. csum_tree_block(root, eb, 0);
  400. return 0;
  401. }
  402. static int check_tree_block_fsid(struct btrfs_root *root,
  403. struct extent_buffer *eb)
  404. {
  405. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  406. u8 fsid[BTRFS_UUID_SIZE];
  407. int ret = 1;
  408. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  409. BTRFS_FSID_SIZE);
  410. while (fs_devices) {
  411. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  412. ret = 0;
  413. break;
  414. }
  415. fs_devices = fs_devices->seed;
  416. }
  417. return ret;
  418. }
  419. #define CORRUPT(reason, eb, root, slot) \
  420. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  421. "root=%llu, slot=%d\n", reason, \
  422. (unsigned long long)btrfs_header_bytenr(eb), \
  423. (unsigned long long)root->objectid, slot)
  424. static noinline int check_leaf(struct btrfs_root *root,
  425. struct extent_buffer *leaf)
  426. {
  427. struct btrfs_key key;
  428. struct btrfs_key leaf_key;
  429. u32 nritems = btrfs_header_nritems(leaf);
  430. int slot;
  431. if (nritems == 0)
  432. return 0;
  433. /* Check the 0 item */
  434. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  435. BTRFS_LEAF_DATA_SIZE(root)) {
  436. CORRUPT("invalid item offset size pair", leaf, root, 0);
  437. return -EIO;
  438. }
  439. /*
  440. * Check to make sure each items keys are in the correct order and their
  441. * offsets make sense. We only have to loop through nritems-1 because
  442. * we check the current slot against the next slot, which verifies the
  443. * next slot's offset+size makes sense and that the current's slot
  444. * offset is correct.
  445. */
  446. for (slot = 0; slot < nritems - 1; slot++) {
  447. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  448. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  449. /* Make sure the keys are in the right order */
  450. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  451. CORRUPT("bad key order", leaf, root, slot);
  452. return -EIO;
  453. }
  454. /*
  455. * Make sure the offset and ends are right, remember that the
  456. * item data starts at the end of the leaf and grows towards the
  457. * front.
  458. */
  459. if (btrfs_item_offset_nr(leaf, slot) !=
  460. btrfs_item_end_nr(leaf, slot + 1)) {
  461. CORRUPT("slot offset bad", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Check to make sure that we don't point outside of the leaf,
  466. * just incase all the items are consistent to eachother, but
  467. * all point outside of the leaf.
  468. */
  469. if (btrfs_item_end_nr(leaf, slot) >
  470. BTRFS_LEAF_DATA_SIZE(root)) {
  471. CORRUPT("slot end outside of leaf", leaf, root, slot);
  472. return -EIO;
  473. }
  474. }
  475. return 0;
  476. }
  477. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  478. struct page *page, int max_walk)
  479. {
  480. struct extent_buffer *eb;
  481. u64 start = page_offset(page);
  482. u64 target = start;
  483. u64 min_start;
  484. if (start < max_walk)
  485. min_start = 0;
  486. else
  487. min_start = start - max_walk;
  488. while (start >= min_start) {
  489. eb = find_extent_buffer(tree, start, 0);
  490. if (eb) {
  491. /*
  492. * we found an extent buffer and it contains our page
  493. * horray!
  494. */
  495. if (eb->start <= target &&
  496. eb->start + eb->len > target)
  497. return eb;
  498. /* we found an extent buffer that wasn't for us */
  499. free_extent_buffer(eb);
  500. return NULL;
  501. }
  502. if (start == 0)
  503. break;
  504. start -= PAGE_CACHE_SIZE;
  505. }
  506. return NULL;
  507. }
  508. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  509. struct extent_state *state, int mirror)
  510. {
  511. struct extent_io_tree *tree;
  512. u64 found_start;
  513. int found_level;
  514. struct extent_buffer *eb;
  515. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  516. int ret = 0;
  517. int reads_done;
  518. if (!page->private)
  519. goto out;
  520. tree = &BTRFS_I(page->mapping->host)->io_tree;
  521. eb = (struct extent_buffer *)page->private;
  522. /* the pending IO might have been the only thing that kept this buffer
  523. * in memory. Make sure we have a ref for all this other checks
  524. */
  525. extent_buffer_get(eb);
  526. reads_done = atomic_dec_and_test(&eb->io_pages);
  527. if (!reads_done)
  528. goto err;
  529. eb->read_mirror = mirror;
  530. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  531. ret = -EIO;
  532. goto err;
  533. }
  534. found_start = btrfs_header_bytenr(eb);
  535. if (found_start != eb->start) {
  536. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  537. "%llu %llu\n",
  538. (unsigned long long)found_start,
  539. (unsigned long long)eb->start);
  540. ret = -EIO;
  541. goto err;
  542. }
  543. if (check_tree_block_fsid(root, eb)) {
  544. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  545. (unsigned long long)eb->start);
  546. ret = -EIO;
  547. goto err;
  548. }
  549. found_level = btrfs_header_level(eb);
  550. if (found_level >= BTRFS_MAX_LEVEL) {
  551. btrfs_info(root->fs_info, "bad tree block level %d\n",
  552. (int)btrfs_header_level(eb));
  553. ret = -EIO;
  554. goto err;
  555. }
  556. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  557. eb, found_level);
  558. ret = csum_tree_block(root, eb, 1);
  559. if (ret) {
  560. ret = -EIO;
  561. goto err;
  562. }
  563. /*
  564. * If this is a leaf block and it is corrupt, set the corrupt bit so
  565. * that we don't try and read the other copies of this block, just
  566. * return -EIO.
  567. */
  568. if (found_level == 0 && check_leaf(root, eb)) {
  569. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  570. ret = -EIO;
  571. }
  572. if (!ret)
  573. set_extent_buffer_uptodate(eb);
  574. err:
  575. if (reads_done &&
  576. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  577. btree_readahead_hook(root, eb, eb->start, ret);
  578. if (ret) {
  579. /*
  580. * our io error hook is going to dec the io pages
  581. * again, we have to make sure it has something
  582. * to decrement
  583. */
  584. atomic_inc(&eb->io_pages);
  585. clear_extent_buffer_uptodate(eb);
  586. }
  587. free_extent_buffer(eb);
  588. out:
  589. return ret;
  590. }
  591. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  592. {
  593. struct extent_buffer *eb;
  594. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  595. eb = (struct extent_buffer *)page->private;
  596. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  597. eb->read_mirror = failed_mirror;
  598. atomic_dec(&eb->io_pages);
  599. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  600. btree_readahead_hook(root, eb, eb->start, -EIO);
  601. return -EIO; /* we fixed nothing */
  602. }
  603. static void end_workqueue_bio(struct bio *bio, int err)
  604. {
  605. struct end_io_wq *end_io_wq = bio->bi_private;
  606. struct btrfs_fs_info *fs_info;
  607. fs_info = end_io_wq->info;
  608. end_io_wq->error = err;
  609. end_io_wq->work.func = end_workqueue_fn;
  610. end_io_wq->work.flags = 0;
  611. if (bio->bi_rw & REQ_WRITE) {
  612. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  613. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  614. &end_io_wq->work);
  615. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  616. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  617. &end_io_wq->work);
  618. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  619. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  620. &end_io_wq->work);
  621. else
  622. btrfs_queue_worker(&fs_info->endio_write_workers,
  623. &end_io_wq->work);
  624. } else {
  625. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  626. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  627. &end_io_wq->work);
  628. else if (end_io_wq->metadata)
  629. btrfs_queue_worker(&fs_info->endio_meta_workers,
  630. &end_io_wq->work);
  631. else
  632. btrfs_queue_worker(&fs_info->endio_workers,
  633. &end_io_wq->work);
  634. }
  635. }
  636. /*
  637. * For the metadata arg you want
  638. *
  639. * 0 - if data
  640. * 1 - if normal metadta
  641. * 2 - if writing to the free space cache area
  642. * 3 - raid parity work
  643. */
  644. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  645. int metadata)
  646. {
  647. struct end_io_wq *end_io_wq;
  648. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  649. if (!end_io_wq)
  650. return -ENOMEM;
  651. end_io_wq->private = bio->bi_private;
  652. end_io_wq->end_io = bio->bi_end_io;
  653. end_io_wq->info = info;
  654. end_io_wq->error = 0;
  655. end_io_wq->bio = bio;
  656. end_io_wq->metadata = metadata;
  657. bio->bi_private = end_io_wq;
  658. bio->bi_end_io = end_workqueue_bio;
  659. return 0;
  660. }
  661. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  662. {
  663. unsigned long limit = min_t(unsigned long,
  664. info->workers.max_workers,
  665. info->fs_devices->open_devices);
  666. return 256 * limit;
  667. }
  668. static void run_one_async_start(struct btrfs_work *work)
  669. {
  670. struct async_submit_bio *async;
  671. int ret;
  672. async = container_of(work, struct async_submit_bio, work);
  673. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  674. async->mirror_num, async->bio_flags,
  675. async->bio_offset);
  676. if (ret)
  677. async->error = ret;
  678. }
  679. static void run_one_async_done(struct btrfs_work *work)
  680. {
  681. struct btrfs_fs_info *fs_info;
  682. struct async_submit_bio *async;
  683. int limit;
  684. async = container_of(work, struct async_submit_bio, work);
  685. fs_info = BTRFS_I(async->inode)->root->fs_info;
  686. limit = btrfs_async_submit_limit(fs_info);
  687. limit = limit * 2 / 3;
  688. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  689. waitqueue_active(&fs_info->async_submit_wait))
  690. wake_up(&fs_info->async_submit_wait);
  691. /* If an error occured we just want to clean up the bio and move on */
  692. if (async->error) {
  693. bio_endio(async->bio, async->error);
  694. return;
  695. }
  696. async->submit_bio_done(async->inode, async->rw, async->bio,
  697. async->mirror_num, async->bio_flags,
  698. async->bio_offset);
  699. }
  700. static void run_one_async_free(struct btrfs_work *work)
  701. {
  702. struct async_submit_bio *async;
  703. async = container_of(work, struct async_submit_bio, work);
  704. kfree(async);
  705. }
  706. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  707. int rw, struct bio *bio, int mirror_num,
  708. unsigned long bio_flags,
  709. u64 bio_offset,
  710. extent_submit_bio_hook_t *submit_bio_start,
  711. extent_submit_bio_hook_t *submit_bio_done)
  712. {
  713. struct async_submit_bio *async;
  714. async = kmalloc(sizeof(*async), GFP_NOFS);
  715. if (!async)
  716. return -ENOMEM;
  717. async->inode = inode;
  718. async->rw = rw;
  719. async->bio = bio;
  720. async->mirror_num = mirror_num;
  721. async->submit_bio_start = submit_bio_start;
  722. async->submit_bio_done = submit_bio_done;
  723. async->work.func = run_one_async_start;
  724. async->work.ordered_func = run_one_async_done;
  725. async->work.ordered_free = run_one_async_free;
  726. async->work.flags = 0;
  727. async->bio_flags = bio_flags;
  728. async->bio_offset = bio_offset;
  729. async->error = 0;
  730. atomic_inc(&fs_info->nr_async_submits);
  731. if (rw & REQ_SYNC)
  732. btrfs_set_work_high_prio(&async->work);
  733. btrfs_queue_worker(&fs_info->workers, &async->work);
  734. while (atomic_read(&fs_info->async_submit_draining) &&
  735. atomic_read(&fs_info->nr_async_submits)) {
  736. wait_event(fs_info->async_submit_wait,
  737. (atomic_read(&fs_info->nr_async_submits) == 0));
  738. }
  739. return 0;
  740. }
  741. static int btree_csum_one_bio(struct bio *bio)
  742. {
  743. struct bio_vec *bvec = bio->bi_io_vec;
  744. int bio_index = 0;
  745. struct btrfs_root *root;
  746. int ret = 0;
  747. WARN_ON(bio->bi_vcnt <= 0);
  748. while (bio_index < bio->bi_vcnt) {
  749. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  750. ret = csum_dirty_buffer(root, bvec->bv_page);
  751. if (ret)
  752. break;
  753. bio_index++;
  754. bvec++;
  755. }
  756. return ret;
  757. }
  758. static int __btree_submit_bio_start(struct inode *inode, int rw,
  759. struct bio *bio, int mirror_num,
  760. unsigned long bio_flags,
  761. u64 bio_offset)
  762. {
  763. /*
  764. * when we're called for a write, we're already in the async
  765. * submission context. Just jump into btrfs_map_bio
  766. */
  767. return btree_csum_one_bio(bio);
  768. }
  769. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  770. int mirror_num, unsigned long bio_flags,
  771. u64 bio_offset)
  772. {
  773. int ret;
  774. /*
  775. * when we're called for a write, we're already in the async
  776. * submission context. Just jump into btrfs_map_bio
  777. */
  778. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  779. if (ret)
  780. bio_endio(bio, ret);
  781. return ret;
  782. }
  783. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  784. {
  785. if (bio_flags & EXTENT_BIO_TREE_LOG)
  786. return 0;
  787. #ifdef CONFIG_X86
  788. if (cpu_has_xmm4_2)
  789. return 0;
  790. #endif
  791. return 1;
  792. }
  793. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  794. int mirror_num, unsigned long bio_flags,
  795. u64 bio_offset)
  796. {
  797. int async = check_async_write(inode, bio_flags);
  798. int ret;
  799. if (!(rw & REQ_WRITE)) {
  800. /*
  801. * called for a read, do the setup so that checksum validation
  802. * can happen in the async kernel threads
  803. */
  804. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  805. bio, 1);
  806. if (ret)
  807. goto out_w_error;
  808. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  809. mirror_num, 0);
  810. } else if (!async) {
  811. ret = btree_csum_one_bio(bio);
  812. if (ret)
  813. goto out_w_error;
  814. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  815. mirror_num, 0);
  816. } else {
  817. /*
  818. * kthread helpers are used to submit writes so that
  819. * checksumming can happen in parallel across all CPUs
  820. */
  821. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  822. inode, rw, bio, mirror_num, 0,
  823. bio_offset,
  824. __btree_submit_bio_start,
  825. __btree_submit_bio_done);
  826. }
  827. if (ret) {
  828. out_w_error:
  829. bio_endio(bio, ret);
  830. }
  831. return ret;
  832. }
  833. #ifdef CONFIG_MIGRATION
  834. static int btree_migratepage(struct address_space *mapping,
  835. struct page *newpage, struct page *page,
  836. enum migrate_mode mode)
  837. {
  838. /*
  839. * we can't safely write a btree page from here,
  840. * we haven't done the locking hook
  841. */
  842. if (PageDirty(page))
  843. return -EAGAIN;
  844. /*
  845. * Buffers may be managed in a filesystem specific way.
  846. * We must have no buffers or drop them.
  847. */
  848. if (page_has_private(page) &&
  849. !try_to_release_page(page, GFP_KERNEL))
  850. return -EAGAIN;
  851. return migrate_page(mapping, newpage, page, mode);
  852. }
  853. #endif
  854. static int btree_writepages(struct address_space *mapping,
  855. struct writeback_control *wbc)
  856. {
  857. struct extent_io_tree *tree;
  858. struct btrfs_fs_info *fs_info;
  859. int ret;
  860. tree = &BTRFS_I(mapping->host)->io_tree;
  861. if (wbc->sync_mode == WB_SYNC_NONE) {
  862. if (wbc->for_kupdate)
  863. return 0;
  864. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  865. /* this is a bit racy, but that's ok */
  866. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  867. BTRFS_DIRTY_METADATA_THRESH);
  868. if (ret < 0)
  869. return 0;
  870. }
  871. return btree_write_cache_pages(mapping, wbc);
  872. }
  873. static int btree_readpage(struct file *file, struct page *page)
  874. {
  875. struct extent_io_tree *tree;
  876. tree = &BTRFS_I(page->mapping->host)->io_tree;
  877. return extent_read_full_page(tree, page, btree_get_extent, 0);
  878. }
  879. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  880. {
  881. if (PageWriteback(page) || PageDirty(page))
  882. return 0;
  883. /*
  884. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  885. * slab allocation from alloc_extent_state down the callchain where
  886. * it'd hit a BUG_ON as those flags are not allowed.
  887. */
  888. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  889. return try_release_extent_buffer(page, gfp_flags);
  890. }
  891. static void btree_invalidatepage(struct page *page, unsigned long offset)
  892. {
  893. struct extent_io_tree *tree;
  894. tree = &BTRFS_I(page->mapping->host)->io_tree;
  895. extent_invalidatepage(tree, page, offset);
  896. btree_releasepage(page, GFP_NOFS);
  897. if (PagePrivate(page)) {
  898. printk(KERN_WARNING "btrfs warning page private not zero "
  899. "on page %llu\n", (unsigned long long)page_offset(page));
  900. ClearPagePrivate(page);
  901. set_page_private(page, 0);
  902. page_cache_release(page);
  903. }
  904. }
  905. static int btree_set_page_dirty(struct page *page)
  906. {
  907. #ifdef DEBUG
  908. struct extent_buffer *eb;
  909. BUG_ON(!PagePrivate(page));
  910. eb = (struct extent_buffer *)page->private;
  911. BUG_ON(!eb);
  912. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  913. BUG_ON(!atomic_read(&eb->refs));
  914. btrfs_assert_tree_locked(eb);
  915. #endif
  916. return __set_page_dirty_nobuffers(page);
  917. }
  918. static const struct address_space_operations btree_aops = {
  919. .readpage = btree_readpage,
  920. .writepages = btree_writepages,
  921. .releasepage = btree_releasepage,
  922. .invalidatepage = btree_invalidatepage,
  923. #ifdef CONFIG_MIGRATION
  924. .migratepage = btree_migratepage,
  925. #endif
  926. .set_page_dirty = btree_set_page_dirty,
  927. };
  928. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. u64 parent_transid)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. int ret = 0;
  934. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  935. if (!buf)
  936. return 0;
  937. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  938. buf, 0, WAIT_NONE, btree_get_extent, 0);
  939. free_extent_buffer(buf);
  940. return ret;
  941. }
  942. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  943. int mirror_num, struct extent_buffer **eb)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  948. int ret;
  949. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  950. if (!buf)
  951. return 0;
  952. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  953. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  954. btree_get_extent, mirror_num);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ret;
  958. }
  959. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  960. free_extent_buffer(buf);
  961. return -EIO;
  962. } else if (extent_buffer_uptodate(buf)) {
  963. *eb = buf;
  964. } else {
  965. free_extent_buffer(buf);
  966. }
  967. return 0;
  968. }
  969. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  970. u64 bytenr, u32 blocksize)
  971. {
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_buffer *eb;
  974. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  975. bytenr, blocksize);
  976. return eb;
  977. }
  978. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  979. u64 bytenr, u32 blocksize)
  980. {
  981. struct inode *btree_inode = root->fs_info->btree_inode;
  982. struct extent_buffer *eb;
  983. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  984. bytenr, blocksize);
  985. return eb;
  986. }
  987. int btrfs_write_tree_block(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  990. buf->start + buf->len - 1);
  991. }
  992. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawait_range(buf->pages[0]->mapping,
  995. buf->start, buf->start + buf->len - 1);
  996. }
  997. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  998. u32 blocksize, u64 parent_transid)
  999. {
  1000. struct extent_buffer *buf = NULL;
  1001. int ret;
  1002. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1003. if (!buf)
  1004. return NULL;
  1005. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1006. return buf;
  1007. }
  1008. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1009. struct extent_buffer *buf)
  1010. {
  1011. struct btrfs_fs_info *fs_info = root->fs_info;
  1012. if (btrfs_header_generation(buf) ==
  1013. fs_info->running_transaction->transid) {
  1014. btrfs_assert_tree_locked(buf);
  1015. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1016. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1017. -buf->len,
  1018. fs_info->dirty_metadata_batch);
  1019. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1020. btrfs_set_lock_blocking(buf);
  1021. clear_extent_buffer_dirty(buf);
  1022. }
  1023. }
  1024. }
  1025. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1026. u32 stripesize, struct btrfs_root *root,
  1027. struct btrfs_fs_info *fs_info,
  1028. u64 objectid)
  1029. {
  1030. root->node = NULL;
  1031. root->commit_root = NULL;
  1032. root->sectorsize = sectorsize;
  1033. root->nodesize = nodesize;
  1034. root->leafsize = leafsize;
  1035. root->stripesize = stripesize;
  1036. root->ref_cows = 0;
  1037. root->track_dirty = 0;
  1038. root->in_radix = 0;
  1039. root->orphan_item_inserted = 0;
  1040. root->orphan_cleanup_state = 0;
  1041. root->objectid = objectid;
  1042. root->last_trans = 0;
  1043. root->highest_objectid = 0;
  1044. root->name = NULL;
  1045. root->inode_tree = RB_ROOT;
  1046. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1047. root->block_rsv = NULL;
  1048. root->orphan_block_rsv = NULL;
  1049. INIT_LIST_HEAD(&root->dirty_list);
  1050. INIT_LIST_HEAD(&root->root_list);
  1051. INIT_LIST_HEAD(&root->logged_list[0]);
  1052. INIT_LIST_HEAD(&root->logged_list[1]);
  1053. spin_lock_init(&root->orphan_lock);
  1054. spin_lock_init(&root->inode_lock);
  1055. spin_lock_init(&root->accounting_lock);
  1056. spin_lock_init(&root->log_extents_lock[0]);
  1057. spin_lock_init(&root->log_extents_lock[1]);
  1058. mutex_init(&root->objectid_mutex);
  1059. mutex_init(&root->log_mutex);
  1060. init_waitqueue_head(&root->log_writer_wait);
  1061. init_waitqueue_head(&root->log_commit_wait[0]);
  1062. init_waitqueue_head(&root->log_commit_wait[1]);
  1063. atomic_set(&root->log_commit[0], 0);
  1064. atomic_set(&root->log_commit[1], 0);
  1065. atomic_set(&root->log_writers, 0);
  1066. atomic_set(&root->log_batch, 0);
  1067. atomic_set(&root->orphan_inodes, 0);
  1068. root->log_transid = 0;
  1069. root->last_log_commit = 0;
  1070. extent_io_tree_init(&root->dirty_log_pages,
  1071. fs_info->btree_inode->i_mapping);
  1072. memset(&root->root_key, 0, sizeof(root->root_key));
  1073. memset(&root->root_item, 0, sizeof(root->root_item));
  1074. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1075. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1076. root->defrag_trans_start = fs_info->generation;
  1077. init_completion(&root->kobj_unregister);
  1078. root->defrag_running = 0;
  1079. root->root_key.objectid = objectid;
  1080. root->anon_dev = 0;
  1081. spin_lock_init(&root->root_item_lock);
  1082. }
  1083. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1084. struct btrfs_fs_info *fs_info,
  1085. u64 objectid,
  1086. struct btrfs_root *root)
  1087. {
  1088. int ret;
  1089. u32 blocksize;
  1090. u64 generation;
  1091. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1092. tree_root->sectorsize, tree_root->stripesize,
  1093. root, fs_info, objectid);
  1094. ret = btrfs_find_last_root(tree_root, objectid,
  1095. &root->root_item, &root->root_key);
  1096. if (ret > 0)
  1097. return -ENOENT;
  1098. else if (ret < 0)
  1099. return ret;
  1100. generation = btrfs_root_generation(&root->root_item);
  1101. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1102. root->commit_root = NULL;
  1103. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1104. blocksize, generation);
  1105. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1106. free_extent_buffer(root->node);
  1107. root->node = NULL;
  1108. return -EIO;
  1109. }
  1110. root->commit_root = btrfs_root_node(root);
  1111. return 0;
  1112. }
  1113. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1114. {
  1115. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1116. if (root)
  1117. root->fs_info = fs_info;
  1118. return root;
  1119. }
  1120. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1121. struct btrfs_fs_info *fs_info,
  1122. u64 objectid)
  1123. {
  1124. struct extent_buffer *leaf;
  1125. struct btrfs_root *tree_root = fs_info->tree_root;
  1126. struct btrfs_root *root;
  1127. struct btrfs_key key;
  1128. int ret = 0;
  1129. u64 bytenr;
  1130. root = btrfs_alloc_root(fs_info);
  1131. if (!root)
  1132. return ERR_PTR(-ENOMEM);
  1133. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1134. tree_root->sectorsize, tree_root->stripesize,
  1135. root, fs_info, objectid);
  1136. root->root_key.objectid = objectid;
  1137. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1138. root->root_key.offset = 0;
  1139. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1140. 0, objectid, NULL, 0, 0, 0);
  1141. if (IS_ERR(leaf)) {
  1142. ret = PTR_ERR(leaf);
  1143. leaf = NULL;
  1144. goto fail;
  1145. }
  1146. bytenr = leaf->start;
  1147. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1148. btrfs_set_header_bytenr(leaf, leaf->start);
  1149. btrfs_set_header_generation(leaf, trans->transid);
  1150. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1151. btrfs_set_header_owner(leaf, objectid);
  1152. root->node = leaf;
  1153. write_extent_buffer(leaf, fs_info->fsid,
  1154. (unsigned long)btrfs_header_fsid(leaf),
  1155. BTRFS_FSID_SIZE);
  1156. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1157. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1158. BTRFS_UUID_SIZE);
  1159. btrfs_mark_buffer_dirty(leaf);
  1160. root->commit_root = btrfs_root_node(root);
  1161. root->track_dirty = 1;
  1162. root->root_item.flags = 0;
  1163. root->root_item.byte_limit = 0;
  1164. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1165. btrfs_set_root_generation(&root->root_item, trans->transid);
  1166. btrfs_set_root_level(&root->root_item, 0);
  1167. btrfs_set_root_refs(&root->root_item, 1);
  1168. btrfs_set_root_used(&root->root_item, leaf->len);
  1169. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1170. btrfs_set_root_dirid(&root->root_item, 0);
  1171. root->root_item.drop_level = 0;
  1172. key.objectid = objectid;
  1173. key.type = BTRFS_ROOT_ITEM_KEY;
  1174. key.offset = 0;
  1175. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1176. if (ret)
  1177. goto fail;
  1178. btrfs_tree_unlock(leaf);
  1179. return root;
  1180. fail:
  1181. if (leaf) {
  1182. btrfs_tree_unlock(leaf);
  1183. free_extent_buffer(leaf);
  1184. }
  1185. kfree(root);
  1186. return ERR_PTR(ret);
  1187. }
  1188. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1189. struct btrfs_fs_info *fs_info)
  1190. {
  1191. struct btrfs_root *root;
  1192. struct btrfs_root *tree_root = fs_info->tree_root;
  1193. struct extent_buffer *leaf;
  1194. root = btrfs_alloc_root(fs_info);
  1195. if (!root)
  1196. return ERR_PTR(-ENOMEM);
  1197. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1198. tree_root->sectorsize, tree_root->stripesize,
  1199. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1200. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1201. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1202. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1203. /*
  1204. * log trees do not get reference counted because they go away
  1205. * before a real commit is actually done. They do store pointers
  1206. * to file data extents, and those reference counts still get
  1207. * updated (along with back refs to the log tree).
  1208. */
  1209. root->ref_cows = 0;
  1210. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1211. BTRFS_TREE_LOG_OBJECTID, NULL,
  1212. 0, 0, 0);
  1213. if (IS_ERR(leaf)) {
  1214. kfree(root);
  1215. return ERR_CAST(leaf);
  1216. }
  1217. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1218. btrfs_set_header_bytenr(leaf, leaf->start);
  1219. btrfs_set_header_generation(leaf, trans->transid);
  1220. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1221. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1222. root->node = leaf;
  1223. write_extent_buffer(root->node, root->fs_info->fsid,
  1224. (unsigned long)btrfs_header_fsid(root->node),
  1225. BTRFS_FSID_SIZE);
  1226. btrfs_mark_buffer_dirty(root->node);
  1227. btrfs_tree_unlock(root->node);
  1228. return root;
  1229. }
  1230. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1231. struct btrfs_fs_info *fs_info)
  1232. {
  1233. struct btrfs_root *log_root;
  1234. log_root = alloc_log_tree(trans, fs_info);
  1235. if (IS_ERR(log_root))
  1236. return PTR_ERR(log_root);
  1237. WARN_ON(fs_info->log_root_tree);
  1238. fs_info->log_root_tree = log_root;
  1239. return 0;
  1240. }
  1241. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1242. struct btrfs_root *root)
  1243. {
  1244. struct btrfs_root *log_root;
  1245. struct btrfs_inode_item *inode_item;
  1246. log_root = alloc_log_tree(trans, root->fs_info);
  1247. if (IS_ERR(log_root))
  1248. return PTR_ERR(log_root);
  1249. log_root->last_trans = trans->transid;
  1250. log_root->root_key.offset = root->root_key.objectid;
  1251. inode_item = &log_root->root_item.inode;
  1252. inode_item->generation = cpu_to_le64(1);
  1253. inode_item->size = cpu_to_le64(3);
  1254. inode_item->nlink = cpu_to_le32(1);
  1255. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1256. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1257. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1258. WARN_ON(root->log_root);
  1259. root->log_root = log_root;
  1260. root->log_transid = 0;
  1261. root->last_log_commit = 0;
  1262. return 0;
  1263. }
  1264. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1265. struct btrfs_key *location)
  1266. {
  1267. struct btrfs_root *root;
  1268. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1269. struct btrfs_path *path;
  1270. struct extent_buffer *l;
  1271. u64 generation;
  1272. u32 blocksize;
  1273. int ret = 0;
  1274. int slot;
  1275. root = btrfs_alloc_root(fs_info);
  1276. if (!root)
  1277. return ERR_PTR(-ENOMEM);
  1278. if (location->offset == (u64)-1) {
  1279. ret = find_and_setup_root(tree_root, fs_info,
  1280. location->objectid, root);
  1281. if (ret) {
  1282. kfree(root);
  1283. return ERR_PTR(ret);
  1284. }
  1285. goto out;
  1286. }
  1287. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1288. tree_root->sectorsize, tree_root->stripesize,
  1289. root, fs_info, location->objectid);
  1290. path = btrfs_alloc_path();
  1291. if (!path) {
  1292. kfree(root);
  1293. return ERR_PTR(-ENOMEM);
  1294. }
  1295. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1296. if (ret == 0) {
  1297. l = path->nodes[0];
  1298. slot = path->slots[0];
  1299. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1300. memcpy(&root->root_key, location, sizeof(*location));
  1301. }
  1302. btrfs_free_path(path);
  1303. if (ret) {
  1304. kfree(root);
  1305. if (ret > 0)
  1306. ret = -ENOENT;
  1307. return ERR_PTR(ret);
  1308. }
  1309. generation = btrfs_root_generation(&root->root_item);
  1310. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1311. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1312. blocksize, generation);
  1313. root->commit_root = btrfs_root_node(root);
  1314. BUG_ON(!root->node); /* -ENOMEM */
  1315. out:
  1316. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1317. root->ref_cows = 1;
  1318. btrfs_check_and_init_root_item(&root->root_item);
  1319. }
  1320. return root;
  1321. }
  1322. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1323. struct btrfs_key *location)
  1324. {
  1325. struct btrfs_root *root;
  1326. int ret;
  1327. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1328. return fs_info->tree_root;
  1329. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1330. return fs_info->extent_root;
  1331. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1332. return fs_info->chunk_root;
  1333. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1334. return fs_info->dev_root;
  1335. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1336. return fs_info->csum_root;
  1337. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1338. return fs_info->quota_root ? fs_info->quota_root :
  1339. ERR_PTR(-ENOENT);
  1340. again:
  1341. spin_lock(&fs_info->fs_roots_radix_lock);
  1342. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1343. (unsigned long)location->objectid);
  1344. spin_unlock(&fs_info->fs_roots_radix_lock);
  1345. if (root)
  1346. return root;
  1347. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1348. if (IS_ERR(root))
  1349. return root;
  1350. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1351. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1352. GFP_NOFS);
  1353. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1354. ret = -ENOMEM;
  1355. goto fail;
  1356. }
  1357. btrfs_init_free_ino_ctl(root);
  1358. mutex_init(&root->fs_commit_mutex);
  1359. spin_lock_init(&root->cache_lock);
  1360. init_waitqueue_head(&root->cache_wait);
  1361. ret = get_anon_bdev(&root->anon_dev);
  1362. if (ret)
  1363. goto fail;
  1364. if (btrfs_root_refs(&root->root_item) == 0) {
  1365. ret = -ENOENT;
  1366. goto fail;
  1367. }
  1368. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1369. if (ret < 0)
  1370. goto fail;
  1371. if (ret == 0)
  1372. root->orphan_item_inserted = 1;
  1373. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1374. if (ret)
  1375. goto fail;
  1376. spin_lock(&fs_info->fs_roots_radix_lock);
  1377. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1378. (unsigned long)root->root_key.objectid,
  1379. root);
  1380. if (ret == 0)
  1381. root->in_radix = 1;
  1382. spin_unlock(&fs_info->fs_roots_radix_lock);
  1383. radix_tree_preload_end();
  1384. if (ret) {
  1385. if (ret == -EEXIST) {
  1386. free_fs_root(root);
  1387. goto again;
  1388. }
  1389. goto fail;
  1390. }
  1391. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1392. root->root_key.objectid);
  1393. WARN_ON(ret);
  1394. return root;
  1395. fail:
  1396. free_fs_root(root);
  1397. return ERR_PTR(ret);
  1398. }
  1399. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1400. {
  1401. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1402. int ret = 0;
  1403. struct btrfs_device *device;
  1404. struct backing_dev_info *bdi;
  1405. rcu_read_lock();
  1406. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1407. if (!device->bdev)
  1408. continue;
  1409. bdi = blk_get_backing_dev_info(device->bdev);
  1410. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1411. ret = 1;
  1412. break;
  1413. }
  1414. }
  1415. rcu_read_unlock();
  1416. return ret;
  1417. }
  1418. /*
  1419. * If this fails, caller must call bdi_destroy() to get rid of the
  1420. * bdi again.
  1421. */
  1422. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1423. {
  1424. int err;
  1425. bdi->capabilities = BDI_CAP_MAP_COPY;
  1426. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1427. if (err)
  1428. return err;
  1429. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1430. bdi->congested_fn = btrfs_congested_fn;
  1431. bdi->congested_data = info;
  1432. return 0;
  1433. }
  1434. /*
  1435. * called by the kthread helper functions to finally call the bio end_io
  1436. * functions. This is where read checksum verification actually happens
  1437. */
  1438. static void end_workqueue_fn(struct btrfs_work *work)
  1439. {
  1440. struct bio *bio;
  1441. struct end_io_wq *end_io_wq;
  1442. struct btrfs_fs_info *fs_info;
  1443. int error;
  1444. end_io_wq = container_of(work, struct end_io_wq, work);
  1445. bio = end_io_wq->bio;
  1446. fs_info = end_io_wq->info;
  1447. error = end_io_wq->error;
  1448. bio->bi_private = end_io_wq->private;
  1449. bio->bi_end_io = end_io_wq->end_io;
  1450. kfree(end_io_wq);
  1451. bio_endio(bio, error);
  1452. }
  1453. static int cleaner_kthread(void *arg)
  1454. {
  1455. struct btrfs_root *root = arg;
  1456. do {
  1457. int again = 0;
  1458. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1459. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1460. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1461. btrfs_run_delayed_iputs(root);
  1462. again = btrfs_clean_one_deleted_snapshot(root);
  1463. mutex_unlock(&root->fs_info->cleaner_mutex);
  1464. }
  1465. btrfs_run_defrag_inodes(root->fs_info);
  1466. up_read(&root->fs_info->sb->s_umount);
  1467. }
  1468. if (!try_to_freeze() && !again) {
  1469. set_current_state(TASK_INTERRUPTIBLE);
  1470. if (!kthread_should_stop())
  1471. schedule();
  1472. __set_current_state(TASK_RUNNING);
  1473. }
  1474. } while (!kthread_should_stop());
  1475. return 0;
  1476. }
  1477. static int transaction_kthread(void *arg)
  1478. {
  1479. struct btrfs_root *root = arg;
  1480. struct btrfs_trans_handle *trans;
  1481. struct btrfs_transaction *cur;
  1482. u64 transid;
  1483. unsigned long now;
  1484. unsigned long delay;
  1485. bool cannot_commit;
  1486. do {
  1487. cannot_commit = false;
  1488. delay = HZ * 30;
  1489. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1490. spin_lock(&root->fs_info->trans_lock);
  1491. cur = root->fs_info->running_transaction;
  1492. if (!cur) {
  1493. spin_unlock(&root->fs_info->trans_lock);
  1494. goto sleep;
  1495. }
  1496. now = get_seconds();
  1497. if (!cur->blocked &&
  1498. (now < cur->start_time || now - cur->start_time < 30)) {
  1499. spin_unlock(&root->fs_info->trans_lock);
  1500. delay = HZ * 5;
  1501. goto sleep;
  1502. }
  1503. transid = cur->transid;
  1504. spin_unlock(&root->fs_info->trans_lock);
  1505. /* If the file system is aborted, this will always fail. */
  1506. trans = btrfs_attach_transaction(root);
  1507. if (IS_ERR(trans)) {
  1508. if (PTR_ERR(trans) != -ENOENT)
  1509. cannot_commit = true;
  1510. goto sleep;
  1511. }
  1512. if (transid == trans->transid) {
  1513. btrfs_commit_transaction(trans, root);
  1514. } else {
  1515. btrfs_end_transaction(trans, root);
  1516. }
  1517. sleep:
  1518. wake_up_process(root->fs_info->cleaner_kthread);
  1519. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1520. if (!try_to_freeze()) {
  1521. set_current_state(TASK_INTERRUPTIBLE);
  1522. if (!kthread_should_stop() &&
  1523. (!btrfs_transaction_blocked(root->fs_info) ||
  1524. cannot_commit))
  1525. schedule_timeout(delay);
  1526. __set_current_state(TASK_RUNNING);
  1527. }
  1528. } while (!kthread_should_stop());
  1529. return 0;
  1530. }
  1531. /*
  1532. * this will find the highest generation in the array of
  1533. * root backups. The index of the highest array is returned,
  1534. * or -1 if we can't find anything.
  1535. *
  1536. * We check to make sure the array is valid by comparing the
  1537. * generation of the latest root in the array with the generation
  1538. * in the super block. If they don't match we pitch it.
  1539. */
  1540. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1541. {
  1542. u64 cur;
  1543. int newest_index = -1;
  1544. struct btrfs_root_backup *root_backup;
  1545. int i;
  1546. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1547. root_backup = info->super_copy->super_roots + i;
  1548. cur = btrfs_backup_tree_root_gen(root_backup);
  1549. if (cur == newest_gen)
  1550. newest_index = i;
  1551. }
  1552. /* check to see if we actually wrapped around */
  1553. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1554. root_backup = info->super_copy->super_roots;
  1555. cur = btrfs_backup_tree_root_gen(root_backup);
  1556. if (cur == newest_gen)
  1557. newest_index = 0;
  1558. }
  1559. return newest_index;
  1560. }
  1561. /*
  1562. * find the oldest backup so we know where to store new entries
  1563. * in the backup array. This will set the backup_root_index
  1564. * field in the fs_info struct
  1565. */
  1566. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1567. u64 newest_gen)
  1568. {
  1569. int newest_index = -1;
  1570. newest_index = find_newest_super_backup(info, newest_gen);
  1571. /* if there was garbage in there, just move along */
  1572. if (newest_index == -1) {
  1573. info->backup_root_index = 0;
  1574. } else {
  1575. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1576. }
  1577. }
  1578. /*
  1579. * copy all the root pointers into the super backup array.
  1580. * this will bump the backup pointer by one when it is
  1581. * done
  1582. */
  1583. static void backup_super_roots(struct btrfs_fs_info *info)
  1584. {
  1585. int next_backup;
  1586. struct btrfs_root_backup *root_backup;
  1587. int last_backup;
  1588. next_backup = info->backup_root_index;
  1589. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1590. BTRFS_NUM_BACKUP_ROOTS;
  1591. /*
  1592. * just overwrite the last backup if we're at the same generation
  1593. * this happens only at umount
  1594. */
  1595. root_backup = info->super_for_commit->super_roots + last_backup;
  1596. if (btrfs_backup_tree_root_gen(root_backup) ==
  1597. btrfs_header_generation(info->tree_root->node))
  1598. next_backup = last_backup;
  1599. root_backup = info->super_for_commit->super_roots + next_backup;
  1600. /*
  1601. * make sure all of our padding and empty slots get zero filled
  1602. * regardless of which ones we use today
  1603. */
  1604. memset(root_backup, 0, sizeof(*root_backup));
  1605. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1606. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1607. btrfs_set_backup_tree_root_gen(root_backup,
  1608. btrfs_header_generation(info->tree_root->node));
  1609. btrfs_set_backup_tree_root_level(root_backup,
  1610. btrfs_header_level(info->tree_root->node));
  1611. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1612. btrfs_set_backup_chunk_root_gen(root_backup,
  1613. btrfs_header_generation(info->chunk_root->node));
  1614. btrfs_set_backup_chunk_root_level(root_backup,
  1615. btrfs_header_level(info->chunk_root->node));
  1616. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1617. btrfs_set_backup_extent_root_gen(root_backup,
  1618. btrfs_header_generation(info->extent_root->node));
  1619. btrfs_set_backup_extent_root_level(root_backup,
  1620. btrfs_header_level(info->extent_root->node));
  1621. /*
  1622. * we might commit during log recovery, which happens before we set
  1623. * the fs_root. Make sure it is valid before we fill it in.
  1624. */
  1625. if (info->fs_root && info->fs_root->node) {
  1626. btrfs_set_backup_fs_root(root_backup,
  1627. info->fs_root->node->start);
  1628. btrfs_set_backup_fs_root_gen(root_backup,
  1629. btrfs_header_generation(info->fs_root->node));
  1630. btrfs_set_backup_fs_root_level(root_backup,
  1631. btrfs_header_level(info->fs_root->node));
  1632. }
  1633. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1634. btrfs_set_backup_dev_root_gen(root_backup,
  1635. btrfs_header_generation(info->dev_root->node));
  1636. btrfs_set_backup_dev_root_level(root_backup,
  1637. btrfs_header_level(info->dev_root->node));
  1638. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1639. btrfs_set_backup_csum_root_gen(root_backup,
  1640. btrfs_header_generation(info->csum_root->node));
  1641. btrfs_set_backup_csum_root_level(root_backup,
  1642. btrfs_header_level(info->csum_root->node));
  1643. btrfs_set_backup_total_bytes(root_backup,
  1644. btrfs_super_total_bytes(info->super_copy));
  1645. btrfs_set_backup_bytes_used(root_backup,
  1646. btrfs_super_bytes_used(info->super_copy));
  1647. btrfs_set_backup_num_devices(root_backup,
  1648. btrfs_super_num_devices(info->super_copy));
  1649. /*
  1650. * if we don't copy this out to the super_copy, it won't get remembered
  1651. * for the next commit
  1652. */
  1653. memcpy(&info->super_copy->super_roots,
  1654. &info->super_for_commit->super_roots,
  1655. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1656. }
  1657. /*
  1658. * this copies info out of the root backup array and back into
  1659. * the in-memory super block. It is meant to help iterate through
  1660. * the array, so you send it the number of backups you've already
  1661. * tried and the last backup index you used.
  1662. *
  1663. * this returns -1 when it has tried all the backups
  1664. */
  1665. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1666. struct btrfs_super_block *super,
  1667. int *num_backups_tried, int *backup_index)
  1668. {
  1669. struct btrfs_root_backup *root_backup;
  1670. int newest = *backup_index;
  1671. if (*num_backups_tried == 0) {
  1672. u64 gen = btrfs_super_generation(super);
  1673. newest = find_newest_super_backup(info, gen);
  1674. if (newest == -1)
  1675. return -1;
  1676. *backup_index = newest;
  1677. *num_backups_tried = 1;
  1678. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1679. /* we've tried all the backups, all done */
  1680. return -1;
  1681. } else {
  1682. /* jump to the next oldest backup */
  1683. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1684. BTRFS_NUM_BACKUP_ROOTS;
  1685. *backup_index = newest;
  1686. *num_backups_tried += 1;
  1687. }
  1688. root_backup = super->super_roots + newest;
  1689. btrfs_set_super_generation(super,
  1690. btrfs_backup_tree_root_gen(root_backup));
  1691. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1692. btrfs_set_super_root_level(super,
  1693. btrfs_backup_tree_root_level(root_backup));
  1694. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1695. /*
  1696. * fixme: the total bytes and num_devices need to match or we should
  1697. * need a fsck
  1698. */
  1699. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1700. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1701. return 0;
  1702. }
  1703. /* helper to cleanup workers */
  1704. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1705. {
  1706. btrfs_stop_workers(&fs_info->generic_worker);
  1707. btrfs_stop_workers(&fs_info->fixup_workers);
  1708. btrfs_stop_workers(&fs_info->delalloc_workers);
  1709. btrfs_stop_workers(&fs_info->workers);
  1710. btrfs_stop_workers(&fs_info->endio_workers);
  1711. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1712. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1713. btrfs_stop_workers(&fs_info->rmw_workers);
  1714. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1715. btrfs_stop_workers(&fs_info->endio_write_workers);
  1716. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1717. btrfs_stop_workers(&fs_info->submit_workers);
  1718. btrfs_stop_workers(&fs_info->delayed_workers);
  1719. btrfs_stop_workers(&fs_info->caching_workers);
  1720. btrfs_stop_workers(&fs_info->readahead_workers);
  1721. btrfs_stop_workers(&fs_info->flush_workers);
  1722. }
  1723. /* helper to cleanup tree roots */
  1724. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1725. {
  1726. free_extent_buffer(info->tree_root->node);
  1727. free_extent_buffer(info->tree_root->commit_root);
  1728. free_extent_buffer(info->dev_root->node);
  1729. free_extent_buffer(info->dev_root->commit_root);
  1730. free_extent_buffer(info->extent_root->node);
  1731. free_extent_buffer(info->extent_root->commit_root);
  1732. free_extent_buffer(info->csum_root->node);
  1733. free_extent_buffer(info->csum_root->commit_root);
  1734. if (info->quota_root) {
  1735. free_extent_buffer(info->quota_root->node);
  1736. free_extent_buffer(info->quota_root->commit_root);
  1737. }
  1738. info->tree_root->node = NULL;
  1739. info->tree_root->commit_root = NULL;
  1740. info->dev_root->node = NULL;
  1741. info->dev_root->commit_root = NULL;
  1742. info->extent_root->node = NULL;
  1743. info->extent_root->commit_root = NULL;
  1744. info->csum_root->node = NULL;
  1745. info->csum_root->commit_root = NULL;
  1746. if (info->quota_root) {
  1747. info->quota_root->node = NULL;
  1748. info->quota_root->commit_root = NULL;
  1749. }
  1750. if (chunk_root) {
  1751. free_extent_buffer(info->chunk_root->node);
  1752. free_extent_buffer(info->chunk_root->commit_root);
  1753. info->chunk_root->node = NULL;
  1754. info->chunk_root->commit_root = NULL;
  1755. }
  1756. }
  1757. int open_ctree(struct super_block *sb,
  1758. struct btrfs_fs_devices *fs_devices,
  1759. char *options)
  1760. {
  1761. u32 sectorsize;
  1762. u32 nodesize;
  1763. u32 leafsize;
  1764. u32 blocksize;
  1765. u32 stripesize;
  1766. u64 generation;
  1767. u64 features;
  1768. struct btrfs_key location;
  1769. struct buffer_head *bh;
  1770. struct btrfs_super_block *disk_super;
  1771. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1772. struct btrfs_root *tree_root;
  1773. struct btrfs_root *extent_root;
  1774. struct btrfs_root *csum_root;
  1775. struct btrfs_root *chunk_root;
  1776. struct btrfs_root *dev_root;
  1777. struct btrfs_root *quota_root;
  1778. struct btrfs_root *log_tree_root;
  1779. int ret;
  1780. int err = -EINVAL;
  1781. int num_backups_tried = 0;
  1782. int backup_index = 0;
  1783. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1784. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1785. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1786. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1787. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1788. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1789. if (!tree_root || !extent_root || !csum_root ||
  1790. !chunk_root || !dev_root || !quota_root) {
  1791. err = -ENOMEM;
  1792. goto fail;
  1793. }
  1794. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1795. if (ret) {
  1796. err = ret;
  1797. goto fail;
  1798. }
  1799. ret = setup_bdi(fs_info, &fs_info->bdi);
  1800. if (ret) {
  1801. err = ret;
  1802. goto fail_srcu;
  1803. }
  1804. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1805. if (ret) {
  1806. err = ret;
  1807. goto fail_bdi;
  1808. }
  1809. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1810. (1 + ilog2(nr_cpu_ids));
  1811. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1812. if (ret) {
  1813. err = ret;
  1814. goto fail_dirty_metadata_bytes;
  1815. }
  1816. fs_info->btree_inode = new_inode(sb);
  1817. if (!fs_info->btree_inode) {
  1818. err = -ENOMEM;
  1819. goto fail_delalloc_bytes;
  1820. }
  1821. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1822. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1823. INIT_LIST_HEAD(&fs_info->trans_list);
  1824. INIT_LIST_HEAD(&fs_info->dead_roots);
  1825. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1826. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1827. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1828. spin_lock_init(&fs_info->delalloc_lock);
  1829. spin_lock_init(&fs_info->trans_lock);
  1830. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1831. spin_lock_init(&fs_info->delayed_iput_lock);
  1832. spin_lock_init(&fs_info->defrag_inodes_lock);
  1833. spin_lock_init(&fs_info->free_chunk_lock);
  1834. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1835. spin_lock_init(&fs_info->super_lock);
  1836. rwlock_init(&fs_info->tree_mod_log_lock);
  1837. mutex_init(&fs_info->reloc_mutex);
  1838. seqlock_init(&fs_info->profiles_lock);
  1839. init_completion(&fs_info->kobj_unregister);
  1840. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1841. INIT_LIST_HEAD(&fs_info->space_info);
  1842. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1843. btrfs_mapping_init(&fs_info->mapping_tree);
  1844. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1845. BTRFS_BLOCK_RSV_GLOBAL);
  1846. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1847. BTRFS_BLOCK_RSV_DELALLOC);
  1848. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1849. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1850. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1851. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1852. BTRFS_BLOCK_RSV_DELOPS);
  1853. atomic_set(&fs_info->nr_async_submits, 0);
  1854. atomic_set(&fs_info->async_delalloc_pages, 0);
  1855. atomic_set(&fs_info->async_submit_draining, 0);
  1856. atomic_set(&fs_info->nr_async_bios, 0);
  1857. atomic_set(&fs_info->defrag_running, 0);
  1858. atomic_set(&fs_info->tree_mod_seq, 0);
  1859. fs_info->sb = sb;
  1860. fs_info->max_inline = 8192 * 1024;
  1861. fs_info->metadata_ratio = 0;
  1862. fs_info->defrag_inodes = RB_ROOT;
  1863. fs_info->trans_no_join = 0;
  1864. fs_info->free_chunk_space = 0;
  1865. fs_info->tree_mod_log = RB_ROOT;
  1866. /* readahead state */
  1867. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1868. spin_lock_init(&fs_info->reada_lock);
  1869. fs_info->thread_pool_size = min_t(unsigned long,
  1870. num_online_cpus() + 2, 8);
  1871. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1872. spin_lock_init(&fs_info->ordered_extent_lock);
  1873. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1874. GFP_NOFS);
  1875. if (!fs_info->delayed_root) {
  1876. err = -ENOMEM;
  1877. goto fail_iput;
  1878. }
  1879. btrfs_init_delayed_root(fs_info->delayed_root);
  1880. mutex_init(&fs_info->scrub_lock);
  1881. atomic_set(&fs_info->scrubs_running, 0);
  1882. atomic_set(&fs_info->scrub_pause_req, 0);
  1883. atomic_set(&fs_info->scrubs_paused, 0);
  1884. atomic_set(&fs_info->scrub_cancel_req, 0);
  1885. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1886. init_rwsem(&fs_info->scrub_super_lock);
  1887. fs_info->scrub_workers_refcnt = 0;
  1888. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1889. fs_info->check_integrity_print_mask = 0;
  1890. #endif
  1891. spin_lock_init(&fs_info->balance_lock);
  1892. mutex_init(&fs_info->balance_mutex);
  1893. atomic_set(&fs_info->balance_running, 0);
  1894. atomic_set(&fs_info->balance_pause_req, 0);
  1895. atomic_set(&fs_info->balance_cancel_req, 0);
  1896. fs_info->balance_ctl = NULL;
  1897. init_waitqueue_head(&fs_info->balance_wait_q);
  1898. sb->s_blocksize = 4096;
  1899. sb->s_blocksize_bits = blksize_bits(4096);
  1900. sb->s_bdi = &fs_info->bdi;
  1901. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1902. set_nlink(fs_info->btree_inode, 1);
  1903. /*
  1904. * we set the i_size on the btree inode to the max possible int.
  1905. * the real end of the address space is determined by all of
  1906. * the devices in the system
  1907. */
  1908. fs_info->btree_inode->i_size = OFFSET_MAX;
  1909. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1910. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1911. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1912. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1913. fs_info->btree_inode->i_mapping);
  1914. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1915. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1916. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1917. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1918. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1919. sizeof(struct btrfs_key));
  1920. set_bit(BTRFS_INODE_DUMMY,
  1921. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1922. insert_inode_hash(fs_info->btree_inode);
  1923. spin_lock_init(&fs_info->block_group_cache_lock);
  1924. fs_info->block_group_cache_tree = RB_ROOT;
  1925. fs_info->first_logical_byte = (u64)-1;
  1926. extent_io_tree_init(&fs_info->freed_extents[0],
  1927. fs_info->btree_inode->i_mapping);
  1928. extent_io_tree_init(&fs_info->freed_extents[1],
  1929. fs_info->btree_inode->i_mapping);
  1930. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1931. fs_info->do_barriers = 1;
  1932. mutex_init(&fs_info->ordered_operations_mutex);
  1933. mutex_init(&fs_info->tree_log_mutex);
  1934. mutex_init(&fs_info->chunk_mutex);
  1935. mutex_init(&fs_info->transaction_kthread_mutex);
  1936. mutex_init(&fs_info->cleaner_mutex);
  1937. mutex_init(&fs_info->volume_mutex);
  1938. init_rwsem(&fs_info->extent_commit_sem);
  1939. init_rwsem(&fs_info->cleanup_work_sem);
  1940. init_rwsem(&fs_info->subvol_sem);
  1941. fs_info->dev_replace.lock_owner = 0;
  1942. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1943. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1944. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1945. mutex_init(&fs_info->dev_replace.lock);
  1946. spin_lock_init(&fs_info->qgroup_lock);
  1947. mutex_init(&fs_info->qgroup_ioctl_lock);
  1948. fs_info->qgroup_tree = RB_ROOT;
  1949. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1950. fs_info->qgroup_seq = 1;
  1951. fs_info->quota_enabled = 0;
  1952. fs_info->pending_quota_state = 0;
  1953. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1954. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1955. init_waitqueue_head(&fs_info->transaction_throttle);
  1956. init_waitqueue_head(&fs_info->transaction_wait);
  1957. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1958. init_waitqueue_head(&fs_info->async_submit_wait);
  1959. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1960. if (ret) {
  1961. err = ret;
  1962. goto fail_alloc;
  1963. }
  1964. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1965. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1966. invalidate_bdev(fs_devices->latest_bdev);
  1967. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1968. if (!bh) {
  1969. err = -EINVAL;
  1970. goto fail_alloc;
  1971. }
  1972. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1973. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1974. sizeof(*fs_info->super_for_commit));
  1975. brelse(bh);
  1976. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1977. disk_super = fs_info->super_copy;
  1978. if (!btrfs_super_root(disk_super))
  1979. goto fail_alloc;
  1980. /* check FS state, whether FS is broken. */
  1981. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1982. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1983. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1984. if (ret) {
  1985. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1986. err = ret;
  1987. goto fail_alloc;
  1988. }
  1989. /*
  1990. * run through our array of backup supers and setup
  1991. * our ring pointer to the oldest one
  1992. */
  1993. generation = btrfs_super_generation(disk_super);
  1994. find_oldest_super_backup(fs_info, generation);
  1995. /*
  1996. * In the long term, we'll store the compression type in the super
  1997. * block, and it'll be used for per file compression control.
  1998. */
  1999. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2000. ret = btrfs_parse_options(tree_root, options);
  2001. if (ret) {
  2002. err = ret;
  2003. goto fail_alloc;
  2004. }
  2005. features = btrfs_super_incompat_flags(disk_super) &
  2006. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2007. if (features) {
  2008. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2009. "unsupported optional features (%Lx).\n",
  2010. (unsigned long long)features);
  2011. err = -EINVAL;
  2012. goto fail_alloc;
  2013. }
  2014. if (btrfs_super_leafsize(disk_super) !=
  2015. btrfs_super_nodesize(disk_super)) {
  2016. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2017. "blocksizes don't match. node %d leaf %d\n",
  2018. btrfs_super_nodesize(disk_super),
  2019. btrfs_super_leafsize(disk_super));
  2020. err = -EINVAL;
  2021. goto fail_alloc;
  2022. }
  2023. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2024. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2025. "blocksize (%d) was too large\n",
  2026. btrfs_super_leafsize(disk_super));
  2027. err = -EINVAL;
  2028. goto fail_alloc;
  2029. }
  2030. features = btrfs_super_incompat_flags(disk_super);
  2031. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2032. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2033. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2034. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2035. printk(KERN_ERR "btrfs: has skinny extents\n");
  2036. /*
  2037. * flag our filesystem as having big metadata blocks if
  2038. * they are bigger than the page size
  2039. */
  2040. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2041. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2042. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2043. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2044. }
  2045. nodesize = btrfs_super_nodesize(disk_super);
  2046. leafsize = btrfs_super_leafsize(disk_super);
  2047. sectorsize = btrfs_super_sectorsize(disk_super);
  2048. stripesize = btrfs_super_stripesize(disk_super);
  2049. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2050. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2051. /*
  2052. * mixed block groups end up with duplicate but slightly offset
  2053. * extent buffers for the same range. It leads to corruptions
  2054. */
  2055. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2056. (sectorsize != leafsize)) {
  2057. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2058. "are not allowed for mixed block groups on %s\n",
  2059. sb->s_id);
  2060. goto fail_alloc;
  2061. }
  2062. /*
  2063. * Needn't use the lock because there is no other task which will
  2064. * update the flag.
  2065. */
  2066. btrfs_set_super_incompat_flags(disk_super, features);
  2067. features = btrfs_super_compat_ro_flags(disk_super) &
  2068. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2069. if (!(sb->s_flags & MS_RDONLY) && features) {
  2070. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2071. "unsupported option features (%Lx).\n",
  2072. (unsigned long long)features);
  2073. err = -EINVAL;
  2074. goto fail_alloc;
  2075. }
  2076. btrfs_init_workers(&fs_info->generic_worker,
  2077. "genwork", 1, NULL);
  2078. btrfs_init_workers(&fs_info->workers, "worker",
  2079. fs_info->thread_pool_size,
  2080. &fs_info->generic_worker);
  2081. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2082. fs_info->thread_pool_size,
  2083. &fs_info->generic_worker);
  2084. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2085. fs_info->thread_pool_size,
  2086. &fs_info->generic_worker);
  2087. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2088. min_t(u64, fs_devices->num_devices,
  2089. fs_info->thread_pool_size),
  2090. &fs_info->generic_worker);
  2091. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2092. 2, &fs_info->generic_worker);
  2093. /* a higher idle thresh on the submit workers makes it much more
  2094. * likely that bios will be send down in a sane order to the
  2095. * devices
  2096. */
  2097. fs_info->submit_workers.idle_thresh = 64;
  2098. fs_info->workers.idle_thresh = 16;
  2099. fs_info->workers.ordered = 1;
  2100. fs_info->delalloc_workers.idle_thresh = 2;
  2101. fs_info->delalloc_workers.ordered = 1;
  2102. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2103. &fs_info->generic_worker);
  2104. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2105. fs_info->thread_pool_size,
  2106. &fs_info->generic_worker);
  2107. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2108. fs_info->thread_pool_size,
  2109. &fs_info->generic_worker);
  2110. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2111. "endio-meta-write", fs_info->thread_pool_size,
  2112. &fs_info->generic_worker);
  2113. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2114. "endio-raid56", fs_info->thread_pool_size,
  2115. &fs_info->generic_worker);
  2116. btrfs_init_workers(&fs_info->rmw_workers,
  2117. "rmw", fs_info->thread_pool_size,
  2118. &fs_info->generic_worker);
  2119. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2120. fs_info->thread_pool_size,
  2121. &fs_info->generic_worker);
  2122. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2123. 1, &fs_info->generic_worker);
  2124. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2125. fs_info->thread_pool_size,
  2126. &fs_info->generic_worker);
  2127. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2128. fs_info->thread_pool_size,
  2129. &fs_info->generic_worker);
  2130. /*
  2131. * endios are largely parallel and should have a very
  2132. * low idle thresh
  2133. */
  2134. fs_info->endio_workers.idle_thresh = 4;
  2135. fs_info->endio_meta_workers.idle_thresh = 4;
  2136. fs_info->endio_raid56_workers.idle_thresh = 4;
  2137. fs_info->rmw_workers.idle_thresh = 2;
  2138. fs_info->endio_write_workers.idle_thresh = 2;
  2139. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2140. fs_info->readahead_workers.idle_thresh = 2;
  2141. /*
  2142. * btrfs_start_workers can really only fail because of ENOMEM so just
  2143. * return -ENOMEM if any of these fail.
  2144. */
  2145. ret = btrfs_start_workers(&fs_info->workers);
  2146. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2147. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2148. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2149. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2150. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2151. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2152. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2153. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2154. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2155. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2156. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2157. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2158. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2159. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2160. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2161. if (ret) {
  2162. err = -ENOMEM;
  2163. goto fail_sb_buffer;
  2164. }
  2165. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2166. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2167. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2168. tree_root->nodesize = nodesize;
  2169. tree_root->leafsize = leafsize;
  2170. tree_root->sectorsize = sectorsize;
  2171. tree_root->stripesize = stripesize;
  2172. sb->s_blocksize = sectorsize;
  2173. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2174. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2175. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2176. goto fail_sb_buffer;
  2177. }
  2178. if (sectorsize != PAGE_SIZE) {
  2179. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2180. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2181. goto fail_sb_buffer;
  2182. }
  2183. mutex_lock(&fs_info->chunk_mutex);
  2184. ret = btrfs_read_sys_array(tree_root);
  2185. mutex_unlock(&fs_info->chunk_mutex);
  2186. if (ret) {
  2187. printk(KERN_WARNING "btrfs: failed to read the system "
  2188. "array on %s\n", sb->s_id);
  2189. goto fail_sb_buffer;
  2190. }
  2191. blocksize = btrfs_level_size(tree_root,
  2192. btrfs_super_chunk_root_level(disk_super));
  2193. generation = btrfs_super_chunk_root_generation(disk_super);
  2194. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2195. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2196. chunk_root->node = read_tree_block(chunk_root,
  2197. btrfs_super_chunk_root(disk_super),
  2198. blocksize, generation);
  2199. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2200. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2201. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2202. sb->s_id);
  2203. goto fail_tree_roots;
  2204. }
  2205. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2206. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2207. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2208. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2209. BTRFS_UUID_SIZE);
  2210. ret = btrfs_read_chunk_tree(chunk_root);
  2211. if (ret) {
  2212. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2213. sb->s_id);
  2214. goto fail_tree_roots;
  2215. }
  2216. /*
  2217. * keep the device that is marked to be the target device for the
  2218. * dev_replace procedure
  2219. */
  2220. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2221. if (!fs_devices->latest_bdev) {
  2222. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2223. sb->s_id);
  2224. goto fail_tree_roots;
  2225. }
  2226. retry_root_backup:
  2227. blocksize = btrfs_level_size(tree_root,
  2228. btrfs_super_root_level(disk_super));
  2229. generation = btrfs_super_generation(disk_super);
  2230. tree_root->node = read_tree_block(tree_root,
  2231. btrfs_super_root(disk_super),
  2232. blocksize, generation);
  2233. if (!tree_root->node ||
  2234. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2235. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2236. sb->s_id);
  2237. goto recovery_tree_root;
  2238. }
  2239. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2240. tree_root->commit_root = btrfs_root_node(tree_root);
  2241. ret = find_and_setup_root(tree_root, fs_info,
  2242. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2243. if (ret)
  2244. goto recovery_tree_root;
  2245. extent_root->track_dirty = 1;
  2246. ret = find_and_setup_root(tree_root, fs_info,
  2247. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2248. if (ret)
  2249. goto recovery_tree_root;
  2250. dev_root->track_dirty = 1;
  2251. ret = find_and_setup_root(tree_root, fs_info,
  2252. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2253. if (ret)
  2254. goto recovery_tree_root;
  2255. csum_root->track_dirty = 1;
  2256. ret = find_and_setup_root(tree_root, fs_info,
  2257. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2258. if (ret) {
  2259. kfree(quota_root);
  2260. quota_root = fs_info->quota_root = NULL;
  2261. } else {
  2262. quota_root->track_dirty = 1;
  2263. fs_info->quota_enabled = 1;
  2264. fs_info->pending_quota_state = 1;
  2265. }
  2266. fs_info->generation = generation;
  2267. fs_info->last_trans_committed = generation;
  2268. ret = btrfs_recover_balance(fs_info);
  2269. if (ret) {
  2270. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2271. goto fail_block_groups;
  2272. }
  2273. ret = btrfs_init_dev_stats(fs_info);
  2274. if (ret) {
  2275. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2276. ret);
  2277. goto fail_block_groups;
  2278. }
  2279. ret = btrfs_init_dev_replace(fs_info);
  2280. if (ret) {
  2281. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2282. goto fail_block_groups;
  2283. }
  2284. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2285. ret = btrfs_init_space_info(fs_info);
  2286. if (ret) {
  2287. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2288. goto fail_block_groups;
  2289. }
  2290. ret = btrfs_read_block_groups(extent_root);
  2291. if (ret) {
  2292. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2293. goto fail_block_groups;
  2294. }
  2295. fs_info->num_tolerated_disk_barrier_failures =
  2296. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2297. if (fs_info->fs_devices->missing_devices >
  2298. fs_info->num_tolerated_disk_barrier_failures &&
  2299. !(sb->s_flags & MS_RDONLY)) {
  2300. printk(KERN_WARNING
  2301. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2302. goto fail_block_groups;
  2303. }
  2304. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2305. "btrfs-cleaner");
  2306. if (IS_ERR(fs_info->cleaner_kthread))
  2307. goto fail_block_groups;
  2308. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2309. tree_root,
  2310. "btrfs-transaction");
  2311. if (IS_ERR(fs_info->transaction_kthread))
  2312. goto fail_cleaner;
  2313. if (!btrfs_test_opt(tree_root, SSD) &&
  2314. !btrfs_test_opt(tree_root, NOSSD) &&
  2315. !fs_info->fs_devices->rotating) {
  2316. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2317. "mode\n");
  2318. btrfs_set_opt(fs_info->mount_opt, SSD);
  2319. }
  2320. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2321. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2322. ret = btrfsic_mount(tree_root, fs_devices,
  2323. btrfs_test_opt(tree_root,
  2324. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2325. 1 : 0,
  2326. fs_info->check_integrity_print_mask);
  2327. if (ret)
  2328. printk(KERN_WARNING "btrfs: failed to initialize"
  2329. " integrity check module %s\n", sb->s_id);
  2330. }
  2331. #endif
  2332. ret = btrfs_read_qgroup_config(fs_info);
  2333. if (ret)
  2334. goto fail_trans_kthread;
  2335. /* do not make disk changes in broken FS */
  2336. if (btrfs_super_log_root(disk_super) != 0) {
  2337. u64 bytenr = btrfs_super_log_root(disk_super);
  2338. if (fs_devices->rw_devices == 0) {
  2339. printk(KERN_WARNING "Btrfs log replay required "
  2340. "on RO media\n");
  2341. err = -EIO;
  2342. goto fail_qgroup;
  2343. }
  2344. blocksize =
  2345. btrfs_level_size(tree_root,
  2346. btrfs_super_log_root_level(disk_super));
  2347. log_tree_root = btrfs_alloc_root(fs_info);
  2348. if (!log_tree_root) {
  2349. err = -ENOMEM;
  2350. goto fail_qgroup;
  2351. }
  2352. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2353. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2354. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2355. blocksize,
  2356. generation + 1);
  2357. /* returns with log_tree_root freed on success */
  2358. ret = btrfs_recover_log_trees(log_tree_root);
  2359. if (ret) {
  2360. btrfs_error(tree_root->fs_info, ret,
  2361. "Failed to recover log tree");
  2362. free_extent_buffer(log_tree_root->node);
  2363. kfree(log_tree_root);
  2364. goto fail_trans_kthread;
  2365. }
  2366. if (sb->s_flags & MS_RDONLY) {
  2367. ret = btrfs_commit_super(tree_root);
  2368. if (ret)
  2369. goto fail_trans_kthread;
  2370. }
  2371. }
  2372. ret = btrfs_find_orphan_roots(tree_root);
  2373. if (ret)
  2374. goto fail_trans_kthread;
  2375. if (!(sb->s_flags & MS_RDONLY)) {
  2376. ret = btrfs_cleanup_fs_roots(fs_info);
  2377. if (ret)
  2378. goto fail_trans_kthread;
  2379. ret = btrfs_recover_relocation(tree_root);
  2380. if (ret < 0) {
  2381. printk(KERN_WARNING
  2382. "btrfs: failed to recover relocation\n");
  2383. err = -EINVAL;
  2384. goto fail_qgroup;
  2385. }
  2386. }
  2387. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2388. location.type = BTRFS_ROOT_ITEM_KEY;
  2389. location.offset = (u64)-1;
  2390. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2391. if (!fs_info->fs_root)
  2392. goto fail_qgroup;
  2393. if (IS_ERR(fs_info->fs_root)) {
  2394. err = PTR_ERR(fs_info->fs_root);
  2395. goto fail_qgroup;
  2396. }
  2397. if (sb->s_flags & MS_RDONLY)
  2398. return 0;
  2399. down_read(&fs_info->cleanup_work_sem);
  2400. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2401. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2402. up_read(&fs_info->cleanup_work_sem);
  2403. close_ctree(tree_root);
  2404. return ret;
  2405. }
  2406. up_read(&fs_info->cleanup_work_sem);
  2407. ret = btrfs_resume_balance_async(fs_info);
  2408. if (ret) {
  2409. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2410. close_ctree(tree_root);
  2411. return ret;
  2412. }
  2413. ret = btrfs_resume_dev_replace_async(fs_info);
  2414. if (ret) {
  2415. pr_warn("btrfs: failed to resume dev_replace\n");
  2416. close_ctree(tree_root);
  2417. return ret;
  2418. }
  2419. return 0;
  2420. fail_qgroup:
  2421. btrfs_free_qgroup_config(fs_info);
  2422. fail_trans_kthread:
  2423. kthread_stop(fs_info->transaction_kthread);
  2424. fail_cleaner:
  2425. kthread_stop(fs_info->cleaner_kthread);
  2426. /*
  2427. * make sure we're done with the btree inode before we stop our
  2428. * kthreads
  2429. */
  2430. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2431. fail_block_groups:
  2432. btrfs_free_block_groups(fs_info);
  2433. fail_tree_roots:
  2434. free_root_pointers(fs_info, 1);
  2435. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2436. fail_sb_buffer:
  2437. btrfs_stop_all_workers(fs_info);
  2438. fail_alloc:
  2439. fail_iput:
  2440. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2441. iput(fs_info->btree_inode);
  2442. fail_delalloc_bytes:
  2443. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2444. fail_dirty_metadata_bytes:
  2445. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2446. fail_bdi:
  2447. bdi_destroy(&fs_info->bdi);
  2448. fail_srcu:
  2449. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2450. fail:
  2451. btrfs_free_stripe_hash_table(fs_info);
  2452. btrfs_close_devices(fs_info->fs_devices);
  2453. return err;
  2454. recovery_tree_root:
  2455. if (!btrfs_test_opt(tree_root, RECOVERY))
  2456. goto fail_tree_roots;
  2457. free_root_pointers(fs_info, 0);
  2458. /* don't use the log in recovery mode, it won't be valid */
  2459. btrfs_set_super_log_root(disk_super, 0);
  2460. /* we can't trust the free space cache either */
  2461. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2462. ret = next_root_backup(fs_info, fs_info->super_copy,
  2463. &num_backups_tried, &backup_index);
  2464. if (ret == -1)
  2465. goto fail_block_groups;
  2466. goto retry_root_backup;
  2467. }
  2468. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2469. {
  2470. if (uptodate) {
  2471. set_buffer_uptodate(bh);
  2472. } else {
  2473. struct btrfs_device *device = (struct btrfs_device *)
  2474. bh->b_private;
  2475. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2476. "I/O error on %s\n",
  2477. rcu_str_deref(device->name));
  2478. /* note, we dont' set_buffer_write_io_error because we have
  2479. * our own ways of dealing with the IO errors
  2480. */
  2481. clear_buffer_uptodate(bh);
  2482. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2483. }
  2484. unlock_buffer(bh);
  2485. put_bh(bh);
  2486. }
  2487. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2488. {
  2489. struct buffer_head *bh;
  2490. struct buffer_head *latest = NULL;
  2491. struct btrfs_super_block *super;
  2492. int i;
  2493. u64 transid = 0;
  2494. u64 bytenr;
  2495. /* we would like to check all the supers, but that would make
  2496. * a btrfs mount succeed after a mkfs from a different FS.
  2497. * So, we need to add a special mount option to scan for
  2498. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2499. */
  2500. for (i = 0; i < 1; i++) {
  2501. bytenr = btrfs_sb_offset(i);
  2502. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2503. break;
  2504. bh = __bread(bdev, bytenr / 4096, 4096);
  2505. if (!bh)
  2506. continue;
  2507. super = (struct btrfs_super_block *)bh->b_data;
  2508. if (btrfs_super_bytenr(super) != bytenr ||
  2509. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2510. brelse(bh);
  2511. continue;
  2512. }
  2513. if (!latest || btrfs_super_generation(super) > transid) {
  2514. brelse(latest);
  2515. latest = bh;
  2516. transid = btrfs_super_generation(super);
  2517. } else {
  2518. brelse(bh);
  2519. }
  2520. }
  2521. return latest;
  2522. }
  2523. /*
  2524. * this should be called twice, once with wait == 0 and
  2525. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2526. * we write are pinned.
  2527. *
  2528. * They are released when wait == 1 is done.
  2529. * max_mirrors must be the same for both runs, and it indicates how
  2530. * many supers on this one device should be written.
  2531. *
  2532. * max_mirrors == 0 means to write them all.
  2533. */
  2534. static int write_dev_supers(struct btrfs_device *device,
  2535. struct btrfs_super_block *sb,
  2536. int do_barriers, int wait, int max_mirrors)
  2537. {
  2538. struct buffer_head *bh;
  2539. int i;
  2540. int ret;
  2541. int errors = 0;
  2542. u32 crc;
  2543. u64 bytenr;
  2544. if (max_mirrors == 0)
  2545. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2546. for (i = 0; i < max_mirrors; i++) {
  2547. bytenr = btrfs_sb_offset(i);
  2548. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2549. break;
  2550. if (wait) {
  2551. bh = __find_get_block(device->bdev, bytenr / 4096,
  2552. BTRFS_SUPER_INFO_SIZE);
  2553. BUG_ON(!bh);
  2554. wait_on_buffer(bh);
  2555. if (!buffer_uptodate(bh))
  2556. errors++;
  2557. /* drop our reference */
  2558. brelse(bh);
  2559. /* drop the reference from the wait == 0 run */
  2560. brelse(bh);
  2561. continue;
  2562. } else {
  2563. btrfs_set_super_bytenr(sb, bytenr);
  2564. crc = ~(u32)0;
  2565. crc = btrfs_csum_data((char *)sb +
  2566. BTRFS_CSUM_SIZE, crc,
  2567. BTRFS_SUPER_INFO_SIZE -
  2568. BTRFS_CSUM_SIZE);
  2569. btrfs_csum_final(crc, sb->csum);
  2570. /*
  2571. * one reference for us, and we leave it for the
  2572. * caller
  2573. */
  2574. bh = __getblk(device->bdev, bytenr / 4096,
  2575. BTRFS_SUPER_INFO_SIZE);
  2576. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2577. /* one reference for submit_bh */
  2578. get_bh(bh);
  2579. set_buffer_uptodate(bh);
  2580. lock_buffer(bh);
  2581. bh->b_end_io = btrfs_end_buffer_write_sync;
  2582. bh->b_private = device;
  2583. }
  2584. /*
  2585. * we fua the first super. The others we allow
  2586. * to go down lazy.
  2587. */
  2588. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2589. if (ret)
  2590. errors++;
  2591. }
  2592. return errors < i ? 0 : -1;
  2593. }
  2594. /*
  2595. * endio for the write_dev_flush, this will wake anyone waiting
  2596. * for the barrier when it is done
  2597. */
  2598. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2599. {
  2600. if (err) {
  2601. if (err == -EOPNOTSUPP)
  2602. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2603. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2604. }
  2605. if (bio->bi_private)
  2606. complete(bio->bi_private);
  2607. bio_put(bio);
  2608. }
  2609. /*
  2610. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2611. * sent down. With wait == 1, it waits for the previous flush.
  2612. *
  2613. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2614. * capable
  2615. */
  2616. static int write_dev_flush(struct btrfs_device *device, int wait)
  2617. {
  2618. struct bio *bio;
  2619. int ret = 0;
  2620. if (device->nobarriers)
  2621. return 0;
  2622. if (wait) {
  2623. bio = device->flush_bio;
  2624. if (!bio)
  2625. return 0;
  2626. wait_for_completion(&device->flush_wait);
  2627. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2628. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2629. rcu_str_deref(device->name));
  2630. device->nobarriers = 1;
  2631. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2632. ret = -EIO;
  2633. btrfs_dev_stat_inc_and_print(device,
  2634. BTRFS_DEV_STAT_FLUSH_ERRS);
  2635. }
  2636. /* drop the reference from the wait == 0 run */
  2637. bio_put(bio);
  2638. device->flush_bio = NULL;
  2639. return ret;
  2640. }
  2641. /*
  2642. * one reference for us, and we leave it for the
  2643. * caller
  2644. */
  2645. device->flush_bio = NULL;
  2646. bio = bio_alloc(GFP_NOFS, 0);
  2647. if (!bio)
  2648. return -ENOMEM;
  2649. bio->bi_end_io = btrfs_end_empty_barrier;
  2650. bio->bi_bdev = device->bdev;
  2651. init_completion(&device->flush_wait);
  2652. bio->bi_private = &device->flush_wait;
  2653. device->flush_bio = bio;
  2654. bio_get(bio);
  2655. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2656. return 0;
  2657. }
  2658. /*
  2659. * send an empty flush down to each device in parallel,
  2660. * then wait for them
  2661. */
  2662. static int barrier_all_devices(struct btrfs_fs_info *info)
  2663. {
  2664. struct list_head *head;
  2665. struct btrfs_device *dev;
  2666. int errors_send = 0;
  2667. int errors_wait = 0;
  2668. int ret;
  2669. /* send down all the barriers */
  2670. head = &info->fs_devices->devices;
  2671. list_for_each_entry_rcu(dev, head, dev_list) {
  2672. if (!dev->bdev) {
  2673. errors_send++;
  2674. continue;
  2675. }
  2676. if (!dev->in_fs_metadata || !dev->writeable)
  2677. continue;
  2678. ret = write_dev_flush(dev, 0);
  2679. if (ret)
  2680. errors_send++;
  2681. }
  2682. /* wait for all the barriers */
  2683. list_for_each_entry_rcu(dev, head, dev_list) {
  2684. if (!dev->bdev) {
  2685. errors_wait++;
  2686. continue;
  2687. }
  2688. if (!dev->in_fs_metadata || !dev->writeable)
  2689. continue;
  2690. ret = write_dev_flush(dev, 1);
  2691. if (ret)
  2692. errors_wait++;
  2693. }
  2694. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2695. errors_wait > info->num_tolerated_disk_barrier_failures)
  2696. return -EIO;
  2697. return 0;
  2698. }
  2699. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2700. struct btrfs_fs_info *fs_info)
  2701. {
  2702. struct btrfs_ioctl_space_info space;
  2703. struct btrfs_space_info *sinfo;
  2704. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2705. BTRFS_BLOCK_GROUP_SYSTEM,
  2706. BTRFS_BLOCK_GROUP_METADATA,
  2707. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2708. int num_types = 4;
  2709. int i;
  2710. int c;
  2711. int num_tolerated_disk_barrier_failures =
  2712. (int)fs_info->fs_devices->num_devices;
  2713. for (i = 0; i < num_types; i++) {
  2714. struct btrfs_space_info *tmp;
  2715. sinfo = NULL;
  2716. rcu_read_lock();
  2717. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2718. if (tmp->flags == types[i]) {
  2719. sinfo = tmp;
  2720. break;
  2721. }
  2722. }
  2723. rcu_read_unlock();
  2724. if (!sinfo)
  2725. continue;
  2726. down_read(&sinfo->groups_sem);
  2727. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2728. if (!list_empty(&sinfo->block_groups[c])) {
  2729. u64 flags;
  2730. btrfs_get_block_group_info(
  2731. &sinfo->block_groups[c], &space);
  2732. if (space.total_bytes == 0 ||
  2733. space.used_bytes == 0)
  2734. continue;
  2735. flags = space.flags;
  2736. /*
  2737. * return
  2738. * 0: if dup, single or RAID0 is configured for
  2739. * any of metadata, system or data, else
  2740. * 1: if RAID5 is configured, or if RAID1 or
  2741. * RAID10 is configured and only two mirrors
  2742. * are used, else
  2743. * 2: if RAID6 is configured, else
  2744. * num_mirrors - 1: if RAID1 or RAID10 is
  2745. * configured and more than
  2746. * 2 mirrors are used.
  2747. */
  2748. if (num_tolerated_disk_barrier_failures > 0 &&
  2749. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2750. BTRFS_BLOCK_GROUP_RAID0)) ||
  2751. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2752. == 0)))
  2753. num_tolerated_disk_barrier_failures = 0;
  2754. else if (num_tolerated_disk_barrier_failures > 1) {
  2755. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2756. BTRFS_BLOCK_GROUP_RAID5 |
  2757. BTRFS_BLOCK_GROUP_RAID10)) {
  2758. num_tolerated_disk_barrier_failures = 1;
  2759. } else if (flags &
  2760. BTRFS_BLOCK_GROUP_RAID5) {
  2761. num_tolerated_disk_barrier_failures = 2;
  2762. }
  2763. }
  2764. }
  2765. }
  2766. up_read(&sinfo->groups_sem);
  2767. }
  2768. return num_tolerated_disk_barrier_failures;
  2769. }
  2770. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2771. {
  2772. struct list_head *head;
  2773. struct btrfs_device *dev;
  2774. struct btrfs_super_block *sb;
  2775. struct btrfs_dev_item *dev_item;
  2776. int ret;
  2777. int do_barriers;
  2778. int max_errors;
  2779. int total_errors = 0;
  2780. u64 flags;
  2781. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2782. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2783. backup_super_roots(root->fs_info);
  2784. sb = root->fs_info->super_for_commit;
  2785. dev_item = &sb->dev_item;
  2786. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2787. head = &root->fs_info->fs_devices->devices;
  2788. if (do_barriers) {
  2789. ret = barrier_all_devices(root->fs_info);
  2790. if (ret) {
  2791. mutex_unlock(
  2792. &root->fs_info->fs_devices->device_list_mutex);
  2793. btrfs_error(root->fs_info, ret,
  2794. "errors while submitting device barriers.");
  2795. return ret;
  2796. }
  2797. }
  2798. list_for_each_entry_rcu(dev, head, dev_list) {
  2799. if (!dev->bdev) {
  2800. total_errors++;
  2801. continue;
  2802. }
  2803. if (!dev->in_fs_metadata || !dev->writeable)
  2804. continue;
  2805. btrfs_set_stack_device_generation(dev_item, 0);
  2806. btrfs_set_stack_device_type(dev_item, dev->type);
  2807. btrfs_set_stack_device_id(dev_item, dev->devid);
  2808. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2809. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2810. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2811. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2812. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2813. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2814. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2815. flags = btrfs_super_flags(sb);
  2816. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2817. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2818. if (ret)
  2819. total_errors++;
  2820. }
  2821. if (total_errors > max_errors) {
  2822. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2823. total_errors);
  2824. /* This shouldn't happen. FUA is masked off if unsupported */
  2825. BUG();
  2826. }
  2827. total_errors = 0;
  2828. list_for_each_entry_rcu(dev, head, dev_list) {
  2829. if (!dev->bdev)
  2830. continue;
  2831. if (!dev->in_fs_metadata || !dev->writeable)
  2832. continue;
  2833. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2834. if (ret)
  2835. total_errors++;
  2836. }
  2837. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2838. if (total_errors > max_errors) {
  2839. btrfs_error(root->fs_info, -EIO,
  2840. "%d errors while writing supers", total_errors);
  2841. return -EIO;
  2842. }
  2843. return 0;
  2844. }
  2845. int write_ctree_super(struct btrfs_trans_handle *trans,
  2846. struct btrfs_root *root, int max_mirrors)
  2847. {
  2848. int ret;
  2849. ret = write_all_supers(root, max_mirrors);
  2850. return ret;
  2851. }
  2852. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2853. {
  2854. spin_lock(&fs_info->fs_roots_radix_lock);
  2855. radix_tree_delete(&fs_info->fs_roots_radix,
  2856. (unsigned long)root->root_key.objectid);
  2857. spin_unlock(&fs_info->fs_roots_radix_lock);
  2858. if (btrfs_root_refs(&root->root_item) == 0)
  2859. synchronize_srcu(&fs_info->subvol_srcu);
  2860. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2861. btrfs_free_log(NULL, root);
  2862. btrfs_free_log_root_tree(NULL, fs_info);
  2863. }
  2864. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2865. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2866. free_fs_root(root);
  2867. }
  2868. static void free_fs_root(struct btrfs_root *root)
  2869. {
  2870. iput(root->cache_inode);
  2871. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2872. if (root->anon_dev)
  2873. free_anon_bdev(root->anon_dev);
  2874. free_extent_buffer(root->node);
  2875. free_extent_buffer(root->commit_root);
  2876. kfree(root->free_ino_ctl);
  2877. kfree(root->free_ino_pinned);
  2878. kfree(root->name);
  2879. kfree(root);
  2880. }
  2881. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2882. {
  2883. int ret;
  2884. struct btrfs_root *gang[8];
  2885. int i;
  2886. while (!list_empty(&fs_info->dead_roots)) {
  2887. gang[0] = list_entry(fs_info->dead_roots.next,
  2888. struct btrfs_root, root_list);
  2889. list_del(&gang[0]->root_list);
  2890. if (gang[0]->in_radix) {
  2891. btrfs_free_fs_root(fs_info, gang[0]);
  2892. } else {
  2893. free_extent_buffer(gang[0]->node);
  2894. free_extent_buffer(gang[0]->commit_root);
  2895. kfree(gang[0]);
  2896. }
  2897. }
  2898. while (1) {
  2899. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2900. (void **)gang, 0,
  2901. ARRAY_SIZE(gang));
  2902. if (!ret)
  2903. break;
  2904. for (i = 0; i < ret; i++)
  2905. btrfs_free_fs_root(fs_info, gang[i]);
  2906. }
  2907. }
  2908. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2909. {
  2910. u64 root_objectid = 0;
  2911. struct btrfs_root *gang[8];
  2912. int i;
  2913. int ret;
  2914. while (1) {
  2915. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2916. (void **)gang, root_objectid,
  2917. ARRAY_SIZE(gang));
  2918. if (!ret)
  2919. break;
  2920. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2921. for (i = 0; i < ret; i++) {
  2922. int err;
  2923. root_objectid = gang[i]->root_key.objectid;
  2924. err = btrfs_orphan_cleanup(gang[i]);
  2925. if (err)
  2926. return err;
  2927. }
  2928. root_objectid++;
  2929. }
  2930. return 0;
  2931. }
  2932. int btrfs_commit_super(struct btrfs_root *root)
  2933. {
  2934. struct btrfs_trans_handle *trans;
  2935. int ret;
  2936. mutex_lock(&root->fs_info->cleaner_mutex);
  2937. btrfs_run_delayed_iputs(root);
  2938. mutex_unlock(&root->fs_info->cleaner_mutex);
  2939. wake_up_process(root->fs_info->cleaner_kthread);
  2940. /* wait until ongoing cleanup work done */
  2941. down_write(&root->fs_info->cleanup_work_sem);
  2942. up_write(&root->fs_info->cleanup_work_sem);
  2943. trans = btrfs_join_transaction(root);
  2944. if (IS_ERR(trans))
  2945. return PTR_ERR(trans);
  2946. ret = btrfs_commit_transaction(trans, root);
  2947. if (ret)
  2948. return ret;
  2949. /* run commit again to drop the original snapshot */
  2950. trans = btrfs_join_transaction(root);
  2951. if (IS_ERR(trans))
  2952. return PTR_ERR(trans);
  2953. ret = btrfs_commit_transaction(trans, root);
  2954. if (ret)
  2955. return ret;
  2956. ret = btrfs_write_and_wait_transaction(NULL, root);
  2957. if (ret) {
  2958. btrfs_error(root->fs_info, ret,
  2959. "Failed to sync btree inode to disk.");
  2960. return ret;
  2961. }
  2962. ret = write_ctree_super(NULL, root, 0);
  2963. return ret;
  2964. }
  2965. int close_ctree(struct btrfs_root *root)
  2966. {
  2967. struct btrfs_fs_info *fs_info = root->fs_info;
  2968. int ret;
  2969. fs_info->closing = 1;
  2970. smp_mb();
  2971. /* pause restriper - we want to resume on mount */
  2972. btrfs_pause_balance(fs_info);
  2973. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2974. btrfs_scrub_cancel(fs_info);
  2975. /* wait for any defraggers to finish */
  2976. wait_event(fs_info->transaction_wait,
  2977. (atomic_read(&fs_info->defrag_running) == 0));
  2978. /* clear out the rbtree of defraggable inodes */
  2979. btrfs_cleanup_defrag_inodes(fs_info);
  2980. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2981. ret = btrfs_commit_super(root);
  2982. if (ret)
  2983. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2984. }
  2985. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2986. btrfs_error_commit_super(root);
  2987. btrfs_put_block_group_cache(fs_info);
  2988. kthread_stop(fs_info->transaction_kthread);
  2989. kthread_stop(fs_info->cleaner_kthread);
  2990. fs_info->closing = 2;
  2991. smp_mb();
  2992. btrfs_free_qgroup_config(root->fs_info);
  2993. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2994. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2995. percpu_counter_sum(&fs_info->delalloc_bytes));
  2996. }
  2997. free_root_pointers(fs_info, 1);
  2998. btrfs_free_block_groups(fs_info);
  2999. del_fs_roots(fs_info);
  3000. iput(fs_info->btree_inode);
  3001. btrfs_stop_all_workers(fs_info);
  3002. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3003. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3004. btrfsic_unmount(root, fs_info->fs_devices);
  3005. #endif
  3006. btrfs_close_devices(fs_info->fs_devices);
  3007. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3008. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3009. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3010. bdi_destroy(&fs_info->bdi);
  3011. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3012. btrfs_free_stripe_hash_table(fs_info);
  3013. return 0;
  3014. }
  3015. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3016. int atomic)
  3017. {
  3018. int ret;
  3019. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3020. ret = extent_buffer_uptodate(buf);
  3021. if (!ret)
  3022. return ret;
  3023. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3024. parent_transid, atomic);
  3025. if (ret == -EAGAIN)
  3026. return ret;
  3027. return !ret;
  3028. }
  3029. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3030. {
  3031. return set_extent_buffer_uptodate(buf);
  3032. }
  3033. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3034. {
  3035. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3036. u64 transid = btrfs_header_generation(buf);
  3037. int was_dirty;
  3038. btrfs_assert_tree_locked(buf);
  3039. if (transid != root->fs_info->generation)
  3040. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3041. "found %llu running %llu\n",
  3042. (unsigned long long)buf->start,
  3043. (unsigned long long)transid,
  3044. (unsigned long long)root->fs_info->generation);
  3045. was_dirty = set_extent_buffer_dirty(buf);
  3046. if (!was_dirty)
  3047. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3048. buf->len,
  3049. root->fs_info->dirty_metadata_batch);
  3050. }
  3051. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3052. int flush_delayed)
  3053. {
  3054. /*
  3055. * looks as though older kernels can get into trouble with
  3056. * this code, they end up stuck in balance_dirty_pages forever
  3057. */
  3058. int ret;
  3059. if (current->flags & PF_MEMALLOC)
  3060. return;
  3061. if (flush_delayed)
  3062. btrfs_balance_delayed_items(root);
  3063. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3064. BTRFS_DIRTY_METADATA_THRESH);
  3065. if (ret > 0) {
  3066. balance_dirty_pages_ratelimited(
  3067. root->fs_info->btree_inode->i_mapping);
  3068. }
  3069. return;
  3070. }
  3071. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3072. {
  3073. __btrfs_btree_balance_dirty(root, 1);
  3074. }
  3075. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3076. {
  3077. __btrfs_btree_balance_dirty(root, 0);
  3078. }
  3079. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3080. {
  3081. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3082. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3083. }
  3084. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3085. int read_only)
  3086. {
  3087. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3088. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3089. return -EINVAL;
  3090. }
  3091. if (read_only)
  3092. return 0;
  3093. return 0;
  3094. }
  3095. void btrfs_error_commit_super(struct btrfs_root *root)
  3096. {
  3097. mutex_lock(&root->fs_info->cleaner_mutex);
  3098. btrfs_run_delayed_iputs(root);
  3099. mutex_unlock(&root->fs_info->cleaner_mutex);
  3100. down_write(&root->fs_info->cleanup_work_sem);
  3101. up_write(&root->fs_info->cleanup_work_sem);
  3102. /* cleanup FS via transaction */
  3103. btrfs_cleanup_transaction(root);
  3104. }
  3105. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3106. struct btrfs_root *root)
  3107. {
  3108. struct btrfs_inode *btrfs_inode;
  3109. struct list_head splice;
  3110. INIT_LIST_HEAD(&splice);
  3111. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3112. spin_lock(&root->fs_info->ordered_extent_lock);
  3113. list_splice_init(&t->ordered_operations, &splice);
  3114. while (!list_empty(&splice)) {
  3115. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3116. ordered_operations);
  3117. list_del_init(&btrfs_inode->ordered_operations);
  3118. btrfs_invalidate_inodes(btrfs_inode->root);
  3119. }
  3120. spin_unlock(&root->fs_info->ordered_extent_lock);
  3121. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3122. }
  3123. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3124. {
  3125. struct btrfs_ordered_extent *ordered;
  3126. spin_lock(&root->fs_info->ordered_extent_lock);
  3127. /*
  3128. * This will just short circuit the ordered completion stuff which will
  3129. * make sure the ordered extent gets properly cleaned up.
  3130. */
  3131. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3132. root_extent_list)
  3133. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3134. spin_unlock(&root->fs_info->ordered_extent_lock);
  3135. }
  3136. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3137. struct btrfs_root *root)
  3138. {
  3139. struct rb_node *node;
  3140. struct btrfs_delayed_ref_root *delayed_refs;
  3141. struct btrfs_delayed_ref_node *ref;
  3142. int ret = 0;
  3143. delayed_refs = &trans->delayed_refs;
  3144. spin_lock(&delayed_refs->lock);
  3145. if (delayed_refs->num_entries == 0) {
  3146. spin_unlock(&delayed_refs->lock);
  3147. printk(KERN_INFO "delayed_refs has NO entry\n");
  3148. return ret;
  3149. }
  3150. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3151. struct btrfs_delayed_ref_head *head = NULL;
  3152. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3153. atomic_set(&ref->refs, 1);
  3154. if (btrfs_delayed_ref_is_head(ref)) {
  3155. head = btrfs_delayed_node_to_head(ref);
  3156. if (!mutex_trylock(&head->mutex)) {
  3157. atomic_inc(&ref->refs);
  3158. spin_unlock(&delayed_refs->lock);
  3159. /* Need to wait for the delayed ref to run */
  3160. mutex_lock(&head->mutex);
  3161. mutex_unlock(&head->mutex);
  3162. btrfs_put_delayed_ref(ref);
  3163. spin_lock(&delayed_refs->lock);
  3164. continue;
  3165. }
  3166. btrfs_free_delayed_extent_op(head->extent_op);
  3167. delayed_refs->num_heads--;
  3168. if (list_empty(&head->cluster))
  3169. delayed_refs->num_heads_ready--;
  3170. list_del_init(&head->cluster);
  3171. }
  3172. ref->in_tree = 0;
  3173. rb_erase(&ref->rb_node, &delayed_refs->root);
  3174. delayed_refs->num_entries--;
  3175. if (head)
  3176. mutex_unlock(&head->mutex);
  3177. spin_unlock(&delayed_refs->lock);
  3178. btrfs_put_delayed_ref(ref);
  3179. cond_resched();
  3180. spin_lock(&delayed_refs->lock);
  3181. }
  3182. spin_unlock(&delayed_refs->lock);
  3183. return ret;
  3184. }
  3185. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3186. {
  3187. struct btrfs_pending_snapshot *snapshot;
  3188. struct list_head splice;
  3189. INIT_LIST_HEAD(&splice);
  3190. list_splice_init(&t->pending_snapshots, &splice);
  3191. while (!list_empty(&splice)) {
  3192. snapshot = list_entry(splice.next,
  3193. struct btrfs_pending_snapshot,
  3194. list);
  3195. snapshot->error = -ECANCELED;
  3196. list_del_init(&snapshot->list);
  3197. }
  3198. }
  3199. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3200. {
  3201. struct btrfs_inode *btrfs_inode;
  3202. struct list_head splice;
  3203. INIT_LIST_HEAD(&splice);
  3204. spin_lock(&root->fs_info->delalloc_lock);
  3205. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3206. while (!list_empty(&splice)) {
  3207. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3208. delalloc_inodes);
  3209. list_del_init(&btrfs_inode->delalloc_inodes);
  3210. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3211. &btrfs_inode->runtime_flags);
  3212. btrfs_invalidate_inodes(btrfs_inode->root);
  3213. }
  3214. spin_unlock(&root->fs_info->delalloc_lock);
  3215. }
  3216. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3217. struct extent_io_tree *dirty_pages,
  3218. int mark)
  3219. {
  3220. int ret;
  3221. struct page *page;
  3222. struct inode *btree_inode = root->fs_info->btree_inode;
  3223. struct extent_buffer *eb;
  3224. u64 start = 0;
  3225. u64 end;
  3226. u64 offset;
  3227. unsigned long index;
  3228. while (1) {
  3229. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3230. mark, NULL);
  3231. if (ret)
  3232. break;
  3233. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3234. while (start <= end) {
  3235. index = start >> PAGE_CACHE_SHIFT;
  3236. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3237. page = find_get_page(btree_inode->i_mapping, index);
  3238. if (!page)
  3239. continue;
  3240. offset = page_offset(page);
  3241. spin_lock(&dirty_pages->buffer_lock);
  3242. eb = radix_tree_lookup(
  3243. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3244. offset >> PAGE_CACHE_SHIFT);
  3245. spin_unlock(&dirty_pages->buffer_lock);
  3246. if (eb)
  3247. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3248. &eb->bflags);
  3249. lock_page(page);
  3250. wait_on_page_writeback(page);
  3251. if (PageDirty(page)) {
  3252. clear_page_dirty_for_io(page);
  3253. spin_lock_irq(&page->mapping->tree_lock);
  3254. radix_tree_tag_clear(&page->mapping->page_tree,
  3255. page_index(page),
  3256. PAGECACHE_TAG_DIRTY);
  3257. spin_unlock_irq(&page->mapping->tree_lock);
  3258. }
  3259. unlock_page(page);
  3260. page_cache_release(page);
  3261. }
  3262. }
  3263. return ret;
  3264. }
  3265. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3266. struct extent_io_tree *pinned_extents)
  3267. {
  3268. struct extent_io_tree *unpin;
  3269. u64 start;
  3270. u64 end;
  3271. int ret;
  3272. bool loop = true;
  3273. unpin = pinned_extents;
  3274. again:
  3275. while (1) {
  3276. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3277. EXTENT_DIRTY, NULL);
  3278. if (ret)
  3279. break;
  3280. /* opt_discard */
  3281. if (btrfs_test_opt(root, DISCARD))
  3282. ret = btrfs_error_discard_extent(root, start,
  3283. end + 1 - start,
  3284. NULL);
  3285. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3286. btrfs_error_unpin_extent_range(root, start, end);
  3287. cond_resched();
  3288. }
  3289. if (loop) {
  3290. if (unpin == &root->fs_info->freed_extents[0])
  3291. unpin = &root->fs_info->freed_extents[1];
  3292. else
  3293. unpin = &root->fs_info->freed_extents[0];
  3294. loop = false;
  3295. goto again;
  3296. }
  3297. return 0;
  3298. }
  3299. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3300. struct btrfs_root *root)
  3301. {
  3302. btrfs_destroy_delayed_refs(cur_trans, root);
  3303. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3304. cur_trans->dirty_pages.dirty_bytes);
  3305. /* FIXME: cleanup wait for commit */
  3306. cur_trans->in_commit = 1;
  3307. cur_trans->blocked = 1;
  3308. wake_up(&root->fs_info->transaction_blocked_wait);
  3309. btrfs_evict_pending_snapshots(cur_trans);
  3310. cur_trans->blocked = 0;
  3311. wake_up(&root->fs_info->transaction_wait);
  3312. cur_trans->commit_done = 1;
  3313. wake_up(&cur_trans->commit_wait);
  3314. btrfs_destroy_delayed_inodes(root);
  3315. btrfs_assert_delayed_root_empty(root);
  3316. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3317. EXTENT_DIRTY);
  3318. btrfs_destroy_pinned_extent(root,
  3319. root->fs_info->pinned_extents);
  3320. /*
  3321. memset(cur_trans, 0, sizeof(*cur_trans));
  3322. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3323. */
  3324. }
  3325. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3326. {
  3327. struct btrfs_transaction *t;
  3328. LIST_HEAD(list);
  3329. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3330. spin_lock(&root->fs_info->trans_lock);
  3331. list_splice_init(&root->fs_info->trans_list, &list);
  3332. root->fs_info->trans_no_join = 1;
  3333. spin_unlock(&root->fs_info->trans_lock);
  3334. while (!list_empty(&list)) {
  3335. t = list_entry(list.next, struct btrfs_transaction, list);
  3336. btrfs_destroy_ordered_operations(t, root);
  3337. btrfs_destroy_ordered_extents(root);
  3338. btrfs_destroy_delayed_refs(t, root);
  3339. btrfs_block_rsv_release(root,
  3340. &root->fs_info->trans_block_rsv,
  3341. t->dirty_pages.dirty_bytes);
  3342. /* FIXME: cleanup wait for commit */
  3343. t->in_commit = 1;
  3344. t->blocked = 1;
  3345. smp_mb();
  3346. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3347. wake_up(&root->fs_info->transaction_blocked_wait);
  3348. btrfs_evict_pending_snapshots(t);
  3349. t->blocked = 0;
  3350. smp_mb();
  3351. if (waitqueue_active(&root->fs_info->transaction_wait))
  3352. wake_up(&root->fs_info->transaction_wait);
  3353. t->commit_done = 1;
  3354. smp_mb();
  3355. if (waitqueue_active(&t->commit_wait))
  3356. wake_up(&t->commit_wait);
  3357. btrfs_destroy_delayed_inodes(root);
  3358. btrfs_assert_delayed_root_empty(root);
  3359. btrfs_destroy_delalloc_inodes(root);
  3360. spin_lock(&root->fs_info->trans_lock);
  3361. root->fs_info->running_transaction = NULL;
  3362. spin_unlock(&root->fs_info->trans_lock);
  3363. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3364. EXTENT_DIRTY);
  3365. btrfs_destroy_pinned_extent(root,
  3366. root->fs_info->pinned_extents);
  3367. atomic_set(&t->use_count, 0);
  3368. list_del_init(&t->list);
  3369. memset(t, 0, sizeof(*t));
  3370. kmem_cache_free(btrfs_transaction_cachep, t);
  3371. }
  3372. spin_lock(&root->fs_info->trans_lock);
  3373. root->fs_info->trans_no_join = 0;
  3374. spin_unlock(&root->fs_info->trans_lock);
  3375. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3376. return 0;
  3377. }
  3378. static struct extent_io_ops btree_extent_io_ops = {
  3379. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3380. .readpage_io_failed_hook = btree_io_failed_hook,
  3381. .submit_bio_hook = btree_submit_bio_hook,
  3382. /* note we're sharing with inode.c for the merge bio hook */
  3383. .merge_bio_hook = btrfs_merge_bio_hook,
  3384. };