spi-s3c64xx.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/gpio.h>
  30. #include <mach/dma.h>
  31. #include <plat/s3c64xx-spi.h>
  32. #define MAX_SPI_PORTS 3
  33. /* Registers and bit-fields */
  34. #define S3C64XX_SPI_CH_CFG 0x00
  35. #define S3C64XX_SPI_CLK_CFG 0x04
  36. #define S3C64XX_SPI_MODE_CFG 0x08
  37. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  38. #define S3C64XX_SPI_INT_EN 0x10
  39. #define S3C64XX_SPI_STATUS 0x14
  40. #define S3C64XX_SPI_TX_DATA 0x18
  41. #define S3C64XX_SPI_RX_DATA 0x1C
  42. #define S3C64XX_SPI_PACKET_CNT 0x20
  43. #define S3C64XX_SPI_PENDING_CLR 0x24
  44. #define S3C64XX_SPI_SWAP_CFG 0x28
  45. #define S3C64XX_SPI_FB_CLK 0x2C
  46. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  47. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  48. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  49. #define S3C64XX_SPI_CPOL_L (1<<3)
  50. #define S3C64XX_SPI_CPHA_B (1<<2)
  51. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  52. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  53. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  54. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  55. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  56. #define S3C64XX_SPI_PSR_MASK 0xff
  57. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  58. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  59. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  60. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  62. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  63. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  64. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  65. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  66. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  67. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  68. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  69. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  70. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  71. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  72. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  73. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  74. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  75. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  76. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  77. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  78. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  79. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  80. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  81. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  82. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  83. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  84. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  85. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  86. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  87. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  88. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  89. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  90. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  91. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  92. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  93. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  94. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  95. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  96. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  97. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  98. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  99. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  100. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  101. #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
  102. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
  103. (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
  104. #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
  105. #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
  106. FIFO_LVL_MASK(i))
  107. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  108. #define S3C64XX_SPI_TRAILCNT_OFF 19
  109. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  110. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  111. #define RXBUSY (1<<2)
  112. #define TXBUSY (1<<3)
  113. struct s3c64xx_spi_dma_data {
  114. unsigned ch;
  115. enum dma_data_direction direction;
  116. enum dma_ch dmach;
  117. };
  118. /**
  119. * struct s3c64xx_spi_info - SPI Controller hardware info
  120. * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
  121. * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
  122. * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
  123. * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
  124. * @clk_from_cmu: True, if the controller does not include a clock mux and
  125. * prescaler unit.
  126. *
  127. * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
  128. * differ in some aspects such as the size of the fifo and spi bus clock
  129. * setup. Such differences are specified to the driver using this structure
  130. * which is provided as driver data to the driver.
  131. */
  132. struct s3c64xx_spi_port_config {
  133. int fifo_lvl_mask[MAX_SPI_PORTS];
  134. int rx_lvl_offset;
  135. int tx_st_done;
  136. bool high_speed;
  137. bool clk_from_cmu;
  138. };
  139. /**
  140. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  141. * @clk: Pointer to the spi clock.
  142. * @src_clk: Pointer to the clock used to generate SPI signals.
  143. * @master: Pointer to the SPI Protocol master.
  144. * @cntrlr_info: Platform specific data for the controller this driver manages.
  145. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  146. * @queue: To log SPI xfer requests.
  147. * @lock: Controller specific lock.
  148. * @state: Set of FLAGS to indicate status.
  149. * @rx_dmach: Controller's DMA channel for Rx.
  150. * @tx_dmach: Controller's DMA channel for Tx.
  151. * @sfr_start: BUS address of SPI controller regs.
  152. * @regs: Pointer to ioremap'ed controller registers.
  153. * @irq: interrupt
  154. * @xfer_completion: To indicate completion of xfer task.
  155. * @cur_mode: Stores the active configuration of the controller.
  156. * @cur_bpw: Stores the active bits per word settings.
  157. * @cur_speed: Stores the active xfer clock speed.
  158. */
  159. struct s3c64xx_spi_driver_data {
  160. void __iomem *regs;
  161. struct clk *clk;
  162. struct clk *src_clk;
  163. struct platform_device *pdev;
  164. struct spi_master *master;
  165. struct s3c64xx_spi_info *cntrlr_info;
  166. struct spi_device *tgl_spi;
  167. struct list_head queue;
  168. spinlock_t lock;
  169. unsigned long sfr_start;
  170. struct completion xfer_completion;
  171. unsigned state;
  172. unsigned cur_mode, cur_bpw;
  173. unsigned cur_speed;
  174. struct s3c64xx_spi_dma_data rx_dma;
  175. struct s3c64xx_spi_dma_data tx_dma;
  176. struct samsung_dma_ops *ops;
  177. struct s3c64xx_spi_port_config *port_conf;
  178. unsigned int port_id;
  179. };
  180. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  181. .name = "samsung-spi-dma",
  182. };
  183. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  184. {
  185. void __iomem *regs = sdd->regs;
  186. unsigned long loops;
  187. u32 val;
  188. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  189. val = readl(regs + S3C64XX_SPI_CH_CFG);
  190. val |= S3C64XX_SPI_CH_SW_RST;
  191. val &= ~S3C64XX_SPI_CH_HS_EN;
  192. writel(val, regs + S3C64XX_SPI_CH_CFG);
  193. /* Flush TxFIFO*/
  194. loops = msecs_to_loops(1);
  195. do {
  196. val = readl(regs + S3C64XX_SPI_STATUS);
  197. } while (TX_FIFO_LVL(val, sdd) && loops--);
  198. if (loops == 0)
  199. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  200. /* Flush RxFIFO*/
  201. loops = msecs_to_loops(1);
  202. do {
  203. val = readl(regs + S3C64XX_SPI_STATUS);
  204. if (RX_FIFO_LVL(val, sdd))
  205. readl(regs + S3C64XX_SPI_RX_DATA);
  206. else
  207. break;
  208. } while (loops--);
  209. if (loops == 0)
  210. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  211. val = readl(regs + S3C64XX_SPI_CH_CFG);
  212. val &= ~S3C64XX_SPI_CH_SW_RST;
  213. writel(val, regs + S3C64XX_SPI_CH_CFG);
  214. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  215. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  216. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  217. val = readl(regs + S3C64XX_SPI_CH_CFG);
  218. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  219. writel(val, regs + S3C64XX_SPI_CH_CFG);
  220. }
  221. static void s3c64xx_spi_dmacb(void *data)
  222. {
  223. struct s3c64xx_spi_driver_data *sdd;
  224. struct s3c64xx_spi_dma_data *dma = data;
  225. unsigned long flags;
  226. if (dma->direction == DMA_DEV_TO_MEM)
  227. sdd = container_of(data,
  228. struct s3c64xx_spi_driver_data, rx_dma);
  229. else
  230. sdd = container_of(data,
  231. struct s3c64xx_spi_driver_data, tx_dma);
  232. spin_lock_irqsave(&sdd->lock, flags);
  233. if (dma->direction == DMA_DEV_TO_MEM) {
  234. sdd->state &= ~RXBUSY;
  235. if (!(sdd->state & TXBUSY))
  236. complete(&sdd->xfer_completion);
  237. } else {
  238. sdd->state &= ~TXBUSY;
  239. if (!(sdd->state & RXBUSY))
  240. complete(&sdd->xfer_completion);
  241. }
  242. spin_unlock_irqrestore(&sdd->lock, flags);
  243. }
  244. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  245. unsigned len, dma_addr_t buf)
  246. {
  247. struct s3c64xx_spi_driver_data *sdd;
  248. struct samsung_dma_prep info;
  249. struct samsung_dma_config config;
  250. if (dma->direction == DMA_DEV_TO_MEM) {
  251. sdd = container_of((void *)dma,
  252. struct s3c64xx_spi_driver_data, rx_dma);
  253. config.direction = sdd->rx_dma.direction;
  254. config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  255. config.width = sdd->cur_bpw / 8;
  256. sdd->ops->config(sdd->rx_dma.ch, &config);
  257. } else {
  258. sdd = container_of((void *)dma,
  259. struct s3c64xx_spi_driver_data, tx_dma);
  260. config.direction = sdd->tx_dma.direction;
  261. config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  262. config.width = sdd->cur_bpw / 8;
  263. sdd->ops->config(sdd->tx_dma.ch, &config);
  264. }
  265. info.cap = DMA_SLAVE;
  266. info.len = len;
  267. info.fp = s3c64xx_spi_dmacb;
  268. info.fp_param = dma;
  269. info.direction = dma->direction;
  270. info.buf = buf;
  271. sdd->ops->prepare(dma->ch, &info);
  272. sdd->ops->trigger(dma->ch);
  273. }
  274. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  275. {
  276. struct samsung_dma_req req;
  277. sdd->ops = samsung_dma_get_ops();
  278. req.cap = DMA_SLAVE;
  279. req.client = &s3c64xx_spi_dma_client;
  280. sdd->rx_dma.ch = sdd->ops->request(sdd->rx_dma.dmach, &req);
  281. sdd->tx_dma.ch = sdd->ops->request(sdd->tx_dma.dmach, &req);
  282. return 1;
  283. }
  284. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  285. struct spi_device *spi,
  286. struct spi_transfer *xfer, int dma_mode)
  287. {
  288. void __iomem *regs = sdd->regs;
  289. u32 modecfg, chcfg;
  290. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  291. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  292. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  293. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  294. if (dma_mode) {
  295. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  296. } else {
  297. /* Always shift in data in FIFO, even if xfer is Tx only,
  298. * this helps setting PCKT_CNT value for generating clocks
  299. * as exactly needed.
  300. */
  301. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  302. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  303. | S3C64XX_SPI_PACKET_CNT_EN,
  304. regs + S3C64XX_SPI_PACKET_CNT);
  305. }
  306. if (xfer->tx_buf != NULL) {
  307. sdd->state |= TXBUSY;
  308. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  309. if (dma_mode) {
  310. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  311. prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
  312. } else {
  313. switch (sdd->cur_bpw) {
  314. case 32:
  315. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  316. xfer->tx_buf, xfer->len / 4);
  317. break;
  318. case 16:
  319. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  320. xfer->tx_buf, xfer->len / 2);
  321. break;
  322. default:
  323. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  324. xfer->tx_buf, xfer->len);
  325. break;
  326. }
  327. }
  328. }
  329. if (xfer->rx_buf != NULL) {
  330. sdd->state |= RXBUSY;
  331. if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
  332. && !(sdd->cur_mode & SPI_CPHA))
  333. chcfg |= S3C64XX_SPI_CH_HS_EN;
  334. if (dma_mode) {
  335. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  336. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  337. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  338. | S3C64XX_SPI_PACKET_CNT_EN,
  339. regs + S3C64XX_SPI_PACKET_CNT);
  340. prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
  341. }
  342. }
  343. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  344. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  345. }
  346. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  347. struct spi_device *spi)
  348. {
  349. struct s3c64xx_spi_csinfo *cs;
  350. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  351. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  352. /* Deselect the last toggled device */
  353. cs = sdd->tgl_spi->controller_data;
  354. gpio_set_value(cs->line,
  355. spi->mode & SPI_CS_HIGH ? 0 : 1);
  356. }
  357. sdd->tgl_spi = NULL;
  358. }
  359. cs = spi->controller_data;
  360. gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  361. }
  362. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  363. struct spi_transfer *xfer, int dma_mode)
  364. {
  365. void __iomem *regs = sdd->regs;
  366. unsigned long val;
  367. int ms;
  368. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  369. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  370. ms += 10; /* some tolerance */
  371. if (dma_mode) {
  372. val = msecs_to_jiffies(ms) + 10;
  373. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  374. } else {
  375. u32 status;
  376. val = msecs_to_loops(ms);
  377. do {
  378. status = readl(regs + S3C64XX_SPI_STATUS);
  379. } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
  380. }
  381. if (!val)
  382. return -EIO;
  383. if (dma_mode) {
  384. u32 status;
  385. /*
  386. * DmaTx returns after simply writing data in the FIFO,
  387. * w/o waiting for real transmission on the bus to finish.
  388. * DmaRx returns only after Dma read data from FIFO which
  389. * needs bus transmission to finish, so we don't worry if
  390. * Xfer involved Rx(with or without Tx).
  391. */
  392. if (xfer->rx_buf == NULL) {
  393. val = msecs_to_loops(10);
  394. status = readl(regs + S3C64XX_SPI_STATUS);
  395. while ((TX_FIFO_LVL(status, sdd)
  396. || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
  397. && --val) {
  398. cpu_relax();
  399. status = readl(regs + S3C64XX_SPI_STATUS);
  400. }
  401. if (!val)
  402. return -EIO;
  403. }
  404. } else {
  405. /* If it was only Tx */
  406. if (xfer->rx_buf == NULL) {
  407. sdd->state &= ~TXBUSY;
  408. return 0;
  409. }
  410. switch (sdd->cur_bpw) {
  411. case 32:
  412. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  413. xfer->rx_buf, xfer->len / 4);
  414. break;
  415. case 16:
  416. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  417. xfer->rx_buf, xfer->len / 2);
  418. break;
  419. default:
  420. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  421. xfer->rx_buf, xfer->len);
  422. break;
  423. }
  424. sdd->state &= ~RXBUSY;
  425. }
  426. return 0;
  427. }
  428. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  429. struct spi_device *spi)
  430. {
  431. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  432. if (sdd->tgl_spi == spi)
  433. sdd->tgl_spi = NULL;
  434. gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  435. }
  436. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  437. {
  438. void __iomem *regs = sdd->regs;
  439. u32 val;
  440. /* Disable Clock */
  441. if (sdd->port_conf->clk_from_cmu) {
  442. clk_disable(sdd->src_clk);
  443. } else {
  444. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  445. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  446. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  447. }
  448. /* Set Polarity and Phase */
  449. val = readl(regs + S3C64XX_SPI_CH_CFG);
  450. val &= ~(S3C64XX_SPI_CH_SLAVE |
  451. S3C64XX_SPI_CPOL_L |
  452. S3C64XX_SPI_CPHA_B);
  453. if (sdd->cur_mode & SPI_CPOL)
  454. val |= S3C64XX_SPI_CPOL_L;
  455. if (sdd->cur_mode & SPI_CPHA)
  456. val |= S3C64XX_SPI_CPHA_B;
  457. writel(val, regs + S3C64XX_SPI_CH_CFG);
  458. /* Set Channel & DMA Mode */
  459. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  460. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  461. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  462. switch (sdd->cur_bpw) {
  463. case 32:
  464. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  465. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  466. break;
  467. case 16:
  468. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  469. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  470. break;
  471. default:
  472. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  473. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  474. break;
  475. }
  476. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  477. if (sdd->port_conf->clk_from_cmu) {
  478. /* Configure Clock */
  479. /* There is half-multiplier before the SPI */
  480. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  481. /* Enable Clock */
  482. clk_enable(sdd->src_clk);
  483. } else {
  484. /* Configure Clock */
  485. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  486. val &= ~S3C64XX_SPI_PSR_MASK;
  487. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  488. & S3C64XX_SPI_PSR_MASK);
  489. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  490. /* Enable Clock */
  491. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  492. val |= S3C64XX_SPI_ENCLK_ENABLE;
  493. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  494. }
  495. }
  496. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  497. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  498. struct spi_message *msg)
  499. {
  500. struct device *dev = &sdd->pdev->dev;
  501. struct spi_transfer *xfer;
  502. if (msg->is_dma_mapped)
  503. return 0;
  504. /* First mark all xfer unmapped */
  505. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  506. xfer->rx_dma = XFER_DMAADDR_INVALID;
  507. xfer->tx_dma = XFER_DMAADDR_INVALID;
  508. }
  509. /* Map until end or first fail */
  510. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  511. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  512. continue;
  513. if (xfer->tx_buf != NULL) {
  514. xfer->tx_dma = dma_map_single(dev,
  515. (void *)xfer->tx_buf, xfer->len,
  516. DMA_TO_DEVICE);
  517. if (dma_mapping_error(dev, xfer->tx_dma)) {
  518. dev_err(dev, "dma_map_single Tx failed\n");
  519. xfer->tx_dma = XFER_DMAADDR_INVALID;
  520. return -ENOMEM;
  521. }
  522. }
  523. if (xfer->rx_buf != NULL) {
  524. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  525. xfer->len, DMA_FROM_DEVICE);
  526. if (dma_mapping_error(dev, xfer->rx_dma)) {
  527. dev_err(dev, "dma_map_single Rx failed\n");
  528. dma_unmap_single(dev, xfer->tx_dma,
  529. xfer->len, DMA_TO_DEVICE);
  530. xfer->tx_dma = XFER_DMAADDR_INVALID;
  531. xfer->rx_dma = XFER_DMAADDR_INVALID;
  532. return -ENOMEM;
  533. }
  534. }
  535. }
  536. return 0;
  537. }
  538. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  539. struct spi_message *msg)
  540. {
  541. struct device *dev = &sdd->pdev->dev;
  542. struct spi_transfer *xfer;
  543. if (msg->is_dma_mapped)
  544. return;
  545. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  546. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  547. continue;
  548. if (xfer->rx_buf != NULL
  549. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  550. dma_unmap_single(dev, xfer->rx_dma,
  551. xfer->len, DMA_FROM_DEVICE);
  552. if (xfer->tx_buf != NULL
  553. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  554. dma_unmap_single(dev, xfer->tx_dma,
  555. xfer->len, DMA_TO_DEVICE);
  556. }
  557. }
  558. static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
  559. struct spi_message *msg)
  560. {
  561. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  562. struct spi_device *spi = msg->spi;
  563. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  564. struct spi_transfer *xfer;
  565. int status = 0, cs_toggle = 0;
  566. u32 speed;
  567. u8 bpw;
  568. /* If Master's(controller) state differs from that needed by Slave */
  569. if (sdd->cur_speed != spi->max_speed_hz
  570. || sdd->cur_mode != spi->mode
  571. || sdd->cur_bpw != spi->bits_per_word) {
  572. sdd->cur_bpw = spi->bits_per_word;
  573. sdd->cur_speed = spi->max_speed_hz;
  574. sdd->cur_mode = spi->mode;
  575. s3c64xx_spi_config(sdd);
  576. }
  577. /* Map all the transfers if needed */
  578. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  579. dev_err(&spi->dev,
  580. "Xfer: Unable to map message buffers!\n");
  581. status = -ENOMEM;
  582. goto out;
  583. }
  584. /* Configure feedback delay */
  585. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  586. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  587. unsigned long flags;
  588. int use_dma;
  589. INIT_COMPLETION(sdd->xfer_completion);
  590. /* Only BPW and Speed may change across transfers */
  591. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  592. speed = xfer->speed_hz ? : spi->max_speed_hz;
  593. if (xfer->len % (bpw / 8)) {
  594. dev_err(&spi->dev,
  595. "Xfer length(%u) not a multiple of word size(%u)\n",
  596. xfer->len, bpw / 8);
  597. status = -EIO;
  598. goto out;
  599. }
  600. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  601. sdd->cur_bpw = bpw;
  602. sdd->cur_speed = speed;
  603. s3c64xx_spi_config(sdd);
  604. }
  605. /* Polling method for xfers not bigger than FIFO capacity */
  606. if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
  607. use_dma = 0;
  608. else
  609. use_dma = 1;
  610. spin_lock_irqsave(&sdd->lock, flags);
  611. /* Pending only which is to be done */
  612. sdd->state &= ~RXBUSY;
  613. sdd->state &= ~TXBUSY;
  614. enable_datapath(sdd, spi, xfer, use_dma);
  615. /* Slave Select */
  616. enable_cs(sdd, spi);
  617. /* Start the signals */
  618. S3C64XX_SPI_ACT(sdd);
  619. spin_unlock_irqrestore(&sdd->lock, flags);
  620. status = wait_for_xfer(sdd, xfer, use_dma);
  621. /* Quiese the signals */
  622. S3C64XX_SPI_DEACT(sdd);
  623. if (status) {
  624. dev_err(&spi->dev, "I/O Error: "
  625. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  626. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  627. (sdd->state & RXBUSY) ? 'f' : 'p',
  628. (sdd->state & TXBUSY) ? 'f' : 'p',
  629. xfer->len);
  630. if (use_dma) {
  631. if (xfer->tx_buf != NULL
  632. && (sdd->state & TXBUSY))
  633. sdd->ops->stop(sdd->tx_dma.ch);
  634. if (xfer->rx_buf != NULL
  635. && (sdd->state & RXBUSY))
  636. sdd->ops->stop(sdd->rx_dma.ch);
  637. }
  638. goto out;
  639. }
  640. if (xfer->delay_usecs)
  641. udelay(xfer->delay_usecs);
  642. if (xfer->cs_change) {
  643. /* Hint that the next mssg is gonna be
  644. for the same device */
  645. if (list_is_last(&xfer->transfer_list,
  646. &msg->transfers))
  647. cs_toggle = 1;
  648. else
  649. disable_cs(sdd, spi);
  650. }
  651. msg->actual_length += xfer->len;
  652. flush_fifo(sdd);
  653. }
  654. out:
  655. if (!cs_toggle || status)
  656. disable_cs(sdd, spi);
  657. else
  658. sdd->tgl_spi = spi;
  659. s3c64xx_spi_unmap_mssg(sdd, msg);
  660. msg->status = status;
  661. spi_finalize_current_message(master);
  662. return 0;
  663. }
  664. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  665. {
  666. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  667. /* Acquire DMA channels */
  668. while (!acquire_dma(sdd))
  669. msleep(10);
  670. pm_runtime_get_sync(&sdd->pdev->dev);
  671. return 0;
  672. }
  673. static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
  674. {
  675. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  676. /* Free DMA channels */
  677. sdd->ops->release(sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
  678. sdd->ops->release(sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
  679. pm_runtime_put(&sdd->pdev->dev);
  680. return 0;
  681. }
  682. /*
  683. * Here we only check the validity of requested configuration
  684. * and save the configuration in a local data-structure.
  685. * The controller is actually configured only just before we
  686. * get a message to transfer.
  687. */
  688. static int s3c64xx_spi_setup(struct spi_device *spi)
  689. {
  690. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  691. struct s3c64xx_spi_driver_data *sdd;
  692. struct s3c64xx_spi_info *sci;
  693. struct spi_message *msg;
  694. unsigned long flags;
  695. int err = 0;
  696. if (cs == NULL) {
  697. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  698. return -ENODEV;
  699. }
  700. if (!spi_get_ctldata(spi)) {
  701. err = gpio_request(cs->line, dev_name(&spi->dev));
  702. if (err) {
  703. dev_err(&spi->dev, "request for slave select gpio "
  704. "line [%d] failed\n", cs->line);
  705. return -EBUSY;
  706. }
  707. spi_set_ctldata(spi, cs);
  708. }
  709. sdd = spi_master_get_devdata(spi->master);
  710. sci = sdd->cntrlr_info;
  711. spin_lock_irqsave(&sdd->lock, flags);
  712. list_for_each_entry(msg, &sdd->queue, queue) {
  713. /* Is some mssg is already queued for this device */
  714. if (msg->spi == spi) {
  715. dev_err(&spi->dev,
  716. "setup: attempt while mssg in queue!\n");
  717. spin_unlock_irqrestore(&sdd->lock, flags);
  718. return -EBUSY;
  719. }
  720. }
  721. spin_unlock_irqrestore(&sdd->lock, flags);
  722. if (spi->bits_per_word != 8
  723. && spi->bits_per_word != 16
  724. && spi->bits_per_word != 32) {
  725. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  726. spi->bits_per_word);
  727. err = -EINVAL;
  728. goto setup_exit;
  729. }
  730. pm_runtime_get_sync(&sdd->pdev->dev);
  731. /* Check if we can provide the requested rate */
  732. if (!sdd->port_conf->clk_from_cmu) {
  733. u32 psr, speed;
  734. /* Max possible */
  735. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  736. if (spi->max_speed_hz > speed)
  737. spi->max_speed_hz = speed;
  738. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  739. psr &= S3C64XX_SPI_PSR_MASK;
  740. if (psr == S3C64XX_SPI_PSR_MASK)
  741. psr--;
  742. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  743. if (spi->max_speed_hz < speed) {
  744. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  745. psr++;
  746. } else {
  747. err = -EINVAL;
  748. goto setup_exit;
  749. }
  750. }
  751. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  752. if (spi->max_speed_hz >= speed)
  753. spi->max_speed_hz = speed;
  754. else
  755. err = -EINVAL;
  756. }
  757. pm_runtime_put(&sdd->pdev->dev);
  758. setup_exit:
  759. /* setup() returns with device de-selected */
  760. disable_cs(sdd, spi);
  761. return err;
  762. }
  763. static void s3c64xx_spi_cleanup(struct spi_device *spi)
  764. {
  765. struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
  766. if (cs)
  767. gpio_free(cs->line);
  768. spi_set_ctldata(spi, NULL);
  769. }
  770. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  771. {
  772. struct s3c64xx_spi_driver_data *sdd = data;
  773. struct spi_master *spi = sdd->master;
  774. unsigned int val;
  775. val = readl(sdd->regs + S3C64XX_SPI_PENDING_CLR);
  776. val &= S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  777. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  778. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  779. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  780. writel(val, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  781. if (val & S3C64XX_SPI_PND_RX_OVERRUN_CLR)
  782. dev_err(&spi->dev, "RX overrun\n");
  783. if (val & S3C64XX_SPI_PND_RX_UNDERRUN_CLR)
  784. dev_err(&spi->dev, "RX underrun\n");
  785. if (val & S3C64XX_SPI_PND_TX_OVERRUN_CLR)
  786. dev_err(&spi->dev, "TX overrun\n");
  787. if (val & S3C64XX_SPI_PND_TX_UNDERRUN_CLR)
  788. dev_err(&spi->dev, "TX underrun\n");
  789. return IRQ_HANDLED;
  790. }
  791. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  792. {
  793. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  794. void __iomem *regs = sdd->regs;
  795. unsigned int val;
  796. sdd->cur_speed = 0;
  797. S3C64XX_SPI_DEACT(sdd);
  798. /* Disable Interrupts - we use Polling if not DMA mode */
  799. writel(0, regs + S3C64XX_SPI_INT_EN);
  800. if (!sdd->port_conf->clk_from_cmu)
  801. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  802. regs + S3C64XX_SPI_CLK_CFG);
  803. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  804. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  805. /* Clear any irq pending bits */
  806. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  807. regs + S3C64XX_SPI_PENDING_CLR);
  808. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  809. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  810. val &= ~S3C64XX_SPI_MODE_4BURST;
  811. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  812. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  813. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  814. flush_fifo(sdd);
  815. }
  816. static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
  817. struct platform_device *pdev)
  818. {
  819. return (struct s3c64xx_spi_port_config *)
  820. platform_get_device_id(pdev)->driver_data;
  821. }
  822. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  823. {
  824. struct resource *mem_res, *dmatx_res, *dmarx_res;
  825. struct s3c64xx_spi_driver_data *sdd;
  826. struct s3c64xx_spi_info *sci;
  827. struct spi_master *master;
  828. int ret, irq;
  829. char clk_name[16];
  830. if (pdev->id < 0) {
  831. dev_err(&pdev->dev,
  832. "Invalid platform device id-%d\n", pdev->id);
  833. return -ENODEV;
  834. }
  835. if (pdev->dev.platform_data == NULL) {
  836. dev_err(&pdev->dev, "platform_data missing!\n");
  837. return -ENODEV;
  838. }
  839. sci = pdev->dev.platform_data;
  840. /* Check for availability of necessary resource */
  841. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  842. if (dmatx_res == NULL) {
  843. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  844. return -ENXIO;
  845. }
  846. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  847. if (dmarx_res == NULL) {
  848. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  849. return -ENXIO;
  850. }
  851. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  852. if (mem_res == NULL) {
  853. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  854. return -ENXIO;
  855. }
  856. irq = platform_get_irq(pdev, 0);
  857. if (irq < 0) {
  858. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  859. return irq;
  860. }
  861. master = spi_alloc_master(&pdev->dev,
  862. sizeof(struct s3c64xx_spi_driver_data));
  863. if (master == NULL) {
  864. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  865. return -ENOMEM;
  866. }
  867. platform_set_drvdata(pdev, master);
  868. sdd = spi_master_get_devdata(master);
  869. sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
  870. sdd->master = master;
  871. sdd->cntrlr_info = sci;
  872. sdd->pdev = pdev;
  873. sdd->sfr_start = mem_res->start;
  874. sdd->tx_dma.dmach = dmatx_res->start;
  875. sdd->tx_dma.direction = DMA_MEM_TO_DEV;
  876. sdd->rx_dma.dmach = dmarx_res->start;
  877. sdd->rx_dma.direction = DMA_DEV_TO_MEM;
  878. sdd->port_id = pdev->id;
  879. sdd->cur_bpw = 8;
  880. master->bus_num = sdd->port_id;
  881. master->setup = s3c64xx_spi_setup;
  882. master->cleanup = s3c64xx_spi_cleanup;
  883. master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
  884. master->transfer_one_message = s3c64xx_spi_transfer_one_message;
  885. master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
  886. master->num_chipselect = sci->num_cs;
  887. master->dma_alignment = 8;
  888. /* the spi->mode bits understood by this driver: */
  889. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  890. if (request_mem_region(mem_res->start,
  891. resource_size(mem_res), pdev->name) == NULL) {
  892. dev_err(&pdev->dev, "Req mem region failed\n");
  893. ret = -ENXIO;
  894. goto err0;
  895. }
  896. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  897. if (sdd->regs == NULL) {
  898. dev_err(&pdev->dev, "Unable to remap IO\n");
  899. ret = -ENXIO;
  900. goto err1;
  901. }
  902. if (sci->cfg_gpio == NULL || sci->cfg_gpio()) {
  903. dev_err(&pdev->dev, "Unable to config gpio\n");
  904. ret = -EBUSY;
  905. goto err2;
  906. }
  907. /* Setup clocks */
  908. sdd->clk = clk_get(&pdev->dev, "spi");
  909. if (IS_ERR(sdd->clk)) {
  910. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  911. ret = PTR_ERR(sdd->clk);
  912. goto err3;
  913. }
  914. if (clk_enable(sdd->clk)) {
  915. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  916. ret = -EBUSY;
  917. goto err4;
  918. }
  919. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  920. sdd->src_clk = clk_get(&pdev->dev, clk_name);
  921. if (IS_ERR(sdd->src_clk)) {
  922. dev_err(&pdev->dev,
  923. "Unable to acquire clock '%s'\n", clk_name);
  924. ret = PTR_ERR(sdd->src_clk);
  925. goto err5;
  926. }
  927. if (clk_enable(sdd->src_clk)) {
  928. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  929. ret = -EBUSY;
  930. goto err6;
  931. }
  932. /* Setup Deufult Mode */
  933. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  934. spin_lock_init(&sdd->lock);
  935. init_completion(&sdd->xfer_completion);
  936. INIT_LIST_HEAD(&sdd->queue);
  937. ret = request_irq(irq, s3c64xx_spi_irq, 0, "spi-s3c64xx", sdd);
  938. if (ret != 0) {
  939. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  940. irq, ret);
  941. goto err7;
  942. }
  943. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  944. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  945. sdd->regs + S3C64XX_SPI_INT_EN);
  946. if (spi_register_master(master)) {
  947. dev_err(&pdev->dev, "cannot register SPI master\n");
  948. ret = -EBUSY;
  949. goto err8;
  950. }
  951. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  952. "with %d Slaves attached\n",
  953. sdd->port_id, master->num_chipselect);
  954. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  955. mem_res->end, mem_res->start,
  956. sdd->rx_dma.dmach, sdd->tx_dma.dmach);
  957. pm_runtime_enable(&pdev->dev);
  958. return 0;
  959. err8:
  960. free_irq(irq, sdd);
  961. err7:
  962. clk_disable(sdd->src_clk);
  963. err6:
  964. clk_put(sdd->src_clk);
  965. err5:
  966. clk_disable(sdd->clk);
  967. err4:
  968. clk_put(sdd->clk);
  969. err3:
  970. err2:
  971. iounmap((void *) sdd->regs);
  972. err1:
  973. release_mem_region(mem_res->start, resource_size(mem_res));
  974. err0:
  975. platform_set_drvdata(pdev, NULL);
  976. spi_master_put(master);
  977. return ret;
  978. }
  979. static int s3c64xx_spi_remove(struct platform_device *pdev)
  980. {
  981. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  982. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  983. struct resource *mem_res;
  984. pm_runtime_disable(&pdev->dev);
  985. spi_unregister_master(master);
  986. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  987. free_irq(platform_get_irq(pdev, 0), sdd);
  988. clk_disable(sdd->src_clk);
  989. clk_put(sdd->src_clk);
  990. clk_disable(sdd->clk);
  991. clk_put(sdd->clk);
  992. iounmap((void *) sdd->regs);
  993. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  994. if (mem_res != NULL)
  995. release_mem_region(mem_res->start, resource_size(mem_res));
  996. platform_set_drvdata(pdev, NULL);
  997. spi_master_put(master);
  998. return 0;
  999. }
  1000. #ifdef CONFIG_PM
  1001. static int s3c64xx_spi_suspend(struct device *dev)
  1002. {
  1003. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1004. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1005. spi_master_suspend(master);
  1006. /* Disable the clock */
  1007. clk_disable(sdd->src_clk);
  1008. clk_disable(sdd->clk);
  1009. sdd->cur_speed = 0; /* Output Clock is stopped */
  1010. return 0;
  1011. }
  1012. static int s3c64xx_spi_resume(struct device *dev)
  1013. {
  1014. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1015. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1016. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  1017. sci->cfg_gpio();
  1018. /* Enable the clock */
  1019. clk_enable(sdd->src_clk);
  1020. clk_enable(sdd->clk);
  1021. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1022. spi_master_resume(master);
  1023. return 0;
  1024. }
  1025. #endif /* CONFIG_PM */
  1026. #ifdef CONFIG_PM_RUNTIME
  1027. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  1028. {
  1029. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1030. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1031. clk_disable(sdd->clk);
  1032. clk_disable(sdd->src_clk);
  1033. return 0;
  1034. }
  1035. static int s3c64xx_spi_runtime_resume(struct device *dev)
  1036. {
  1037. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1038. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1039. clk_enable(sdd->src_clk);
  1040. clk_enable(sdd->clk);
  1041. return 0;
  1042. }
  1043. #endif /* CONFIG_PM_RUNTIME */
  1044. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1045. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1046. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1047. s3c64xx_spi_runtime_resume, NULL)
  1048. };
  1049. struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
  1050. .fifo_lvl_mask = { 0x7f },
  1051. .rx_lvl_offset = 13,
  1052. .tx_st_done = 21,
  1053. .high_speed = true,
  1054. };
  1055. struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
  1056. .fifo_lvl_mask = { 0x7f, 0x7F },
  1057. .rx_lvl_offset = 13,
  1058. .tx_st_done = 21,
  1059. };
  1060. struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
  1061. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1062. .rx_lvl_offset = 15,
  1063. .tx_st_done = 25,
  1064. };
  1065. struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
  1066. .fifo_lvl_mask = { 0x7f, 0x7F },
  1067. .rx_lvl_offset = 13,
  1068. .tx_st_done = 21,
  1069. .high_speed = true,
  1070. };
  1071. struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
  1072. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1073. .rx_lvl_offset = 15,
  1074. .tx_st_done = 25,
  1075. .high_speed = true,
  1076. };
  1077. struct s3c64xx_spi_port_config exynos4_spi_port_config = {
  1078. .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
  1079. .rx_lvl_offset = 15,
  1080. .tx_st_done = 25,
  1081. .high_speed = true,
  1082. .clk_from_cmu = true,
  1083. };
  1084. static struct platform_device_id s3c64xx_spi_driver_ids[] = {
  1085. {
  1086. .name = "s3c2443-spi",
  1087. .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
  1088. }, {
  1089. .name = "s3c6410-spi",
  1090. .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
  1091. }, {
  1092. .name = "s5p64x0-spi",
  1093. .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
  1094. }, {
  1095. .name = "s5pc100-spi",
  1096. .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
  1097. }, {
  1098. .name = "s5pv210-spi",
  1099. .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
  1100. }, {
  1101. .name = "exynos4210-spi",
  1102. .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
  1103. },
  1104. { },
  1105. };
  1106. static struct platform_driver s3c64xx_spi_driver = {
  1107. .driver = {
  1108. .name = "s3c64xx-spi",
  1109. .owner = THIS_MODULE,
  1110. .pm = &s3c64xx_spi_pm,
  1111. },
  1112. .remove = s3c64xx_spi_remove,
  1113. .id_table = s3c64xx_spi_driver_ids,
  1114. };
  1115. MODULE_ALIAS("platform:s3c64xx-spi");
  1116. static int __init s3c64xx_spi_init(void)
  1117. {
  1118. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  1119. }
  1120. subsys_initcall(s3c64xx_spi_init);
  1121. static void __exit s3c64xx_spi_exit(void)
  1122. {
  1123. platform_driver_unregister(&s3c64xx_spi_driver);
  1124. }
  1125. module_exit(s3c64xx_spi_exit);
  1126. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1127. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1128. MODULE_LICENSE("GPL");