session.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include "session.h"
  7. #include "sort.h"
  8. #include "util.h"
  9. static int perf_session__open(struct perf_session *self, bool force)
  10. {
  11. struct stat input_stat;
  12. if (!strcmp(self->filename, "-")) {
  13. self->fd_pipe = true;
  14. self->fd = STDIN_FILENO;
  15. if (perf_header__read(self, self->fd) < 0)
  16. pr_err("incompatible file format");
  17. return 0;
  18. }
  19. self->fd = open(self->filename, O_RDONLY);
  20. if (self->fd < 0) {
  21. pr_err("failed to open file: %s", self->filename);
  22. if (!strcmp(self->filename, "perf.data"))
  23. pr_err(" (try 'perf record' first)");
  24. pr_err("\n");
  25. return -errno;
  26. }
  27. if (fstat(self->fd, &input_stat) < 0)
  28. goto out_close;
  29. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  30. pr_err("file %s not owned by current user or root\n",
  31. self->filename);
  32. goto out_close;
  33. }
  34. if (!input_stat.st_size) {
  35. pr_info("zero-sized file (%s), nothing to do!\n",
  36. self->filename);
  37. goto out_close;
  38. }
  39. if (perf_header__read(self, self->fd) < 0) {
  40. pr_err("incompatible file format");
  41. goto out_close;
  42. }
  43. self->size = input_stat.st_size;
  44. return 0;
  45. out_close:
  46. close(self->fd);
  47. self->fd = -1;
  48. return -1;
  49. }
  50. void perf_session__update_sample_type(struct perf_session *self)
  51. {
  52. self->sample_type = perf_header__sample_type(&self->header);
  53. }
  54. int perf_session__create_kernel_maps(struct perf_session *self)
  55. {
  56. int ret = machine__create_kernel_maps(&self->host_machine);
  57. if (ret >= 0)
  58. ret = machines__create_guest_kernel_maps(&self->machines);
  59. return ret;
  60. }
  61. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  62. {
  63. size_t len = filename ? strlen(filename) + 1 : 0;
  64. struct perf_session *self = zalloc(sizeof(*self) + len);
  65. if (self == NULL)
  66. goto out;
  67. if (perf_header__init(&self->header) < 0)
  68. goto out_free;
  69. memcpy(self->filename, filename, len);
  70. self->threads = RB_ROOT;
  71. self->hists_tree = RB_ROOT;
  72. self->last_match = NULL;
  73. self->mmap_window = 32;
  74. self->cwd = NULL;
  75. self->cwdlen = 0;
  76. self->unknown_events = 0;
  77. self->machines = RB_ROOT;
  78. self->repipe = repipe;
  79. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  80. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  81. if (mode == O_RDONLY) {
  82. if (perf_session__open(self, force) < 0)
  83. goto out_delete;
  84. } else if (mode == O_WRONLY) {
  85. /*
  86. * In O_RDONLY mode this will be performed when reading the
  87. * kernel MMAP event, in event__process_mmap().
  88. */
  89. if (perf_session__create_kernel_maps(self) < 0)
  90. goto out_delete;
  91. }
  92. perf_session__update_sample_type(self);
  93. out:
  94. return self;
  95. out_free:
  96. free(self);
  97. return NULL;
  98. out_delete:
  99. perf_session__delete(self);
  100. return NULL;
  101. }
  102. void perf_session__delete(struct perf_session *self)
  103. {
  104. perf_header__exit(&self->header);
  105. close(self->fd);
  106. free(self->cwd);
  107. free(self);
  108. }
  109. static bool symbol__match_parent_regex(struct symbol *sym)
  110. {
  111. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  112. return 1;
  113. return 0;
  114. }
  115. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  116. struct thread *thread,
  117. struct ip_callchain *chain,
  118. struct symbol **parent)
  119. {
  120. u8 cpumode = PERF_RECORD_MISC_USER;
  121. unsigned int i;
  122. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  123. if (!syms)
  124. return NULL;
  125. for (i = 0; i < chain->nr; i++) {
  126. u64 ip = chain->ips[i];
  127. struct addr_location al;
  128. if (ip >= PERF_CONTEXT_MAX) {
  129. switch (ip) {
  130. case PERF_CONTEXT_HV:
  131. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  132. case PERF_CONTEXT_KERNEL:
  133. cpumode = PERF_RECORD_MISC_KERNEL; break;
  134. case PERF_CONTEXT_USER:
  135. cpumode = PERF_RECORD_MISC_USER; break;
  136. default:
  137. break;
  138. }
  139. continue;
  140. }
  141. al.filtered = false;
  142. thread__find_addr_location(thread, self, cpumode,
  143. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  144. if (al.sym != NULL) {
  145. if (sort__has_parent && !*parent &&
  146. symbol__match_parent_regex(al.sym))
  147. *parent = al.sym;
  148. if (!symbol_conf.use_callchain)
  149. break;
  150. syms[i].map = al.map;
  151. syms[i].sym = al.sym;
  152. }
  153. }
  154. return syms;
  155. }
  156. static int process_event_stub(event_t *event __used,
  157. struct perf_session *session __used)
  158. {
  159. dump_printf(": unhandled!\n");
  160. return 0;
  161. }
  162. static int process_finished_round_stub(event_t *event __used,
  163. struct perf_session *session __used,
  164. struct perf_event_ops *ops __used)
  165. {
  166. dump_printf(": unhandled!\n");
  167. return 0;
  168. }
  169. static int process_finished_round(event_t *event,
  170. struct perf_session *session,
  171. struct perf_event_ops *ops);
  172. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  173. {
  174. if (handler->sample == NULL)
  175. handler->sample = process_event_stub;
  176. if (handler->mmap == NULL)
  177. handler->mmap = process_event_stub;
  178. if (handler->comm == NULL)
  179. handler->comm = process_event_stub;
  180. if (handler->fork == NULL)
  181. handler->fork = process_event_stub;
  182. if (handler->exit == NULL)
  183. handler->exit = process_event_stub;
  184. if (handler->lost == NULL)
  185. handler->lost = process_event_stub;
  186. if (handler->read == NULL)
  187. handler->read = process_event_stub;
  188. if (handler->throttle == NULL)
  189. handler->throttle = process_event_stub;
  190. if (handler->unthrottle == NULL)
  191. handler->unthrottle = process_event_stub;
  192. if (handler->attr == NULL)
  193. handler->attr = process_event_stub;
  194. if (handler->event_type == NULL)
  195. handler->event_type = process_event_stub;
  196. if (handler->tracing_data == NULL)
  197. handler->tracing_data = process_event_stub;
  198. if (handler->build_id == NULL)
  199. handler->build_id = process_event_stub;
  200. if (handler->finished_round == NULL) {
  201. if (handler->ordered_samples)
  202. handler->finished_round = process_finished_round;
  203. else
  204. handler->finished_round = process_finished_round_stub;
  205. }
  206. }
  207. static const char *event__name[] = {
  208. [0] = "TOTAL",
  209. [PERF_RECORD_MMAP] = "MMAP",
  210. [PERF_RECORD_LOST] = "LOST",
  211. [PERF_RECORD_COMM] = "COMM",
  212. [PERF_RECORD_EXIT] = "EXIT",
  213. [PERF_RECORD_THROTTLE] = "THROTTLE",
  214. [PERF_RECORD_UNTHROTTLE] = "UNTHROTTLE",
  215. [PERF_RECORD_FORK] = "FORK",
  216. [PERF_RECORD_READ] = "READ",
  217. [PERF_RECORD_SAMPLE] = "SAMPLE",
  218. [PERF_RECORD_HEADER_ATTR] = "ATTR",
  219. [PERF_RECORD_HEADER_EVENT_TYPE] = "EVENT_TYPE",
  220. [PERF_RECORD_HEADER_TRACING_DATA] = "TRACING_DATA",
  221. [PERF_RECORD_HEADER_BUILD_ID] = "BUILD_ID",
  222. };
  223. unsigned long event__total[PERF_RECORD_HEADER_MAX];
  224. void event__print_totals(void)
  225. {
  226. int i;
  227. for (i = 0; i < PERF_RECORD_HEADER_MAX; ++i) {
  228. if (!event__name[i])
  229. continue;
  230. pr_info("%10s events: %10ld\n",
  231. event__name[i], event__total[i]);
  232. }
  233. }
  234. void mem_bswap_64(void *src, int byte_size)
  235. {
  236. u64 *m = src;
  237. while (byte_size > 0) {
  238. *m = bswap_64(*m);
  239. byte_size -= sizeof(u64);
  240. ++m;
  241. }
  242. }
  243. static void event__all64_swap(event_t *self)
  244. {
  245. struct perf_event_header *hdr = &self->header;
  246. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  247. }
  248. static void event__comm_swap(event_t *self)
  249. {
  250. self->comm.pid = bswap_32(self->comm.pid);
  251. self->comm.tid = bswap_32(self->comm.tid);
  252. }
  253. static void event__mmap_swap(event_t *self)
  254. {
  255. self->mmap.pid = bswap_32(self->mmap.pid);
  256. self->mmap.tid = bswap_32(self->mmap.tid);
  257. self->mmap.start = bswap_64(self->mmap.start);
  258. self->mmap.len = bswap_64(self->mmap.len);
  259. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  260. }
  261. static void event__task_swap(event_t *self)
  262. {
  263. self->fork.pid = bswap_32(self->fork.pid);
  264. self->fork.tid = bswap_32(self->fork.tid);
  265. self->fork.ppid = bswap_32(self->fork.ppid);
  266. self->fork.ptid = bswap_32(self->fork.ptid);
  267. self->fork.time = bswap_64(self->fork.time);
  268. }
  269. static void event__read_swap(event_t *self)
  270. {
  271. self->read.pid = bswap_32(self->read.pid);
  272. self->read.tid = bswap_32(self->read.tid);
  273. self->read.value = bswap_64(self->read.value);
  274. self->read.time_enabled = bswap_64(self->read.time_enabled);
  275. self->read.time_running = bswap_64(self->read.time_running);
  276. self->read.id = bswap_64(self->read.id);
  277. }
  278. static void event__attr_swap(event_t *self)
  279. {
  280. size_t size;
  281. self->attr.attr.type = bswap_32(self->attr.attr.type);
  282. self->attr.attr.size = bswap_32(self->attr.attr.size);
  283. self->attr.attr.config = bswap_64(self->attr.attr.config);
  284. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  285. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  286. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  287. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  288. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  289. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  290. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  291. size = self->header.size;
  292. size -= (void *)&self->attr.id - (void *)self;
  293. mem_bswap_64(self->attr.id, size);
  294. }
  295. static void event__event_type_swap(event_t *self)
  296. {
  297. self->event_type.event_type.event_id =
  298. bswap_64(self->event_type.event_type.event_id);
  299. }
  300. static void event__tracing_data_swap(event_t *self)
  301. {
  302. self->tracing_data.size = bswap_32(self->tracing_data.size);
  303. }
  304. typedef void (*event__swap_op)(event_t *self);
  305. static event__swap_op event__swap_ops[] = {
  306. [PERF_RECORD_MMAP] = event__mmap_swap,
  307. [PERF_RECORD_COMM] = event__comm_swap,
  308. [PERF_RECORD_FORK] = event__task_swap,
  309. [PERF_RECORD_EXIT] = event__task_swap,
  310. [PERF_RECORD_LOST] = event__all64_swap,
  311. [PERF_RECORD_READ] = event__read_swap,
  312. [PERF_RECORD_SAMPLE] = event__all64_swap,
  313. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  314. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  315. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  316. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  317. [PERF_RECORD_HEADER_MAX] = NULL,
  318. };
  319. struct sample_queue {
  320. u64 timestamp;
  321. struct sample_event *event;
  322. struct list_head list;
  323. };
  324. static void flush_sample_queue(struct perf_session *s,
  325. struct perf_event_ops *ops)
  326. {
  327. struct list_head *head = &s->ordered_samples.samples_head;
  328. u64 limit = s->ordered_samples.next_flush;
  329. struct sample_queue *tmp, *iter;
  330. if (!ops->ordered_samples || !limit)
  331. return;
  332. list_for_each_entry_safe(iter, tmp, head, list) {
  333. if (iter->timestamp > limit)
  334. return;
  335. if (iter == s->ordered_samples.last_inserted)
  336. s->ordered_samples.last_inserted = NULL;
  337. ops->sample((event_t *)iter->event, s);
  338. s->ordered_samples.last_flush = iter->timestamp;
  339. list_del(&iter->list);
  340. free(iter->event);
  341. free(iter);
  342. }
  343. }
  344. /*
  345. * When perf record finishes a pass on every buffers, it records this pseudo
  346. * event.
  347. * We record the max timestamp t found in the pass n.
  348. * Assuming these timestamps are monotonic across cpus, we know that if
  349. * a buffer still has events with timestamps below t, they will be all
  350. * available and then read in the pass n + 1.
  351. * Hence when we start to read the pass n + 2, we can safely flush every
  352. * events with timestamps below t.
  353. *
  354. * ============ PASS n =================
  355. * CPU 0 | CPU 1
  356. * |
  357. * cnt1 timestamps | cnt2 timestamps
  358. * 1 | 2
  359. * 2 | 3
  360. * - | 4 <--- max recorded
  361. *
  362. * ============ PASS n + 1 ==============
  363. * CPU 0 | CPU 1
  364. * |
  365. * cnt1 timestamps | cnt2 timestamps
  366. * 3 | 5
  367. * 4 | 6
  368. * 5 | 7 <---- max recorded
  369. *
  370. * Flush every events below timestamp 4
  371. *
  372. * ============ PASS n + 2 ==============
  373. * CPU 0 | CPU 1
  374. * |
  375. * cnt1 timestamps | cnt2 timestamps
  376. * 6 | 8
  377. * 7 | 9
  378. * - | 10
  379. *
  380. * Flush every events below timestamp 7
  381. * etc...
  382. */
  383. static int process_finished_round(event_t *event __used,
  384. struct perf_session *session,
  385. struct perf_event_ops *ops)
  386. {
  387. flush_sample_queue(session, ops);
  388. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  389. return 0;
  390. }
  391. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  392. {
  393. struct sample_queue *iter;
  394. list_for_each_entry_reverse(iter, head, list) {
  395. if (iter->timestamp < new->timestamp) {
  396. list_add(&new->list, &iter->list);
  397. return;
  398. }
  399. }
  400. list_add(&new->list, head);
  401. }
  402. static void __queue_sample_before(struct sample_queue *new,
  403. struct sample_queue *iter,
  404. struct list_head *head)
  405. {
  406. list_for_each_entry_continue_reverse(iter, head, list) {
  407. if (iter->timestamp < new->timestamp) {
  408. list_add(&new->list, &iter->list);
  409. return;
  410. }
  411. }
  412. list_add(&new->list, head);
  413. }
  414. static void __queue_sample_after(struct sample_queue *new,
  415. struct sample_queue *iter,
  416. struct list_head *head)
  417. {
  418. list_for_each_entry_continue(iter, head, list) {
  419. if (iter->timestamp > new->timestamp) {
  420. list_add_tail(&new->list, &iter->list);
  421. return;
  422. }
  423. }
  424. list_add_tail(&new->list, head);
  425. }
  426. /* The queue is ordered by time */
  427. static void __queue_sample_event(struct sample_queue *new,
  428. struct perf_session *s)
  429. {
  430. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  431. struct list_head *head = &s->ordered_samples.samples_head;
  432. if (!last_inserted) {
  433. __queue_sample_end(new, head);
  434. return;
  435. }
  436. /*
  437. * Most of the time the current event has a timestamp
  438. * very close to the last event inserted, unless we just switched
  439. * to another event buffer. Having a sorting based on a list and
  440. * on the last inserted event that is close to the current one is
  441. * probably more efficient than an rbtree based sorting.
  442. */
  443. if (last_inserted->timestamp >= new->timestamp)
  444. __queue_sample_before(new, last_inserted, head);
  445. else
  446. __queue_sample_after(new, last_inserted, head);
  447. }
  448. static int queue_sample_event(event_t *event, struct sample_data *data,
  449. struct perf_session *s)
  450. {
  451. u64 timestamp = data->time;
  452. struct sample_queue *new;
  453. if (timestamp < s->ordered_samples.last_flush) {
  454. printf("Warning: Timestamp below last timeslice flush\n");
  455. return -EINVAL;
  456. }
  457. new = malloc(sizeof(*new));
  458. if (!new)
  459. return -ENOMEM;
  460. new->timestamp = timestamp;
  461. new->event = malloc(event->header.size);
  462. if (!new->event) {
  463. free(new);
  464. return -ENOMEM;
  465. }
  466. memcpy(new->event, event, event->header.size);
  467. __queue_sample_event(new, s);
  468. s->ordered_samples.last_inserted = new;
  469. if (new->timestamp > s->ordered_samples.max_timestamp)
  470. s->ordered_samples.max_timestamp = new->timestamp;
  471. return 0;
  472. }
  473. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  474. struct perf_event_ops *ops)
  475. {
  476. struct sample_data data;
  477. if (!ops->ordered_samples)
  478. return ops->sample(event, s);
  479. bzero(&data, sizeof(struct sample_data));
  480. event__parse_sample(event, s->sample_type, &data);
  481. queue_sample_event(event, &data, s);
  482. return 0;
  483. }
  484. static int perf_session__process_event(struct perf_session *self,
  485. event_t *event,
  486. struct perf_event_ops *ops,
  487. u64 offset, u64 head)
  488. {
  489. trace_event(event);
  490. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  491. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  492. offset + head, event->header.size,
  493. event__name[event->header.type]);
  494. ++event__total[0];
  495. ++event__total[event->header.type];
  496. }
  497. if (self->header.needs_swap && event__swap_ops[event->header.type])
  498. event__swap_ops[event->header.type](event);
  499. switch (event->header.type) {
  500. case PERF_RECORD_SAMPLE:
  501. return perf_session__process_sample(event, self, ops);
  502. case PERF_RECORD_MMAP:
  503. return ops->mmap(event, self);
  504. case PERF_RECORD_COMM:
  505. return ops->comm(event, self);
  506. case PERF_RECORD_FORK:
  507. return ops->fork(event, self);
  508. case PERF_RECORD_EXIT:
  509. return ops->exit(event, self);
  510. case PERF_RECORD_LOST:
  511. return ops->lost(event, self);
  512. case PERF_RECORD_READ:
  513. return ops->read(event, self);
  514. case PERF_RECORD_THROTTLE:
  515. return ops->throttle(event, self);
  516. case PERF_RECORD_UNTHROTTLE:
  517. return ops->unthrottle(event, self);
  518. case PERF_RECORD_HEADER_ATTR:
  519. return ops->attr(event, self);
  520. case PERF_RECORD_HEADER_EVENT_TYPE:
  521. return ops->event_type(event, self);
  522. case PERF_RECORD_HEADER_TRACING_DATA:
  523. /* setup for reading amidst mmap */
  524. lseek(self->fd, offset + head, SEEK_SET);
  525. return ops->tracing_data(event, self);
  526. case PERF_RECORD_HEADER_BUILD_ID:
  527. return ops->build_id(event, self);
  528. case PERF_RECORD_FINISHED_ROUND:
  529. return ops->finished_round(event, self, ops);
  530. default:
  531. self->unknown_events++;
  532. return -1;
  533. }
  534. }
  535. void perf_event_header__bswap(struct perf_event_header *self)
  536. {
  537. self->type = bswap_32(self->type);
  538. self->misc = bswap_16(self->misc);
  539. self->size = bswap_16(self->size);
  540. }
  541. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  542. {
  543. struct thread *thread = perf_session__findnew(self, 0);
  544. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  545. pr_err("problem inserting idle task.\n");
  546. thread = NULL;
  547. }
  548. return thread;
  549. }
  550. int do_read(int fd, void *buf, size_t size)
  551. {
  552. void *buf_start = buf;
  553. while (size) {
  554. int ret = read(fd, buf, size);
  555. if (ret <= 0)
  556. return ret;
  557. size -= ret;
  558. buf += ret;
  559. }
  560. return buf - buf_start;
  561. }
  562. #define session_done() (*(volatile int *)(&session_done))
  563. volatile int session_done;
  564. static int __perf_session__process_pipe_events(struct perf_session *self,
  565. struct perf_event_ops *ops)
  566. {
  567. event_t event;
  568. uint32_t size;
  569. int skip = 0;
  570. u64 head;
  571. int err;
  572. void *p;
  573. perf_event_ops__fill_defaults(ops);
  574. head = 0;
  575. more:
  576. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  577. if (err <= 0) {
  578. if (err == 0)
  579. goto done;
  580. pr_err("failed to read event header\n");
  581. goto out_err;
  582. }
  583. if (self->header.needs_swap)
  584. perf_event_header__bswap(&event.header);
  585. size = event.header.size;
  586. if (size == 0)
  587. size = 8;
  588. p = &event;
  589. p += sizeof(struct perf_event_header);
  590. if (size - sizeof(struct perf_event_header)) {
  591. err = do_read(self->fd, p,
  592. size - sizeof(struct perf_event_header));
  593. if (err <= 0) {
  594. if (err == 0) {
  595. pr_err("unexpected end of event stream\n");
  596. goto done;
  597. }
  598. pr_err("failed to read event data\n");
  599. goto out_err;
  600. }
  601. }
  602. if (size == 0 ||
  603. (skip = perf_session__process_event(self, &event, ops,
  604. 0, head)) < 0) {
  605. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  606. head, event.header.size, event.header.type);
  607. /*
  608. * assume we lost track of the stream, check alignment, and
  609. * increment a single u64 in the hope to catch on again 'soon'.
  610. */
  611. if (unlikely(head & 7))
  612. head &= ~7ULL;
  613. size = 8;
  614. }
  615. head += size;
  616. dump_printf("\n%#Lx [%#x]: event: %d\n",
  617. head, event.header.size, event.header.type);
  618. if (skip > 0)
  619. head += skip;
  620. if (!session_done())
  621. goto more;
  622. done:
  623. err = 0;
  624. out_err:
  625. return err;
  626. }
  627. int __perf_session__process_events(struct perf_session *self,
  628. u64 data_offset, u64 data_size,
  629. u64 file_size, struct perf_event_ops *ops)
  630. {
  631. int err, mmap_prot, mmap_flags;
  632. u64 head, shift;
  633. u64 offset = 0;
  634. size_t page_size;
  635. event_t *event;
  636. uint32_t size;
  637. char *buf;
  638. struct ui_progress *progress = ui_progress__new("Processing events...",
  639. self->size);
  640. if (progress == NULL)
  641. return -1;
  642. perf_event_ops__fill_defaults(ops);
  643. page_size = sysconf(_SC_PAGESIZE);
  644. head = data_offset;
  645. shift = page_size * (head / page_size);
  646. offset += shift;
  647. head -= shift;
  648. mmap_prot = PROT_READ;
  649. mmap_flags = MAP_SHARED;
  650. if (self->header.needs_swap) {
  651. mmap_prot |= PROT_WRITE;
  652. mmap_flags = MAP_PRIVATE;
  653. }
  654. remap:
  655. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  656. mmap_flags, self->fd, offset);
  657. if (buf == MAP_FAILED) {
  658. pr_err("failed to mmap file\n");
  659. err = -errno;
  660. goto out_err;
  661. }
  662. more:
  663. event = (event_t *)(buf + head);
  664. ui_progress__update(progress, offset);
  665. if (self->header.needs_swap)
  666. perf_event_header__bswap(&event->header);
  667. size = event->header.size;
  668. if (size == 0)
  669. size = 8;
  670. if (head + event->header.size >= page_size * self->mmap_window) {
  671. int munmap_ret;
  672. shift = page_size * (head / page_size);
  673. munmap_ret = munmap(buf, page_size * self->mmap_window);
  674. assert(munmap_ret == 0);
  675. offset += shift;
  676. head -= shift;
  677. goto remap;
  678. }
  679. size = event->header.size;
  680. dump_printf("\n%#Lx [%#x]: event: %d\n",
  681. offset + head, event->header.size, event->header.type);
  682. if (size == 0 ||
  683. perf_session__process_event(self, event, ops, offset, head) < 0) {
  684. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  685. offset + head, event->header.size,
  686. event->header.type);
  687. /*
  688. * assume we lost track of the stream, check alignment, and
  689. * increment a single u64 in the hope to catch on again 'soon'.
  690. */
  691. if (unlikely(head & 7))
  692. head &= ~7ULL;
  693. size = 8;
  694. }
  695. head += size;
  696. if (offset + head >= data_offset + data_size)
  697. goto done;
  698. if (offset + head < file_size)
  699. goto more;
  700. done:
  701. err = 0;
  702. /* do the final flush for ordered samples */
  703. self->ordered_samples.next_flush = ULLONG_MAX;
  704. flush_sample_queue(self, ops);
  705. out_err:
  706. ui_progress__delete(progress);
  707. return err;
  708. }
  709. int perf_session__process_events(struct perf_session *self,
  710. struct perf_event_ops *ops)
  711. {
  712. int err;
  713. if (perf_session__register_idle_thread(self) == NULL)
  714. return -ENOMEM;
  715. if (!symbol_conf.full_paths) {
  716. char bf[PATH_MAX];
  717. if (getcwd(bf, sizeof(bf)) == NULL) {
  718. err = -errno;
  719. out_getcwd_err:
  720. pr_err("failed to get the current directory\n");
  721. goto out_err;
  722. }
  723. self->cwd = strdup(bf);
  724. if (self->cwd == NULL) {
  725. err = -ENOMEM;
  726. goto out_getcwd_err;
  727. }
  728. self->cwdlen = strlen(self->cwd);
  729. }
  730. if (!self->fd_pipe)
  731. err = __perf_session__process_events(self,
  732. self->header.data_offset,
  733. self->header.data_size,
  734. self->size, ops);
  735. else
  736. err = __perf_session__process_pipe_events(self, ops);
  737. out_err:
  738. return err;
  739. }
  740. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  741. {
  742. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  743. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  744. return false;
  745. }
  746. return true;
  747. }
  748. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  749. const char *symbol_name,
  750. u64 addr)
  751. {
  752. char *bracket;
  753. enum map_type i;
  754. struct ref_reloc_sym *ref;
  755. ref = zalloc(sizeof(struct ref_reloc_sym));
  756. if (ref == NULL)
  757. return -ENOMEM;
  758. ref->name = strdup(symbol_name);
  759. if (ref->name == NULL) {
  760. free(ref);
  761. return -ENOMEM;
  762. }
  763. bracket = strchr(ref->name, ']');
  764. if (bracket)
  765. *bracket = '\0';
  766. ref->addr = addr;
  767. for (i = 0; i < MAP__NR_TYPES; ++i) {
  768. struct kmap *kmap = map__kmap(maps[i]);
  769. kmap->ref_reloc_sym = ref;
  770. }
  771. return 0;
  772. }
  773. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  774. {
  775. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  776. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  777. machines__fprintf_dsos(&self->machines, fp);
  778. }