messenger.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
  29. #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
  30. #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
  31. #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
  32. #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
  33. #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
  34. /* static tag bytes (protocol control messages) */
  35. static char tag_msg = CEPH_MSGR_TAG_MSG;
  36. static char tag_ack = CEPH_MSGR_TAG_ACK;
  37. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  38. #ifdef CONFIG_LOCKDEP
  39. static struct lock_class_key socket_class;
  40. #endif
  41. /*
  42. * When skipping (ignoring) a block of input we read it into a "skip
  43. * buffer," which is this many bytes in size.
  44. */
  45. #define SKIP_BUF_SIZE 1024
  46. static void queue_con(struct ceph_connection *con);
  47. static void con_work(struct work_struct *);
  48. static void ceph_fault(struct ceph_connection *con);
  49. /*
  50. * Nicely render a sockaddr as a string. An array of formatted
  51. * strings is used, to approximate reentrancy.
  52. */
  53. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  54. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  55. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  56. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  57. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  58. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  59. static struct page *zero_page; /* used in certain error cases */
  60. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  61. {
  62. int i;
  63. char *s;
  64. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  65. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  66. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  67. s = addr_str[i];
  68. switch (ss->ss_family) {
  69. case AF_INET:
  70. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  71. ntohs(in4->sin_port));
  72. break;
  73. case AF_INET6:
  74. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  75. ntohs(in6->sin6_port));
  76. break;
  77. default:
  78. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  79. ss->ss_family);
  80. }
  81. return s;
  82. }
  83. EXPORT_SYMBOL(ceph_pr_addr);
  84. static void encode_my_addr(struct ceph_messenger *msgr)
  85. {
  86. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  87. ceph_encode_addr(&msgr->my_enc_addr);
  88. }
  89. /*
  90. * work queue for all reading and writing to/from the socket.
  91. */
  92. static struct workqueue_struct *ceph_msgr_wq;
  93. void _ceph_msgr_exit(void)
  94. {
  95. if (ceph_msgr_wq) {
  96. destroy_workqueue(ceph_msgr_wq);
  97. ceph_msgr_wq = NULL;
  98. }
  99. BUG_ON(zero_page == NULL);
  100. kunmap(zero_page);
  101. page_cache_release(zero_page);
  102. zero_page = NULL;
  103. }
  104. int ceph_msgr_init(void)
  105. {
  106. BUG_ON(zero_page != NULL);
  107. zero_page = ZERO_PAGE(0);
  108. page_cache_get(zero_page);
  109. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  110. if (ceph_msgr_wq)
  111. return 0;
  112. pr_err("msgr_init failed to create workqueue\n");
  113. _ceph_msgr_exit();
  114. return -ENOMEM;
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_init);
  117. void ceph_msgr_exit(void)
  118. {
  119. BUG_ON(ceph_msgr_wq == NULL);
  120. _ceph_msgr_exit();
  121. }
  122. EXPORT_SYMBOL(ceph_msgr_exit);
  123. void ceph_msgr_flush(void)
  124. {
  125. flush_workqueue(ceph_msgr_wq);
  126. }
  127. EXPORT_SYMBOL(ceph_msgr_flush);
  128. /* Connection socket state transition functions */
  129. static void con_sock_state_init(struct ceph_connection *con)
  130. {
  131. int old_state;
  132. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  133. if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
  134. printk("%s: unexpected old state %d\n", __func__, old_state);
  135. }
  136. static void con_sock_state_connecting(struct ceph_connection *con)
  137. {
  138. int old_state;
  139. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
  140. if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
  141. printk("%s: unexpected old state %d\n", __func__, old_state);
  142. }
  143. static void con_sock_state_connected(struct ceph_connection *con)
  144. {
  145. int old_state;
  146. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
  147. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
  148. printk("%s: unexpected old state %d\n", __func__, old_state);
  149. }
  150. static void con_sock_state_closing(struct ceph_connection *con)
  151. {
  152. int old_state;
  153. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
  154. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
  155. old_state != CON_SOCK_STATE_CONNECTED &&
  156. old_state != CON_SOCK_STATE_CLOSING))
  157. printk("%s: unexpected old state %d\n", __func__, old_state);
  158. }
  159. static void con_sock_state_closed(struct ceph_connection *con)
  160. {
  161. int old_state;
  162. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  163. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
  164. old_state != CON_SOCK_STATE_CLOSING))
  165. printk("%s: unexpected old state %d\n", __func__, old_state);
  166. }
  167. /*
  168. * socket callback functions
  169. */
  170. /* data available on socket, or listen socket received a connect */
  171. static void ceph_sock_data_ready(struct sock *sk, int count_unused)
  172. {
  173. struct ceph_connection *con = sk->sk_user_data;
  174. if (sk->sk_state != TCP_CLOSE_WAIT) {
  175. dout("%s on %p state = %lu, queueing work\n", __func__,
  176. con, con->state);
  177. queue_con(con);
  178. }
  179. }
  180. /* socket has buffer space for writing */
  181. static void ceph_sock_write_space(struct sock *sk)
  182. {
  183. struct ceph_connection *con = sk->sk_user_data;
  184. /* only queue to workqueue if there is data we want to write,
  185. * and there is sufficient space in the socket buffer to accept
  186. * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
  187. * doesn't get called again until try_write() fills the socket
  188. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  189. * and net/core/stream.c:sk_stream_write_space().
  190. */
  191. if (test_bit(WRITE_PENDING, &con->flags)) {
  192. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  193. dout("%s %p queueing write work\n", __func__, con);
  194. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  195. queue_con(con);
  196. }
  197. } else {
  198. dout("%s %p nothing to write\n", __func__, con);
  199. }
  200. }
  201. /* socket's state has changed */
  202. static void ceph_sock_state_change(struct sock *sk)
  203. {
  204. struct ceph_connection *con = sk->sk_user_data;
  205. dout("%s %p state = %lu sk_state = %u\n", __func__,
  206. con, con->state, sk->sk_state);
  207. if (test_bit(CLOSED, &con->state))
  208. return;
  209. switch (sk->sk_state) {
  210. case TCP_CLOSE:
  211. dout("%s TCP_CLOSE\n", __func__);
  212. case TCP_CLOSE_WAIT:
  213. dout("%s TCP_CLOSE_WAIT\n", __func__);
  214. con_sock_state_closing(con);
  215. if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
  216. if (test_bit(CONNECTING, &con->state))
  217. con->error_msg = "connection failed";
  218. else
  219. con->error_msg = "socket closed";
  220. queue_con(con);
  221. }
  222. break;
  223. case TCP_ESTABLISHED:
  224. dout("%s TCP_ESTABLISHED\n", __func__);
  225. con_sock_state_connected(con);
  226. queue_con(con);
  227. break;
  228. default: /* Everything else is uninteresting */
  229. break;
  230. }
  231. }
  232. /*
  233. * set up socket callbacks
  234. */
  235. static void set_sock_callbacks(struct socket *sock,
  236. struct ceph_connection *con)
  237. {
  238. struct sock *sk = sock->sk;
  239. sk->sk_user_data = con;
  240. sk->sk_data_ready = ceph_sock_data_ready;
  241. sk->sk_write_space = ceph_sock_write_space;
  242. sk->sk_state_change = ceph_sock_state_change;
  243. }
  244. /*
  245. * socket helpers
  246. */
  247. /*
  248. * initiate connection to a remote socket.
  249. */
  250. static int ceph_tcp_connect(struct ceph_connection *con)
  251. {
  252. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  253. struct socket *sock;
  254. int ret;
  255. BUG_ON(con->sock);
  256. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  257. IPPROTO_TCP, &sock);
  258. if (ret)
  259. return ret;
  260. sock->sk->sk_allocation = GFP_NOFS;
  261. #ifdef CONFIG_LOCKDEP
  262. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  263. #endif
  264. set_sock_callbacks(sock, con);
  265. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  266. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  267. O_NONBLOCK);
  268. if (ret == -EINPROGRESS) {
  269. dout("connect %s EINPROGRESS sk_state = %u\n",
  270. ceph_pr_addr(&con->peer_addr.in_addr),
  271. sock->sk->sk_state);
  272. } else if (ret < 0) {
  273. pr_err("connect %s error %d\n",
  274. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  275. sock_release(sock);
  276. con->error_msg = "connect error";
  277. return ret;
  278. }
  279. con->sock = sock;
  280. con_sock_state_connecting(con);
  281. return 0;
  282. }
  283. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  284. {
  285. struct kvec iov = {buf, len};
  286. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  287. int r;
  288. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  289. if (r == -EAGAIN)
  290. r = 0;
  291. return r;
  292. }
  293. /*
  294. * write something. @more is true if caller will be sending more data
  295. * shortly.
  296. */
  297. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  298. size_t kvlen, size_t len, int more)
  299. {
  300. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  301. int r;
  302. if (more)
  303. msg.msg_flags |= MSG_MORE;
  304. else
  305. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  306. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  307. if (r == -EAGAIN)
  308. r = 0;
  309. return r;
  310. }
  311. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  312. int offset, size_t size, int more)
  313. {
  314. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  315. int ret;
  316. ret = kernel_sendpage(sock, page, offset, size, flags);
  317. if (ret == -EAGAIN)
  318. ret = 0;
  319. return ret;
  320. }
  321. /*
  322. * Shutdown/close the socket for the given connection.
  323. */
  324. static int con_close_socket(struct ceph_connection *con)
  325. {
  326. int rc;
  327. dout("con_close_socket on %p sock %p\n", con, con->sock);
  328. if (!con->sock)
  329. return 0;
  330. set_bit(SOCK_CLOSED, &con->state);
  331. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  332. sock_release(con->sock);
  333. con->sock = NULL;
  334. clear_bit(SOCK_CLOSED, &con->state);
  335. con_sock_state_closed(con);
  336. return rc;
  337. }
  338. /*
  339. * Reset a connection. Discard all incoming and outgoing messages
  340. * and clear *_seq state.
  341. */
  342. static void ceph_msg_remove(struct ceph_msg *msg)
  343. {
  344. list_del_init(&msg->list_head);
  345. ceph_msg_put(msg);
  346. }
  347. static void ceph_msg_remove_list(struct list_head *head)
  348. {
  349. while (!list_empty(head)) {
  350. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  351. list_head);
  352. ceph_msg_remove(msg);
  353. }
  354. }
  355. static void reset_connection(struct ceph_connection *con)
  356. {
  357. /* reset connection, out_queue, msg_ and connect_seq */
  358. /* discard existing out_queue and msg_seq */
  359. ceph_msg_remove_list(&con->out_queue);
  360. ceph_msg_remove_list(&con->out_sent);
  361. if (con->in_msg) {
  362. ceph_msg_put(con->in_msg);
  363. con->in_msg = NULL;
  364. }
  365. con->connect_seq = 0;
  366. con->out_seq = 0;
  367. if (con->out_msg) {
  368. ceph_msg_put(con->out_msg);
  369. con->out_msg = NULL;
  370. }
  371. con->in_seq = 0;
  372. con->in_seq_acked = 0;
  373. }
  374. /*
  375. * mark a peer down. drop any open connections.
  376. */
  377. void ceph_con_close(struct ceph_connection *con)
  378. {
  379. dout("con_close %p peer %s\n", con,
  380. ceph_pr_addr(&con->peer_addr.in_addr));
  381. clear_bit(NEGOTIATING, &con->state);
  382. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  383. set_bit(CLOSED, &con->state);
  384. clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
  385. clear_bit(KEEPALIVE_PENDING, &con->flags);
  386. clear_bit(WRITE_PENDING, &con->flags);
  387. mutex_lock(&con->mutex);
  388. reset_connection(con);
  389. con->peer_global_seq = 0;
  390. cancel_delayed_work(&con->work);
  391. mutex_unlock(&con->mutex);
  392. queue_con(con);
  393. }
  394. EXPORT_SYMBOL(ceph_con_close);
  395. /*
  396. * Reopen a closed connection, with a new peer address.
  397. */
  398. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  399. {
  400. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  401. set_bit(OPENING, &con->state);
  402. WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
  403. memcpy(&con->peer_addr, addr, sizeof(*addr));
  404. con->delay = 0; /* reset backoff memory */
  405. queue_con(con);
  406. }
  407. EXPORT_SYMBOL(ceph_con_open);
  408. /*
  409. * return true if this connection ever successfully opened
  410. */
  411. bool ceph_con_opened(struct ceph_connection *con)
  412. {
  413. return con->connect_seq > 0;
  414. }
  415. /*
  416. * generic get/put
  417. */
  418. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  419. {
  420. int nref = __atomic_add_unless(&con->nref, 1, 0);
  421. dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
  422. return nref ? con : NULL;
  423. }
  424. void ceph_con_put(struct ceph_connection *con)
  425. {
  426. int nref = atomic_dec_return(&con->nref);
  427. BUG_ON(nref < 0);
  428. if (nref == 0) {
  429. BUG_ON(con->sock);
  430. kfree(con);
  431. }
  432. dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
  433. }
  434. /*
  435. * initialize a new connection.
  436. */
  437. void ceph_con_init(struct ceph_connection *con, void *private,
  438. const struct ceph_connection_operations *ops,
  439. struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
  440. {
  441. dout("con_init %p\n", con);
  442. memset(con, 0, sizeof(*con));
  443. con->private = private;
  444. con->ops = ops;
  445. atomic_set(&con->nref, 1);
  446. con->msgr = msgr;
  447. con_sock_state_init(con);
  448. con->peer_name.type = (__u8) entity_type;
  449. con->peer_name.num = cpu_to_le64(entity_num);
  450. mutex_init(&con->mutex);
  451. INIT_LIST_HEAD(&con->out_queue);
  452. INIT_LIST_HEAD(&con->out_sent);
  453. INIT_DELAYED_WORK(&con->work, con_work);
  454. set_bit(CLOSED, &con->state);
  455. }
  456. EXPORT_SYMBOL(ceph_con_init);
  457. /*
  458. * We maintain a global counter to order connection attempts. Get
  459. * a unique seq greater than @gt.
  460. */
  461. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  462. {
  463. u32 ret;
  464. spin_lock(&msgr->global_seq_lock);
  465. if (msgr->global_seq < gt)
  466. msgr->global_seq = gt;
  467. ret = ++msgr->global_seq;
  468. spin_unlock(&msgr->global_seq_lock);
  469. return ret;
  470. }
  471. static void con_out_kvec_reset(struct ceph_connection *con)
  472. {
  473. con->out_kvec_left = 0;
  474. con->out_kvec_bytes = 0;
  475. con->out_kvec_cur = &con->out_kvec[0];
  476. }
  477. static void con_out_kvec_add(struct ceph_connection *con,
  478. size_t size, void *data)
  479. {
  480. int index;
  481. index = con->out_kvec_left;
  482. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  483. con->out_kvec[index].iov_len = size;
  484. con->out_kvec[index].iov_base = data;
  485. con->out_kvec_left++;
  486. con->out_kvec_bytes += size;
  487. }
  488. /*
  489. * Prepare footer for currently outgoing message, and finish things
  490. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  491. */
  492. static void prepare_write_message_footer(struct ceph_connection *con)
  493. {
  494. struct ceph_msg *m = con->out_msg;
  495. int v = con->out_kvec_left;
  496. dout("prepare_write_message_footer %p\n", con);
  497. con->out_kvec_is_msg = true;
  498. con->out_kvec[v].iov_base = &m->footer;
  499. con->out_kvec[v].iov_len = sizeof(m->footer);
  500. con->out_kvec_bytes += sizeof(m->footer);
  501. con->out_kvec_left++;
  502. con->out_more = m->more_to_follow;
  503. con->out_msg_done = true;
  504. }
  505. /*
  506. * Prepare headers for the next outgoing message.
  507. */
  508. static void prepare_write_message(struct ceph_connection *con)
  509. {
  510. struct ceph_msg *m;
  511. u32 crc;
  512. con_out_kvec_reset(con);
  513. con->out_kvec_is_msg = true;
  514. con->out_msg_done = false;
  515. /* Sneak an ack in there first? If we can get it into the same
  516. * TCP packet that's a good thing. */
  517. if (con->in_seq > con->in_seq_acked) {
  518. con->in_seq_acked = con->in_seq;
  519. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  520. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  521. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  522. &con->out_temp_ack);
  523. }
  524. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  525. con->out_msg = m;
  526. /* put message on sent list */
  527. ceph_msg_get(m);
  528. list_move_tail(&m->list_head, &con->out_sent);
  529. /*
  530. * only assign outgoing seq # if we haven't sent this message
  531. * yet. if it is requeued, resend with it's original seq.
  532. */
  533. if (m->needs_out_seq) {
  534. m->hdr.seq = cpu_to_le64(++con->out_seq);
  535. m->needs_out_seq = false;
  536. }
  537. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  538. m, con->out_seq, le16_to_cpu(m->hdr.type),
  539. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  540. le32_to_cpu(m->hdr.data_len),
  541. m->nr_pages);
  542. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  543. /* tag + hdr + front + middle */
  544. con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  545. con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  546. con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  547. if (m->middle)
  548. con_out_kvec_add(con, m->middle->vec.iov_len,
  549. m->middle->vec.iov_base);
  550. /* fill in crc (except data pages), footer */
  551. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  552. con->out_msg->hdr.crc = cpu_to_le32(crc);
  553. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  554. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  555. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  556. if (m->middle) {
  557. crc = crc32c(0, m->middle->vec.iov_base,
  558. m->middle->vec.iov_len);
  559. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  560. } else
  561. con->out_msg->footer.middle_crc = 0;
  562. con->out_msg->footer.data_crc = 0;
  563. dout("prepare_write_message front_crc %u data_crc %u\n",
  564. le32_to_cpu(con->out_msg->footer.front_crc),
  565. le32_to_cpu(con->out_msg->footer.middle_crc));
  566. /* is there a data payload? */
  567. if (le32_to_cpu(m->hdr.data_len) > 0) {
  568. /* initialize page iterator */
  569. con->out_msg_pos.page = 0;
  570. if (m->pages)
  571. con->out_msg_pos.page_pos = m->page_alignment;
  572. else
  573. con->out_msg_pos.page_pos = 0;
  574. con->out_msg_pos.data_pos = 0;
  575. con->out_msg_pos.did_page_crc = false;
  576. con->out_more = 1; /* data + footer will follow */
  577. } else {
  578. /* no, queue up footer too and be done */
  579. prepare_write_message_footer(con);
  580. }
  581. set_bit(WRITE_PENDING, &con->flags);
  582. }
  583. /*
  584. * Prepare an ack.
  585. */
  586. static void prepare_write_ack(struct ceph_connection *con)
  587. {
  588. dout("prepare_write_ack %p %llu -> %llu\n", con,
  589. con->in_seq_acked, con->in_seq);
  590. con->in_seq_acked = con->in_seq;
  591. con_out_kvec_reset(con);
  592. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  593. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  594. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  595. &con->out_temp_ack);
  596. con->out_more = 1; /* more will follow.. eventually.. */
  597. set_bit(WRITE_PENDING, &con->flags);
  598. }
  599. /*
  600. * Prepare to write keepalive byte.
  601. */
  602. static void prepare_write_keepalive(struct ceph_connection *con)
  603. {
  604. dout("prepare_write_keepalive %p\n", con);
  605. con_out_kvec_reset(con);
  606. con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  607. set_bit(WRITE_PENDING, &con->flags);
  608. }
  609. /*
  610. * Connection negotiation.
  611. */
  612. static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
  613. int *auth_proto)
  614. {
  615. struct ceph_auth_handshake *auth;
  616. if (!con->ops->get_authorizer) {
  617. con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
  618. con->out_connect.authorizer_len = 0;
  619. return NULL;
  620. }
  621. /* Can't hold the mutex while getting authorizer */
  622. mutex_unlock(&con->mutex);
  623. auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
  624. mutex_lock(&con->mutex);
  625. if (IS_ERR(auth))
  626. return auth;
  627. if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
  628. return ERR_PTR(-EAGAIN);
  629. con->auth_reply_buf = auth->authorizer_reply_buf;
  630. con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
  631. return auth;
  632. }
  633. /*
  634. * We connected to a peer and are saying hello.
  635. */
  636. static void prepare_write_banner(struct ceph_connection *con)
  637. {
  638. con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  639. con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
  640. &con->msgr->my_enc_addr);
  641. con->out_more = 0;
  642. set_bit(WRITE_PENDING, &con->flags);
  643. }
  644. static int prepare_write_connect(struct ceph_connection *con)
  645. {
  646. unsigned global_seq = get_global_seq(con->msgr, 0);
  647. int proto;
  648. int auth_proto;
  649. struct ceph_auth_handshake *auth;
  650. switch (con->peer_name.type) {
  651. case CEPH_ENTITY_TYPE_MON:
  652. proto = CEPH_MONC_PROTOCOL;
  653. break;
  654. case CEPH_ENTITY_TYPE_OSD:
  655. proto = CEPH_OSDC_PROTOCOL;
  656. break;
  657. case CEPH_ENTITY_TYPE_MDS:
  658. proto = CEPH_MDSC_PROTOCOL;
  659. break;
  660. default:
  661. BUG();
  662. }
  663. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  664. con->connect_seq, global_seq, proto);
  665. con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
  666. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  667. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  668. con->out_connect.global_seq = cpu_to_le32(global_seq);
  669. con->out_connect.protocol_version = cpu_to_le32(proto);
  670. con->out_connect.flags = 0;
  671. auth_proto = CEPH_AUTH_UNKNOWN;
  672. auth = get_connect_authorizer(con, &auth_proto);
  673. if (IS_ERR(auth))
  674. return PTR_ERR(auth);
  675. con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
  676. con->out_connect.authorizer_len = auth ?
  677. cpu_to_le32(auth->authorizer_buf_len) : 0;
  678. con_out_kvec_add(con, sizeof (con->out_connect),
  679. &con->out_connect);
  680. if (auth && auth->authorizer_buf_len)
  681. con_out_kvec_add(con, auth->authorizer_buf_len,
  682. auth->authorizer_buf);
  683. con->out_more = 0;
  684. set_bit(WRITE_PENDING, &con->flags);
  685. return 0;
  686. }
  687. /*
  688. * write as much of pending kvecs to the socket as we can.
  689. * 1 -> done
  690. * 0 -> socket full, but more to do
  691. * <0 -> error
  692. */
  693. static int write_partial_kvec(struct ceph_connection *con)
  694. {
  695. int ret;
  696. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  697. while (con->out_kvec_bytes > 0) {
  698. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  699. con->out_kvec_left, con->out_kvec_bytes,
  700. con->out_more);
  701. if (ret <= 0)
  702. goto out;
  703. con->out_kvec_bytes -= ret;
  704. if (con->out_kvec_bytes == 0)
  705. break; /* done */
  706. /* account for full iov entries consumed */
  707. while (ret >= con->out_kvec_cur->iov_len) {
  708. BUG_ON(!con->out_kvec_left);
  709. ret -= con->out_kvec_cur->iov_len;
  710. con->out_kvec_cur++;
  711. con->out_kvec_left--;
  712. }
  713. /* and for a partially-consumed entry */
  714. if (ret) {
  715. con->out_kvec_cur->iov_len -= ret;
  716. con->out_kvec_cur->iov_base += ret;
  717. }
  718. }
  719. con->out_kvec_left = 0;
  720. con->out_kvec_is_msg = false;
  721. ret = 1;
  722. out:
  723. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  724. con->out_kvec_bytes, con->out_kvec_left, ret);
  725. return ret; /* done! */
  726. }
  727. #ifdef CONFIG_BLOCK
  728. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  729. {
  730. if (!bio) {
  731. *iter = NULL;
  732. *seg = 0;
  733. return;
  734. }
  735. *iter = bio;
  736. *seg = bio->bi_idx;
  737. }
  738. static void iter_bio_next(struct bio **bio_iter, int *seg)
  739. {
  740. if (*bio_iter == NULL)
  741. return;
  742. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  743. (*seg)++;
  744. if (*seg == (*bio_iter)->bi_vcnt)
  745. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  746. }
  747. #endif
  748. /*
  749. * Write as much message data payload as we can. If we finish, queue
  750. * up the footer.
  751. * 1 -> done, footer is now queued in out_kvec[].
  752. * 0 -> socket full, but more to do
  753. * <0 -> error
  754. */
  755. static int write_partial_msg_pages(struct ceph_connection *con)
  756. {
  757. struct ceph_msg *msg = con->out_msg;
  758. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  759. size_t len;
  760. bool do_datacrc = !con->msgr->nocrc;
  761. int ret;
  762. int total_max_write;
  763. int in_trail = 0;
  764. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  765. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  766. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  767. con->out_msg_pos.page_pos);
  768. #ifdef CONFIG_BLOCK
  769. if (msg->bio && !msg->bio_iter)
  770. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  771. #endif
  772. while (data_len > con->out_msg_pos.data_pos) {
  773. struct page *page = NULL;
  774. int max_write = PAGE_SIZE;
  775. int bio_offset = 0;
  776. total_max_write = data_len - trail_len -
  777. con->out_msg_pos.data_pos;
  778. /*
  779. * if we are calculating the data crc (the default), we need
  780. * to map the page. if our pages[] has been revoked, use the
  781. * zero page.
  782. */
  783. /* have we reached the trail part of the data? */
  784. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  785. in_trail = 1;
  786. total_max_write = data_len - con->out_msg_pos.data_pos;
  787. page = list_first_entry(&msg->trail->head,
  788. struct page, lru);
  789. max_write = PAGE_SIZE;
  790. } else if (msg->pages) {
  791. page = msg->pages[con->out_msg_pos.page];
  792. } else if (msg->pagelist) {
  793. page = list_first_entry(&msg->pagelist->head,
  794. struct page, lru);
  795. #ifdef CONFIG_BLOCK
  796. } else if (msg->bio) {
  797. struct bio_vec *bv;
  798. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  799. page = bv->bv_page;
  800. bio_offset = bv->bv_offset;
  801. max_write = bv->bv_len;
  802. #endif
  803. } else {
  804. page = zero_page;
  805. }
  806. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  807. total_max_write);
  808. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  809. void *base;
  810. u32 crc;
  811. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  812. char *kaddr;
  813. kaddr = kmap(page);
  814. BUG_ON(kaddr == NULL);
  815. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  816. crc = crc32c(tmpcrc, base, len);
  817. con->out_msg->footer.data_crc = cpu_to_le32(crc);
  818. con->out_msg_pos.did_page_crc = true;
  819. }
  820. ret = ceph_tcp_sendpage(con->sock, page,
  821. con->out_msg_pos.page_pos + bio_offset,
  822. len, 1);
  823. if (do_datacrc)
  824. kunmap(page);
  825. if (ret <= 0)
  826. goto out;
  827. con->out_msg_pos.data_pos += ret;
  828. con->out_msg_pos.page_pos += ret;
  829. if (ret == len) {
  830. con->out_msg_pos.page_pos = 0;
  831. con->out_msg_pos.page++;
  832. con->out_msg_pos.did_page_crc = false;
  833. if (in_trail)
  834. list_move_tail(&page->lru,
  835. &msg->trail->head);
  836. else if (msg->pagelist)
  837. list_move_tail(&page->lru,
  838. &msg->pagelist->head);
  839. #ifdef CONFIG_BLOCK
  840. else if (msg->bio)
  841. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  842. #endif
  843. }
  844. }
  845. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  846. /* prepare and queue up footer, too */
  847. if (!do_datacrc)
  848. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  849. con_out_kvec_reset(con);
  850. prepare_write_message_footer(con);
  851. ret = 1;
  852. out:
  853. return ret;
  854. }
  855. /*
  856. * write some zeros
  857. */
  858. static int write_partial_skip(struct ceph_connection *con)
  859. {
  860. int ret;
  861. while (con->out_skip > 0) {
  862. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  863. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  864. if (ret <= 0)
  865. goto out;
  866. con->out_skip -= ret;
  867. }
  868. ret = 1;
  869. out:
  870. return ret;
  871. }
  872. /*
  873. * Prepare to read connection handshake, or an ack.
  874. */
  875. static void prepare_read_banner(struct ceph_connection *con)
  876. {
  877. dout("prepare_read_banner %p\n", con);
  878. con->in_base_pos = 0;
  879. }
  880. static void prepare_read_connect(struct ceph_connection *con)
  881. {
  882. dout("prepare_read_connect %p\n", con);
  883. con->in_base_pos = 0;
  884. }
  885. static void prepare_read_ack(struct ceph_connection *con)
  886. {
  887. dout("prepare_read_ack %p\n", con);
  888. con->in_base_pos = 0;
  889. }
  890. static void prepare_read_tag(struct ceph_connection *con)
  891. {
  892. dout("prepare_read_tag %p\n", con);
  893. con->in_base_pos = 0;
  894. con->in_tag = CEPH_MSGR_TAG_READY;
  895. }
  896. /*
  897. * Prepare to read a message.
  898. */
  899. static int prepare_read_message(struct ceph_connection *con)
  900. {
  901. dout("prepare_read_message %p\n", con);
  902. BUG_ON(con->in_msg != NULL);
  903. con->in_base_pos = 0;
  904. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  905. return 0;
  906. }
  907. static int read_partial(struct ceph_connection *con,
  908. int end, int size, void *object)
  909. {
  910. while (con->in_base_pos < end) {
  911. int left = end - con->in_base_pos;
  912. int have = size - left;
  913. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  914. if (ret <= 0)
  915. return ret;
  916. con->in_base_pos += ret;
  917. }
  918. return 1;
  919. }
  920. /*
  921. * Read all or part of the connect-side handshake on a new connection
  922. */
  923. static int read_partial_banner(struct ceph_connection *con)
  924. {
  925. int size;
  926. int end;
  927. int ret;
  928. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  929. /* peer's banner */
  930. size = strlen(CEPH_BANNER);
  931. end = size;
  932. ret = read_partial(con, end, size, con->in_banner);
  933. if (ret <= 0)
  934. goto out;
  935. size = sizeof (con->actual_peer_addr);
  936. end += size;
  937. ret = read_partial(con, end, size, &con->actual_peer_addr);
  938. if (ret <= 0)
  939. goto out;
  940. size = sizeof (con->peer_addr_for_me);
  941. end += size;
  942. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  943. if (ret <= 0)
  944. goto out;
  945. out:
  946. return ret;
  947. }
  948. static int read_partial_connect(struct ceph_connection *con)
  949. {
  950. int size;
  951. int end;
  952. int ret;
  953. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  954. size = sizeof (con->in_reply);
  955. end = size;
  956. ret = read_partial(con, end, size, &con->in_reply);
  957. if (ret <= 0)
  958. goto out;
  959. size = le32_to_cpu(con->in_reply.authorizer_len);
  960. end += size;
  961. ret = read_partial(con, end, size, con->auth_reply_buf);
  962. if (ret <= 0)
  963. goto out;
  964. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  965. con, (int)con->in_reply.tag,
  966. le32_to_cpu(con->in_reply.connect_seq),
  967. le32_to_cpu(con->in_reply.global_seq));
  968. out:
  969. return ret;
  970. }
  971. /*
  972. * Verify the hello banner looks okay.
  973. */
  974. static int verify_hello(struct ceph_connection *con)
  975. {
  976. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  977. pr_err("connect to %s got bad banner\n",
  978. ceph_pr_addr(&con->peer_addr.in_addr));
  979. con->error_msg = "protocol error, bad banner";
  980. return -1;
  981. }
  982. return 0;
  983. }
  984. static bool addr_is_blank(struct sockaddr_storage *ss)
  985. {
  986. switch (ss->ss_family) {
  987. case AF_INET:
  988. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  989. case AF_INET6:
  990. return
  991. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  992. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  993. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  994. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  995. }
  996. return false;
  997. }
  998. static int addr_port(struct sockaddr_storage *ss)
  999. {
  1000. switch (ss->ss_family) {
  1001. case AF_INET:
  1002. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  1003. case AF_INET6:
  1004. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  1005. }
  1006. return 0;
  1007. }
  1008. static void addr_set_port(struct sockaddr_storage *ss, int p)
  1009. {
  1010. switch (ss->ss_family) {
  1011. case AF_INET:
  1012. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  1013. break;
  1014. case AF_INET6:
  1015. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  1016. break;
  1017. }
  1018. }
  1019. /*
  1020. * Unlike other *_pton function semantics, zero indicates success.
  1021. */
  1022. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  1023. char delim, const char **ipend)
  1024. {
  1025. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  1026. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  1027. memset(ss, 0, sizeof(*ss));
  1028. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  1029. ss->ss_family = AF_INET;
  1030. return 0;
  1031. }
  1032. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  1033. ss->ss_family = AF_INET6;
  1034. return 0;
  1035. }
  1036. return -EINVAL;
  1037. }
  1038. /*
  1039. * Extract hostname string and resolve using kernel DNS facility.
  1040. */
  1041. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  1042. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  1043. struct sockaddr_storage *ss, char delim, const char **ipend)
  1044. {
  1045. const char *end, *delim_p;
  1046. char *colon_p, *ip_addr = NULL;
  1047. int ip_len, ret;
  1048. /*
  1049. * The end of the hostname occurs immediately preceding the delimiter or
  1050. * the port marker (':') where the delimiter takes precedence.
  1051. */
  1052. delim_p = memchr(name, delim, namelen);
  1053. colon_p = memchr(name, ':', namelen);
  1054. if (delim_p && colon_p)
  1055. end = delim_p < colon_p ? delim_p : colon_p;
  1056. else if (!delim_p && colon_p)
  1057. end = colon_p;
  1058. else {
  1059. end = delim_p;
  1060. if (!end) /* case: hostname:/ */
  1061. end = name + namelen;
  1062. }
  1063. if (end <= name)
  1064. return -EINVAL;
  1065. /* do dns_resolve upcall */
  1066. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1067. if (ip_len > 0)
  1068. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1069. else
  1070. ret = -ESRCH;
  1071. kfree(ip_addr);
  1072. *ipend = end;
  1073. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1074. ret, ret ? "failed" : ceph_pr_addr(ss));
  1075. return ret;
  1076. }
  1077. #else
  1078. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1079. struct sockaddr_storage *ss, char delim, const char **ipend)
  1080. {
  1081. return -EINVAL;
  1082. }
  1083. #endif
  1084. /*
  1085. * Parse a server name (IP or hostname). If a valid IP address is not found
  1086. * then try to extract a hostname to resolve using userspace DNS upcall.
  1087. */
  1088. static int ceph_parse_server_name(const char *name, size_t namelen,
  1089. struct sockaddr_storage *ss, char delim, const char **ipend)
  1090. {
  1091. int ret;
  1092. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1093. if (ret)
  1094. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1095. return ret;
  1096. }
  1097. /*
  1098. * Parse an ip[:port] list into an addr array. Use the default
  1099. * monitor port if a port isn't specified.
  1100. */
  1101. int ceph_parse_ips(const char *c, const char *end,
  1102. struct ceph_entity_addr *addr,
  1103. int max_count, int *count)
  1104. {
  1105. int i, ret = -EINVAL;
  1106. const char *p = c;
  1107. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1108. for (i = 0; i < max_count; i++) {
  1109. const char *ipend;
  1110. struct sockaddr_storage *ss = &addr[i].in_addr;
  1111. int port;
  1112. char delim = ',';
  1113. if (*p == '[') {
  1114. delim = ']';
  1115. p++;
  1116. }
  1117. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1118. if (ret)
  1119. goto bad;
  1120. ret = -EINVAL;
  1121. p = ipend;
  1122. if (delim == ']') {
  1123. if (*p != ']') {
  1124. dout("missing matching ']'\n");
  1125. goto bad;
  1126. }
  1127. p++;
  1128. }
  1129. /* port? */
  1130. if (p < end && *p == ':') {
  1131. port = 0;
  1132. p++;
  1133. while (p < end && *p >= '0' && *p <= '9') {
  1134. port = (port * 10) + (*p - '0');
  1135. p++;
  1136. }
  1137. if (port > 65535 || port == 0)
  1138. goto bad;
  1139. } else {
  1140. port = CEPH_MON_PORT;
  1141. }
  1142. addr_set_port(ss, port);
  1143. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1144. if (p == end)
  1145. break;
  1146. if (*p != ',')
  1147. goto bad;
  1148. p++;
  1149. }
  1150. if (p != end)
  1151. goto bad;
  1152. if (count)
  1153. *count = i + 1;
  1154. return 0;
  1155. bad:
  1156. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1157. return ret;
  1158. }
  1159. EXPORT_SYMBOL(ceph_parse_ips);
  1160. static int process_banner(struct ceph_connection *con)
  1161. {
  1162. dout("process_banner on %p\n", con);
  1163. if (verify_hello(con) < 0)
  1164. return -1;
  1165. ceph_decode_addr(&con->actual_peer_addr);
  1166. ceph_decode_addr(&con->peer_addr_for_me);
  1167. /*
  1168. * Make sure the other end is who we wanted. note that the other
  1169. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1170. * them the benefit of the doubt.
  1171. */
  1172. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1173. sizeof(con->peer_addr)) != 0 &&
  1174. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1175. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1176. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1177. ceph_pr_addr(&con->peer_addr.in_addr),
  1178. (int)le32_to_cpu(con->peer_addr.nonce),
  1179. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1180. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1181. con->error_msg = "wrong peer at address";
  1182. return -1;
  1183. }
  1184. /*
  1185. * did we learn our address?
  1186. */
  1187. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1188. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1189. memcpy(&con->msgr->inst.addr.in_addr,
  1190. &con->peer_addr_for_me.in_addr,
  1191. sizeof(con->peer_addr_for_me.in_addr));
  1192. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1193. encode_my_addr(con->msgr);
  1194. dout("process_banner learned my addr is %s\n",
  1195. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1196. }
  1197. set_bit(NEGOTIATING, &con->state);
  1198. prepare_read_connect(con);
  1199. return 0;
  1200. }
  1201. static void fail_protocol(struct ceph_connection *con)
  1202. {
  1203. reset_connection(con);
  1204. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1205. }
  1206. static int process_connect(struct ceph_connection *con)
  1207. {
  1208. u64 sup_feat = con->msgr->supported_features;
  1209. u64 req_feat = con->msgr->required_features;
  1210. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1211. int ret;
  1212. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1213. switch (con->in_reply.tag) {
  1214. case CEPH_MSGR_TAG_FEATURES:
  1215. pr_err("%s%lld %s feature set mismatch,"
  1216. " my %llx < server's %llx, missing %llx\n",
  1217. ENTITY_NAME(con->peer_name),
  1218. ceph_pr_addr(&con->peer_addr.in_addr),
  1219. sup_feat, server_feat, server_feat & ~sup_feat);
  1220. con->error_msg = "missing required protocol features";
  1221. fail_protocol(con);
  1222. return -1;
  1223. case CEPH_MSGR_TAG_BADPROTOVER:
  1224. pr_err("%s%lld %s protocol version mismatch,"
  1225. " my %d != server's %d\n",
  1226. ENTITY_NAME(con->peer_name),
  1227. ceph_pr_addr(&con->peer_addr.in_addr),
  1228. le32_to_cpu(con->out_connect.protocol_version),
  1229. le32_to_cpu(con->in_reply.protocol_version));
  1230. con->error_msg = "protocol version mismatch";
  1231. fail_protocol(con);
  1232. return -1;
  1233. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1234. con->auth_retry++;
  1235. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1236. con->auth_retry);
  1237. if (con->auth_retry == 2) {
  1238. con->error_msg = "connect authorization failure";
  1239. return -1;
  1240. }
  1241. con->auth_retry = 1;
  1242. con_out_kvec_reset(con);
  1243. ret = prepare_write_connect(con);
  1244. if (ret < 0)
  1245. return ret;
  1246. prepare_read_connect(con);
  1247. break;
  1248. case CEPH_MSGR_TAG_RESETSESSION:
  1249. /*
  1250. * If we connected with a large connect_seq but the peer
  1251. * has no record of a session with us (no connection, or
  1252. * connect_seq == 0), they will send RESETSESION to indicate
  1253. * that they must have reset their session, and may have
  1254. * dropped messages.
  1255. */
  1256. dout("process_connect got RESET peer seq %u\n",
  1257. le32_to_cpu(con->in_connect.connect_seq));
  1258. pr_err("%s%lld %s connection reset\n",
  1259. ENTITY_NAME(con->peer_name),
  1260. ceph_pr_addr(&con->peer_addr.in_addr));
  1261. reset_connection(con);
  1262. con_out_kvec_reset(con);
  1263. ret = prepare_write_connect(con);
  1264. if (ret < 0)
  1265. return ret;
  1266. prepare_read_connect(con);
  1267. /* Tell ceph about it. */
  1268. mutex_unlock(&con->mutex);
  1269. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1270. if (con->ops->peer_reset)
  1271. con->ops->peer_reset(con);
  1272. mutex_lock(&con->mutex);
  1273. if (test_bit(CLOSED, &con->state) ||
  1274. test_bit(OPENING, &con->state))
  1275. return -EAGAIN;
  1276. break;
  1277. case CEPH_MSGR_TAG_RETRY_SESSION:
  1278. /*
  1279. * If we sent a smaller connect_seq than the peer has, try
  1280. * again with a larger value.
  1281. */
  1282. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1283. le32_to_cpu(con->out_connect.connect_seq),
  1284. le32_to_cpu(con->in_connect.connect_seq));
  1285. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1286. con_out_kvec_reset(con);
  1287. ret = prepare_write_connect(con);
  1288. if (ret < 0)
  1289. return ret;
  1290. prepare_read_connect(con);
  1291. break;
  1292. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1293. /*
  1294. * If we sent a smaller global_seq than the peer has, try
  1295. * again with a larger value.
  1296. */
  1297. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1298. con->peer_global_seq,
  1299. le32_to_cpu(con->in_connect.global_seq));
  1300. get_global_seq(con->msgr,
  1301. le32_to_cpu(con->in_connect.global_seq));
  1302. con_out_kvec_reset(con);
  1303. ret = prepare_write_connect(con);
  1304. if (ret < 0)
  1305. return ret;
  1306. prepare_read_connect(con);
  1307. break;
  1308. case CEPH_MSGR_TAG_READY:
  1309. if (req_feat & ~server_feat) {
  1310. pr_err("%s%lld %s protocol feature mismatch,"
  1311. " my required %llx > server's %llx, need %llx\n",
  1312. ENTITY_NAME(con->peer_name),
  1313. ceph_pr_addr(&con->peer_addr.in_addr),
  1314. req_feat, server_feat, req_feat & ~server_feat);
  1315. con->error_msg = "missing required protocol features";
  1316. fail_protocol(con);
  1317. return -1;
  1318. }
  1319. clear_bit(CONNECTING, &con->state);
  1320. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1321. con->connect_seq++;
  1322. con->peer_features = server_feat;
  1323. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1324. con->peer_global_seq,
  1325. le32_to_cpu(con->in_reply.connect_seq),
  1326. con->connect_seq);
  1327. WARN_ON(con->connect_seq !=
  1328. le32_to_cpu(con->in_reply.connect_seq));
  1329. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1330. set_bit(LOSSYTX, &con->flags);
  1331. prepare_read_tag(con);
  1332. break;
  1333. case CEPH_MSGR_TAG_WAIT:
  1334. /*
  1335. * If there is a connection race (we are opening
  1336. * connections to each other), one of us may just have
  1337. * to WAIT. This shouldn't happen if we are the
  1338. * client.
  1339. */
  1340. pr_err("process_connect got WAIT as client\n");
  1341. con->error_msg = "protocol error, got WAIT as client";
  1342. return -1;
  1343. default:
  1344. pr_err("connect protocol error, will retry\n");
  1345. con->error_msg = "protocol error, garbage tag during connect";
  1346. return -1;
  1347. }
  1348. return 0;
  1349. }
  1350. /*
  1351. * read (part of) an ack
  1352. */
  1353. static int read_partial_ack(struct ceph_connection *con)
  1354. {
  1355. int size = sizeof (con->in_temp_ack);
  1356. int end = size;
  1357. return read_partial(con, end, size, &con->in_temp_ack);
  1358. }
  1359. /*
  1360. * We can finally discard anything that's been acked.
  1361. */
  1362. static void process_ack(struct ceph_connection *con)
  1363. {
  1364. struct ceph_msg *m;
  1365. u64 ack = le64_to_cpu(con->in_temp_ack);
  1366. u64 seq;
  1367. while (!list_empty(&con->out_sent)) {
  1368. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1369. list_head);
  1370. seq = le64_to_cpu(m->hdr.seq);
  1371. if (seq > ack)
  1372. break;
  1373. dout("got ack for seq %llu type %d at %p\n", seq,
  1374. le16_to_cpu(m->hdr.type), m);
  1375. m->ack_stamp = jiffies;
  1376. ceph_msg_remove(m);
  1377. }
  1378. prepare_read_tag(con);
  1379. }
  1380. static int read_partial_message_section(struct ceph_connection *con,
  1381. struct kvec *section,
  1382. unsigned int sec_len, u32 *crc)
  1383. {
  1384. int ret, left;
  1385. BUG_ON(!section);
  1386. while (section->iov_len < sec_len) {
  1387. BUG_ON(section->iov_base == NULL);
  1388. left = sec_len - section->iov_len;
  1389. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1390. section->iov_len, left);
  1391. if (ret <= 0)
  1392. return ret;
  1393. section->iov_len += ret;
  1394. }
  1395. if (section->iov_len == sec_len)
  1396. *crc = crc32c(0, section->iov_base, section->iov_len);
  1397. return 1;
  1398. }
  1399. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1400. struct ceph_msg_header *hdr,
  1401. int *skip);
  1402. static int read_partial_message_pages(struct ceph_connection *con,
  1403. struct page **pages,
  1404. unsigned data_len, bool do_datacrc)
  1405. {
  1406. void *p;
  1407. int ret;
  1408. int left;
  1409. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1410. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1411. /* (page) data */
  1412. BUG_ON(pages == NULL);
  1413. p = kmap(pages[con->in_msg_pos.page]);
  1414. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1415. left);
  1416. if (ret > 0 && do_datacrc)
  1417. con->in_data_crc =
  1418. crc32c(con->in_data_crc,
  1419. p + con->in_msg_pos.page_pos, ret);
  1420. kunmap(pages[con->in_msg_pos.page]);
  1421. if (ret <= 0)
  1422. return ret;
  1423. con->in_msg_pos.data_pos += ret;
  1424. con->in_msg_pos.page_pos += ret;
  1425. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1426. con->in_msg_pos.page_pos = 0;
  1427. con->in_msg_pos.page++;
  1428. }
  1429. return ret;
  1430. }
  1431. #ifdef CONFIG_BLOCK
  1432. static int read_partial_message_bio(struct ceph_connection *con,
  1433. struct bio **bio_iter, int *bio_seg,
  1434. unsigned data_len, bool do_datacrc)
  1435. {
  1436. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1437. void *p;
  1438. int ret, left;
  1439. if (IS_ERR(bv))
  1440. return PTR_ERR(bv);
  1441. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1442. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1443. p = kmap(bv->bv_page) + bv->bv_offset;
  1444. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1445. left);
  1446. if (ret > 0 && do_datacrc)
  1447. con->in_data_crc =
  1448. crc32c(con->in_data_crc,
  1449. p + con->in_msg_pos.page_pos, ret);
  1450. kunmap(bv->bv_page);
  1451. if (ret <= 0)
  1452. return ret;
  1453. con->in_msg_pos.data_pos += ret;
  1454. con->in_msg_pos.page_pos += ret;
  1455. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1456. con->in_msg_pos.page_pos = 0;
  1457. iter_bio_next(bio_iter, bio_seg);
  1458. }
  1459. return ret;
  1460. }
  1461. #endif
  1462. /*
  1463. * read (part of) a message.
  1464. */
  1465. static int read_partial_message(struct ceph_connection *con)
  1466. {
  1467. struct ceph_msg *m = con->in_msg;
  1468. int size;
  1469. int end;
  1470. int ret;
  1471. unsigned front_len, middle_len, data_len;
  1472. bool do_datacrc = !con->msgr->nocrc;
  1473. int skip;
  1474. u64 seq;
  1475. u32 crc;
  1476. dout("read_partial_message con %p msg %p\n", con, m);
  1477. /* header */
  1478. size = sizeof (con->in_hdr);
  1479. end = size;
  1480. ret = read_partial(con, end, size, &con->in_hdr);
  1481. if (ret <= 0)
  1482. return ret;
  1483. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1484. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1485. pr_err("read_partial_message bad hdr "
  1486. " crc %u != expected %u\n",
  1487. crc, con->in_hdr.crc);
  1488. return -EBADMSG;
  1489. }
  1490. front_len = le32_to_cpu(con->in_hdr.front_len);
  1491. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1492. return -EIO;
  1493. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1494. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1495. return -EIO;
  1496. data_len = le32_to_cpu(con->in_hdr.data_len);
  1497. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1498. return -EIO;
  1499. /* verify seq# */
  1500. seq = le64_to_cpu(con->in_hdr.seq);
  1501. if ((s64)seq - (s64)con->in_seq < 1) {
  1502. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1503. ENTITY_NAME(con->peer_name),
  1504. ceph_pr_addr(&con->peer_addr.in_addr),
  1505. seq, con->in_seq + 1);
  1506. con->in_base_pos = -front_len - middle_len - data_len -
  1507. sizeof(m->footer);
  1508. con->in_tag = CEPH_MSGR_TAG_READY;
  1509. return 0;
  1510. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1511. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1512. seq, con->in_seq + 1);
  1513. con->error_msg = "bad message sequence # for incoming message";
  1514. return -EBADMSG;
  1515. }
  1516. /* allocate message? */
  1517. if (!con->in_msg) {
  1518. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1519. con->in_hdr.front_len, con->in_hdr.data_len);
  1520. skip = 0;
  1521. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1522. if (skip) {
  1523. /* skip this message */
  1524. dout("alloc_msg said skip message\n");
  1525. BUG_ON(con->in_msg);
  1526. con->in_base_pos = -front_len - middle_len - data_len -
  1527. sizeof(m->footer);
  1528. con->in_tag = CEPH_MSGR_TAG_READY;
  1529. con->in_seq++;
  1530. return 0;
  1531. }
  1532. if (!con->in_msg) {
  1533. con->error_msg =
  1534. "error allocating memory for incoming message";
  1535. return -ENOMEM;
  1536. }
  1537. m = con->in_msg;
  1538. m->front.iov_len = 0; /* haven't read it yet */
  1539. if (m->middle)
  1540. m->middle->vec.iov_len = 0;
  1541. con->in_msg_pos.page = 0;
  1542. if (m->pages)
  1543. con->in_msg_pos.page_pos = m->page_alignment;
  1544. else
  1545. con->in_msg_pos.page_pos = 0;
  1546. con->in_msg_pos.data_pos = 0;
  1547. }
  1548. /* front */
  1549. ret = read_partial_message_section(con, &m->front, front_len,
  1550. &con->in_front_crc);
  1551. if (ret <= 0)
  1552. return ret;
  1553. /* middle */
  1554. if (m->middle) {
  1555. ret = read_partial_message_section(con, &m->middle->vec,
  1556. middle_len,
  1557. &con->in_middle_crc);
  1558. if (ret <= 0)
  1559. return ret;
  1560. }
  1561. #ifdef CONFIG_BLOCK
  1562. if (m->bio && !m->bio_iter)
  1563. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1564. #endif
  1565. /* (page) data */
  1566. while (con->in_msg_pos.data_pos < data_len) {
  1567. if (m->pages) {
  1568. ret = read_partial_message_pages(con, m->pages,
  1569. data_len, do_datacrc);
  1570. if (ret <= 0)
  1571. return ret;
  1572. #ifdef CONFIG_BLOCK
  1573. } else if (m->bio) {
  1574. ret = read_partial_message_bio(con,
  1575. &m->bio_iter, &m->bio_seg,
  1576. data_len, do_datacrc);
  1577. if (ret <= 0)
  1578. return ret;
  1579. #endif
  1580. } else {
  1581. BUG_ON(1);
  1582. }
  1583. }
  1584. /* footer */
  1585. size = sizeof (m->footer);
  1586. end += size;
  1587. ret = read_partial(con, end, size, &m->footer);
  1588. if (ret <= 0)
  1589. return ret;
  1590. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1591. m, front_len, m->footer.front_crc, middle_len,
  1592. m->footer.middle_crc, data_len, m->footer.data_crc);
  1593. /* crc ok? */
  1594. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1595. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1596. m, con->in_front_crc, m->footer.front_crc);
  1597. return -EBADMSG;
  1598. }
  1599. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1600. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1601. m, con->in_middle_crc, m->footer.middle_crc);
  1602. return -EBADMSG;
  1603. }
  1604. if (do_datacrc &&
  1605. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1606. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1607. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1608. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1609. return -EBADMSG;
  1610. }
  1611. return 1; /* done! */
  1612. }
  1613. /*
  1614. * Process message. This happens in the worker thread. The callback should
  1615. * be careful not to do anything that waits on other incoming messages or it
  1616. * may deadlock.
  1617. */
  1618. static void process_message(struct ceph_connection *con)
  1619. {
  1620. struct ceph_msg *msg;
  1621. msg = con->in_msg;
  1622. con->in_msg = NULL;
  1623. /* if first message, set peer_name */
  1624. if (con->peer_name.type == 0)
  1625. con->peer_name = msg->hdr.src;
  1626. con->in_seq++;
  1627. mutex_unlock(&con->mutex);
  1628. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1629. msg, le64_to_cpu(msg->hdr.seq),
  1630. ENTITY_NAME(msg->hdr.src),
  1631. le16_to_cpu(msg->hdr.type),
  1632. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1633. le32_to_cpu(msg->hdr.front_len),
  1634. le32_to_cpu(msg->hdr.data_len),
  1635. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1636. con->ops->dispatch(con, msg);
  1637. mutex_lock(&con->mutex);
  1638. prepare_read_tag(con);
  1639. }
  1640. /*
  1641. * Write something to the socket. Called in a worker thread when the
  1642. * socket appears to be writeable and we have something ready to send.
  1643. */
  1644. static int try_write(struct ceph_connection *con)
  1645. {
  1646. int ret = 1;
  1647. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1648. atomic_read(&con->nref));
  1649. more:
  1650. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1651. /* open the socket first? */
  1652. if (con->sock == NULL) {
  1653. clear_bit(NEGOTIATING, &con->state);
  1654. set_bit(CONNECTING, &con->state);
  1655. con_out_kvec_reset(con);
  1656. prepare_write_banner(con);
  1657. ret = prepare_write_connect(con);
  1658. if (ret < 0)
  1659. goto out;
  1660. prepare_read_banner(con);
  1661. BUG_ON(con->in_msg);
  1662. con->in_tag = CEPH_MSGR_TAG_READY;
  1663. dout("try_write initiating connect on %p new state %lu\n",
  1664. con, con->state);
  1665. ret = ceph_tcp_connect(con);
  1666. if (ret < 0) {
  1667. con->error_msg = "connect error";
  1668. goto out;
  1669. }
  1670. }
  1671. more_kvec:
  1672. /* kvec data queued? */
  1673. if (con->out_skip) {
  1674. ret = write_partial_skip(con);
  1675. if (ret <= 0)
  1676. goto out;
  1677. }
  1678. if (con->out_kvec_left) {
  1679. ret = write_partial_kvec(con);
  1680. if (ret <= 0)
  1681. goto out;
  1682. }
  1683. /* msg pages? */
  1684. if (con->out_msg) {
  1685. if (con->out_msg_done) {
  1686. ceph_msg_put(con->out_msg);
  1687. con->out_msg = NULL; /* we're done with this one */
  1688. goto do_next;
  1689. }
  1690. ret = write_partial_msg_pages(con);
  1691. if (ret == 1)
  1692. goto more_kvec; /* we need to send the footer, too! */
  1693. if (ret == 0)
  1694. goto out;
  1695. if (ret < 0) {
  1696. dout("try_write write_partial_msg_pages err %d\n",
  1697. ret);
  1698. goto out;
  1699. }
  1700. }
  1701. do_next:
  1702. if (!test_bit(CONNECTING, &con->state)) {
  1703. /* is anything else pending? */
  1704. if (!list_empty(&con->out_queue)) {
  1705. prepare_write_message(con);
  1706. goto more;
  1707. }
  1708. if (con->in_seq > con->in_seq_acked) {
  1709. prepare_write_ack(con);
  1710. goto more;
  1711. }
  1712. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
  1713. prepare_write_keepalive(con);
  1714. goto more;
  1715. }
  1716. }
  1717. /* Nothing to do! */
  1718. clear_bit(WRITE_PENDING, &con->flags);
  1719. dout("try_write nothing else to write.\n");
  1720. ret = 0;
  1721. out:
  1722. dout("try_write done on %p ret %d\n", con, ret);
  1723. return ret;
  1724. }
  1725. /*
  1726. * Read what we can from the socket.
  1727. */
  1728. static int try_read(struct ceph_connection *con)
  1729. {
  1730. int ret = -1;
  1731. if (!con->sock)
  1732. return 0;
  1733. if (test_bit(STANDBY, &con->state))
  1734. return 0;
  1735. dout("try_read start on %p\n", con);
  1736. more:
  1737. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1738. con->in_base_pos);
  1739. /*
  1740. * process_connect and process_message drop and re-take
  1741. * con->mutex. make sure we handle a racing close or reopen.
  1742. */
  1743. if (test_bit(CLOSED, &con->state) ||
  1744. test_bit(OPENING, &con->state)) {
  1745. ret = -EAGAIN;
  1746. goto out;
  1747. }
  1748. if (test_bit(CONNECTING, &con->state)) {
  1749. if (!test_bit(NEGOTIATING, &con->state)) {
  1750. dout("try_read connecting\n");
  1751. ret = read_partial_banner(con);
  1752. if (ret <= 0)
  1753. goto out;
  1754. ret = process_banner(con);
  1755. if (ret < 0)
  1756. goto out;
  1757. }
  1758. ret = read_partial_connect(con);
  1759. if (ret <= 0)
  1760. goto out;
  1761. ret = process_connect(con);
  1762. if (ret < 0)
  1763. goto out;
  1764. goto more;
  1765. }
  1766. if (con->in_base_pos < 0) {
  1767. /*
  1768. * skipping + discarding content.
  1769. *
  1770. * FIXME: there must be a better way to do this!
  1771. */
  1772. static char buf[SKIP_BUF_SIZE];
  1773. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1774. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1775. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1776. if (ret <= 0)
  1777. goto out;
  1778. con->in_base_pos += ret;
  1779. if (con->in_base_pos)
  1780. goto more;
  1781. }
  1782. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1783. /*
  1784. * what's next?
  1785. */
  1786. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1787. if (ret <= 0)
  1788. goto out;
  1789. dout("try_read got tag %d\n", (int)con->in_tag);
  1790. switch (con->in_tag) {
  1791. case CEPH_MSGR_TAG_MSG:
  1792. prepare_read_message(con);
  1793. break;
  1794. case CEPH_MSGR_TAG_ACK:
  1795. prepare_read_ack(con);
  1796. break;
  1797. case CEPH_MSGR_TAG_CLOSE:
  1798. set_bit(CLOSED, &con->state); /* fixme */
  1799. goto out;
  1800. default:
  1801. goto bad_tag;
  1802. }
  1803. }
  1804. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1805. ret = read_partial_message(con);
  1806. if (ret <= 0) {
  1807. switch (ret) {
  1808. case -EBADMSG:
  1809. con->error_msg = "bad crc";
  1810. ret = -EIO;
  1811. break;
  1812. case -EIO:
  1813. con->error_msg = "io error";
  1814. break;
  1815. }
  1816. goto out;
  1817. }
  1818. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1819. goto more;
  1820. process_message(con);
  1821. goto more;
  1822. }
  1823. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1824. ret = read_partial_ack(con);
  1825. if (ret <= 0)
  1826. goto out;
  1827. process_ack(con);
  1828. goto more;
  1829. }
  1830. out:
  1831. dout("try_read done on %p ret %d\n", con, ret);
  1832. return ret;
  1833. bad_tag:
  1834. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1835. con->error_msg = "protocol error, garbage tag";
  1836. ret = -1;
  1837. goto out;
  1838. }
  1839. /*
  1840. * Atomically queue work on a connection. Bump @con reference to
  1841. * avoid races with connection teardown.
  1842. */
  1843. static void queue_con(struct ceph_connection *con)
  1844. {
  1845. if (!con->ops->get(con)) {
  1846. dout("queue_con %p ref count 0\n", con);
  1847. return;
  1848. }
  1849. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1850. dout("queue_con %p - already queued\n", con);
  1851. con->ops->put(con);
  1852. } else {
  1853. dout("queue_con %p\n", con);
  1854. }
  1855. }
  1856. /*
  1857. * Do some work on a connection. Drop a connection ref when we're done.
  1858. */
  1859. static void con_work(struct work_struct *work)
  1860. {
  1861. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1862. work.work);
  1863. int ret;
  1864. mutex_lock(&con->mutex);
  1865. restart:
  1866. if (test_and_clear_bit(BACKOFF, &con->flags)) {
  1867. dout("con_work %p backing off\n", con);
  1868. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1869. round_jiffies_relative(con->delay))) {
  1870. dout("con_work %p backoff %lu\n", con, con->delay);
  1871. mutex_unlock(&con->mutex);
  1872. return;
  1873. } else {
  1874. con->ops->put(con);
  1875. dout("con_work %p FAILED to back off %lu\n", con,
  1876. con->delay);
  1877. }
  1878. }
  1879. if (test_bit(STANDBY, &con->state)) {
  1880. dout("con_work %p STANDBY\n", con);
  1881. goto done;
  1882. }
  1883. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1884. dout("con_work CLOSED\n");
  1885. con_close_socket(con);
  1886. goto done;
  1887. }
  1888. if (test_and_clear_bit(OPENING, &con->state)) {
  1889. /* reopen w/ new peer */
  1890. dout("con_work OPENING\n");
  1891. con_close_socket(con);
  1892. }
  1893. if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
  1894. goto fault;
  1895. ret = try_read(con);
  1896. if (ret == -EAGAIN)
  1897. goto restart;
  1898. if (ret < 0)
  1899. goto fault;
  1900. ret = try_write(con);
  1901. if (ret == -EAGAIN)
  1902. goto restart;
  1903. if (ret < 0)
  1904. goto fault;
  1905. done:
  1906. mutex_unlock(&con->mutex);
  1907. done_unlocked:
  1908. con->ops->put(con);
  1909. return;
  1910. fault:
  1911. mutex_unlock(&con->mutex);
  1912. ceph_fault(con); /* error/fault path */
  1913. goto done_unlocked;
  1914. }
  1915. /*
  1916. * Generic error/fault handler. A retry mechanism is used with
  1917. * exponential backoff
  1918. */
  1919. static void ceph_fault(struct ceph_connection *con)
  1920. {
  1921. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1922. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1923. dout("fault %p state %lu to peer %s\n",
  1924. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1925. if (test_bit(LOSSYTX, &con->flags)) {
  1926. dout("fault on LOSSYTX channel\n");
  1927. goto out;
  1928. }
  1929. mutex_lock(&con->mutex);
  1930. if (test_bit(CLOSED, &con->state))
  1931. goto out_unlock;
  1932. con_close_socket(con);
  1933. if (con->in_msg) {
  1934. ceph_msg_put(con->in_msg);
  1935. con->in_msg = NULL;
  1936. }
  1937. /* Requeue anything that hasn't been acked */
  1938. list_splice_init(&con->out_sent, &con->out_queue);
  1939. /* If there are no messages queued or keepalive pending, place
  1940. * the connection in a STANDBY state */
  1941. if (list_empty(&con->out_queue) &&
  1942. !test_bit(KEEPALIVE_PENDING, &con->flags)) {
  1943. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1944. clear_bit(WRITE_PENDING, &con->flags);
  1945. set_bit(STANDBY, &con->state);
  1946. } else {
  1947. /* retry after a delay. */
  1948. if (con->delay == 0)
  1949. con->delay = BASE_DELAY_INTERVAL;
  1950. else if (con->delay < MAX_DELAY_INTERVAL)
  1951. con->delay *= 2;
  1952. con->ops->get(con);
  1953. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1954. round_jiffies_relative(con->delay))) {
  1955. dout("fault queued %p delay %lu\n", con, con->delay);
  1956. } else {
  1957. con->ops->put(con);
  1958. dout("fault failed to queue %p delay %lu, backoff\n",
  1959. con, con->delay);
  1960. /*
  1961. * In many cases we see a socket state change
  1962. * while con_work is running and end up
  1963. * queuing (non-delayed) work, such that we
  1964. * can't backoff with a delay. Set a flag so
  1965. * that when con_work restarts we schedule the
  1966. * delay then.
  1967. */
  1968. set_bit(BACKOFF, &con->flags);
  1969. }
  1970. }
  1971. out_unlock:
  1972. mutex_unlock(&con->mutex);
  1973. out:
  1974. /*
  1975. * in case we faulted due to authentication, invalidate our
  1976. * current tickets so that we can get new ones.
  1977. */
  1978. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1979. dout("calling invalidate_authorizer()\n");
  1980. con->ops->invalidate_authorizer(con);
  1981. }
  1982. if (con->ops->fault)
  1983. con->ops->fault(con);
  1984. }
  1985. /*
  1986. * initialize a new messenger instance
  1987. */
  1988. void ceph_messenger_init(struct ceph_messenger *msgr,
  1989. struct ceph_entity_addr *myaddr,
  1990. u32 supported_features,
  1991. u32 required_features,
  1992. bool nocrc)
  1993. {
  1994. msgr->supported_features = supported_features;
  1995. msgr->required_features = required_features;
  1996. spin_lock_init(&msgr->global_seq_lock);
  1997. if (myaddr)
  1998. msgr->inst.addr = *myaddr;
  1999. /* select a random nonce */
  2000. msgr->inst.addr.type = 0;
  2001. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  2002. encode_my_addr(msgr);
  2003. msgr->nocrc = nocrc;
  2004. dout("%s %p\n", __func__, msgr);
  2005. }
  2006. EXPORT_SYMBOL(ceph_messenger_init);
  2007. static void clear_standby(struct ceph_connection *con)
  2008. {
  2009. /* come back from STANDBY? */
  2010. if (test_and_clear_bit(STANDBY, &con->state)) {
  2011. mutex_lock(&con->mutex);
  2012. dout("clear_standby %p and ++connect_seq\n", con);
  2013. con->connect_seq++;
  2014. WARN_ON(test_bit(WRITE_PENDING, &con->flags));
  2015. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
  2016. mutex_unlock(&con->mutex);
  2017. }
  2018. }
  2019. /*
  2020. * Queue up an outgoing message on the given connection.
  2021. */
  2022. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  2023. {
  2024. if (test_bit(CLOSED, &con->state)) {
  2025. dout("con_send %p closed, dropping %p\n", con, msg);
  2026. ceph_msg_put(msg);
  2027. return;
  2028. }
  2029. /* set src+dst */
  2030. msg->hdr.src = con->msgr->inst.name;
  2031. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  2032. msg->needs_out_seq = true;
  2033. /* queue */
  2034. mutex_lock(&con->mutex);
  2035. BUG_ON(!list_empty(&msg->list_head));
  2036. list_add_tail(&msg->list_head, &con->out_queue);
  2037. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  2038. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  2039. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2040. le32_to_cpu(msg->hdr.front_len),
  2041. le32_to_cpu(msg->hdr.middle_len),
  2042. le32_to_cpu(msg->hdr.data_len));
  2043. mutex_unlock(&con->mutex);
  2044. /* if there wasn't anything waiting to send before, queue
  2045. * new work */
  2046. clear_standby(con);
  2047. if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2048. queue_con(con);
  2049. }
  2050. EXPORT_SYMBOL(ceph_con_send);
  2051. /*
  2052. * Revoke a message that was previously queued for send
  2053. */
  2054. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2055. {
  2056. mutex_lock(&con->mutex);
  2057. if (!list_empty(&msg->list_head)) {
  2058. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2059. list_del_init(&msg->list_head);
  2060. ceph_msg_put(msg);
  2061. msg->hdr.seq = 0;
  2062. }
  2063. if (con->out_msg == msg) {
  2064. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2065. con->out_msg = NULL;
  2066. if (con->out_kvec_is_msg) {
  2067. con->out_skip = con->out_kvec_bytes;
  2068. con->out_kvec_is_msg = false;
  2069. }
  2070. ceph_msg_put(msg);
  2071. msg->hdr.seq = 0;
  2072. }
  2073. mutex_unlock(&con->mutex);
  2074. }
  2075. /*
  2076. * Revoke a message that we may be reading data into
  2077. */
  2078. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2079. {
  2080. mutex_lock(&con->mutex);
  2081. if (con->in_msg && con->in_msg == msg) {
  2082. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2083. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2084. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2085. /* skip rest of message */
  2086. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2087. con->in_base_pos = con->in_base_pos -
  2088. sizeof(struct ceph_msg_header) -
  2089. front_len -
  2090. middle_len -
  2091. data_len -
  2092. sizeof(struct ceph_msg_footer);
  2093. ceph_msg_put(con->in_msg);
  2094. con->in_msg = NULL;
  2095. con->in_tag = CEPH_MSGR_TAG_READY;
  2096. con->in_seq++;
  2097. } else {
  2098. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2099. con, con->in_msg, msg);
  2100. }
  2101. mutex_unlock(&con->mutex);
  2102. }
  2103. /*
  2104. * Queue a keepalive byte to ensure the tcp connection is alive.
  2105. */
  2106. void ceph_con_keepalive(struct ceph_connection *con)
  2107. {
  2108. dout("con_keepalive %p\n", con);
  2109. clear_standby(con);
  2110. if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
  2111. test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2112. queue_con(con);
  2113. }
  2114. EXPORT_SYMBOL(ceph_con_keepalive);
  2115. /*
  2116. * construct a new message with given type, size
  2117. * the new msg has a ref count of 1.
  2118. */
  2119. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2120. bool can_fail)
  2121. {
  2122. struct ceph_msg *m;
  2123. m = kmalloc(sizeof(*m), flags);
  2124. if (m == NULL)
  2125. goto out;
  2126. kref_init(&m->kref);
  2127. INIT_LIST_HEAD(&m->list_head);
  2128. m->hdr.tid = 0;
  2129. m->hdr.type = cpu_to_le16(type);
  2130. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2131. m->hdr.version = 0;
  2132. m->hdr.front_len = cpu_to_le32(front_len);
  2133. m->hdr.middle_len = 0;
  2134. m->hdr.data_len = 0;
  2135. m->hdr.data_off = 0;
  2136. m->hdr.reserved = 0;
  2137. m->footer.front_crc = 0;
  2138. m->footer.middle_crc = 0;
  2139. m->footer.data_crc = 0;
  2140. m->footer.flags = 0;
  2141. m->front_max = front_len;
  2142. m->front_is_vmalloc = false;
  2143. m->more_to_follow = false;
  2144. m->ack_stamp = 0;
  2145. m->pool = NULL;
  2146. /* middle */
  2147. m->middle = NULL;
  2148. /* data */
  2149. m->nr_pages = 0;
  2150. m->page_alignment = 0;
  2151. m->pages = NULL;
  2152. m->pagelist = NULL;
  2153. m->bio = NULL;
  2154. m->bio_iter = NULL;
  2155. m->bio_seg = 0;
  2156. m->trail = NULL;
  2157. /* front */
  2158. if (front_len) {
  2159. if (front_len > PAGE_CACHE_SIZE) {
  2160. m->front.iov_base = __vmalloc(front_len, flags,
  2161. PAGE_KERNEL);
  2162. m->front_is_vmalloc = true;
  2163. } else {
  2164. m->front.iov_base = kmalloc(front_len, flags);
  2165. }
  2166. if (m->front.iov_base == NULL) {
  2167. dout("ceph_msg_new can't allocate %d bytes\n",
  2168. front_len);
  2169. goto out2;
  2170. }
  2171. } else {
  2172. m->front.iov_base = NULL;
  2173. }
  2174. m->front.iov_len = front_len;
  2175. dout("ceph_msg_new %p front %d\n", m, front_len);
  2176. return m;
  2177. out2:
  2178. ceph_msg_put(m);
  2179. out:
  2180. if (!can_fail) {
  2181. pr_err("msg_new can't create type %d front %d\n", type,
  2182. front_len);
  2183. WARN_ON(1);
  2184. } else {
  2185. dout("msg_new can't create type %d front %d\n", type,
  2186. front_len);
  2187. }
  2188. return NULL;
  2189. }
  2190. EXPORT_SYMBOL(ceph_msg_new);
  2191. /*
  2192. * Allocate "middle" portion of a message, if it is needed and wasn't
  2193. * allocated by alloc_msg. This allows us to read a small fixed-size
  2194. * per-type header in the front and then gracefully fail (i.e.,
  2195. * propagate the error to the caller based on info in the front) when
  2196. * the middle is too large.
  2197. */
  2198. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2199. {
  2200. int type = le16_to_cpu(msg->hdr.type);
  2201. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2202. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2203. ceph_msg_type_name(type), middle_len);
  2204. BUG_ON(!middle_len);
  2205. BUG_ON(msg->middle);
  2206. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2207. if (!msg->middle)
  2208. return -ENOMEM;
  2209. return 0;
  2210. }
  2211. /*
  2212. * Generic message allocator, for incoming messages.
  2213. */
  2214. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2215. struct ceph_msg_header *hdr,
  2216. int *skip)
  2217. {
  2218. int type = le16_to_cpu(hdr->type);
  2219. int front_len = le32_to_cpu(hdr->front_len);
  2220. int middle_len = le32_to_cpu(hdr->middle_len);
  2221. struct ceph_msg *msg = NULL;
  2222. int ret;
  2223. if (con->ops->alloc_msg) {
  2224. mutex_unlock(&con->mutex);
  2225. msg = con->ops->alloc_msg(con, hdr, skip);
  2226. mutex_lock(&con->mutex);
  2227. if (!msg || *skip)
  2228. return NULL;
  2229. }
  2230. if (!msg) {
  2231. *skip = 0;
  2232. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2233. if (!msg) {
  2234. pr_err("unable to allocate msg type %d len %d\n",
  2235. type, front_len);
  2236. return NULL;
  2237. }
  2238. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2239. }
  2240. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2241. if (middle_len && !msg->middle) {
  2242. ret = ceph_alloc_middle(con, msg);
  2243. if (ret < 0) {
  2244. ceph_msg_put(msg);
  2245. return NULL;
  2246. }
  2247. }
  2248. return msg;
  2249. }
  2250. /*
  2251. * Free a generically kmalloc'd message.
  2252. */
  2253. void ceph_msg_kfree(struct ceph_msg *m)
  2254. {
  2255. dout("msg_kfree %p\n", m);
  2256. if (m->front_is_vmalloc)
  2257. vfree(m->front.iov_base);
  2258. else
  2259. kfree(m->front.iov_base);
  2260. kfree(m);
  2261. }
  2262. /*
  2263. * Drop a msg ref. Destroy as needed.
  2264. */
  2265. void ceph_msg_last_put(struct kref *kref)
  2266. {
  2267. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2268. dout("ceph_msg_put last one on %p\n", m);
  2269. WARN_ON(!list_empty(&m->list_head));
  2270. /* drop middle, data, if any */
  2271. if (m->middle) {
  2272. ceph_buffer_put(m->middle);
  2273. m->middle = NULL;
  2274. }
  2275. m->nr_pages = 0;
  2276. m->pages = NULL;
  2277. if (m->pagelist) {
  2278. ceph_pagelist_release(m->pagelist);
  2279. kfree(m->pagelist);
  2280. m->pagelist = NULL;
  2281. }
  2282. m->trail = NULL;
  2283. if (m->pool)
  2284. ceph_msgpool_put(m->pool, m);
  2285. else
  2286. ceph_msg_kfree(m);
  2287. }
  2288. EXPORT_SYMBOL(ceph_msg_last_put);
  2289. void ceph_msg_dump(struct ceph_msg *msg)
  2290. {
  2291. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2292. msg->front_max, msg->nr_pages);
  2293. print_hex_dump(KERN_DEBUG, "header: ",
  2294. DUMP_PREFIX_OFFSET, 16, 1,
  2295. &msg->hdr, sizeof(msg->hdr), true);
  2296. print_hex_dump(KERN_DEBUG, " front: ",
  2297. DUMP_PREFIX_OFFSET, 16, 1,
  2298. msg->front.iov_base, msg->front.iov_len, true);
  2299. if (msg->middle)
  2300. print_hex_dump(KERN_DEBUG, "middle: ",
  2301. DUMP_PREFIX_OFFSET, 16, 1,
  2302. msg->middle->vec.iov_base,
  2303. msg->middle->vec.iov_len, true);
  2304. print_hex_dump(KERN_DEBUG, "footer: ",
  2305. DUMP_PREFIX_OFFSET, 16, 1,
  2306. &msg->footer, sizeof(msg->footer), true);
  2307. }
  2308. EXPORT_SYMBOL(ceph_msg_dump);