vmx.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include <linux/tboot.h>
  29. #include "kvm_cache_regs.h"
  30. #include "x86.h"
  31. #include <asm/io.h>
  32. #include <asm/desc.h>
  33. #include <asm/vmx.h>
  34. #include <asm/virtext.h>
  35. #include <asm/mce.h>
  36. #include "trace.h"
  37. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  38. MODULE_AUTHOR("Qumranet");
  39. MODULE_LICENSE("GPL");
  40. static int __read_mostly bypass_guest_pf = 1;
  41. module_param(bypass_guest_pf, bool, S_IRUGO);
  42. static int __read_mostly enable_vpid = 1;
  43. module_param_named(vpid, enable_vpid, bool, 0444);
  44. static int __read_mostly flexpriority_enabled = 1;
  45. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  46. static int __read_mostly enable_ept = 1;
  47. module_param_named(ept, enable_ept, bool, S_IRUGO);
  48. static int __read_mostly enable_unrestricted_guest = 1;
  49. module_param_named(unrestricted_guest,
  50. enable_unrestricted_guest, bool, S_IRUGO);
  51. static int __read_mostly emulate_invalid_guest_state = 0;
  52. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  53. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  54. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  55. #define KVM_GUEST_CR0_MASK \
  56. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  57. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  58. (X86_CR0_WP | X86_CR0_NE)
  59. #define KVM_VM_CR0_ALWAYS_ON \
  60. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  61. #define KVM_CR4_GUEST_OWNED_BITS \
  62. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  63. | X86_CR4_OSXMMEXCPT)
  64. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  65. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  66. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  67. /*
  68. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  69. * ple_gap: upper bound on the amount of time between two successive
  70. * executions of PAUSE in a loop. Also indicate if ple enabled.
  71. * According to test, this time is usually small than 41 cycles.
  72. * ple_window: upper bound on the amount of time a guest is allowed to execute
  73. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  74. * less than 2^12 cycles
  75. * Time is measured based on a counter that runs at the same rate as the TSC,
  76. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  77. */
  78. #define KVM_VMX_DEFAULT_PLE_GAP 41
  79. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  80. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  81. module_param(ple_gap, int, S_IRUGO);
  82. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  83. module_param(ple_window, int, S_IRUGO);
  84. #define NR_AUTOLOAD_MSRS 1
  85. struct vmcs {
  86. u32 revision_id;
  87. u32 abort;
  88. char data[0];
  89. };
  90. struct shared_msr_entry {
  91. unsigned index;
  92. u64 data;
  93. u64 mask;
  94. };
  95. struct vcpu_vmx {
  96. struct kvm_vcpu vcpu;
  97. struct list_head local_vcpus_link;
  98. unsigned long host_rsp;
  99. int launched;
  100. u8 fail;
  101. u32 idt_vectoring_info;
  102. struct shared_msr_entry *guest_msrs;
  103. int nmsrs;
  104. int save_nmsrs;
  105. #ifdef CONFIG_X86_64
  106. u64 msr_host_kernel_gs_base;
  107. u64 msr_guest_kernel_gs_base;
  108. #endif
  109. struct vmcs *vmcs;
  110. struct msr_autoload {
  111. unsigned nr;
  112. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  113. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  114. } msr_autoload;
  115. struct {
  116. int loaded;
  117. u16 fs_sel, gs_sel, ldt_sel;
  118. int gs_ldt_reload_needed;
  119. int fs_reload_needed;
  120. } host_state;
  121. struct {
  122. int vm86_active;
  123. ulong save_rflags;
  124. struct kvm_save_segment {
  125. u16 selector;
  126. unsigned long base;
  127. u32 limit;
  128. u32 ar;
  129. } tr, es, ds, fs, gs;
  130. struct {
  131. bool pending;
  132. u8 vector;
  133. unsigned rip;
  134. } irq;
  135. } rmode;
  136. int vpid;
  137. bool emulation_required;
  138. /* Support for vnmi-less CPUs */
  139. int soft_vnmi_blocked;
  140. ktime_t entry_time;
  141. s64 vnmi_blocked_time;
  142. u32 exit_reason;
  143. bool rdtscp_enabled;
  144. };
  145. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  146. {
  147. return container_of(vcpu, struct vcpu_vmx, vcpu);
  148. }
  149. static int init_rmode(struct kvm *kvm);
  150. static u64 construct_eptp(unsigned long root_hpa);
  151. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  152. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  153. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  154. static unsigned long *vmx_io_bitmap_a;
  155. static unsigned long *vmx_io_bitmap_b;
  156. static unsigned long *vmx_msr_bitmap_legacy;
  157. static unsigned long *vmx_msr_bitmap_longmode;
  158. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  159. static DEFINE_SPINLOCK(vmx_vpid_lock);
  160. static struct vmcs_config {
  161. int size;
  162. int order;
  163. u32 revision_id;
  164. u32 pin_based_exec_ctrl;
  165. u32 cpu_based_exec_ctrl;
  166. u32 cpu_based_2nd_exec_ctrl;
  167. u32 vmexit_ctrl;
  168. u32 vmentry_ctrl;
  169. } vmcs_config;
  170. static struct vmx_capability {
  171. u32 ept;
  172. u32 vpid;
  173. } vmx_capability;
  174. #define VMX_SEGMENT_FIELD(seg) \
  175. [VCPU_SREG_##seg] = { \
  176. .selector = GUEST_##seg##_SELECTOR, \
  177. .base = GUEST_##seg##_BASE, \
  178. .limit = GUEST_##seg##_LIMIT, \
  179. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  180. }
  181. static struct kvm_vmx_segment_field {
  182. unsigned selector;
  183. unsigned base;
  184. unsigned limit;
  185. unsigned ar_bytes;
  186. } kvm_vmx_segment_fields[] = {
  187. VMX_SEGMENT_FIELD(CS),
  188. VMX_SEGMENT_FIELD(DS),
  189. VMX_SEGMENT_FIELD(ES),
  190. VMX_SEGMENT_FIELD(FS),
  191. VMX_SEGMENT_FIELD(GS),
  192. VMX_SEGMENT_FIELD(SS),
  193. VMX_SEGMENT_FIELD(TR),
  194. VMX_SEGMENT_FIELD(LDTR),
  195. };
  196. static u64 host_efer;
  197. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  198. /*
  199. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  200. * away by decrementing the array size.
  201. */
  202. static const u32 vmx_msr_index[] = {
  203. #ifdef CONFIG_X86_64
  204. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  205. #endif
  206. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  207. };
  208. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  209. static inline bool is_page_fault(u32 intr_info)
  210. {
  211. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  212. INTR_INFO_VALID_MASK)) ==
  213. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  214. }
  215. static inline bool is_no_device(u32 intr_info)
  216. {
  217. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  218. INTR_INFO_VALID_MASK)) ==
  219. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  220. }
  221. static inline bool is_invalid_opcode(u32 intr_info)
  222. {
  223. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  224. INTR_INFO_VALID_MASK)) ==
  225. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  226. }
  227. static inline bool is_external_interrupt(u32 intr_info)
  228. {
  229. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  230. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  231. }
  232. static inline bool is_machine_check(u32 intr_info)
  233. {
  234. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  235. INTR_INFO_VALID_MASK)) ==
  236. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  237. }
  238. static inline bool cpu_has_vmx_msr_bitmap(void)
  239. {
  240. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  241. }
  242. static inline bool cpu_has_vmx_tpr_shadow(void)
  243. {
  244. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  245. }
  246. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  247. {
  248. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  249. }
  250. static inline bool cpu_has_secondary_exec_ctrls(void)
  251. {
  252. return vmcs_config.cpu_based_exec_ctrl &
  253. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  254. }
  255. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  256. {
  257. return vmcs_config.cpu_based_2nd_exec_ctrl &
  258. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  259. }
  260. static inline bool cpu_has_vmx_flexpriority(void)
  261. {
  262. return cpu_has_vmx_tpr_shadow() &&
  263. cpu_has_vmx_virtualize_apic_accesses();
  264. }
  265. static inline bool cpu_has_vmx_ept_execute_only(void)
  266. {
  267. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  268. }
  269. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  270. {
  271. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  272. }
  273. static inline bool cpu_has_vmx_eptp_writeback(void)
  274. {
  275. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  276. }
  277. static inline bool cpu_has_vmx_ept_2m_page(void)
  278. {
  279. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  280. }
  281. static inline bool cpu_has_vmx_ept_1g_page(void)
  282. {
  283. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  284. }
  285. static inline bool cpu_has_vmx_invept_individual_addr(void)
  286. {
  287. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  288. }
  289. static inline bool cpu_has_vmx_invept_context(void)
  290. {
  291. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  292. }
  293. static inline bool cpu_has_vmx_invept_global(void)
  294. {
  295. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  296. }
  297. static inline bool cpu_has_vmx_ept(void)
  298. {
  299. return vmcs_config.cpu_based_2nd_exec_ctrl &
  300. SECONDARY_EXEC_ENABLE_EPT;
  301. }
  302. static inline bool cpu_has_vmx_unrestricted_guest(void)
  303. {
  304. return vmcs_config.cpu_based_2nd_exec_ctrl &
  305. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  306. }
  307. static inline bool cpu_has_vmx_ple(void)
  308. {
  309. return vmcs_config.cpu_based_2nd_exec_ctrl &
  310. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  311. }
  312. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  313. {
  314. return flexpriority_enabled && irqchip_in_kernel(kvm);
  315. }
  316. static inline bool cpu_has_vmx_vpid(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_ENABLE_VPID;
  320. }
  321. static inline bool cpu_has_vmx_rdtscp(void)
  322. {
  323. return vmcs_config.cpu_based_2nd_exec_ctrl &
  324. SECONDARY_EXEC_RDTSCP;
  325. }
  326. static inline bool cpu_has_virtual_nmis(void)
  327. {
  328. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  329. }
  330. static inline bool report_flexpriority(void)
  331. {
  332. return flexpriority_enabled;
  333. }
  334. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  335. {
  336. int i;
  337. for (i = 0; i < vmx->nmsrs; ++i)
  338. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  339. return i;
  340. return -1;
  341. }
  342. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  343. {
  344. struct {
  345. u64 vpid : 16;
  346. u64 rsvd : 48;
  347. u64 gva;
  348. } operand = { vpid, 0, gva };
  349. asm volatile (__ex(ASM_VMX_INVVPID)
  350. /* CF==1 or ZF==1 --> rc = -1 */
  351. "; ja 1f ; ud2 ; 1:"
  352. : : "a"(&operand), "c"(ext) : "cc", "memory");
  353. }
  354. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  355. {
  356. struct {
  357. u64 eptp, gpa;
  358. } operand = {eptp, gpa};
  359. asm volatile (__ex(ASM_VMX_INVEPT)
  360. /* CF==1 or ZF==1 --> rc = -1 */
  361. "; ja 1f ; ud2 ; 1:\n"
  362. : : "a" (&operand), "c" (ext) : "cc", "memory");
  363. }
  364. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  365. {
  366. int i;
  367. i = __find_msr_index(vmx, msr);
  368. if (i >= 0)
  369. return &vmx->guest_msrs[i];
  370. return NULL;
  371. }
  372. static void vmcs_clear(struct vmcs *vmcs)
  373. {
  374. u64 phys_addr = __pa(vmcs);
  375. u8 error;
  376. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  377. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  378. : "cc", "memory");
  379. if (error)
  380. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  381. vmcs, phys_addr);
  382. }
  383. static void __vcpu_clear(void *arg)
  384. {
  385. struct vcpu_vmx *vmx = arg;
  386. int cpu = raw_smp_processor_id();
  387. if (vmx->vcpu.cpu == cpu)
  388. vmcs_clear(vmx->vmcs);
  389. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  390. per_cpu(current_vmcs, cpu) = NULL;
  391. rdtscll(vmx->vcpu.arch.host_tsc);
  392. list_del(&vmx->local_vcpus_link);
  393. vmx->vcpu.cpu = -1;
  394. vmx->launched = 0;
  395. }
  396. static void vcpu_clear(struct vcpu_vmx *vmx)
  397. {
  398. if (vmx->vcpu.cpu == -1)
  399. return;
  400. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  401. }
  402. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  403. {
  404. if (vmx->vpid == 0)
  405. return;
  406. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  407. }
  408. static inline void ept_sync_global(void)
  409. {
  410. if (cpu_has_vmx_invept_global())
  411. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  412. }
  413. static inline void ept_sync_context(u64 eptp)
  414. {
  415. if (enable_ept) {
  416. if (cpu_has_vmx_invept_context())
  417. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  418. else
  419. ept_sync_global();
  420. }
  421. }
  422. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  423. {
  424. if (enable_ept) {
  425. if (cpu_has_vmx_invept_individual_addr())
  426. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  427. eptp, gpa);
  428. else
  429. ept_sync_context(eptp);
  430. }
  431. }
  432. static unsigned long vmcs_readl(unsigned long field)
  433. {
  434. unsigned long value;
  435. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  436. : "=a"(value) : "d"(field) : "cc");
  437. return value;
  438. }
  439. static u16 vmcs_read16(unsigned long field)
  440. {
  441. return vmcs_readl(field);
  442. }
  443. static u32 vmcs_read32(unsigned long field)
  444. {
  445. return vmcs_readl(field);
  446. }
  447. static u64 vmcs_read64(unsigned long field)
  448. {
  449. #ifdef CONFIG_X86_64
  450. return vmcs_readl(field);
  451. #else
  452. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  453. #endif
  454. }
  455. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  456. {
  457. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  458. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  459. dump_stack();
  460. }
  461. static void vmcs_writel(unsigned long field, unsigned long value)
  462. {
  463. u8 error;
  464. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  465. : "=q"(error) : "a"(value), "d"(field) : "cc");
  466. if (unlikely(error))
  467. vmwrite_error(field, value);
  468. }
  469. static void vmcs_write16(unsigned long field, u16 value)
  470. {
  471. vmcs_writel(field, value);
  472. }
  473. static void vmcs_write32(unsigned long field, u32 value)
  474. {
  475. vmcs_writel(field, value);
  476. }
  477. static void vmcs_write64(unsigned long field, u64 value)
  478. {
  479. vmcs_writel(field, value);
  480. #ifndef CONFIG_X86_64
  481. asm volatile ("");
  482. vmcs_writel(field+1, value >> 32);
  483. #endif
  484. }
  485. static void vmcs_clear_bits(unsigned long field, u32 mask)
  486. {
  487. vmcs_writel(field, vmcs_readl(field) & ~mask);
  488. }
  489. static void vmcs_set_bits(unsigned long field, u32 mask)
  490. {
  491. vmcs_writel(field, vmcs_readl(field) | mask);
  492. }
  493. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  494. {
  495. u32 eb;
  496. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  497. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  498. if ((vcpu->guest_debug &
  499. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  500. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  501. eb |= 1u << BP_VECTOR;
  502. if (to_vmx(vcpu)->rmode.vm86_active)
  503. eb = ~0;
  504. if (enable_ept)
  505. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  506. if (vcpu->fpu_active)
  507. eb &= ~(1u << NM_VECTOR);
  508. vmcs_write32(EXCEPTION_BITMAP, eb);
  509. }
  510. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  511. {
  512. unsigned i;
  513. struct msr_autoload *m = &vmx->msr_autoload;
  514. for (i = 0; i < m->nr; ++i)
  515. if (m->guest[i].index == msr)
  516. break;
  517. if (i == m->nr)
  518. return;
  519. --m->nr;
  520. m->guest[i] = m->guest[m->nr];
  521. m->host[i] = m->host[m->nr];
  522. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  523. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  524. }
  525. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  526. u64 guest_val, u64 host_val)
  527. {
  528. unsigned i;
  529. struct msr_autoload *m = &vmx->msr_autoload;
  530. for (i = 0; i < m->nr; ++i)
  531. if (m->guest[i].index == msr)
  532. break;
  533. if (i == m->nr) {
  534. ++m->nr;
  535. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  536. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  537. }
  538. m->guest[i].index = msr;
  539. m->guest[i].value = guest_val;
  540. m->host[i].index = msr;
  541. m->host[i].value = host_val;
  542. }
  543. static void reload_tss(void)
  544. {
  545. /*
  546. * VT restores TR but not its size. Useless.
  547. */
  548. struct desc_ptr gdt;
  549. struct desc_struct *descs;
  550. native_store_gdt(&gdt);
  551. descs = (void *)gdt.address;
  552. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  553. load_TR_desc();
  554. }
  555. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  556. {
  557. u64 guest_efer;
  558. u64 ignore_bits;
  559. guest_efer = vmx->vcpu.arch.efer;
  560. /*
  561. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  562. * outside long mode
  563. */
  564. ignore_bits = EFER_NX | EFER_SCE;
  565. #ifdef CONFIG_X86_64
  566. ignore_bits |= EFER_LMA | EFER_LME;
  567. /* SCE is meaningful only in long mode on Intel */
  568. if (guest_efer & EFER_LMA)
  569. ignore_bits &= ~(u64)EFER_SCE;
  570. #endif
  571. guest_efer &= ~ignore_bits;
  572. guest_efer |= host_efer & ignore_bits;
  573. vmx->guest_msrs[efer_offset].data = guest_efer;
  574. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  575. clear_atomic_switch_msr(vmx, MSR_EFER);
  576. /* On ept, can't emulate nx, and must switch nx atomically */
  577. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  578. guest_efer = vmx->vcpu.arch.efer;
  579. if (!(guest_efer & EFER_LMA))
  580. guest_efer &= ~EFER_LME;
  581. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  582. return false;
  583. }
  584. return true;
  585. }
  586. static unsigned long segment_base(u16 selector)
  587. {
  588. struct desc_ptr gdt;
  589. struct desc_struct *d;
  590. unsigned long table_base;
  591. unsigned long v;
  592. if (!(selector & ~3))
  593. return 0;
  594. native_store_gdt(&gdt);
  595. table_base = gdt.address;
  596. if (selector & 4) { /* from ldt */
  597. u16 ldt_selector = kvm_read_ldt();
  598. if (!(ldt_selector & ~3))
  599. return 0;
  600. table_base = segment_base(ldt_selector);
  601. }
  602. d = (struct desc_struct *)(table_base + (selector & ~7));
  603. v = get_desc_base(d);
  604. #ifdef CONFIG_X86_64
  605. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  606. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  607. #endif
  608. return v;
  609. }
  610. static inline unsigned long kvm_read_tr_base(void)
  611. {
  612. u16 tr;
  613. asm("str %0" : "=g"(tr));
  614. return segment_base(tr);
  615. }
  616. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  617. {
  618. struct vcpu_vmx *vmx = to_vmx(vcpu);
  619. int i;
  620. if (vmx->host_state.loaded)
  621. return;
  622. vmx->host_state.loaded = 1;
  623. /*
  624. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  625. * allow segment selectors with cpl > 0 or ti == 1.
  626. */
  627. vmx->host_state.ldt_sel = kvm_read_ldt();
  628. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  629. vmx->host_state.fs_sel = kvm_read_fs();
  630. if (!(vmx->host_state.fs_sel & 7)) {
  631. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  632. vmx->host_state.fs_reload_needed = 0;
  633. } else {
  634. vmcs_write16(HOST_FS_SELECTOR, 0);
  635. vmx->host_state.fs_reload_needed = 1;
  636. }
  637. vmx->host_state.gs_sel = kvm_read_gs();
  638. if (!(vmx->host_state.gs_sel & 7))
  639. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  640. else {
  641. vmcs_write16(HOST_GS_SELECTOR, 0);
  642. vmx->host_state.gs_ldt_reload_needed = 1;
  643. }
  644. #ifdef CONFIG_X86_64
  645. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  646. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  647. #else
  648. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  649. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  650. #endif
  651. #ifdef CONFIG_X86_64
  652. if (is_long_mode(&vmx->vcpu)) {
  653. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  654. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  655. }
  656. #endif
  657. for (i = 0; i < vmx->save_nmsrs; ++i)
  658. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  659. vmx->guest_msrs[i].data,
  660. vmx->guest_msrs[i].mask);
  661. }
  662. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  663. {
  664. unsigned long flags;
  665. if (!vmx->host_state.loaded)
  666. return;
  667. ++vmx->vcpu.stat.host_state_reload;
  668. vmx->host_state.loaded = 0;
  669. if (vmx->host_state.fs_reload_needed)
  670. kvm_load_fs(vmx->host_state.fs_sel);
  671. if (vmx->host_state.gs_ldt_reload_needed) {
  672. kvm_load_ldt(vmx->host_state.ldt_sel);
  673. /*
  674. * If we have to reload gs, we must take care to
  675. * preserve our gs base.
  676. */
  677. local_irq_save(flags);
  678. kvm_load_gs(vmx->host_state.gs_sel);
  679. #ifdef CONFIG_X86_64
  680. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  681. #endif
  682. local_irq_restore(flags);
  683. }
  684. reload_tss();
  685. #ifdef CONFIG_X86_64
  686. if (is_long_mode(&vmx->vcpu)) {
  687. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  688. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  689. }
  690. #endif
  691. if (current_thread_info()->status & TS_USEDFPU)
  692. clts();
  693. }
  694. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  695. {
  696. preempt_disable();
  697. __vmx_load_host_state(vmx);
  698. preempt_enable();
  699. }
  700. /*
  701. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  702. * vcpu mutex is already taken.
  703. */
  704. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  705. {
  706. struct vcpu_vmx *vmx = to_vmx(vcpu);
  707. u64 phys_addr = __pa(vmx->vmcs);
  708. u64 tsc_this, delta, new_offset;
  709. if (vcpu->cpu != cpu) {
  710. vcpu_clear(vmx);
  711. kvm_migrate_timers(vcpu);
  712. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  713. local_irq_disable();
  714. list_add(&vmx->local_vcpus_link,
  715. &per_cpu(vcpus_on_cpu, cpu));
  716. local_irq_enable();
  717. }
  718. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  719. u8 error;
  720. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  721. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  722. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  723. : "cc");
  724. if (error)
  725. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  726. vmx->vmcs, phys_addr);
  727. }
  728. if (vcpu->cpu != cpu) {
  729. struct desc_ptr dt;
  730. unsigned long sysenter_esp;
  731. vcpu->cpu = cpu;
  732. /*
  733. * Linux uses per-cpu TSS and GDT, so set these when switching
  734. * processors.
  735. */
  736. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  737. native_store_gdt(&dt);
  738. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  739. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  740. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  741. /*
  742. * Make sure the time stamp counter is monotonous.
  743. */
  744. rdtscll(tsc_this);
  745. if (tsc_this < vcpu->arch.host_tsc) {
  746. delta = vcpu->arch.host_tsc - tsc_this;
  747. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  748. vmcs_write64(TSC_OFFSET, new_offset);
  749. }
  750. }
  751. }
  752. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  753. {
  754. __vmx_load_host_state(to_vmx(vcpu));
  755. }
  756. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  757. {
  758. ulong cr0;
  759. if (vcpu->fpu_active)
  760. return;
  761. vcpu->fpu_active = 1;
  762. cr0 = vmcs_readl(GUEST_CR0);
  763. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  764. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  765. vmcs_writel(GUEST_CR0, cr0);
  766. update_exception_bitmap(vcpu);
  767. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  768. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  769. }
  770. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  771. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  772. {
  773. vmx_decache_cr0_guest_bits(vcpu);
  774. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  775. update_exception_bitmap(vcpu);
  776. vcpu->arch.cr0_guest_owned_bits = 0;
  777. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  778. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  779. }
  780. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  781. {
  782. unsigned long rflags, save_rflags;
  783. rflags = vmcs_readl(GUEST_RFLAGS);
  784. if (to_vmx(vcpu)->rmode.vm86_active) {
  785. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  786. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  787. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  788. }
  789. return rflags;
  790. }
  791. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  792. {
  793. if (to_vmx(vcpu)->rmode.vm86_active) {
  794. to_vmx(vcpu)->rmode.save_rflags = rflags;
  795. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  796. }
  797. vmcs_writel(GUEST_RFLAGS, rflags);
  798. }
  799. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  800. {
  801. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  802. int ret = 0;
  803. if (interruptibility & GUEST_INTR_STATE_STI)
  804. ret |= KVM_X86_SHADOW_INT_STI;
  805. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  806. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  807. return ret & mask;
  808. }
  809. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  810. {
  811. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  812. u32 interruptibility = interruptibility_old;
  813. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  814. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  815. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  816. else if (mask & KVM_X86_SHADOW_INT_STI)
  817. interruptibility |= GUEST_INTR_STATE_STI;
  818. if ((interruptibility != interruptibility_old))
  819. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  820. }
  821. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  822. {
  823. unsigned long rip;
  824. rip = kvm_rip_read(vcpu);
  825. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  826. kvm_rip_write(vcpu, rip);
  827. /* skipping an emulated instruction also counts */
  828. vmx_set_interrupt_shadow(vcpu, 0);
  829. }
  830. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  831. bool has_error_code, u32 error_code,
  832. bool reinject)
  833. {
  834. struct vcpu_vmx *vmx = to_vmx(vcpu);
  835. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  836. if (has_error_code) {
  837. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  838. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  839. }
  840. if (vmx->rmode.vm86_active) {
  841. vmx->rmode.irq.pending = true;
  842. vmx->rmode.irq.vector = nr;
  843. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  844. if (kvm_exception_is_soft(nr))
  845. vmx->rmode.irq.rip +=
  846. vmx->vcpu.arch.event_exit_inst_len;
  847. intr_info |= INTR_TYPE_SOFT_INTR;
  848. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  849. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  850. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  851. return;
  852. }
  853. if (kvm_exception_is_soft(nr)) {
  854. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  855. vmx->vcpu.arch.event_exit_inst_len);
  856. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  857. } else
  858. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  859. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  860. }
  861. static bool vmx_rdtscp_supported(void)
  862. {
  863. return cpu_has_vmx_rdtscp();
  864. }
  865. /*
  866. * Swap MSR entry in host/guest MSR entry array.
  867. */
  868. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  869. {
  870. struct shared_msr_entry tmp;
  871. tmp = vmx->guest_msrs[to];
  872. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  873. vmx->guest_msrs[from] = tmp;
  874. }
  875. /*
  876. * Set up the vmcs to automatically save and restore system
  877. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  878. * mode, as fiddling with msrs is very expensive.
  879. */
  880. static void setup_msrs(struct vcpu_vmx *vmx)
  881. {
  882. int save_nmsrs, index;
  883. unsigned long *msr_bitmap;
  884. vmx_load_host_state(vmx);
  885. save_nmsrs = 0;
  886. #ifdef CONFIG_X86_64
  887. if (is_long_mode(&vmx->vcpu)) {
  888. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  889. if (index >= 0)
  890. move_msr_up(vmx, index, save_nmsrs++);
  891. index = __find_msr_index(vmx, MSR_LSTAR);
  892. if (index >= 0)
  893. move_msr_up(vmx, index, save_nmsrs++);
  894. index = __find_msr_index(vmx, MSR_CSTAR);
  895. if (index >= 0)
  896. move_msr_up(vmx, index, save_nmsrs++);
  897. index = __find_msr_index(vmx, MSR_TSC_AUX);
  898. if (index >= 0 && vmx->rdtscp_enabled)
  899. move_msr_up(vmx, index, save_nmsrs++);
  900. /*
  901. * MSR_K6_STAR is only needed on long mode guests, and only
  902. * if efer.sce is enabled.
  903. */
  904. index = __find_msr_index(vmx, MSR_K6_STAR);
  905. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  906. move_msr_up(vmx, index, save_nmsrs++);
  907. }
  908. #endif
  909. index = __find_msr_index(vmx, MSR_EFER);
  910. if (index >= 0 && update_transition_efer(vmx, index))
  911. move_msr_up(vmx, index, save_nmsrs++);
  912. vmx->save_nmsrs = save_nmsrs;
  913. if (cpu_has_vmx_msr_bitmap()) {
  914. if (is_long_mode(&vmx->vcpu))
  915. msr_bitmap = vmx_msr_bitmap_longmode;
  916. else
  917. msr_bitmap = vmx_msr_bitmap_legacy;
  918. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  919. }
  920. }
  921. /*
  922. * reads and returns guest's timestamp counter "register"
  923. * guest_tsc = host_tsc + tsc_offset -- 21.3
  924. */
  925. static u64 guest_read_tsc(void)
  926. {
  927. u64 host_tsc, tsc_offset;
  928. rdtscll(host_tsc);
  929. tsc_offset = vmcs_read64(TSC_OFFSET);
  930. return host_tsc + tsc_offset;
  931. }
  932. /*
  933. * writes 'guest_tsc' into guest's timestamp counter "register"
  934. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  935. */
  936. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  937. {
  938. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  939. }
  940. /*
  941. * Reads an msr value (of 'msr_index') into 'pdata'.
  942. * Returns 0 on success, non-0 otherwise.
  943. * Assumes vcpu_load() was already called.
  944. */
  945. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  946. {
  947. u64 data;
  948. struct shared_msr_entry *msr;
  949. if (!pdata) {
  950. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  951. return -EINVAL;
  952. }
  953. switch (msr_index) {
  954. #ifdef CONFIG_X86_64
  955. case MSR_FS_BASE:
  956. data = vmcs_readl(GUEST_FS_BASE);
  957. break;
  958. case MSR_GS_BASE:
  959. data = vmcs_readl(GUEST_GS_BASE);
  960. break;
  961. case MSR_KERNEL_GS_BASE:
  962. vmx_load_host_state(to_vmx(vcpu));
  963. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  964. break;
  965. #endif
  966. case MSR_EFER:
  967. return kvm_get_msr_common(vcpu, msr_index, pdata);
  968. case MSR_IA32_TSC:
  969. data = guest_read_tsc();
  970. break;
  971. case MSR_IA32_SYSENTER_CS:
  972. data = vmcs_read32(GUEST_SYSENTER_CS);
  973. break;
  974. case MSR_IA32_SYSENTER_EIP:
  975. data = vmcs_readl(GUEST_SYSENTER_EIP);
  976. break;
  977. case MSR_IA32_SYSENTER_ESP:
  978. data = vmcs_readl(GUEST_SYSENTER_ESP);
  979. break;
  980. case MSR_TSC_AUX:
  981. if (!to_vmx(vcpu)->rdtscp_enabled)
  982. return 1;
  983. /* Otherwise falls through */
  984. default:
  985. vmx_load_host_state(to_vmx(vcpu));
  986. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  987. if (msr) {
  988. vmx_load_host_state(to_vmx(vcpu));
  989. data = msr->data;
  990. break;
  991. }
  992. return kvm_get_msr_common(vcpu, msr_index, pdata);
  993. }
  994. *pdata = data;
  995. return 0;
  996. }
  997. /*
  998. * Writes msr value into into the appropriate "register".
  999. * Returns 0 on success, non-0 otherwise.
  1000. * Assumes vcpu_load() was already called.
  1001. */
  1002. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1003. {
  1004. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1005. struct shared_msr_entry *msr;
  1006. u64 host_tsc;
  1007. int ret = 0;
  1008. switch (msr_index) {
  1009. case MSR_EFER:
  1010. vmx_load_host_state(vmx);
  1011. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1012. break;
  1013. #ifdef CONFIG_X86_64
  1014. case MSR_FS_BASE:
  1015. vmcs_writel(GUEST_FS_BASE, data);
  1016. break;
  1017. case MSR_GS_BASE:
  1018. vmcs_writel(GUEST_GS_BASE, data);
  1019. break;
  1020. case MSR_KERNEL_GS_BASE:
  1021. vmx_load_host_state(vmx);
  1022. vmx->msr_guest_kernel_gs_base = data;
  1023. break;
  1024. #endif
  1025. case MSR_IA32_SYSENTER_CS:
  1026. vmcs_write32(GUEST_SYSENTER_CS, data);
  1027. break;
  1028. case MSR_IA32_SYSENTER_EIP:
  1029. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1030. break;
  1031. case MSR_IA32_SYSENTER_ESP:
  1032. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1033. break;
  1034. case MSR_IA32_TSC:
  1035. rdtscll(host_tsc);
  1036. guest_write_tsc(data, host_tsc);
  1037. break;
  1038. case MSR_IA32_CR_PAT:
  1039. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1040. vmcs_write64(GUEST_IA32_PAT, data);
  1041. vcpu->arch.pat = data;
  1042. break;
  1043. }
  1044. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1045. break;
  1046. case MSR_TSC_AUX:
  1047. if (!vmx->rdtscp_enabled)
  1048. return 1;
  1049. /* Check reserved bit, higher 32 bits should be zero */
  1050. if ((data >> 32) != 0)
  1051. return 1;
  1052. /* Otherwise falls through */
  1053. default:
  1054. msr = find_msr_entry(vmx, msr_index);
  1055. if (msr) {
  1056. vmx_load_host_state(vmx);
  1057. msr->data = data;
  1058. break;
  1059. }
  1060. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1061. }
  1062. return ret;
  1063. }
  1064. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1065. {
  1066. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1067. switch (reg) {
  1068. case VCPU_REGS_RSP:
  1069. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1070. break;
  1071. case VCPU_REGS_RIP:
  1072. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1073. break;
  1074. case VCPU_EXREG_PDPTR:
  1075. if (enable_ept)
  1076. ept_save_pdptrs(vcpu);
  1077. break;
  1078. default:
  1079. break;
  1080. }
  1081. }
  1082. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1083. {
  1084. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1085. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1086. else
  1087. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1088. update_exception_bitmap(vcpu);
  1089. }
  1090. static __init int cpu_has_kvm_support(void)
  1091. {
  1092. return cpu_has_vmx();
  1093. }
  1094. static __init int vmx_disabled_by_bios(void)
  1095. {
  1096. u64 msr;
  1097. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1098. if (msr & FEATURE_CONTROL_LOCKED) {
  1099. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1100. && tboot_enabled())
  1101. return 1;
  1102. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1103. && !tboot_enabled())
  1104. return 1;
  1105. }
  1106. return 0;
  1107. /* locked but not enabled */
  1108. }
  1109. static int hardware_enable(void *garbage)
  1110. {
  1111. int cpu = raw_smp_processor_id();
  1112. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1113. u64 old, test_bits;
  1114. if (read_cr4() & X86_CR4_VMXE)
  1115. return -EBUSY;
  1116. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1117. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1118. test_bits = FEATURE_CONTROL_LOCKED;
  1119. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1120. if (tboot_enabled())
  1121. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1122. if ((old & test_bits) != test_bits) {
  1123. /* enable and lock */
  1124. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1125. }
  1126. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1127. asm volatile (ASM_VMX_VMXON_RAX
  1128. : : "a"(&phys_addr), "m"(phys_addr)
  1129. : "memory", "cc");
  1130. ept_sync_global();
  1131. return 0;
  1132. }
  1133. static void vmclear_local_vcpus(void)
  1134. {
  1135. int cpu = raw_smp_processor_id();
  1136. struct vcpu_vmx *vmx, *n;
  1137. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1138. local_vcpus_link)
  1139. __vcpu_clear(vmx);
  1140. }
  1141. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1142. * tricks.
  1143. */
  1144. static void kvm_cpu_vmxoff(void)
  1145. {
  1146. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1147. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1148. }
  1149. static void hardware_disable(void *garbage)
  1150. {
  1151. vmclear_local_vcpus();
  1152. kvm_cpu_vmxoff();
  1153. }
  1154. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1155. u32 msr, u32 *result)
  1156. {
  1157. u32 vmx_msr_low, vmx_msr_high;
  1158. u32 ctl = ctl_min | ctl_opt;
  1159. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1160. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1161. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1162. /* Ensure minimum (required) set of control bits are supported. */
  1163. if (ctl_min & ~ctl)
  1164. return -EIO;
  1165. *result = ctl;
  1166. return 0;
  1167. }
  1168. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1169. {
  1170. u32 vmx_msr_low, vmx_msr_high;
  1171. u32 min, opt, min2, opt2;
  1172. u32 _pin_based_exec_control = 0;
  1173. u32 _cpu_based_exec_control = 0;
  1174. u32 _cpu_based_2nd_exec_control = 0;
  1175. u32 _vmexit_control = 0;
  1176. u32 _vmentry_control = 0;
  1177. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1178. opt = PIN_BASED_VIRTUAL_NMIS;
  1179. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1180. &_pin_based_exec_control) < 0)
  1181. return -EIO;
  1182. min = CPU_BASED_HLT_EXITING |
  1183. #ifdef CONFIG_X86_64
  1184. CPU_BASED_CR8_LOAD_EXITING |
  1185. CPU_BASED_CR8_STORE_EXITING |
  1186. #endif
  1187. CPU_BASED_CR3_LOAD_EXITING |
  1188. CPU_BASED_CR3_STORE_EXITING |
  1189. CPU_BASED_USE_IO_BITMAPS |
  1190. CPU_BASED_MOV_DR_EXITING |
  1191. CPU_BASED_USE_TSC_OFFSETING |
  1192. CPU_BASED_MWAIT_EXITING |
  1193. CPU_BASED_MONITOR_EXITING |
  1194. CPU_BASED_INVLPG_EXITING;
  1195. opt = CPU_BASED_TPR_SHADOW |
  1196. CPU_BASED_USE_MSR_BITMAPS |
  1197. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1198. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1199. &_cpu_based_exec_control) < 0)
  1200. return -EIO;
  1201. #ifdef CONFIG_X86_64
  1202. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1203. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1204. ~CPU_BASED_CR8_STORE_EXITING;
  1205. #endif
  1206. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1207. min2 = 0;
  1208. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1209. SECONDARY_EXEC_WBINVD_EXITING |
  1210. SECONDARY_EXEC_ENABLE_VPID |
  1211. SECONDARY_EXEC_ENABLE_EPT |
  1212. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1213. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1214. SECONDARY_EXEC_RDTSCP;
  1215. if (adjust_vmx_controls(min2, opt2,
  1216. MSR_IA32_VMX_PROCBASED_CTLS2,
  1217. &_cpu_based_2nd_exec_control) < 0)
  1218. return -EIO;
  1219. }
  1220. #ifndef CONFIG_X86_64
  1221. if (!(_cpu_based_2nd_exec_control &
  1222. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1223. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1224. #endif
  1225. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1226. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1227. enabled */
  1228. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1229. CPU_BASED_CR3_STORE_EXITING |
  1230. CPU_BASED_INVLPG_EXITING);
  1231. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1232. vmx_capability.ept, vmx_capability.vpid);
  1233. }
  1234. min = 0;
  1235. #ifdef CONFIG_X86_64
  1236. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1237. #endif
  1238. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1239. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1240. &_vmexit_control) < 0)
  1241. return -EIO;
  1242. min = 0;
  1243. opt = VM_ENTRY_LOAD_IA32_PAT;
  1244. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1245. &_vmentry_control) < 0)
  1246. return -EIO;
  1247. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1248. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1249. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1250. return -EIO;
  1251. #ifdef CONFIG_X86_64
  1252. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1253. if (vmx_msr_high & (1u<<16))
  1254. return -EIO;
  1255. #endif
  1256. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1257. if (((vmx_msr_high >> 18) & 15) != 6)
  1258. return -EIO;
  1259. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1260. vmcs_conf->order = get_order(vmcs_config.size);
  1261. vmcs_conf->revision_id = vmx_msr_low;
  1262. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1263. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1264. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1265. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1266. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1267. return 0;
  1268. }
  1269. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1270. {
  1271. int node = cpu_to_node(cpu);
  1272. struct page *pages;
  1273. struct vmcs *vmcs;
  1274. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1275. if (!pages)
  1276. return NULL;
  1277. vmcs = page_address(pages);
  1278. memset(vmcs, 0, vmcs_config.size);
  1279. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1280. return vmcs;
  1281. }
  1282. static struct vmcs *alloc_vmcs(void)
  1283. {
  1284. return alloc_vmcs_cpu(raw_smp_processor_id());
  1285. }
  1286. static void free_vmcs(struct vmcs *vmcs)
  1287. {
  1288. free_pages((unsigned long)vmcs, vmcs_config.order);
  1289. }
  1290. static void free_kvm_area(void)
  1291. {
  1292. int cpu;
  1293. for_each_possible_cpu(cpu) {
  1294. free_vmcs(per_cpu(vmxarea, cpu));
  1295. per_cpu(vmxarea, cpu) = NULL;
  1296. }
  1297. }
  1298. static __init int alloc_kvm_area(void)
  1299. {
  1300. int cpu;
  1301. for_each_possible_cpu(cpu) {
  1302. struct vmcs *vmcs;
  1303. vmcs = alloc_vmcs_cpu(cpu);
  1304. if (!vmcs) {
  1305. free_kvm_area();
  1306. return -ENOMEM;
  1307. }
  1308. per_cpu(vmxarea, cpu) = vmcs;
  1309. }
  1310. return 0;
  1311. }
  1312. static __init int hardware_setup(void)
  1313. {
  1314. if (setup_vmcs_config(&vmcs_config) < 0)
  1315. return -EIO;
  1316. if (boot_cpu_has(X86_FEATURE_NX))
  1317. kvm_enable_efer_bits(EFER_NX);
  1318. if (!cpu_has_vmx_vpid())
  1319. enable_vpid = 0;
  1320. if (!cpu_has_vmx_ept()) {
  1321. enable_ept = 0;
  1322. enable_unrestricted_guest = 0;
  1323. }
  1324. if (!cpu_has_vmx_unrestricted_guest())
  1325. enable_unrestricted_guest = 0;
  1326. if (!cpu_has_vmx_flexpriority())
  1327. flexpriority_enabled = 0;
  1328. if (!cpu_has_vmx_tpr_shadow())
  1329. kvm_x86_ops->update_cr8_intercept = NULL;
  1330. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1331. kvm_disable_largepages();
  1332. if (!cpu_has_vmx_ple())
  1333. ple_gap = 0;
  1334. return alloc_kvm_area();
  1335. }
  1336. static __exit void hardware_unsetup(void)
  1337. {
  1338. free_kvm_area();
  1339. }
  1340. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1341. {
  1342. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1343. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1344. vmcs_write16(sf->selector, save->selector);
  1345. vmcs_writel(sf->base, save->base);
  1346. vmcs_write32(sf->limit, save->limit);
  1347. vmcs_write32(sf->ar_bytes, save->ar);
  1348. } else {
  1349. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1350. << AR_DPL_SHIFT;
  1351. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1352. }
  1353. }
  1354. static void enter_pmode(struct kvm_vcpu *vcpu)
  1355. {
  1356. unsigned long flags;
  1357. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1358. vmx->emulation_required = 1;
  1359. vmx->rmode.vm86_active = 0;
  1360. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1361. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1362. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1363. flags = vmcs_readl(GUEST_RFLAGS);
  1364. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1365. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1366. vmcs_writel(GUEST_RFLAGS, flags);
  1367. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1368. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1369. update_exception_bitmap(vcpu);
  1370. if (emulate_invalid_guest_state)
  1371. return;
  1372. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1373. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1374. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1375. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1376. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1377. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1378. vmcs_write16(GUEST_CS_SELECTOR,
  1379. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1380. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1381. }
  1382. static gva_t rmode_tss_base(struct kvm *kvm)
  1383. {
  1384. if (!kvm->arch.tss_addr) {
  1385. struct kvm_memslots *slots;
  1386. gfn_t base_gfn;
  1387. slots = kvm_memslots(kvm);
  1388. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1389. kvm->memslots->memslots[0].npages - 3;
  1390. return base_gfn << PAGE_SHIFT;
  1391. }
  1392. return kvm->arch.tss_addr;
  1393. }
  1394. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1395. {
  1396. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1397. save->selector = vmcs_read16(sf->selector);
  1398. save->base = vmcs_readl(sf->base);
  1399. save->limit = vmcs_read32(sf->limit);
  1400. save->ar = vmcs_read32(sf->ar_bytes);
  1401. vmcs_write16(sf->selector, save->base >> 4);
  1402. vmcs_write32(sf->base, save->base & 0xfffff);
  1403. vmcs_write32(sf->limit, 0xffff);
  1404. vmcs_write32(sf->ar_bytes, 0xf3);
  1405. }
  1406. static void enter_rmode(struct kvm_vcpu *vcpu)
  1407. {
  1408. unsigned long flags;
  1409. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1410. if (enable_unrestricted_guest)
  1411. return;
  1412. vmx->emulation_required = 1;
  1413. vmx->rmode.vm86_active = 1;
  1414. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1415. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1416. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1417. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1418. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1419. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1420. flags = vmcs_readl(GUEST_RFLAGS);
  1421. vmx->rmode.save_rflags = flags;
  1422. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1423. vmcs_writel(GUEST_RFLAGS, flags);
  1424. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1425. update_exception_bitmap(vcpu);
  1426. if (emulate_invalid_guest_state)
  1427. goto continue_rmode;
  1428. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1429. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1430. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1431. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1432. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1433. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1434. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1435. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1436. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1437. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1438. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1439. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1440. continue_rmode:
  1441. kvm_mmu_reset_context(vcpu);
  1442. init_rmode(vcpu->kvm);
  1443. }
  1444. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1445. {
  1446. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1447. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1448. if (!msr)
  1449. return;
  1450. /*
  1451. * Force kernel_gs_base reloading before EFER changes, as control
  1452. * of this msr depends on is_long_mode().
  1453. */
  1454. vmx_load_host_state(to_vmx(vcpu));
  1455. vcpu->arch.efer = efer;
  1456. if (efer & EFER_LMA) {
  1457. vmcs_write32(VM_ENTRY_CONTROLS,
  1458. vmcs_read32(VM_ENTRY_CONTROLS) |
  1459. VM_ENTRY_IA32E_MODE);
  1460. msr->data = efer;
  1461. } else {
  1462. vmcs_write32(VM_ENTRY_CONTROLS,
  1463. vmcs_read32(VM_ENTRY_CONTROLS) &
  1464. ~VM_ENTRY_IA32E_MODE);
  1465. msr->data = efer & ~EFER_LME;
  1466. }
  1467. setup_msrs(vmx);
  1468. }
  1469. #ifdef CONFIG_X86_64
  1470. static void enter_lmode(struct kvm_vcpu *vcpu)
  1471. {
  1472. u32 guest_tr_ar;
  1473. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1474. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1475. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1476. __func__);
  1477. vmcs_write32(GUEST_TR_AR_BYTES,
  1478. (guest_tr_ar & ~AR_TYPE_MASK)
  1479. | AR_TYPE_BUSY_64_TSS);
  1480. }
  1481. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1482. }
  1483. static void exit_lmode(struct kvm_vcpu *vcpu)
  1484. {
  1485. vmcs_write32(VM_ENTRY_CONTROLS,
  1486. vmcs_read32(VM_ENTRY_CONTROLS)
  1487. & ~VM_ENTRY_IA32E_MODE);
  1488. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1489. }
  1490. #endif
  1491. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1492. {
  1493. vpid_sync_vcpu_all(to_vmx(vcpu));
  1494. if (enable_ept)
  1495. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1496. }
  1497. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1498. {
  1499. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1500. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1501. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1502. }
  1503. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1504. {
  1505. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1506. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1507. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1508. }
  1509. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1510. {
  1511. if (!test_bit(VCPU_EXREG_PDPTR,
  1512. (unsigned long *)&vcpu->arch.regs_dirty))
  1513. return;
  1514. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1515. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1516. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1517. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1518. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1519. }
  1520. }
  1521. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1522. {
  1523. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1524. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1525. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1526. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1527. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1528. }
  1529. __set_bit(VCPU_EXREG_PDPTR,
  1530. (unsigned long *)&vcpu->arch.regs_avail);
  1531. __set_bit(VCPU_EXREG_PDPTR,
  1532. (unsigned long *)&vcpu->arch.regs_dirty);
  1533. }
  1534. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1535. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1536. unsigned long cr0,
  1537. struct kvm_vcpu *vcpu)
  1538. {
  1539. if (!(cr0 & X86_CR0_PG)) {
  1540. /* From paging/starting to nonpaging */
  1541. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1542. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1543. (CPU_BASED_CR3_LOAD_EXITING |
  1544. CPU_BASED_CR3_STORE_EXITING));
  1545. vcpu->arch.cr0 = cr0;
  1546. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1547. } else if (!is_paging(vcpu)) {
  1548. /* From nonpaging to paging */
  1549. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1550. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1551. ~(CPU_BASED_CR3_LOAD_EXITING |
  1552. CPU_BASED_CR3_STORE_EXITING));
  1553. vcpu->arch.cr0 = cr0;
  1554. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1555. }
  1556. if (!(cr0 & X86_CR0_WP))
  1557. *hw_cr0 &= ~X86_CR0_WP;
  1558. }
  1559. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1560. {
  1561. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1562. unsigned long hw_cr0;
  1563. if (enable_unrestricted_guest)
  1564. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1565. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1566. else
  1567. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1568. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1569. enter_pmode(vcpu);
  1570. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1571. enter_rmode(vcpu);
  1572. #ifdef CONFIG_X86_64
  1573. if (vcpu->arch.efer & EFER_LME) {
  1574. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1575. enter_lmode(vcpu);
  1576. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1577. exit_lmode(vcpu);
  1578. }
  1579. #endif
  1580. if (enable_ept)
  1581. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1582. if (!vcpu->fpu_active)
  1583. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1584. vmcs_writel(CR0_READ_SHADOW, cr0);
  1585. vmcs_writel(GUEST_CR0, hw_cr0);
  1586. vcpu->arch.cr0 = cr0;
  1587. }
  1588. static u64 construct_eptp(unsigned long root_hpa)
  1589. {
  1590. u64 eptp;
  1591. /* TODO write the value reading from MSR */
  1592. eptp = VMX_EPT_DEFAULT_MT |
  1593. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1594. eptp |= (root_hpa & PAGE_MASK);
  1595. return eptp;
  1596. }
  1597. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1598. {
  1599. unsigned long guest_cr3;
  1600. u64 eptp;
  1601. guest_cr3 = cr3;
  1602. if (enable_ept) {
  1603. eptp = construct_eptp(cr3);
  1604. vmcs_write64(EPT_POINTER, eptp);
  1605. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1606. vcpu->kvm->arch.ept_identity_map_addr;
  1607. ept_load_pdptrs(vcpu);
  1608. }
  1609. vmx_flush_tlb(vcpu);
  1610. vmcs_writel(GUEST_CR3, guest_cr3);
  1611. }
  1612. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1613. {
  1614. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1615. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1616. vcpu->arch.cr4 = cr4;
  1617. if (enable_ept) {
  1618. if (!is_paging(vcpu)) {
  1619. hw_cr4 &= ~X86_CR4_PAE;
  1620. hw_cr4 |= X86_CR4_PSE;
  1621. } else if (!(cr4 & X86_CR4_PAE)) {
  1622. hw_cr4 &= ~X86_CR4_PAE;
  1623. }
  1624. }
  1625. vmcs_writel(CR4_READ_SHADOW, cr4);
  1626. vmcs_writel(GUEST_CR4, hw_cr4);
  1627. }
  1628. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1629. {
  1630. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1631. return vmcs_readl(sf->base);
  1632. }
  1633. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1634. struct kvm_segment *var, int seg)
  1635. {
  1636. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1637. u32 ar;
  1638. var->base = vmcs_readl(sf->base);
  1639. var->limit = vmcs_read32(sf->limit);
  1640. var->selector = vmcs_read16(sf->selector);
  1641. ar = vmcs_read32(sf->ar_bytes);
  1642. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1643. ar = 0;
  1644. var->type = ar & 15;
  1645. var->s = (ar >> 4) & 1;
  1646. var->dpl = (ar >> 5) & 3;
  1647. var->present = (ar >> 7) & 1;
  1648. var->avl = (ar >> 12) & 1;
  1649. var->l = (ar >> 13) & 1;
  1650. var->db = (ar >> 14) & 1;
  1651. var->g = (ar >> 15) & 1;
  1652. var->unusable = (ar >> 16) & 1;
  1653. }
  1654. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1655. {
  1656. if (!is_protmode(vcpu))
  1657. return 0;
  1658. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1659. return 3;
  1660. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1661. }
  1662. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1663. {
  1664. u32 ar;
  1665. if (var->unusable)
  1666. ar = 1 << 16;
  1667. else {
  1668. ar = var->type & 15;
  1669. ar |= (var->s & 1) << 4;
  1670. ar |= (var->dpl & 3) << 5;
  1671. ar |= (var->present & 1) << 7;
  1672. ar |= (var->avl & 1) << 12;
  1673. ar |= (var->l & 1) << 13;
  1674. ar |= (var->db & 1) << 14;
  1675. ar |= (var->g & 1) << 15;
  1676. }
  1677. if (ar == 0) /* a 0 value means unusable */
  1678. ar = AR_UNUSABLE_MASK;
  1679. return ar;
  1680. }
  1681. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1682. struct kvm_segment *var, int seg)
  1683. {
  1684. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1685. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1686. u32 ar;
  1687. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1688. vmx->rmode.tr.selector = var->selector;
  1689. vmx->rmode.tr.base = var->base;
  1690. vmx->rmode.tr.limit = var->limit;
  1691. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1692. return;
  1693. }
  1694. vmcs_writel(sf->base, var->base);
  1695. vmcs_write32(sf->limit, var->limit);
  1696. vmcs_write16(sf->selector, var->selector);
  1697. if (vmx->rmode.vm86_active && var->s) {
  1698. /*
  1699. * Hack real-mode segments into vm86 compatibility.
  1700. */
  1701. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1702. vmcs_writel(sf->base, 0xf0000);
  1703. ar = 0xf3;
  1704. } else
  1705. ar = vmx_segment_access_rights(var);
  1706. /*
  1707. * Fix the "Accessed" bit in AR field of segment registers for older
  1708. * qemu binaries.
  1709. * IA32 arch specifies that at the time of processor reset the
  1710. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1711. * is setting it to 0 in the usedland code. This causes invalid guest
  1712. * state vmexit when "unrestricted guest" mode is turned on.
  1713. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1714. * tree. Newer qemu binaries with that qemu fix would not need this
  1715. * kvm hack.
  1716. */
  1717. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1718. ar |= 0x1; /* Accessed */
  1719. vmcs_write32(sf->ar_bytes, ar);
  1720. }
  1721. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1722. {
  1723. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1724. *db = (ar >> 14) & 1;
  1725. *l = (ar >> 13) & 1;
  1726. }
  1727. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1728. {
  1729. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1730. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1731. }
  1732. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1733. {
  1734. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1735. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1736. }
  1737. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1738. {
  1739. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1740. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1741. }
  1742. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1743. {
  1744. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1745. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1746. }
  1747. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1748. {
  1749. struct kvm_segment var;
  1750. u32 ar;
  1751. vmx_get_segment(vcpu, &var, seg);
  1752. ar = vmx_segment_access_rights(&var);
  1753. if (var.base != (var.selector << 4))
  1754. return false;
  1755. if (var.limit != 0xffff)
  1756. return false;
  1757. if (ar != 0xf3)
  1758. return false;
  1759. return true;
  1760. }
  1761. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1762. {
  1763. struct kvm_segment cs;
  1764. unsigned int cs_rpl;
  1765. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1766. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1767. if (cs.unusable)
  1768. return false;
  1769. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1770. return false;
  1771. if (!cs.s)
  1772. return false;
  1773. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1774. if (cs.dpl > cs_rpl)
  1775. return false;
  1776. } else {
  1777. if (cs.dpl != cs_rpl)
  1778. return false;
  1779. }
  1780. if (!cs.present)
  1781. return false;
  1782. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1783. return true;
  1784. }
  1785. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1786. {
  1787. struct kvm_segment ss;
  1788. unsigned int ss_rpl;
  1789. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1790. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1791. if (ss.unusable)
  1792. return true;
  1793. if (ss.type != 3 && ss.type != 7)
  1794. return false;
  1795. if (!ss.s)
  1796. return false;
  1797. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1798. return false;
  1799. if (!ss.present)
  1800. return false;
  1801. return true;
  1802. }
  1803. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1804. {
  1805. struct kvm_segment var;
  1806. unsigned int rpl;
  1807. vmx_get_segment(vcpu, &var, seg);
  1808. rpl = var.selector & SELECTOR_RPL_MASK;
  1809. if (var.unusable)
  1810. return true;
  1811. if (!var.s)
  1812. return false;
  1813. if (!var.present)
  1814. return false;
  1815. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1816. if (var.dpl < rpl) /* DPL < RPL */
  1817. return false;
  1818. }
  1819. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1820. * rights flags
  1821. */
  1822. return true;
  1823. }
  1824. static bool tr_valid(struct kvm_vcpu *vcpu)
  1825. {
  1826. struct kvm_segment tr;
  1827. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1828. if (tr.unusable)
  1829. return false;
  1830. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1831. return false;
  1832. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1833. return false;
  1834. if (!tr.present)
  1835. return false;
  1836. return true;
  1837. }
  1838. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1839. {
  1840. struct kvm_segment ldtr;
  1841. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1842. if (ldtr.unusable)
  1843. return true;
  1844. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1845. return false;
  1846. if (ldtr.type != 2)
  1847. return false;
  1848. if (!ldtr.present)
  1849. return false;
  1850. return true;
  1851. }
  1852. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1853. {
  1854. struct kvm_segment cs, ss;
  1855. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1856. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1857. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1858. (ss.selector & SELECTOR_RPL_MASK));
  1859. }
  1860. /*
  1861. * Check if guest state is valid. Returns true if valid, false if
  1862. * not.
  1863. * We assume that registers are always usable
  1864. */
  1865. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1866. {
  1867. /* real mode guest state checks */
  1868. if (!is_protmode(vcpu)) {
  1869. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1870. return false;
  1871. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1872. return false;
  1873. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1874. return false;
  1875. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1876. return false;
  1877. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1878. return false;
  1879. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1880. return false;
  1881. } else {
  1882. /* protected mode guest state checks */
  1883. if (!cs_ss_rpl_check(vcpu))
  1884. return false;
  1885. if (!code_segment_valid(vcpu))
  1886. return false;
  1887. if (!stack_segment_valid(vcpu))
  1888. return false;
  1889. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1890. return false;
  1891. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1892. return false;
  1893. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1894. return false;
  1895. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1896. return false;
  1897. if (!tr_valid(vcpu))
  1898. return false;
  1899. if (!ldtr_valid(vcpu))
  1900. return false;
  1901. }
  1902. /* TODO:
  1903. * - Add checks on RIP
  1904. * - Add checks on RFLAGS
  1905. */
  1906. return true;
  1907. }
  1908. static int init_rmode_tss(struct kvm *kvm)
  1909. {
  1910. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1911. u16 data = 0;
  1912. int ret = 0;
  1913. int r;
  1914. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1915. if (r < 0)
  1916. goto out;
  1917. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1918. r = kvm_write_guest_page(kvm, fn++, &data,
  1919. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1920. if (r < 0)
  1921. goto out;
  1922. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1923. if (r < 0)
  1924. goto out;
  1925. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1926. if (r < 0)
  1927. goto out;
  1928. data = ~0;
  1929. r = kvm_write_guest_page(kvm, fn, &data,
  1930. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1931. sizeof(u8));
  1932. if (r < 0)
  1933. goto out;
  1934. ret = 1;
  1935. out:
  1936. return ret;
  1937. }
  1938. static int init_rmode_identity_map(struct kvm *kvm)
  1939. {
  1940. int i, r, ret;
  1941. pfn_t identity_map_pfn;
  1942. u32 tmp;
  1943. if (!enable_ept)
  1944. return 1;
  1945. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1946. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1947. "haven't been allocated!\n");
  1948. return 0;
  1949. }
  1950. if (likely(kvm->arch.ept_identity_pagetable_done))
  1951. return 1;
  1952. ret = 0;
  1953. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1954. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1955. if (r < 0)
  1956. goto out;
  1957. /* Set up identity-mapping pagetable for EPT in real mode */
  1958. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1959. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1960. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1961. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1962. &tmp, i * sizeof(tmp), sizeof(tmp));
  1963. if (r < 0)
  1964. goto out;
  1965. }
  1966. kvm->arch.ept_identity_pagetable_done = true;
  1967. ret = 1;
  1968. out:
  1969. return ret;
  1970. }
  1971. static void seg_setup(int seg)
  1972. {
  1973. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1974. unsigned int ar;
  1975. vmcs_write16(sf->selector, 0);
  1976. vmcs_writel(sf->base, 0);
  1977. vmcs_write32(sf->limit, 0xffff);
  1978. if (enable_unrestricted_guest) {
  1979. ar = 0x93;
  1980. if (seg == VCPU_SREG_CS)
  1981. ar |= 0x08; /* code segment */
  1982. } else
  1983. ar = 0xf3;
  1984. vmcs_write32(sf->ar_bytes, ar);
  1985. }
  1986. static int alloc_apic_access_page(struct kvm *kvm)
  1987. {
  1988. struct kvm_userspace_memory_region kvm_userspace_mem;
  1989. int r = 0;
  1990. mutex_lock(&kvm->slots_lock);
  1991. if (kvm->arch.apic_access_page)
  1992. goto out;
  1993. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1994. kvm_userspace_mem.flags = 0;
  1995. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1996. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1997. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1998. if (r)
  1999. goto out;
  2000. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2001. out:
  2002. mutex_unlock(&kvm->slots_lock);
  2003. return r;
  2004. }
  2005. static int alloc_identity_pagetable(struct kvm *kvm)
  2006. {
  2007. struct kvm_userspace_memory_region kvm_userspace_mem;
  2008. int r = 0;
  2009. mutex_lock(&kvm->slots_lock);
  2010. if (kvm->arch.ept_identity_pagetable)
  2011. goto out;
  2012. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2013. kvm_userspace_mem.flags = 0;
  2014. kvm_userspace_mem.guest_phys_addr =
  2015. kvm->arch.ept_identity_map_addr;
  2016. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2017. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2018. if (r)
  2019. goto out;
  2020. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2021. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2022. out:
  2023. mutex_unlock(&kvm->slots_lock);
  2024. return r;
  2025. }
  2026. static void allocate_vpid(struct vcpu_vmx *vmx)
  2027. {
  2028. int vpid;
  2029. vmx->vpid = 0;
  2030. if (!enable_vpid)
  2031. return;
  2032. spin_lock(&vmx_vpid_lock);
  2033. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2034. if (vpid < VMX_NR_VPIDS) {
  2035. vmx->vpid = vpid;
  2036. __set_bit(vpid, vmx_vpid_bitmap);
  2037. }
  2038. spin_unlock(&vmx_vpid_lock);
  2039. }
  2040. static void free_vpid(struct vcpu_vmx *vmx)
  2041. {
  2042. if (!enable_vpid)
  2043. return;
  2044. spin_lock(&vmx_vpid_lock);
  2045. if (vmx->vpid != 0)
  2046. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2047. spin_unlock(&vmx_vpid_lock);
  2048. }
  2049. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2050. {
  2051. int f = sizeof(unsigned long);
  2052. if (!cpu_has_vmx_msr_bitmap())
  2053. return;
  2054. /*
  2055. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2056. * have the write-low and read-high bitmap offsets the wrong way round.
  2057. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2058. */
  2059. if (msr <= 0x1fff) {
  2060. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2061. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2062. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2063. msr &= 0x1fff;
  2064. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2065. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2066. }
  2067. }
  2068. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2069. {
  2070. if (!longmode_only)
  2071. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2072. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2073. }
  2074. /*
  2075. * Sets up the vmcs for emulated real mode.
  2076. */
  2077. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2078. {
  2079. u32 host_sysenter_cs, msr_low, msr_high;
  2080. u32 junk;
  2081. u64 host_pat, tsc_this, tsc_base;
  2082. unsigned long a;
  2083. struct desc_ptr dt;
  2084. int i;
  2085. unsigned long kvm_vmx_return;
  2086. u32 exec_control;
  2087. /* I/O */
  2088. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2089. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2090. if (cpu_has_vmx_msr_bitmap())
  2091. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2092. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2093. /* Control */
  2094. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2095. vmcs_config.pin_based_exec_ctrl);
  2096. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2097. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2098. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2099. #ifdef CONFIG_X86_64
  2100. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2101. CPU_BASED_CR8_LOAD_EXITING;
  2102. #endif
  2103. }
  2104. if (!enable_ept)
  2105. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2106. CPU_BASED_CR3_LOAD_EXITING |
  2107. CPU_BASED_INVLPG_EXITING;
  2108. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2109. if (cpu_has_secondary_exec_ctrls()) {
  2110. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2111. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2112. exec_control &=
  2113. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2114. if (vmx->vpid == 0)
  2115. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2116. if (!enable_ept) {
  2117. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2118. enable_unrestricted_guest = 0;
  2119. }
  2120. if (!enable_unrestricted_guest)
  2121. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2122. if (!ple_gap)
  2123. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2124. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2125. }
  2126. if (ple_gap) {
  2127. vmcs_write32(PLE_GAP, ple_gap);
  2128. vmcs_write32(PLE_WINDOW, ple_window);
  2129. }
  2130. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2131. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2132. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2133. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2134. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2135. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2136. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2137. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2138. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2139. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2140. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2141. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2142. #ifdef CONFIG_X86_64
  2143. rdmsrl(MSR_FS_BASE, a);
  2144. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2145. rdmsrl(MSR_GS_BASE, a);
  2146. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2147. #else
  2148. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2149. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2150. #endif
  2151. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2152. native_store_idt(&dt);
  2153. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2154. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2155. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2156. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2157. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2158. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2159. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2160. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2161. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2162. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2163. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2164. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2165. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2166. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2167. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2168. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2169. host_pat = msr_low | ((u64) msr_high << 32);
  2170. vmcs_write64(HOST_IA32_PAT, host_pat);
  2171. }
  2172. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2173. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2174. host_pat = msr_low | ((u64) msr_high << 32);
  2175. /* Write the default value follow host pat */
  2176. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2177. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2178. vmx->vcpu.arch.pat = host_pat;
  2179. }
  2180. for (i = 0; i < NR_VMX_MSR; ++i) {
  2181. u32 index = vmx_msr_index[i];
  2182. u32 data_low, data_high;
  2183. int j = vmx->nmsrs;
  2184. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2185. continue;
  2186. if (wrmsr_safe(index, data_low, data_high) < 0)
  2187. continue;
  2188. vmx->guest_msrs[j].index = i;
  2189. vmx->guest_msrs[j].data = 0;
  2190. vmx->guest_msrs[j].mask = -1ull;
  2191. ++vmx->nmsrs;
  2192. }
  2193. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2194. /* 22.2.1, 20.8.1 */
  2195. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2196. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2197. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2198. if (enable_ept)
  2199. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2200. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2201. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2202. rdtscll(tsc_this);
  2203. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2204. tsc_base = tsc_this;
  2205. guest_write_tsc(0, tsc_base);
  2206. return 0;
  2207. }
  2208. static int init_rmode(struct kvm *kvm)
  2209. {
  2210. if (!init_rmode_tss(kvm))
  2211. return 0;
  2212. if (!init_rmode_identity_map(kvm))
  2213. return 0;
  2214. return 1;
  2215. }
  2216. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2217. {
  2218. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2219. u64 msr;
  2220. int ret, idx;
  2221. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2222. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2223. if (!init_rmode(vmx->vcpu.kvm)) {
  2224. ret = -ENOMEM;
  2225. goto out;
  2226. }
  2227. vmx->rmode.vm86_active = 0;
  2228. vmx->soft_vnmi_blocked = 0;
  2229. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2230. kvm_set_cr8(&vmx->vcpu, 0);
  2231. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2232. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2233. msr |= MSR_IA32_APICBASE_BSP;
  2234. kvm_set_apic_base(&vmx->vcpu, msr);
  2235. fx_init(&vmx->vcpu);
  2236. seg_setup(VCPU_SREG_CS);
  2237. /*
  2238. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2239. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2240. */
  2241. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2242. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2243. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2244. } else {
  2245. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2246. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2247. }
  2248. seg_setup(VCPU_SREG_DS);
  2249. seg_setup(VCPU_SREG_ES);
  2250. seg_setup(VCPU_SREG_FS);
  2251. seg_setup(VCPU_SREG_GS);
  2252. seg_setup(VCPU_SREG_SS);
  2253. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2254. vmcs_writel(GUEST_TR_BASE, 0);
  2255. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2256. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2257. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2258. vmcs_writel(GUEST_LDTR_BASE, 0);
  2259. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2260. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2261. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2262. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2263. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2264. vmcs_writel(GUEST_RFLAGS, 0x02);
  2265. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2266. kvm_rip_write(vcpu, 0xfff0);
  2267. else
  2268. kvm_rip_write(vcpu, 0);
  2269. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2270. vmcs_writel(GUEST_DR7, 0x400);
  2271. vmcs_writel(GUEST_GDTR_BASE, 0);
  2272. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2273. vmcs_writel(GUEST_IDTR_BASE, 0);
  2274. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2275. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2276. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2277. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2278. /* Special registers */
  2279. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2280. setup_msrs(vmx);
  2281. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2282. if (cpu_has_vmx_tpr_shadow()) {
  2283. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2284. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2285. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2286. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2287. vmcs_write32(TPR_THRESHOLD, 0);
  2288. }
  2289. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2290. vmcs_write64(APIC_ACCESS_ADDR,
  2291. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2292. if (vmx->vpid != 0)
  2293. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2294. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2295. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2296. vmx_set_cr4(&vmx->vcpu, 0);
  2297. vmx_set_efer(&vmx->vcpu, 0);
  2298. vmx_fpu_activate(&vmx->vcpu);
  2299. update_exception_bitmap(&vmx->vcpu);
  2300. vpid_sync_vcpu_all(vmx);
  2301. ret = 0;
  2302. /* HACK: Don't enable emulation on guest boot/reset */
  2303. vmx->emulation_required = 0;
  2304. out:
  2305. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2306. return ret;
  2307. }
  2308. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2309. {
  2310. u32 cpu_based_vm_exec_control;
  2311. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2312. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2313. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2314. }
  2315. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2316. {
  2317. u32 cpu_based_vm_exec_control;
  2318. if (!cpu_has_virtual_nmis()) {
  2319. enable_irq_window(vcpu);
  2320. return;
  2321. }
  2322. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2323. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2324. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2325. }
  2326. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2327. {
  2328. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2329. uint32_t intr;
  2330. int irq = vcpu->arch.interrupt.nr;
  2331. trace_kvm_inj_virq(irq);
  2332. ++vcpu->stat.irq_injections;
  2333. if (vmx->rmode.vm86_active) {
  2334. vmx->rmode.irq.pending = true;
  2335. vmx->rmode.irq.vector = irq;
  2336. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2337. if (vcpu->arch.interrupt.soft)
  2338. vmx->rmode.irq.rip +=
  2339. vmx->vcpu.arch.event_exit_inst_len;
  2340. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2341. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2342. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2343. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2344. return;
  2345. }
  2346. intr = irq | INTR_INFO_VALID_MASK;
  2347. if (vcpu->arch.interrupt.soft) {
  2348. intr |= INTR_TYPE_SOFT_INTR;
  2349. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2350. vmx->vcpu.arch.event_exit_inst_len);
  2351. } else
  2352. intr |= INTR_TYPE_EXT_INTR;
  2353. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2354. }
  2355. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2356. {
  2357. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2358. if (!cpu_has_virtual_nmis()) {
  2359. /*
  2360. * Tracking the NMI-blocked state in software is built upon
  2361. * finding the next open IRQ window. This, in turn, depends on
  2362. * well-behaving guests: They have to keep IRQs disabled at
  2363. * least as long as the NMI handler runs. Otherwise we may
  2364. * cause NMI nesting, maybe breaking the guest. But as this is
  2365. * highly unlikely, we can live with the residual risk.
  2366. */
  2367. vmx->soft_vnmi_blocked = 1;
  2368. vmx->vnmi_blocked_time = 0;
  2369. }
  2370. ++vcpu->stat.nmi_injections;
  2371. if (vmx->rmode.vm86_active) {
  2372. vmx->rmode.irq.pending = true;
  2373. vmx->rmode.irq.vector = NMI_VECTOR;
  2374. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2375. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2376. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2377. INTR_INFO_VALID_MASK);
  2378. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2379. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2380. return;
  2381. }
  2382. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2383. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2384. }
  2385. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2386. {
  2387. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2388. return 0;
  2389. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2390. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2391. }
  2392. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2393. {
  2394. if (!cpu_has_virtual_nmis())
  2395. return to_vmx(vcpu)->soft_vnmi_blocked;
  2396. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2397. }
  2398. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2399. {
  2400. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2401. if (!cpu_has_virtual_nmis()) {
  2402. if (vmx->soft_vnmi_blocked != masked) {
  2403. vmx->soft_vnmi_blocked = masked;
  2404. vmx->vnmi_blocked_time = 0;
  2405. }
  2406. } else {
  2407. if (masked)
  2408. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2409. GUEST_INTR_STATE_NMI);
  2410. else
  2411. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2412. GUEST_INTR_STATE_NMI);
  2413. }
  2414. }
  2415. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2416. {
  2417. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2418. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2419. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2420. }
  2421. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2422. {
  2423. int ret;
  2424. struct kvm_userspace_memory_region tss_mem = {
  2425. .slot = TSS_PRIVATE_MEMSLOT,
  2426. .guest_phys_addr = addr,
  2427. .memory_size = PAGE_SIZE * 3,
  2428. .flags = 0,
  2429. };
  2430. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2431. if (ret)
  2432. return ret;
  2433. kvm->arch.tss_addr = addr;
  2434. return 0;
  2435. }
  2436. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2437. int vec, u32 err_code)
  2438. {
  2439. /*
  2440. * Instruction with address size override prefix opcode 0x67
  2441. * Cause the #SS fault with 0 error code in VM86 mode.
  2442. */
  2443. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2444. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2445. return 1;
  2446. /*
  2447. * Forward all other exceptions that are valid in real mode.
  2448. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2449. * the required debugging infrastructure rework.
  2450. */
  2451. switch (vec) {
  2452. case DB_VECTOR:
  2453. if (vcpu->guest_debug &
  2454. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2455. return 0;
  2456. kvm_queue_exception(vcpu, vec);
  2457. return 1;
  2458. case BP_VECTOR:
  2459. /*
  2460. * Update instruction length as we may reinject the exception
  2461. * from user space while in guest debugging mode.
  2462. */
  2463. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2464. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2465. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2466. return 0;
  2467. /* fall through */
  2468. case DE_VECTOR:
  2469. case OF_VECTOR:
  2470. case BR_VECTOR:
  2471. case UD_VECTOR:
  2472. case DF_VECTOR:
  2473. case SS_VECTOR:
  2474. case GP_VECTOR:
  2475. case MF_VECTOR:
  2476. kvm_queue_exception(vcpu, vec);
  2477. return 1;
  2478. }
  2479. return 0;
  2480. }
  2481. /*
  2482. * Trigger machine check on the host. We assume all the MSRs are already set up
  2483. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2484. * We pass a fake environment to the machine check handler because we want
  2485. * the guest to be always treated like user space, no matter what context
  2486. * it used internally.
  2487. */
  2488. static void kvm_machine_check(void)
  2489. {
  2490. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2491. struct pt_regs regs = {
  2492. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2493. .flags = X86_EFLAGS_IF,
  2494. };
  2495. do_machine_check(&regs, 0);
  2496. #endif
  2497. }
  2498. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2499. {
  2500. /* already handled by vcpu_run */
  2501. return 1;
  2502. }
  2503. static int handle_exception(struct kvm_vcpu *vcpu)
  2504. {
  2505. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2506. struct kvm_run *kvm_run = vcpu->run;
  2507. u32 intr_info, ex_no, error_code;
  2508. unsigned long cr2, rip, dr6;
  2509. u32 vect_info;
  2510. enum emulation_result er;
  2511. vect_info = vmx->idt_vectoring_info;
  2512. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2513. if (is_machine_check(intr_info))
  2514. return handle_machine_check(vcpu);
  2515. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2516. !is_page_fault(intr_info)) {
  2517. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2518. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2519. vcpu->run->internal.ndata = 2;
  2520. vcpu->run->internal.data[0] = vect_info;
  2521. vcpu->run->internal.data[1] = intr_info;
  2522. return 0;
  2523. }
  2524. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2525. return 1; /* already handled by vmx_vcpu_run() */
  2526. if (is_no_device(intr_info)) {
  2527. vmx_fpu_activate(vcpu);
  2528. return 1;
  2529. }
  2530. if (is_invalid_opcode(intr_info)) {
  2531. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2532. if (er != EMULATE_DONE)
  2533. kvm_queue_exception(vcpu, UD_VECTOR);
  2534. return 1;
  2535. }
  2536. error_code = 0;
  2537. rip = kvm_rip_read(vcpu);
  2538. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2539. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2540. if (is_page_fault(intr_info)) {
  2541. /* EPT won't cause page fault directly */
  2542. if (enable_ept)
  2543. BUG();
  2544. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2545. trace_kvm_page_fault(cr2, error_code);
  2546. if (kvm_event_needs_reinjection(vcpu))
  2547. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2548. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2549. }
  2550. if (vmx->rmode.vm86_active &&
  2551. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2552. error_code)) {
  2553. if (vcpu->arch.halt_request) {
  2554. vcpu->arch.halt_request = 0;
  2555. return kvm_emulate_halt(vcpu);
  2556. }
  2557. return 1;
  2558. }
  2559. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2560. switch (ex_no) {
  2561. case DB_VECTOR:
  2562. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2563. if (!(vcpu->guest_debug &
  2564. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2565. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2566. kvm_queue_exception(vcpu, DB_VECTOR);
  2567. return 1;
  2568. }
  2569. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2570. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2571. /* fall through */
  2572. case BP_VECTOR:
  2573. /*
  2574. * Update instruction length as we may reinject #BP from
  2575. * user space while in guest debugging mode. Reading it for
  2576. * #DB as well causes no harm, it is not used in that case.
  2577. */
  2578. vmx->vcpu.arch.event_exit_inst_len =
  2579. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2580. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2581. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2582. kvm_run->debug.arch.exception = ex_no;
  2583. break;
  2584. default:
  2585. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2586. kvm_run->ex.exception = ex_no;
  2587. kvm_run->ex.error_code = error_code;
  2588. break;
  2589. }
  2590. return 0;
  2591. }
  2592. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2593. {
  2594. ++vcpu->stat.irq_exits;
  2595. return 1;
  2596. }
  2597. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2598. {
  2599. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2600. return 0;
  2601. }
  2602. static int handle_io(struct kvm_vcpu *vcpu)
  2603. {
  2604. unsigned long exit_qualification;
  2605. int size, in, string;
  2606. unsigned port;
  2607. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2608. string = (exit_qualification & 16) != 0;
  2609. in = (exit_qualification & 8) != 0;
  2610. ++vcpu->stat.io_exits;
  2611. if (string || in)
  2612. return !(emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO);
  2613. port = exit_qualification >> 16;
  2614. size = (exit_qualification & 7) + 1;
  2615. skip_emulated_instruction(vcpu);
  2616. return kvm_fast_pio_out(vcpu, size, port);
  2617. }
  2618. static void
  2619. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2620. {
  2621. /*
  2622. * Patch in the VMCALL instruction:
  2623. */
  2624. hypercall[0] = 0x0f;
  2625. hypercall[1] = 0x01;
  2626. hypercall[2] = 0xc1;
  2627. }
  2628. static int handle_cr(struct kvm_vcpu *vcpu)
  2629. {
  2630. unsigned long exit_qualification, val;
  2631. int cr;
  2632. int reg;
  2633. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2634. cr = exit_qualification & 15;
  2635. reg = (exit_qualification >> 8) & 15;
  2636. switch ((exit_qualification >> 4) & 3) {
  2637. case 0: /* mov to cr */
  2638. val = kvm_register_read(vcpu, reg);
  2639. trace_kvm_cr_write(cr, val);
  2640. switch (cr) {
  2641. case 0:
  2642. kvm_set_cr0(vcpu, val);
  2643. skip_emulated_instruction(vcpu);
  2644. return 1;
  2645. case 3:
  2646. kvm_set_cr3(vcpu, val);
  2647. skip_emulated_instruction(vcpu);
  2648. return 1;
  2649. case 4:
  2650. kvm_set_cr4(vcpu, val);
  2651. skip_emulated_instruction(vcpu);
  2652. return 1;
  2653. case 8: {
  2654. u8 cr8_prev = kvm_get_cr8(vcpu);
  2655. u8 cr8 = kvm_register_read(vcpu, reg);
  2656. kvm_set_cr8(vcpu, cr8);
  2657. skip_emulated_instruction(vcpu);
  2658. if (irqchip_in_kernel(vcpu->kvm))
  2659. return 1;
  2660. if (cr8_prev <= cr8)
  2661. return 1;
  2662. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2663. return 0;
  2664. }
  2665. };
  2666. break;
  2667. case 2: /* clts */
  2668. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2669. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2670. skip_emulated_instruction(vcpu);
  2671. vmx_fpu_activate(vcpu);
  2672. return 1;
  2673. case 1: /*mov from cr*/
  2674. switch (cr) {
  2675. case 3:
  2676. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2677. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2678. skip_emulated_instruction(vcpu);
  2679. return 1;
  2680. case 8:
  2681. val = kvm_get_cr8(vcpu);
  2682. kvm_register_write(vcpu, reg, val);
  2683. trace_kvm_cr_read(cr, val);
  2684. skip_emulated_instruction(vcpu);
  2685. return 1;
  2686. }
  2687. break;
  2688. case 3: /* lmsw */
  2689. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2690. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2691. kvm_lmsw(vcpu, val);
  2692. skip_emulated_instruction(vcpu);
  2693. return 1;
  2694. default:
  2695. break;
  2696. }
  2697. vcpu->run->exit_reason = 0;
  2698. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2699. (int)(exit_qualification >> 4) & 3, cr);
  2700. return 0;
  2701. }
  2702. static int handle_dr(struct kvm_vcpu *vcpu)
  2703. {
  2704. unsigned long exit_qualification;
  2705. int dr, reg;
  2706. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2707. if (!kvm_require_cpl(vcpu, 0))
  2708. return 1;
  2709. dr = vmcs_readl(GUEST_DR7);
  2710. if (dr & DR7_GD) {
  2711. /*
  2712. * As the vm-exit takes precedence over the debug trap, we
  2713. * need to emulate the latter, either for the host or the
  2714. * guest debugging itself.
  2715. */
  2716. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2717. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2718. vcpu->run->debug.arch.dr7 = dr;
  2719. vcpu->run->debug.arch.pc =
  2720. vmcs_readl(GUEST_CS_BASE) +
  2721. vmcs_readl(GUEST_RIP);
  2722. vcpu->run->debug.arch.exception = DB_VECTOR;
  2723. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2724. return 0;
  2725. } else {
  2726. vcpu->arch.dr7 &= ~DR7_GD;
  2727. vcpu->arch.dr6 |= DR6_BD;
  2728. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2729. kvm_queue_exception(vcpu, DB_VECTOR);
  2730. return 1;
  2731. }
  2732. }
  2733. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2734. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2735. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2736. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2737. unsigned long val;
  2738. if (!kvm_get_dr(vcpu, dr, &val))
  2739. kvm_register_write(vcpu, reg, val);
  2740. } else
  2741. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2742. skip_emulated_instruction(vcpu);
  2743. return 1;
  2744. }
  2745. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2746. {
  2747. vmcs_writel(GUEST_DR7, val);
  2748. }
  2749. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2750. {
  2751. kvm_emulate_cpuid(vcpu);
  2752. return 1;
  2753. }
  2754. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2755. {
  2756. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2757. u64 data;
  2758. if (vmx_get_msr(vcpu, ecx, &data)) {
  2759. trace_kvm_msr_read_ex(ecx);
  2760. kvm_inject_gp(vcpu, 0);
  2761. return 1;
  2762. }
  2763. trace_kvm_msr_read(ecx, data);
  2764. /* FIXME: handling of bits 32:63 of rax, rdx */
  2765. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2766. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2767. skip_emulated_instruction(vcpu);
  2768. return 1;
  2769. }
  2770. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2771. {
  2772. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2773. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2774. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2775. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2776. trace_kvm_msr_write_ex(ecx, data);
  2777. kvm_inject_gp(vcpu, 0);
  2778. return 1;
  2779. }
  2780. trace_kvm_msr_write(ecx, data);
  2781. skip_emulated_instruction(vcpu);
  2782. return 1;
  2783. }
  2784. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2785. {
  2786. return 1;
  2787. }
  2788. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2789. {
  2790. u32 cpu_based_vm_exec_control;
  2791. /* clear pending irq */
  2792. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2793. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2794. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2795. ++vcpu->stat.irq_window_exits;
  2796. /*
  2797. * If the user space waits to inject interrupts, exit as soon as
  2798. * possible
  2799. */
  2800. if (!irqchip_in_kernel(vcpu->kvm) &&
  2801. vcpu->run->request_interrupt_window &&
  2802. !kvm_cpu_has_interrupt(vcpu)) {
  2803. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2804. return 0;
  2805. }
  2806. return 1;
  2807. }
  2808. static int handle_halt(struct kvm_vcpu *vcpu)
  2809. {
  2810. skip_emulated_instruction(vcpu);
  2811. return kvm_emulate_halt(vcpu);
  2812. }
  2813. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2814. {
  2815. skip_emulated_instruction(vcpu);
  2816. kvm_emulate_hypercall(vcpu);
  2817. return 1;
  2818. }
  2819. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2820. {
  2821. kvm_queue_exception(vcpu, UD_VECTOR);
  2822. return 1;
  2823. }
  2824. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2825. {
  2826. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2827. kvm_mmu_invlpg(vcpu, exit_qualification);
  2828. skip_emulated_instruction(vcpu);
  2829. return 1;
  2830. }
  2831. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2832. {
  2833. skip_emulated_instruction(vcpu);
  2834. /* TODO: Add support for VT-d/pass-through device */
  2835. return 1;
  2836. }
  2837. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2838. {
  2839. unsigned long exit_qualification;
  2840. enum emulation_result er;
  2841. unsigned long offset;
  2842. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2843. offset = exit_qualification & 0xffful;
  2844. er = emulate_instruction(vcpu, 0, 0, 0);
  2845. if (er != EMULATE_DONE) {
  2846. printk(KERN_ERR
  2847. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2848. offset);
  2849. return -ENOEXEC;
  2850. }
  2851. return 1;
  2852. }
  2853. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2854. {
  2855. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2856. unsigned long exit_qualification;
  2857. bool has_error_code = false;
  2858. u32 error_code = 0;
  2859. u16 tss_selector;
  2860. int reason, type, idt_v;
  2861. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2862. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2863. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2864. reason = (u32)exit_qualification >> 30;
  2865. if (reason == TASK_SWITCH_GATE && idt_v) {
  2866. switch (type) {
  2867. case INTR_TYPE_NMI_INTR:
  2868. vcpu->arch.nmi_injected = false;
  2869. if (cpu_has_virtual_nmis())
  2870. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2871. GUEST_INTR_STATE_NMI);
  2872. break;
  2873. case INTR_TYPE_EXT_INTR:
  2874. case INTR_TYPE_SOFT_INTR:
  2875. kvm_clear_interrupt_queue(vcpu);
  2876. break;
  2877. case INTR_TYPE_HARD_EXCEPTION:
  2878. if (vmx->idt_vectoring_info &
  2879. VECTORING_INFO_DELIVER_CODE_MASK) {
  2880. has_error_code = true;
  2881. error_code =
  2882. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2883. }
  2884. /* fall through */
  2885. case INTR_TYPE_SOFT_EXCEPTION:
  2886. kvm_clear_exception_queue(vcpu);
  2887. break;
  2888. default:
  2889. break;
  2890. }
  2891. }
  2892. tss_selector = exit_qualification;
  2893. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2894. type != INTR_TYPE_EXT_INTR &&
  2895. type != INTR_TYPE_NMI_INTR))
  2896. skip_emulated_instruction(vcpu);
  2897. if (kvm_task_switch(vcpu, tss_selector, reason,
  2898. has_error_code, error_code) == EMULATE_FAIL) {
  2899. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2900. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2901. vcpu->run->internal.ndata = 0;
  2902. return 0;
  2903. }
  2904. /* clear all local breakpoint enable flags */
  2905. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2906. /*
  2907. * TODO: What about debug traps on tss switch?
  2908. * Are we supposed to inject them and update dr6?
  2909. */
  2910. return 1;
  2911. }
  2912. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2913. {
  2914. unsigned long exit_qualification;
  2915. gpa_t gpa;
  2916. int gla_validity;
  2917. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2918. if (exit_qualification & (1 << 6)) {
  2919. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2920. return -EINVAL;
  2921. }
  2922. gla_validity = (exit_qualification >> 7) & 0x3;
  2923. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2924. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2925. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2926. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2927. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2928. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2929. (long unsigned int)exit_qualification);
  2930. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2931. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2932. return 0;
  2933. }
  2934. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2935. trace_kvm_page_fault(gpa, exit_qualification);
  2936. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2937. }
  2938. static u64 ept_rsvd_mask(u64 spte, int level)
  2939. {
  2940. int i;
  2941. u64 mask = 0;
  2942. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2943. mask |= (1ULL << i);
  2944. if (level > 2)
  2945. /* bits 7:3 reserved */
  2946. mask |= 0xf8;
  2947. else if (level == 2) {
  2948. if (spte & (1ULL << 7))
  2949. /* 2MB ref, bits 20:12 reserved */
  2950. mask |= 0x1ff000;
  2951. else
  2952. /* bits 6:3 reserved */
  2953. mask |= 0x78;
  2954. }
  2955. return mask;
  2956. }
  2957. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2958. int level)
  2959. {
  2960. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2961. /* 010b (write-only) */
  2962. WARN_ON((spte & 0x7) == 0x2);
  2963. /* 110b (write/execute) */
  2964. WARN_ON((spte & 0x7) == 0x6);
  2965. /* 100b (execute-only) and value not supported by logical processor */
  2966. if (!cpu_has_vmx_ept_execute_only())
  2967. WARN_ON((spte & 0x7) == 0x4);
  2968. /* not 000b */
  2969. if ((spte & 0x7)) {
  2970. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2971. if (rsvd_bits != 0) {
  2972. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2973. __func__, rsvd_bits);
  2974. WARN_ON(1);
  2975. }
  2976. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2977. u64 ept_mem_type = (spte & 0x38) >> 3;
  2978. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2979. ept_mem_type == 7) {
  2980. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2981. __func__, ept_mem_type);
  2982. WARN_ON(1);
  2983. }
  2984. }
  2985. }
  2986. }
  2987. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2988. {
  2989. u64 sptes[4];
  2990. int nr_sptes, i;
  2991. gpa_t gpa;
  2992. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2993. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2994. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2995. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2996. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2997. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2998. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2999. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3000. return 0;
  3001. }
  3002. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3003. {
  3004. u32 cpu_based_vm_exec_control;
  3005. /* clear pending NMI */
  3006. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3007. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3008. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3009. ++vcpu->stat.nmi_window_exits;
  3010. return 1;
  3011. }
  3012. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3013. {
  3014. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3015. enum emulation_result err = EMULATE_DONE;
  3016. int ret = 1;
  3017. while (!guest_state_valid(vcpu)) {
  3018. err = emulate_instruction(vcpu, 0, 0, 0);
  3019. if (err == EMULATE_DO_MMIO) {
  3020. ret = 0;
  3021. goto out;
  3022. }
  3023. if (err != EMULATE_DONE) {
  3024. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3025. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3026. vcpu->run->internal.ndata = 0;
  3027. ret = 0;
  3028. goto out;
  3029. }
  3030. if (signal_pending(current))
  3031. goto out;
  3032. if (need_resched())
  3033. schedule();
  3034. }
  3035. vmx->emulation_required = 0;
  3036. out:
  3037. return ret;
  3038. }
  3039. /*
  3040. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3041. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3042. */
  3043. static int handle_pause(struct kvm_vcpu *vcpu)
  3044. {
  3045. skip_emulated_instruction(vcpu);
  3046. kvm_vcpu_on_spin(vcpu);
  3047. return 1;
  3048. }
  3049. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3050. {
  3051. kvm_queue_exception(vcpu, UD_VECTOR);
  3052. return 1;
  3053. }
  3054. /*
  3055. * The exit handlers return 1 if the exit was handled fully and guest execution
  3056. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3057. * to be done to userspace and return 0.
  3058. */
  3059. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3060. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3061. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3062. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3063. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3064. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3065. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3066. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3067. [EXIT_REASON_CPUID] = handle_cpuid,
  3068. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3069. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3070. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3071. [EXIT_REASON_HLT] = handle_halt,
  3072. [EXIT_REASON_INVLPG] = handle_invlpg,
  3073. [EXIT_REASON_VMCALL] = handle_vmcall,
  3074. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3075. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3076. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3077. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3078. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3079. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3080. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3081. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3082. [EXIT_REASON_VMON] = handle_vmx_insn,
  3083. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3084. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3085. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3086. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3087. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3088. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3089. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3090. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3091. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3092. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3093. };
  3094. static const int kvm_vmx_max_exit_handlers =
  3095. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3096. /*
  3097. * The guest has exited. See if we can fix it or if we need userspace
  3098. * assistance.
  3099. */
  3100. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3101. {
  3102. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3103. u32 exit_reason = vmx->exit_reason;
  3104. u32 vectoring_info = vmx->idt_vectoring_info;
  3105. trace_kvm_exit(exit_reason, vcpu);
  3106. /* If guest state is invalid, start emulating */
  3107. if (vmx->emulation_required && emulate_invalid_guest_state)
  3108. return handle_invalid_guest_state(vcpu);
  3109. /* Access CR3 don't cause VMExit in paging mode, so we need
  3110. * to sync with guest real CR3. */
  3111. if (enable_ept && is_paging(vcpu))
  3112. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3113. if (unlikely(vmx->fail)) {
  3114. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3115. vcpu->run->fail_entry.hardware_entry_failure_reason
  3116. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3117. return 0;
  3118. }
  3119. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3120. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3121. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3122. exit_reason != EXIT_REASON_TASK_SWITCH))
  3123. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3124. "(0x%x) and exit reason is 0x%x\n",
  3125. __func__, vectoring_info, exit_reason);
  3126. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3127. if (vmx_interrupt_allowed(vcpu)) {
  3128. vmx->soft_vnmi_blocked = 0;
  3129. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3130. vcpu->arch.nmi_pending) {
  3131. /*
  3132. * This CPU don't support us in finding the end of an
  3133. * NMI-blocked window if the guest runs with IRQs
  3134. * disabled. So we pull the trigger after 1 s of
  3135. * futile waiting, but inform the user about this.
  3136. */
  3137. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3138. "state on VCPU %d after 1 s timeout\n",
  3139. __func__, vcpu->vcpu_id);
  3140. vmx->soft_vnmi_blocked = 0;
  3141. }
  3142. }
  3143. if (exit_reason < kvm_vmx_max_exit_handlers
  3144. && kvm_vmx_exit_handlers[exit_reason])
  3145. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3146. else {
  3147. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3148. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3149. }
  3150. return 0;
  3151. }
  3152. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3153. {
  3154. if (irr == -1 || tpr < irr) {
  3155. vmcs_write32(TPR_THRESHOLD, 0);
  3156. return;
  3157. }
  3158. vmcs_write32(TPR_THRESHOLD, irr);
  3159. }
  3160. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3161. {
  3162. u32 exit_intr_info;
  3163. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3164. bool unblock_nmi;
  3165. u8 vector;
  3166. int type;
  3167. bool idtv_info_valid;
  3168. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3169. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3170. /* Handle machine checks before interrupts are enabled */
  3171. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3172. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3173. && is_machine_check(exit_intr_info)))
  3174. kvm_machine_check();
  3175. /* We need to handle NMIs before interrupts are enabled */
  3176. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3177. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3178. kvm_before_handle_nmi(&vmx->vcpu);
  3179. asm("int $2");
  3180. kvm_after_handle_nmi(&vmx->vcpu);
  3181. }
  3182. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3183. if (cpu_has_virtual_nmis()) {
  3184. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3185. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3186. /*
  3187. * SDM 3: 27.7.1.2 (September 2008)
  3188. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3189. * a guest IRET fault.
  3190. * SDM 3: 23.2.2 (September 2008)
  3191. * Bit 12 is undefined in any of the following cases:
  3192. * If the VM exit sets the valid bit in the IDT-vectoring
  3193. * information field.
  3194. * If the VM exit is due to a double fault.
  3195. */
  3196. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3197. vector != DF_VECTOR && !idtv_info_valid)
  3198. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3199. GUEST_INTR_STATE_NMI);
  3200. } else if (unlikely(vmx->soft_vnmi_blocked))
  3201. vmx->vnmi_blocked_time +=
  3202. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3203. vmx->vcpu.arch.nmi_injected = false;
  3204. kvm_clear_exception_queue(&vmx->vcpu);
  3205. kvm_clear_interrupt_queue(&vmx->vcpu);
  3206. if (!idtv_info_valid)
  3207. return;
  3208. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3209. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3210. switch (type) {
  3211. case INTR_TYPE_NMI_INTR:
  3212. vmx->vcpu.arch.nmi_injected = true;
  3213. /*
  3214. * SDM 3: 27.7.1.2 (September 2008)
  3215. * Clear bit "block by NMI" before VM entry if a NMI
  3216. * delivery faulted.
  3217. */
  3218. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3219. GUEST_INTR_STATE_NMI);
  3220. break;
  3221. case INTR_TYPE_SOFT_EXCEPTION:
  3222. vmx->vcpu.arch.event_exit_inst_len =
  3223. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3224. /* fall through */
  3225. case INTR_TYPE_HARD_EXCEPTION:
  3226. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3227. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3228. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3229. } else
  3230. kvm_queue_exception(&vmx->vcpu, vector);
  3231. break;
  3232. case INTR_TYPE_SOFT_INTR:
  3233. vmx->vcpu.arch.event_exit_inst_len =
  3234. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3235. /* fall through */
  3236. case INTR_TYPE_EXT_INTR:
  3237. kvm_queue_interrupt(&vmx->vcpu, vector,
  3238. type == INTR_TYPE_SOFT_INTR);
  3239. break;
  3240. default:
  3241. break;
  3242. }
  3243. }
  3244. /*
  3245. * Failure to inject an interrupt should give us the information
  3246. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3247. * when fetching the interrupt redirection bitmap in the real-mode
  3248. * tss, this doesn't happen. So we do it ourselves.
  3249. */
  3250. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3251. {
  3252. vmx->rmode.irq.pending = 0;
  3253. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3254. return;
  3255. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3256. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3257. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3258. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3259. return;
  3260. }
  3261. vmx->idt_vectoring_info =
  3262. VECTORING_INFO_VALID_MASK
  3263. | INTR_TYPE_EXT_INTR
  3264. | vmx->rmode.irq.vector;
  3265. }
  3266. #ifdef CONFIG_X86_64
  3267. #define R "r"
  3268. #define Q "q"
  3269. #else
  3270. #define R "e"
  3271. #define Q "l"
  3272. #endif
  3273. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3274. {
  3275. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3276. /* Record the guest's net vcpu time for enforced NMI injections. */
  3277. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3278. vmx->entry_time = ktime_get();
  3279. /* Don't enter VMX if guest state is invalid, let the exit handler
  3280. start emulation until we arrive back to a valid state */
  3281. if (vmx->emulation_required && emulate_invalid_guest_state)
  3282. return;
  3283. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3284. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3285. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3286. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3287. /* When single-stepping over STI and MOV SS, we must clear the
  3288. * corresponding interruptibility bits in the guest state. Otherwise
  3289. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3290. * exceptions being set, but that's not correct for the guest debugging
  3291. * case. */
  3292. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3293. vmx_set_interrupt_shadow(vcpu, 0);
  3294. asm(
  3295. /* Store host registers */
  3296. "push %%"R"dx; push %%"R"bp;"
  3297. "push %%"R"cx \n\t"
  3298. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3299. "je 1f \n\t"
  3300. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3301. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3302. "1: \n\t"
  3303. /* Reload cr2 if changed */
  3304. "mov %c[cr2](%0), %%"R"ax \n\t"
  3305. "mov %%cr2, %%"R"dx \n\t"
  3306. "cmp %%"R"ax, %%"R"dx \n\t"
  3307. "je 2f \n\t"
  3308. "mov %%"R"ax, %%cr2 \n\t"
  3309. "2: \n\t"
  3310. /* Check if vmlaunch of vmresume is needed */
  3311. "cmpl $0, %c[launched](%0) \n\t"
  3312. /* Load guest registers. Don't clobber flags. */
  3313. "mov %c[rax](%0), %%"R"ax \n\t"
  3314. "mov %c[rbx](%0), %%"R"bx \n\t"
  3315. "mov %c[rdx](%0), %%"R"dx \n\t"
  3316. "mov %c[rsi](%0), %%"R"si \n\t"
  3317. "mov %c[rdi](%0), %%"R"di \n\t"
  3318. "mov %c[rbp](%0), %%"R"bp \n\t"
  3319. #ifdef CONFIG_X86_64
  3320. "mov %c[r8](%0), %%r8 \n\t"
  3321. "mov %c[r9](%0), %%r9 \n\t"
  3322. "mov %c[r10](%0), %%r10 \n\t"
  3323. "mov %c[r11](%0), %%r11 \n\t"
  3324. "mov %c[r12](%0), %%r12 \n\t"
  3325. "mov %c[r13](%0), %%r13 \n\t"
  3326. "mov %c[r14](%0), %%r14 \n\t"
  3327. "mov %c[r15](%0), %%r15 \n\t"
  3328. #endif
  3329. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3330. /* Enter guest mode */
  3331. "jne .Llaunched \n\t"
  3332. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3333. "jmp .Lkvm_vmx_return \n\t"
  3334. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3335. ".Lkvm_vmx_return: "
  3336. /* Save guest registers, load host registers, keep flags */
  3337. "xchg %0, (%%"R"sp) \n\t"
  3338. "mov %%"R"ax, %c[rax](%0) \n\t"
  3339. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3340. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3341. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3342. "mov %%"R"si, %c[rsi](%0) \n\t"
  3343. "mov %%"R"di, %c[rdi](%0) \n\t"
  3344. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3345. #ifdef CONFIG_X86_64
  3346. "mov %%r8, %c[r8](%0) \n\t"
  3347. "mov %%r9, %c[r9](%0) \n\t"
  3348. "mov %%r10, %c[r10](%0) \n\t"
  3349. "mov %%r11, %c[r11](%0) \n\t"
  3350. "mov %%r12, %c[r12](%0) \n\t"
  3351. "mov %%r13, %c[r13](%0) \n\t"
  3352. "mov %%r14, %c[r14](%0) \n\t"
  3353. "mov %%r15, %c[r15](%0) \n\t"
  3354. #endif
  3355. "mov %%cr2, %%"R"ax \n\t"
  3356. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3357. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3358. "setbe %c[fail](%0) \n\t"
  3359. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3360. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3361. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3362. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3363. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3364. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3365. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3366. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3367. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3368. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3369. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3370. #ifdef CONFIG_X86_64
  3371. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3372. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3373. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3374. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3375. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3376. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3377. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3378. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3379. #endif
  3380. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3381. : "cc", "memory"
  3382. , R"bx", R"di", R"si"
  3383. #ifdef CONFIG_X86_64
  3384. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3385. #endif
  3386. );
  3387. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3388. | (1 << VCPU_EXREG_PDPTR));
  3389. vcpu->arch.regs_dirty = 0;
  3390. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3391. if (vmx->rmode.irq.pending)
  3392. fixup_rmode_irq(vmx);
  3393. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3394. vmx->launched = 1;
  3395. vmx_complete_interrupts(vmx);
  3396. }
  3397. #undef R
  3398. #undef Q
  3399. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3400. {
  3401. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3402. if (vmx->vmcs) {
  3403. vcpu_clear(vmx);
  3404. free_vmcs(vmx->vmcs);
  3405. vmx->vmcs = NULL;
  3406. }
  3407. }
  3408. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3409. {
  3410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3411. free_vpid(vmx);
  3412. vmx_free_vmcs(vcpu);
  3413. kfree(vmx->guest_msrs);
  3414. kvm_vcpu_uninit(vcpu);
  3415. kmem_cache_free(kvm_vcpu_cache, vmx);
  3416. }
  3417. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3418. {
  3419. int err;
  3420. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3421. int cpu;
  3422. if (!vmx)
  3423. return ERR_PTR(-ENOMEM);
  3424. allocate_vpid(vmx);
  3425. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3426. if (err)
  3427. goto free_vcpu;
  3428. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3429. if (!vmx->guest_msrs) {
  3430. err = -ENOMEM;
  3431. goto uninit_vcpu;
  3432. }
  3433. vmx->vmcs = alloc_vmcs();
  3434. if (!vmx->vmcs)
  3435. goto free_msrs;
  3436. vmcs_clear(vmx->vmcs);
  3437. cpu = get_cpu();
  3438. vmx_vcpu_load(&vmx->vcpu, cpu);
  3439. err = vmx_vcpu_setup(vmx);
  3440. vmx_vcpu_put(&vmx->vcpu);
  3441. put_cpu();
  3442. if (err)
  3443. goto free_vmcs;
  3444. if (vm_need_virtualize_apic_accesses(kvm))
  3445. if (alloc_apic_access_page(kvm) != 0)
  3446. goto free_vmcs;
  3447. if (enable_ept) {
  3448. if (!kvm->arch.ept_identity_map_addr)
  3449. kvm->arch.ept_identity_map_addr =
  3450. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3451. if (alloc_identity_pagetable(kvm) != 0)
  3452. goto free_vmcs;
  3453. }
  3454. return &vmx->vcpu;
  3455. free_vmcs:
  3456. free_vmcs(vmx->vmcs);
  3457. free_msrs:
  3458. kfree(vmx->guest_msrs);
  3459. uninit_vcpu:
  3460. kvm_vcpu_uninit(&vmx->vcpu);
  3461. free_vcpu:
  3462. free_vpid(vmx);
  3463. kmem_cache_free(kvm_vcpu_cache, vmx);
  3464. return ERR_PTR(err);
  3465. }
  3466. static void __init vmx_check_processor_compat(void *rtn)
  3467. {
  3468. struct vmcs_config vmcs_conf;
  3469. *(int *)rtn = 0;
  3470. if (setup_vmcs_config(&vmcs_conf) < 0)
  3471. *(int *)rtn = -EIO;
  3472. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3473. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3474. smp_processor_id());
  3475. *(int *)rtn = -EIO;
  3476. }
  3477. }
  3478. static int get_ept_level(void)
  3479. {
  3480. return VMX_EPT_DEFAULT_GAW + 1;
  3481. }
  3482. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3483. {
  3484. u64 ret;
  3485. /* For VT-d and EPT combination
  3486. * 1. MMIO: always map as UC
  3487. * 2. EPT with VT-d:
  3488. * a. VT-d without snooping control feature: can't guarantee the
  3489. * result, try to trust guest.
  3490. * b. VT-d with snooping control feature: snooping control feature of
  3491. * VT-d engine can guarantee the cache correctness. Just set it
  3492. * to WB to keep consistent with host. So the same as item 3.
  3493. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3494. * consistent with host MTRR
  3495. */
  3496. if (is_mmio)
  3497. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3498. else if (vcpu->kvm->arch.iommu_domain &&
  3499. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3500. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3501. VMX_EPT_MT_EPTE_SHIFT;
  3502. else
  3503. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3504. | VMX_EPT_IPAT_BIT;
  3505. return ret;
  3506. }
  3507. #define _ER(x) { EXIT_REASON_##x, #x }
  3508. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3509. _ER(EXCEPTION_NMI),
  3510. _ER(EXTERNAL_INTERRUPT),
  3511. _ER(TRIPLE_FAULT),
  3512. _ER(PENDING_INTERRUPT),
  3513. _ER(NMI_WINDOW),
  3514. _ER(TASK_SWITCH),
  3515. _ER(CPUID),
  3516. _ER(HLT),
  3517. _ER(INVLPG),
  3518. _ER(RDPMC),
  3519. _ER(RDTSC),
  3520. _ER(VMCALL),
  3521. _ER(VMCLEAR),
  3522. _ER(VMLAUNCH),
  3523. _ER(VMPTRLD),
  3524. _ER(VMPTRST),
  3525. _ER(VMREAD),
  3526. _ER(VMRESUME),
  3527. _ER(VMWRITE),
  3528. _ER(VMOFF),
  3529. _ER(VMON),
  3530. _ER(CR_ACCESS),
  3531. _ER(DR_ACCESS),
  3532. _ER(IO_INSTRUCTION),
  3533. _ER(MSR_READ),
  3534. _ER(MSR_WRITE),
  3535. _ER(MWAIT_INSTRUCTION),
  3536. _ER(MONITOR_INSTRUCTION),
  3537. _ER(PAUSE_INSTRUCTION),
  3538. _ER(MCE_DURING_VMENTRY),
  3539. _ER(TPR_BELOW_THRESHOLD),
  3540. _ER(APIC_ACCESS),
  3541. _ER(EPT_VIOLATION),
  3542. _ER(EPT_MISCONFIG),
  3543. _ER(WBINVD),
  3544. { -1, NULL }
  3545. };
  3546. #undef _ER
  3547. static int vmx_get_lpage_level(void)
  3548. {
  3549. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3550. return PT_DIRECTORY_LEVEL;
  3551. else
  3552. /* For shadow and EPT supported 1GB page */
  3553. return PT_PDPE_LEVEL;
  3554. }
  3555. static inline u32 bit(int bitno)
  3556. {
  3557. return 1 << (bitno & 31);
  3558. }
  3559. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3560. {
  3561. struct kvm_cpuid_entry2 *best;
  3562. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3563. u32 exec_control;
  3564. vmx->rdtscp_enabled = false;
  3565. if (vmx_rdtscp_supported()) {
  3566. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3567. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3568. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3569. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3570. vmx->rdtscp_enabled = true;
  3571. else {
  3572. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3573. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3574. exec_control);
  3575. }
  3576. }
  3577. }
  3578. }
  3579. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3580. {
  3581. }
  3582. static struct kvm_x86_ops vmx_x86_ops = {
  3583. .cpu_has_kvm_support = cpu_has_kvm_support,
  3584. .disabled_by_bios = vmx_disabled_by_bios,
  3585. .hardware_setup = hardware_setup,
  3586. .hardware_unsetup = hardware_unsetup,
  3587. .check_processor_compatibility = vmx_check_processor_compat,
  3588. .hardware_enable = hardware_enable,
  3589. .hardware_disable = hardware_disable,
  3590. .cpu_has_accelerated_tpr = report_flexpriority,
  3591. .vcpu_create = vmx_create_vcpu,
  3592. .vcpu_free = vmx_free_vcpu,
  3593. .vcpu_reset = vmx_vcpu_reset,
  3594. .prepare_guest_switch = vmx_save_host_state,
  3595. .vcpu_load = vmx_vcpu_load,
  3596. .vcpu_put = vmx_vcpu_put,
  3597. .set_guest_debug = set_guest_debug,
  3598. .get_msr = vmx_get_msr,
  3599. .set_msr = vmx_set_msr,
  3600. .get_segment_base = vmx_get_segment_base,
  3601. .get_segment = vmx_get_segment,
  3602. .set_segment = vmx_set_segment,
  3603. .get_cpl = vmx_get_cpl,
  3604. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3605. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3606. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3607. .set_cr0 = vmx_set_cr0,
  3608. .set_cr3 = vmx_set_cr3,
  3609. .set_cr4 = vmx_set_cr4,
  3610. .set_efer = vmx_set_efer,
  3611. .get_idt = vmx_get_idt,
  3612. .set_idt = vmx_set_idt,
  3613. .get_gdt = vmx_get_gdt,
  3614. .set_gdt = vmx_set_gdt,
  3615. .set_dr7 = vmx_set_dr7,
  3616. .cache_reg = vmx_cache_reg,
  3617. .get_rflags = vmx_get_rflags,
  3618. .set_rflags = vmx_set_rflags,
  3619. .fpu_activate = vmx_fpu_activate,
  3620. .fpu_deactivate = vmx_fpu_deactivate,
  3621. .tlb_flush = vmx_flush_tlb,
  3622. .run = vmx_vcpu_run,
  3623. .handle_exit = vmx_handle_exit,
  3624. .skip_emulated_instruction = skip_emulated_instruction,
  3625. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3626. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3627. .patch_hypercall = vmx_patch_hypercall,
  3628. .set_irq = vmx_inject_irq,
  3629. .set_nmi = vmx_inject_nmi,
  3630. .queue_exception = vmx_queue_exception,
  3631. .interrupt_allowed = vmx_interrupt_allowed,
  3632. .nmi_allowed = vmx_nmi_allowed,
  3633. .get_nmi_mask = vmx_get_nmi_mask,
  3634. .set_nmi_mask = vmx_set_nmi_mask,
  3635. .enable_nmi_window = enable_nmi_window,
  3636. .enable_irq_window = enable_irq_window,
  3637. .update_cr8_intercept = update_cr8_intercept,
  3638. .set_tss_addr = vmx_set_tss_addr,
  3639. .get_tdp_level = get_ept_level,
  3640. .get_mt_mask = vmx_get_mt_mask,
  3641. .exit_reasons_str = vmx_exit_reasons_str,
  3642. .get_lpage_level = vmx_get_lpage_level,
  3643. .cpuid_update = vmx_cpuid_update,
  3644. .rdtscp_supported = vmx_rdtscp_supported,
  3645. .set_supported_cpuid = vmx_set_supported_cpuid,
  3646. };
  3647. static int __init vmx_init(void)
  3648. {
  3649. int r, i;
  3650. rdmsrl_safe(MSR_EFER, &host_efer);
  3651. for (i = 0; i < NR_VMX_MSR; ++i)
  3652. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3653. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3654. if (!vmx_io_bitmap_a)
  3655. return -ENOMEM;
  3656. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3657. if (!vmx_io_bitmap_b) {
  3658. r = -ENOMEM;
  3659. goto out;
  3660. }
  3661. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3662. if (!vmx_msr_bitmap_legacy) {
  3663. r = -ENOMEM;
  3664. goto out1;
  3665. }
  3666. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3667. if (!vmx_msr_bitmap_longmode) {
  3668. r = -ENOMEM;
  3669. goto out2;
  3670. }
  3671. /*
  3672. * Allow direct access to the PC debug port (it is often used for I/O
  3673. * delays, but the vmexits simply slow things down).
  3674. */
  3675. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3676. clear_bit(0x80, vmx_io_bitmap_a);
  3677. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3678. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3679. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3680. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3681. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3682. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3683. if (r)
  3684. goto out3;
  3685. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3686. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3687. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3688. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3689. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3690. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3691. if (enable_ept) {
  3692. bypass_guest_pf = 0;
  3693. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3694. VMX_EPT_WRITABLE_MASK);
  3695. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3696. VMX_EPT_EXECUTABLE_MASK);
  3697. kvm_enable_tdp();
  3698. } else
  3699. kvm_disable_tdp();
  3700. if (bypass_guest_pf)
  3701. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3702. return 0;
  3703. out3:
  3704. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3705. out2:
  3706. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3707. out1:
  3708. free_page((unsigned long)vmx_io_bitmap_b);
  3709. out:
  3710. free_page((unsigned long)vmx_io_bitmap_a);
  3711. return r;
  3712. }
  3713. static void __exit vmx_exit(void)
  3714. {
  3715. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3716. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3717. free_page((unsigned long)vmx_io_bitmap_b);
  3718. free_page((unsigned long)vmx_io_bitmap_a);
  3719. kvm_exit();
  3720. }
  3721. module_init(vmx_init)
  3722. module_exit(vmx_exit)