main.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "core.h"
  17. #include "hif-ops.h"
  18. #include "cfg80211.h"
  19. #include "target.h"
  20. #include "debug.h"
  21. struct ath6kl_sta *ath6kl_find_sta(struct ath6kl_vif *vif, u8 *node_addr)
  22. {
  23. struct ath6kl *ar = vif->ar;
  24. struct ath6kl_sta *conn = NULL;
  25. u8 i, max_conn;
  26. max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
  27. for (i = 0; i < max_conn; i++) {
  28. if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
  29. conn = &ar->sta_list[i];
  30. break;
  31. }
  32. }
  33. return conn;
  34. }
  35. struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
  36. {
  37. struct ath6kl_sta *conn = NULL;
  38. u8 ctr;
  39. for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
  40. if (ar->sta_list[ctr].aid == aid) {
  41. conn = &ar->sta_list[ctr];
  42. break;
  43. }
  44. }
  45. return conn;
  46. }
  47. static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
  48. u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
  49. {
  50. struct ath6kl_sta *sta;
  51. u8 free_slot;
  52. free_slot = aid - 1;
  53. sta = &ar->sta_list[free_slot];
  54. memcpy(sta->mac, mac, ETH_ALEN);
  55. if (ielen <= ATH6KL_MAX_IE)
  56. memcpy(sta->wpa_ie, wpaie, ielen);
  57. sta->aid = aid;
  58. sta->keymgmt = keymgmt;
  59. sta->ucipher = ucipher;
  60. sta->auth = auth;
  61. ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
  62. ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
  63. }
  64. static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
  65. {
  66. struct ath6kl_sta *sta = &ar->sta_list[i];
  67. /* empty the queued pkts in the PS queue if any */
  68. spin_lock_bh(&sta->psq_lock);
  69. skb_queue_purge(&sta->psq);
  70. spin_unlock_bh(&sta->psq_lock);
  71. memset(&ar->ap_stats.sta[sta->aid - 1], 0,
  72. sizeof(struct wmi_per_sta_stat));
  73. memset(sta->mac, 0, ETH_ALEN);
  74. memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
  75. sta->aid = 0;
  76. sta->sta_flags = 0;
  77. ar->sta_list_index = ar->sta_list_index & ~(1 << i);
  78. }
  79. static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
  80. {
  81. u8 i, removed = 0;
  82. if (is_zero_ether_addr(mac))
  83. return removed;
  84. if (is_broadcast_ether_addr(mac)) {
  85. ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
  86. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  87. if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
  88. ath6kl_sta_cleanup(ar, i);
  89. removed = 1;
  90. }
  91. }
  92. } else {
  93. for (i = 0; i < AP_MAX_NUM_STA; i++) {
  94. if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
  95. ath6kl_dbg(ATH6KL_DBG_TRC,
  96. "deleting station %pM aid=%d reason=%d\n",
  97. mac, ar->sta_list[i].aid, reason);
  98. ath6kl_sta_cleanup(ar, i);
  99. removed = 1;
  100. break;
  101. }
  102. }
  103. }
  104. return removed;
  105. }
  106. enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
  107. {
  108. struct ath6kl *ar = devt;
  109. return ar->ac2ep_map[ac];
  110. }
  111. struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
  112. {
  113. struct ath6kl_cookie *cookie;
  114. cookie = ar->cookie_list;
  115. if (cookie != NULL) {
  116. ar->cookie_list = cookie->arc_list_next;
  117. ar->cookie_count--;
  118. }
  119. return cookie;
  120. }
  121. void ath6kl_cookie_init(struct ath6kl *ar)
  122. {
  123. u32 i;
  124. ar->cookie_list = NULL;
  125. ar->cookie_count = 0;
  126. memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
  127. for (i = 0; i < MAX_COOKIE_NUM; i++)
  128. ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
  129. }
  130. void ath6kl_cookie_cleanup(struct ath6kl *ar)
  131. {
  132. ar->cookie_list = NULL;
  133. ar->cookie_count = 0;
  134. }
  135. void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
  136. {
  137. /* Insert first */
  138. if (!ar || !cookie)
  139. return;
  140. cookie->arc_list_next = ar->cookie_list;
  141. ar->cookie_list = cookie;
  142. ar->cookie_count++;
  143. }
  144. /* set the window address register (using 4-byte register access ). */
  145. static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
  146. {
  147. int status;
  148. s32 i;
  149. __le32 addr_val;
  150. /*
  151. * Write bytes 1,2,3 of the register to set the upper address bytes,
  152. * the LSB is written last to initiate the access cycle
  153. */
  154. for (i = 1; i <= 3; i++) {
  155. /*
  156. * Fill the buffer with the address byte value we want to
  157. * hit 4 times. No need to worry about endianness as the
  158. * same byte is copied to all four bytes of addr_val at
  159. * any time.
  160. */
  161. memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4);
  162. /*
  163. * Hit each byte of the register address with a 4-byte
  164. * write operation to the same address, this is a harmless
  165. * operation.
  166. */
  167. status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val,
  168. 4, HIF_WR_SYNC_BYTE_FIX);
  169. if (status)
  170. break;
  171. }
  172. if (status) {
  173. ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
  174. addr, reg_addr);
  175. return status;
  176. }
  177. /*
  178. * Write the address register again, this time write the whole
  179. * 4-byte value. The effect here is that the LSB write causes the
  180. * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
  181. * effect since we are writing the same values again
  182. */
  183. addr_val = cpu_to_le32(addr);
  184. status = hif_read_write_sync(ar, reg_addr,
  185. (u8 *)&(addr_val),
  186. 4, HIF_WR_SYNC_BYTE_INC);
  187. if (status) {
  188. ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
  189. addr, reg_addr);
  190. return status;
  191. }
  192. return 0;
  193. }
  194. /*
  195. * Read from the hardware through its diagnostic window. No cooperation
  196. * from the firmware is required for this.
  197. */
  198. int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
  199. {
  200. int ret;
  201. /* set window register to start read cycle */
  202. ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address);
  203. if (ret)
  204. return ret;
  205. /* read the data */
  206. ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value,
  207. sizeof(*value), HIF_RD_SYNC_BYTE_INC);
  208. if (ret) {
  209. ath6kl_warn("failed to read32 through diagnose window: %d\n",
  210. ret);
  211. return ret;
  212. }
  213. return 0;
  214. }
  215. /*
  216. * Write to the ATH6KL through its diagnostic window. No cooperation from
  217. * the Target is required for this.
  218. */
  219. int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
  220. {
  221. int ret;
  222. /* set write data */
  223. ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value,
  224. sizeof(value), HIF_WR_SYNC_BYTE_INC);
  225. if (ret) {
  226. ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
  227. address, value);
  228. return ret;
  229. }
  230. /* set window register, which starts the write cycle */
  231. return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
  232. address);
  233. }
  234. int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
  235. {
  236. u32 count, *buf = data;
  237. int ret;
  238. if (WARN_ON(length % 4))
  239. return -EINVAL;
  240. for (count = 0; count < length / 4; count++, address += 4) {
  241. ret = ath6kl_diag_read32(ar, address, &buf[count]);
  242. if (ret)
  243. return ret;
  244. }
  245. return 0;
  246. }
  247. int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
  248. {
  249. u32 count;
  250. __le32 *buf = data;
  251. int ret;
  252. if (WARN_ON(length % 4))
  253. return -EINVAL;
  254. for (count = 0; count < length / 4; count++, address += 4) {
  255. ret = ath6kl_diag_write32(ar, address, buf[count]);
  256. if (ret)
  257. return ret;
  258. }
  259. return 0;
  260. }
  261. int ath6kl_read_fwlogs(struct ath6kl *ar)
  262. {
  263. struct ath6kl_dbglog_hdr debug_hdr;
  264. struct ath6kl_dbglog_buf debug_buf;
  265. u32 address, length, dropped, firstbuf, debug_hdr_addr;
  266. int ret = 0, loop;
  267. u8 *buf;
  268. buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
  269. if (!buf)
  270. return -ENOMEM;
  271. address = TARG_VTOP(ar->target_type,
  272. ath6kl_get_hi_item_addr(ar,
  273. HI_ITEM(hi_dbglog_hdr)));
  274. ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
  275. if (ret)
  276. goto out;
  277. /* Get the contents of the ring buffer */
  278. if (debug_hdr_addr == 0) {
  279. ath6kl_warn("Invalid address for debug_hdr_addr\n");
  280. ret = -EINVAL;
  281. goto out;
  282. }
  283. address = TARG_VTOP(ar->target_type, debug_hdr_addr);
  284. ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
  285. address = TARG_VTOP(ar->target_type,
  286. le32_to_cpu(debug_hdr.dbuf_addr));
  287. firstbuf = address;
  288. dropped = le32_to_cpu(debug_hdr.dropped);
  289. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  290. loop = 100;
  291. do {
  292. address = TARG_VTOP(ar->target_type,
  293. le32_to_cpu(debug_buf.buffer_addr));
  294. length = le32_to_cpu(debug_buf.length);
  295. if (length != 0 && (le32_to_cpu(debug_buf.length) <=
  296. le32_to_cpu(debug_buf.bufsize))) {
  297. length = ALIGN(length, 4);
  298. ret = ath6kl_diag_read(ar, address,
  299. buf, length);
  300. if (ret)
  301. goto out;
  302. ath6kl_debug_fwlog_event(ar, buf, length);
  303. }
  304. address = TARG_VTOP(ar->target_type,
  305. le32_to_cpu(debug_buf.next));
  306. ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
  307. if (ret)
  308. goto out;
  309. loop--;
  310. if (WARN_ON(loop == 0)) {
  311. ret = -ETIMEDOUT;
  312. goto out;
  313. }
  314. } while (address != firstbuf);
  315. out:
  316. kfree(buf);
  317. return ret;
  318. }
  319. /* FIXME: move to a better place, target.h? */
  320. #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
  321. #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
  322. void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
  323. bool wait_fot_compltn, bool cold_reset)
  324. {
  325. int status = 0;
  326. u32 address;
  327. __le32 data;
  328. if (target_type != TARGET_TYPE_AR6003 &&
  329. target_type != TARGET_TYPE_AR6004)
  330. return;
  331. data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) :
  332. cpu_to_le32(RESET_CONTROL_MBOX_RST);
  333. switch (target_type) {
  334. case TARGET_TYPE_AR6003:
  335. address = AR6003_RESET_CONTROL_ADDRESS;
  336. break;
  337. case TARGET_TYPE_AR6004:
  338. address = AR6004_RESET_CONTROL_ADDRESS;
  339. break;
  340. default:
  341. address = AR6003_RESET_CONTROL_ADDRESS;
  342. break;
  343. }
  344. status = ath6kl_diag_write32(ar, address, data);
  345. if (status)
  346. ath6kl_err("failed to reset target\n");
  347. }
  348. static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif)
  349. {
  350. u8 index;
  351. u8 keyusage;
  352. for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
  353. if (vif->wep_key_list[index].key_len) {
  354. keyusage = GROUP_USAGE;
  355. if (index == vif->def_txkey_index)
  356. keyusage |= TX_USAGE;
  357. ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx,
  358. index,
  359. WEP_CRYPT,
  360. keyusage,
  361. vif->wep_key_list[index].key_len,
  362. NULL,
  363. vif->wep_key_list[index].key,
  364. KEY_OP_INIT_VAL, NULL,
  365. NO_SYNC_WMIFLAG);
  366. }
  367. }
  368. }
  369. void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel)
  370. {
  371. struct ath6kl *ar = vif->ar;
  372. struct ath6kl_req_key *ik;
  373. int res;
  374. u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
  375. ik = &ar->ap_mode_bkey;
  376. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
  377. switch (vif->auth_mode) {
  378. case NONE_AUTH:
  379. if (vif->prwise_crypto == WEP_CRYPT)
  380. ath6kl_install_static_wep_keys(vif);
  381. break;
  382. case WPA_PSK_AUTH:
  383. case WPA2_PSK_AUTH:
  384. case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
  385. if (!ik->valid)
  386. break;
  387. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
  388. "the initial group key for AP mode\n");
  389. memset(key_rsc, 0, sizeof(key_rsc));
  390. res = ath6kl_wmi_addkey_cmd(
  391. ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type,
  392. GROUP_USAGE, ik->key_len, key_rsc, ik->key,
  393. KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
  394. if (res) {
  395. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
  396. "addkey failed: %d\n", res);
  397. }
  398. break;
  399. }
  400. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0);
  401. set_bit(CONNECTED, &vif->flags);
  402. netif_carrier_on(vif->ndev);
  403. }
  404. void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr,
  405. u8 keymgmt, u8 ucipher, u8 auth,
  406. u8 assoc_req_len, u8 *assoc_info)
  407. {
  408. struct ath6kl *ar = vif->ar;
  409. u8 *ies = NULL, *wpa_ie = NULL, *pos;
  410. size_t ies_len = 0;
  411. struct station_info sinfo;
  412. ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
  413. if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
  414. struct ieee80211_mgmt *mgmt =
  415. (struct ieee80211_mgmt *) assoc_info;
  416. if (ieee80211_is_assoc_req(mgmt->frame_control) &&
  417. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
  418. sizeof(mgmt->u.assoc_req)) {
  419. ies = mgmt->u.assoc_req.variable;
  420. ies_len = assoc_info + assoc_req_len - ies;
  421. } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
  422. assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
  423. + sizeof(mgmt->u.reassoc_req)) {
  424. ies = mgmt->u.reassoc_req.variable;
  425. ies_len = assoc_info + assoc_req_len - ies;
  426. }
  427. }
  428. pos = ies;
  429. while (pos && pos + 1 < ies + ies_len) {
  430. if (pos + 2 + pos[1] > ies + ies_len)
  431. break;
  432. if (pos[0] == WLAN_EID_RSN)
  433. wpa_ie = pos; /* RSN IE */
  434. else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
  435. pos[1] >= 4 &&
  436. pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
  437. if (pos[5] == 0x01)
  438. wpa_ie = pos; /* WPA IE */
  439. else if (pos[5] == 0x04) {
  440. wpa_ie = pos; /* WPS IE */
  441. break; /* overrides WPA/RSN IE */
  442. }
  443. }
  444. pos += 2 + pos[1];
  445. }
  446. ath6kl_add_new_sta(ar, mac_addr, aid, wpa_ie,
  447. wpa_ie ? 2 + wpa_ie[1] : 0,
  448. keymgmt, ucipher, auth);
  449. /* send event to application */
  450. memset(&sinfo, 0, sizeof(sinfo));
  451. /* TODO: sinfo.generation */
  452. sinfo.assoc_req_ies = ies;
  453. sinfo.assoc_req_ies_len = ies_len;
  454. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  455. cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL);
  456. netif_wake_queue(vif->ndev);
  457. }
  458. void disconnect_timer_handler(unsigned long ptr)
  459. {
  460. struct net_device *dev = (struct net_device *)ptr;
  461. struct ath6kl_vif *vif = netdev_priv(dev);
  462. ath6kl_init_profile_info(vif);
  463. ath6kl_disconnect(vif);
  464. }
  465. void ath6kl_disconnect(struct ath6kl_vif *vif)
  466. {
  467. if (test_bit(CONNECTED, &vif->flags) ||
  468. test_bit(CONNECT_PEND, &vif->flags)) {
  469. ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
  470. /*
  471. * Disconnect command is issued, clear the connect pending
  472. * flag. The connected flag will be cleared in
  473. * disconnect event notification.
  474. */
  475. clear_bit(CONNECT_PEND, &vif->flags);
  476. }
  477. }
  478. void ath6kl_deep_sleep_enable(struct ath6kl *ar)
  479. {
  480. struct ath6kl_vif *vif;
  481. /* FIXME: for multi vif */
  482. vif = ath6kl_vif_first(ar);
  483. if (!vif) {
  484. /* save the current power mode before enabling power save */
  485. ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
  486. if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
  487. ath6kl_warn("ath6kl_deep_sleep_enable: "
  488. "wmi_powermode_cmd failed\n");
  489. return;
  490. }
  491. switch (vif->sme_state) {
  492. case SME_CONNECTING:
  493. cfg80211_connect_result(vif->ndev, vif->bssid, NULL, 0,
  494. NULL, 0,
  495. WLAN_STATUS_UNSPECIFIED_FAILURE,
  496. GFP_KERNEL);
  497. break;
  498. case SME_CONNECTED:
  499. default:
  500. /*
  501. * FIXME: oddly enough smeState is in DISCONNECTED during
  502. * suspend, why? Need to send disconnected event in that
  503. * state.
  504. */
  505. cfg80211_disconnected(vif->ndev, 0, NULL, 0, GFP_KERNEL);
  506. break;
  507. }
  508. if (test_bit(CONNECTED, &vif->flags) ||
  509. test_bit(CONNECT_PEND, &vif->flags))
  510. ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx);
  511. vif->sme_state = SME_DISCONNECTED;
  512. /* disable scanning */
  513. if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF, 0, 0,
  514. 0, 0, 0, 0, 0, 0, 0) != 0)
  515. printk(KERN_WARNING "ath6kl: failed to disable scan "
  516. "during suspend\n");
  517. ath6kl_cfg80211_scan_complete_event(vif, true);
  518. /* save the current power mode before enabling power save */
  519. ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
  520. if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
  521. ath6kl_warn("ath6kl_deep_sleep_enable: "
  522. "wmi_powermode_cmd failed\n");
  523. }
  524. /* WMI Event handlers */
  525. static const char *get_hw_id_string(u32 id)
  526. {
  527. switch (id) {
  528. case AR6003_REV1_VERSION:
  529. return "1.0";
  530. case AR6003_REV2_VERSION:
  531. return "2.0";
  532. case AR6003_REV3_VERSION:
  533. return "2.1.1";
  534. default:
  535. return "unknown";
  536. }
  537. }
  538. void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
  539. {
  540. struct ath6kl *ar = devt;
  541. memcpy(ar->mac_addr, datap, ETH_ALEN);
  542. ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
  543. __func__, ar->mac_addr);
  544. ar->version.wlan_ver = sw_ver;
  545. ar->version.abi_ver = abi_ver;
  546. snprintf(ar->wiphy->fw_version,
  547. sizeof(ar->wiphy->fw_version),
  548. "%u.%u.%u.%u",
  549. (ar->version.wlan_ver & 0xf0000000) >> 28,
  550. (ar->version.wlan_ver & 0x0f000000) >> 24,
  551. (ar->version.wlan_ver & 0x00ff0000) >> 16,
  552. (ar->version.wlan_ver & 0x0000ffff));
  553. /* indicate to the waiting thread that the ready event was received */
  554. set_bit(WMI_READY, &ar->flag);
  555. wake_up(&ar->event_wq);
  556. if (test_and_clear_bit(FIRST_BOOT, &ar->flag)) {
  557. ath6kl_info("hw %s fw %s%s\n",
  558. get_hw_id_string(ar->wiphy->hw_version),
  559. ar->wiphy->fw_version,
  560. test_bit(TESTMODE, &ar->flag) ? " testmode" : "");
  561. }
  562. }
  563. void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status)
  564. {
  565. struct ath6kl *ar = vif->ar;
  566. bool aborted = false;
  567. if (status != WMI_SCAN_STATUS_SUCCESS)
  568. aborted = true;
  569. ath6kl_cfg80211_scan_complete_event(vif, aborted);
  570. if (!ar->usr_bss_filter) {
  571. clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  572. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  573. NONE_BSS_FILTER, 0);
  574. }
  575. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "scan complete: %d\n", status);
  576. }
  577. void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid,
  578. u16 listen_int, u16 beacon_int,
  579. enum network_type net_type, u8 beacon_ie_len,
  580. u8 assoc_req_len, u8 assoc_resp_len,
  581. u8 *assoc_info)
  582. {
  583. struct ath6kl *ar = vif->ar;
  584. ath6kl_cfg80211_connect_event(vif, channel, bssid,
  585. listen_int, beacon_int,
  586. net_type, beacon_ie_len,
  587. assoc_req_len, assoc_resp_len,
  588. assoc_info);
  589. memcpy(vif->bssid, bssid, sizeof(vif->bssid));
  590. vif->bss_ch = channel;
  591. if ((vif->nw_type == INFRA_NETWORK))
  592. ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
  593. ar->listen_intvl_t,
  594. ar->listen_intvl_b);
  595. netif_wake_queue(vif->ndev);
  596. /* Update connect & link status atomically */
  597. spin_lock_bh(&vif->if_lock);
  598. set_bit(CONNECTED, &vif->flags);
  599. clear_bit(CONNECT_PEND, &vif->flags);
  600. netif_carrier_on(vif->ndev);
  601. spin_unlock_bh(&vif->if_lock);
  602. aggr_reset_state(vif->aggr_cntxt);
  603. vif->reconnect_flag = 0;
  604. if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
  605. memset(ar->node_map, 0, sizeof(ar->node_map));
  606. ar->node_num = 0;
  607. ar->next_ep_id = ENDPOINT_2;
  608. }
  609. if (!ar->usr_bss_filter) {
  610. set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
  611. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  612. CURRENT_BSS_FILTER, 0);
  613. }
  614. }
  615. void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast)
  616. {
  617. struct ath6kl_sta *sta;
  618. struct ath6kl *ar = vif->ar;
  619. u8 tsc[6];
  620. /*
  621. * For AP case, keyid will have aid of STA which sent pkt with
  622. * MIC error. Use this aid to get MAC & send it to hostapd.
  623. */
  624. if (vif->nw_type == AP_NETWORK) {
  625. sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
  626. if (!sta)
  627. return;
  628. ath6kl_dbg(ATH6KL_DBG_TRC,
  629. "ap tkip mic error received from aid=%d\n", keyid);
  630. memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
  631. cfg80211_michael_mic_failure(vif->ndev, sta->mac,
  632. NL80211_KEYTYPE_PAIRWISE, keyid,
  633. tsc, GFP_KERNEL);
  634. } else
  635. ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast);
  636. }
  637. static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  638. {
  639. struct wmi_target_stats *tgt_stats =
  640. (struct wmi_target_stats *) ptr;
  641. struct ath6kl *ar = vif->ar;
  642. struct target_stats *stats = &vif->target_stats;
  643. struct tkip_ccmp_stats *ccmp_stats;
  644. u8 ac;
  645. if (len < sizeof(*tgt_stats))
  646. return;
  647. ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
  648. stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
  649. stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
  650. stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
  651. stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
  652. stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
  653. stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
  654. stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
  655. stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
  656. stats->tx_rts_success_cnt +=
  657. le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
  658. for (ac = 0; ac < WMM_NUM_AC; ac++)
  659. stats->tx_pkt_per_ac[ac] +=
  660. le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
  661. stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
  662. stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
  663. stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
  664. stats->tx_mult_retry_cnt +=
  665. le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
  666. stats->tx_rts_fail_cnt +=
  667. le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
  668. stats->tx_ucast_rate =
  669. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
  670. stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
  671. stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
  672. stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
  673. stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
  674. stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
  675. stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
  676. stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
  677. stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
  678. stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
  679. stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
  680. stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
  681. stats->rx_key_cache_miss +=
  682. le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
  683. stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
  684. stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
  685. stats->rx_ucast_rate =
  686. ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
  687. ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
  688. stats->tkip_local_mic_fail +=
  689. le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
  690. stats->tkip_cnter_measures_invoked +=
  691. le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
  692. stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
  693. stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
  694. stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
  695. stats->pwr_save_fail_cnt +=
  696. le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
  697. stats->noise_floor_calib =
  698. a_sle32_to_cpu(tgt_stats->noise_floor_calib);
  699. stats->cs_bmiss_cnt +=
  700. le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
  701. stats->cs_low_rssi_cnt +=
  702. le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
  703. stats->cs_connect_cnt +=
  704. le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
  705. stats->cs_discon_cnt +=
  706. le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
  707. stats->cs_ave_beacon_rssi =
  708. a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
  709. stats->cs_last_roam_msec =
  710. tgt_stats->cserv_stats.cs_last_roam_msec;
  711. stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
  712. stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
  713. stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
  714. stats->wow_pkt_dropped +=
  715. le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
  716. stats->wow_host_pkt_wakeups +=
  717. tgt_stats->wow_stats.wow_host_pkt_wakeups;
  718. stats->wow_host_evt_wakeups +=
  719. tgt_stats->wow_stats.wow_host_evt_wakeups;
  720. stats->wow_evt_discarded +=
  721. le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
  722. if (test_bit(STATS_UPDATE_PEND, &vif->flags)) {
  723. clear_bit(STATS_UPDATE_PEND, &vif->flags);
  724. wake_up(&ar->event_wq);
  725. }
  726. }
  727. static void ath6kl_add_le32(__le32 *var, __le32 val)
  728. {
  729. *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
  730. }
  731. void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len)
  732. {
  733. struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
  734. struct ath6kl *ar = vif->ar;
  735. struct wmi_ap_mode_stat *ap = &ar->ap_stats;
  736. struct wmi_per_sta_stat *st_ap, *st_p;
  737. u8 ac;
  738. if (vif->nw_type == AP_NETWORK) {
  739. if (len < sizeof(*p))
  740. return;
  741. for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
  742. st_ap = &ap->sta[ac];
  743. st_p = &p->sta[ac];
  744. ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
  745. ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
  746. ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
  747. ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
  748. ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
  749. ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
  750. ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
  751. ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
  752. }
  753. } else {
  754. ath6kl_update_target_stats(vif, ptr, len);
  755. }
  756. }
  757. void ath6kl_wakeup_event(void *dev)
  758. {
  759. struct ath6kl *ar = (struct ath6kl *) dev;
  760. wake_up(&ar->event_wq);
  761. }
  762. void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
  763. {
  764. struct ath6kl *ar = (struct ath6kl *) devt;
  765. ar->tx_pwr = tx_pwr;
  766. wake_up(&ar->event_wq);
  767. }
  768. void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid)
  769. {
  770. struct ath6kl_sta *conn;
  771. struct sk_buff *skb;
  772. bool psq_empty = false;
  773. struct ath6kl *ar = vif->ar;
  774. conn = ath6kl_find_sta_by_aid(ar, aid);
  775. if (!conn)
  776. return;
  777. /*
  778. * Send out a packet queued on ps queue. When the ps queue
  779. * becomes empty update the PVB for this station.
  780. */
  781. spin_lock_bh(&conn->psq_lock);
  782. psq_empty = skb_queue_empty(&conn->psq);
  783. spin_unlock_bh(&conn->psq_lock);
  784. if (psq_empty)
  785. /* TODO: Send out a NULL data frame */
  786. return;
  787. spin_lock_bh(&conn->psq_lock);
  788. skb = skb_dequeue(&conn->psq);
  789. spin_unlock_bh(&conn->psq_lock);
  790. conn->sta_flags |= STA_PS_POLLED;
  791. ath6kl_data_tx(skb, vif->ndev);
  792. conn->sta_flags &= ~STA_PS_POLLED;
  793. spin_lock_bh(&conn->psq_lock);
  794. psq_empty = skb_queue_empty(&conn->psq);
  795. spin_unlock_bh(&conn->psq_lock);
  796. if (psq_empty)
  797. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0);
  798. }
  799. void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif)
  800. {
  801. bool mcastq_empty = false;
  802. struct sk_buff *skb;
  803. struct ath6kl *ar = vif->ar;
  804. /*
  805. * If there are no associated STAs, ignore the DTIM expiry event.
  806. * There can be potential race conditions where the last associated
  807. * STA may disconnect & before the host could clear the 'Indicate
  808. * DTIM' request to the firmware, the firmware would have just
  809. * indicated a DTIM expiry event. The race is between 'clear DTIM
  810. * expiry cmd' going from the host to the firmware & the DTIM
  811. * expiry event happening from the firmware to the host.
  812. */
  813. if (!ar->sta_list_index)
  814. return;
  815. spin_lock_bh(&ar->mcastpsq_lock);
  816. mcastq_empty = skb_queue_empty(&ar->mcastpsq);
  817. spin_unlock_bh(&ar->mcastpsq_lock);
  818. if (mcastq_empty)
  819. return;
  820. /* set the STA flag to dtim_expired for the frame to go out */
  821. set_bit(DTIM_EXPIRED, &vif->flags);
  822. spin_lock_bh(&ar->mcastpsq_lock);
  823. while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
  824. spin_unlock_bh(&ar->mcastpsq_lock);
  825. ath6kl_data_tx(skb, vif->ndev);
  826. spin_lock_bh(&ar->mcastpsq_lock);
  827. }
  828. spin_unlock_bh(&ar->mcastpsq_lock);
  829. clear_bit(DTIM_EXPIRED, &vif->flags);
  830. /* clear the LSB of the BitMapCtl field of the TIM IE */
  831. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0);
  832. }
  833. void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid,
  834. u8 assoc_resp_len, u8 *assoc_info,
  835. u16 prot_reason_status)
  836. {
  837. struct ath6kl *ar = vif->ar;
  838. if (vif->nw_type == AP_NETWORK) {
  839. if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
  840. return;
  841. /* if no more associated STAs, empty the mcast PS q */
  842. if (ar->sta_list_index == 0) {
  843. spin_lock_bh(&ar->mcastpsq_lock);
  844. skb_queue_purge(&ar->mcastpsq);
  845. spin_unlock_bh(&ar->mcastpsq_lock);
  846. /* clear the LSB of the TIM IE's BitMapCtl field */
  847. if (test_bit(WMI_READY, &ar->flag))
  848. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
  849. MCAST_AID, 0);
  850. }
  851. if (!is_broadcast_ether_addr(bssid)) {
  852. /* send event to application */
  853. cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL);
  854. }
  855. if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) {
  856. memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
  857. clear_bit(CONNECTED, &vif->flags);
  858. }
  859. return;
  860. }
  861. ath6kl_cfg80211_disconnect_event(vif, reason, bssid,
  862. assoc_resp_len, assoc_info,
  863. prot_reason_status);
  864. aggr_reset_state(vif->aggr_cntxt);
  865. del_timer(&vif->disconnect_timer);
  866. ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "disconnect reason is %d\n", reason);
  867. /*
  868. * If the event is due to disconnect cmd from the host, only they
  869. * the target would stop trying to connect. Under any other
  870. * condition, target would keep trying to connect.
  871. */
  872. if (reason == DISCONNECT_CMD) {
  873. if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
  874. ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
  875. NONE_BSS_FILTER, 0);
  876. } else {
  877. set_bit(CONNECT_PEND, &vif->flags);
  878. if (((reason == ASSOC_FAILED) &&
  879. (prot_reason_status == 0x11)) ||
  880. ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
  881. && (vif->reconnect_flag == 1))) {
  882. set_bit(CONNECTED, &vif->flags);
  883. return;
  884. }
  885. }
  886. /* update connect & link status atomically */
  887. spin_lock_bh(&vif->if_lock);
  888. clear_bit(CONNECTED, &vif->flags);
  889. netif_carrier_off(vif->ndev);
  890. spin_unlock_bh(&vif->if_lock);
  891. if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1))
  892. vif->reconnect_flag = 0;
  893. if (reason != CSERV_DISCONNECT)
  894. ar->user_key_ctrl = 0;
  895. netif_stop_queue(vif->ndev);
  896. memset(vif->bssid, 0, sizeof(vif->bssid));
  897. vif->bss_ch = 0;
  898. ath6kl_tx_data_cleanup(ar);
  899. }
  900. struct ath6kl_vif *ath6kl_vif_first(struct ath6kl *ar)
  901. {
  902. struct ath6kl_vif *vif;
  903. spin_lock(&ar->list_lock);
  904. if (list_empty(&ar->vif_list)) {
  905. spin_unlock(&ar->list_lock);
  906. return NULL;
  907. }
  908. vif = list_first_entry(&ar->vif_list, struct ath6kl_vif, list);
  909. spin_unlock(&ar->list_lock);
  910. return vif;
  911. }
  912. static int ath6kl_open(struct net_device *dev)
  913. {
  914. struct ath6kl_vif *vif = netdev_priv(dev);
  915. int ret;
  916. /* FIXME: how to handle multi vif support? */
  917. ret = ath6kl_init_hw_start(vif->ar);
  918. if (ret)
  919. return ret;
  920. set_bit(WLAN_ENABLED, &vif->flags);
  921. if (test_bit(CONNECTED, &vif->flags)) {
  922. netif_carrier_on(dev);
  923. netif_wake_queue(dev);
  924. } else
  925. netif_carrier_off(dev);
  926. return 0;
  927. }
  928. static int ath6kl_close(struct net_device *dev)
  929. {
  930. struct ath6kl *ar = ath6kl_priv(dev);
  931. struct ath6kl_vif *vif = netdev_priv(dev);
  932. int ret;
  933. netif_stop_queue(dev);
  934. ath6kl_disconnect(vif);
  935. if (test_bit(WMI_READY, &ar->flag)) {
  936. if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF,
  937. 0, 0, 0, 0, 0, 0, 0, 0, 0))
  938. return -EIO;
  939. }
  940. ath6kl_cfg80211_scan_complete_event(vif, true);
  941. /* FIXME: how to handle multi vif support? */
  942. ret = ath6kl_init_hw_stop(ar);
  943. if (ret)
  944. return ret;
  945. clear_bit(WLAN_ENABLED, &vif->flags);
  946. return 0;
  947. }
  948. static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
  949. {
  950. struct ath6kl_vif *vif = netdev_priv(dev);
  951. return &vif->net_stats;
  952. }
  953. static struct net_device_ops ath6kl_netdev_ops = {
  954. .ndo_open = ath6kl_open,
  955. .ndo_stop = ath6kl_close,
  956. .ndo_start_xmit = ath6kl_data_tx,
  957. .ndo_get_stats = ath6kl_get_stats,
  958. };
  959. void init_netdev(struct net_device *dev)
  960. {
  961. dev->netdev_ops = &ath6kl_netdev_ops;
  962. dev->destructor = free_netdev;
  963. dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
  964. dev->needed_headroom = ETH_HLEN;
  965. dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
  966. sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
  967. + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
  968. return;
  969. }