xfs_inode.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_filestream.h"
  51. #include "xfs_vnodeops.h"
  52. #include "xfs_trace.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_irec_t irec;
  76. xfs_bmbt_rec_host_t rec;
  77. int i;
  78. for (i = 0; i < nrecs; i++) {
  79. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  80. rec.l0 = get_unaligned(&ep->l0);
  81. rec.l1 = get_unaligned(&ep->l1);
  82. xfs_bmbt_get_all(&rec, &irec);
  83. if (fmt == XFS_EXTFMT_NOSTATE)
  84. ASSERT(irec.br_state == XFS_EXT_NORM);
  85. }
  86. }
  87. #else /* DEBUG */
  88. #define xfs_validate_extents(ifp, nrecs, fmt)
  89. #endif /* DEBUG */
  90. /*
  91. * Check that none of the inode's in the buffer have a next
  92. * unlinked field of 0.
  93. */
  94. #if defined(DEBUG)
  95. void
  96. xfs_inobp_check(
  97. xfs_mount_t *mp,
  98. xfs_buf_t *bp)
  99. {
  100. int i;
  101. int j;
  102. xfs_dinode_t *dip;
  103. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  104. for (i = 0; i < j; i++) {
  105. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  106. i * mp->m_sb.sb_inodesize);
  107. if (!dip->di_next_unlinked) {
  108. xfs_fs_cmn_err(CE_ALERT, mp,
  109. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  110. bp);
  111. ASSERT(dip->di_next_unlinked);
  112. }
  113. }
  114. }
  115. #endif
  116. /*
  117. * Find the buffer associated with the given inode map
  118. * We do basic validation checks on the buffer once it has been
  119. * retrieved from disk.
  120. */
  121. STATIC int
  122. xfs_imap_to_bp(
  123. xfs_mount_t *mp,
  124. xfs_trans_t *tp,
  125. struct xfs_imap *imap,
  126. xfs_buf_t **bpp,
  127. uint buf_flags,
  128. uint iget_flags)
  129. {
  130. int error;
  131. int i;
  132. int ni;
  133. xfs_buf_t *bp;
  134. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  135. (int)imap->im_len, buf_flags, &bp);
  136. if (error) {
  137. if (error != EAGAIN) {
  138. cmn_err(CE_WARN,
  139. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  140. "an error %d on %s. Returning error.",
  141. error, mp->m_fsname);
  142. } else {
  143. ASSERT(buf_flags & XBF_TRYLOCK);
  144. }
  145. return error;
  146. }
  147. /*
  148. * Validate the magic number and version of every inode in the buffer
  149. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  150. */
  151. #ifdef DEBUG
  152. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  153. #else /* usual case */
  154. ni = 1;
  155. #endif
  156. for (i = 0; i < ni; i++) {
  157. int di_ok;
  158. xfs_dinode_t *dip;
  159. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  160. (i << mp->m_sb.sb_inodelog));
  161. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  162. XFS_DINODE_GOOD_VERSION(dip->di_version);
  163. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  164. XFS_ERRTAG_ITOBP_INOTOBP,
  165. XFS_RANDOM_ITOBP_INOTOBP))) {
  166. if (iget_flags & XFS_IGET_BULKSTAT) {
  167. xfs_trans_brelse(tp, bp);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  171. XFS_ERRLEVEL_HIGH, mp, dip);
  172. #ifdef DEBUG
  173. cmn_err(CE_PANIC,
  174. "Device %s - bad inode magic/vsn "
  175. "daddr %lld #%d (magic=%x)",
  176. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  177. (unsigned long long)imap->im_blkno, i,
  178. be16_to_cpu(dip->di_magic));
  179. #endif
  180. xfs_trans_brelse(tp, bp);
  181. return XFS_ERROR(EFSCORRUPTED);
  182. }
  183. }
  184. xfs_inobp_check(mp, bp);
  185. /*
  186. * Mark the buffer as an inode buffer now that it looks good
  187. */
  188. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  189. *bpp = bp;
  190. return 0;
  191. }
  192. /*
  193. * This routine is called to map an inode number within a file
  194. * system to the buffer containing the on-disk version of the
  195. * inode. It returns a pointer to the buffer containing the
  196. * on-disk inode in the bpp parameter, and in the dip parameter
  197. * it returns a pointer to the on-disk inode within that buffer.
  198. *
  199. * If a non-zero error is returned, then the contents of bpp and
  200. * dipp are undefined.
  201. *
  202. * Use xfs_imap() to determine the size and location of the
  203. * buffer to read from disk.
  204. */
  205. int
  206. xfs_inotobp(
  207. xfs_mount_t *mp,
  208. xfs_trans_t *tp,
  209. xfs_ino_t ino,
  210. xfs_dinode_t **dipp,
  211. xfs_buf_t **bpp,
  212. int *offset,
  213. uint imap_flags)
  214. {
  215. struct xfs_imap imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * The inode is expected to already been mapped to its buffer and read
  241. * in once, thus we can use the mapping information stored in the inode
  242. * rather than calling xfs_imap(). This allows us to avoid the overhead
  243. * of looking at the inode btree for small block file systems
  244. * (see xfs_imap()).
  245. */
  246. int
  247. xfs_itobp(
  248. xfs_mount_t *mp,
  249. xfs_trans_t *tp,
  250. xfs_inode_t *ip,
  251. xfs_dinode_t **dipp,
  252. xfs_buf_t **bpp,
  253. uint buf_flags)
  254. {
  255. xfs_buf_t *bp;
  256. int error;
  257. ASSERT(ip->i_imap.im_blkno != 0);
  258. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  259. if (error)
  260. return error;
  261. if (!bp) {
  262. ASSERT(buf_flags & XBF_TRYLOCK);
  263. ASSERT(tp == NULL);
  264. *bpp = NULL;
  265. return EAGAIN;
  266. }
  267. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  268. *bpp = bp;
  269. return 0;
  270. }
  271. /*
  272. * Move inode type and inode format specific information from the
  273. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  274. * this means set if_rdev to the proper value. For files, directories,
  275. * and symlinks this means to bring in the in-line data or extent
  276. * pointers. For a file in B-tree format, only the root is immediately
  277. * brought in-core. The rest will be in-lined in if_extents when it
  278. * is first referenced (see xfs_iread_extents()).
  279. */
  280. STATIC int
  281. xfs_iformat(
  282. xfs_inode_t *ip,
  283. xfs_dinode_t *dip)
  284. {
  285. xfs_attr_shortform_t *atp;
  286. int size;
  287. int error;
  288. xfs_fsize_t di_size;
  289. ip->i_df.if_ext_max =
  290. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  291. error = 0;
  292. if (unlikely(be32_to_cpu(dip->di_nextents) +
  293. be16_to_cpu(dip->di_anextents) >
  294. be64_to_cpu(dip->di_nblocks))) {
  295. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  296. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  297. (unsigned long long)ip->i_ino,
  298. (int)(be32_to_cpu(dip->di_nextents) +
  299. be16_to_cpu(dip->di_anextents)),
  300. (unsigned long long)
  301. be64_to_cpu(dip->di_nblocks));
  302. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  303. ip->i_mount, dip);
  304. return XFS_ERROR(EFSCORRUPTED);
  305. }
  306. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  307. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  308. "corrupt dinode %Lu, forkoff = 0x%x.",
  309. (unsigned long long)ip->i_ino,
  310. dip->di_forkoff);
  311. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  312. ip->i_mount, dip);
  313. return XFS_ERROR(EFSCORRUPTED);
  314. }
  315. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  316. !ip->i_mount->m_rtdev_targp)) {
  317. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  318. "corrupt dinode %Lu, has realtime flag set.",
  319. ip->i_ino);
  320. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  321. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  322. return XFS_ERROR(EFSCORRUPTED);
  323. }
  324. switch (ip->i_d.di_mode & S_IFMT) {
  325. case S_IFIFO:
  326. case S_IFCHR:
  327. case S_IFBLK:
  328. case S_IFSOCK:
  329. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  330. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  331. ip->i_mount, dip);
  332. return XFS_ERROR(EFSCORRUPTED);
  333. }
  334. ip->i_d.di_size = 0;
  335. ip->i_size = 0;
  336. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  337. break;
  338. case S_IFREG:
  339. case S_IFLNK:
  340. case S_IFDIR:
  341. switch (dip->di_format) {
  342. case XFS_DINODE_FMT_LOCAL:
  343. /*
  344. * no local regular files yet
  345. */
  346. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  347. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  348. "corrupt inode %Lu "
  349. "(local format for regular file).",
  350. (unsigned long long) ip->i_ino);
  351. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  352. XFS_ERRLEVEL_LOW,
  353. ip->i_mount, dip);
  354. return XFS_ERROR(EFSCORRUPTED);
  355. }
  356. di_size = be64_to_cpu(dip->di_size);
  357. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  358. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  359. "corrupt inode %Lu "
  360. "(bad size %Ld for local inode).",
  361. (unsigned long long) ip->i_ino,
  362. (long long) di_size);
  363. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  364. XFS_ERRLEVEL_LOW,
  365. ip->i_mount, dip);
  366. return XFS_ERROR(EFSCORRUPTED);
  367. }
  368. size = (int)di_size;
  369. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  370. break;
  371. case XFS_DINODE_FMT_EXTENTS:
  372. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  373. break;
  374. case XFS_DINODE_FMT_BTREE:
  375. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  376. break;
  377. default:
  378. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  379. ip->i_mount);
  380. return XFS_ERROR(EFSCORRUPTED);
  381. }
  382. break;
  383. default:
  384. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  385. return XFS_ERROR(EFSCORRUPTED);
  386. }
  387. if (error) {
  388. return error;
  389. }
  390. if (!XFS_DFORK_Q(dip))
  391. return 0;
  392. ASSERT(ip->i_afp == NULL);
  393. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  394. ip->i_afp->if_ext_max =
  395. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  396. switch (dip->di_aformat) {
  397. case XFS_DINODE_FMT_LOCAL:
  398. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  399. size = be16_to_cpu(atp->hdr.totsize);
  400. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  401. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  402. "corrupt inode %Lu "
  403. "(bad attr fork size %Ld).",
  404. (unsigned long long) ip->i_ino,
  405. (long long) size);
  406. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  407. XFS_ERRLEVEL_LOW,
  408. ip->i_mount, dip);
  409. return XFS_ERROR(EFSCORRUPTED);
  410. }
  411. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  412. break;
  413. case XFS_DINODE_FMT_EXTENTS:
  414. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  415. break;
  416. case XFS_DINODE_FMT_BTREE:
  417. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  418. break;
  419. default:
  420. error = XFS_ERROR(EFSCORRUPTED);
  421. break;
  422. }
  423. if (error) {
  424. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  425. ip->i_afp = NULL;
  426. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  427. }
  428. return error;
  429. }
  430. /*
  431. * The file is in-lined in the on-disk inode.
  432. * If it fits into if_inline_data, then copy
  433. * it there, otherwise allocate a buffer for it
  434. * and copy the data there. Either way, set
  435. * if_data to point at the data.
  436. * If we allocate a buffer for the data, make
  437. * sure that its size is a multiple of 4 and
  438. * record the real size in i_real_bytes.
  439. */
  440. STATIC int
  441. xfs_iformat_local(
  442. xfs_inode_t *ip,
  443. xfs_dinode_t *dip,
  444. int whichfork,
  445. int size)
  446. {
  447. xfs_ifork_t *ifp;
  448. int real_size;
  449. /*
  450. * If the size is unreasonable, then something
  451. * is wrong and we just bail out rather than crash in
  452. * kmem_alloc() or memcpy() below.
  453. */
  454. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  455. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  456. "corrupt inode %Lu "
  457. "(bad size %d for local fork, size = %d).",
  458. (unsigned long long) ip->i_ino, size,
  459. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  460. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  461. ip->i_mount, dip);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. ifp = XFS_IFORK_PTR(ip, whichfork);
  465. real_size = 0;
  466. if (size == 0)
  467. ifp->if_u1.if_data = NULL;
  468. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  469. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  470. else {
  471. real_size = roundup(size, 4);
  472. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  473. }
  474. ifp->if_bytes = size;
  475. ifp->if_real_bytes = real_size;
  476. if (size)
  477. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  478. ifp->if_flags &= ~XFS_IFEXTENTS;
  479. ifp->if_flags |= XFS_IFINLINE;
  480. return 0;
  481. }
  482. /*
  483. * The file consists of a set of extents all
  484. * of which fit into the on-disk inode.
  485. * If there are few enough extents to fit into
  486. * the if_inline_ext, then copy them there.
  487. * Otherwise allocate a buffer for them and copy
  488. * them into it. Either way, set if_extents
  489. * to point at the extents.
  490. */
  491. STATIC int
  492. xfs_iformat_extents(
  493. xfs_inode_t *ip,
  494. xfs_dinode_t *dip,
  495. int whichfork)
  496. {
  497. xfs_bmbt_rec_t *dp;
  498. xfs_ifork_t *ifp;
  499. int nex;
  500. int size;
  501. int i;
  502. ifp = XFS_IFORK_PTR(ip, whichfork);
  503. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  504. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  505. /*
  506. * If the number of extents is unreasonable, then something
  507. * is wrong and we just bail out rather than crash in
  508. * kmem_alloc() or memcpy() below.
  509. */
  510. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  511. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  512. "corrupt inode %Lu ((a)extents = %d).",
  513. (unsigned long long) ip->i_ino, nex);
  514. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  515. ip->i_mount, dip);
  516. return XFS_ERROR(EFSCORRUPTED);
  517. }
  518. ifp->if_real_bytes = 0;
  519. if (nex == 0)
  520. ifp->if_u1.if_extents = NULL;
  521. else if (nex <= XFS_INLINE_EXTS)
  522. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  523. else
  524. xfs_iext_add(ifp, 0, nex);
  525. ifp->if_bytes = size;
  526. if (size) {
  527. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  528. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  529. for (i = 0; i < nex; i++, dp++) {
  530. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  531. ep->l0 = get_unaligned_be64(&dp->l0);
  532. ep->l1 = get_unaligned_be64(&dp->l1);
  533. }
  534. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  535. if (whichfork != XFS_DATA_FORK ||
  536. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  537. if (unlikely(xfs_check_nostate_extents(
  538. ifp, 0, nex))) {
  539. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  540. XFS_ERRLEVEL_LOW,
  541. ip->i_mount);
  542. return XFS_ERROR(EFSCORRUPTED);
  543. }
  544. }
  545. ifp->if_flags |= XFS_IFEXTENTS;
  546. return 0;
  547. }
  548. /*
  549. * The file has too many extents to fit into
  550. * the inode, so they are in B-tree format.
  551. * Allocate a buffer for the root of the B-tree
  552. * and copy the root into it. The i_extents
  553. * field will remain NULL until all of the
  554. * extents are read in (when they are needed).
  555. */
  556. STATIC int
  557. xfs_iformat_btree(
  558. xfs_inode_t *ip,
  559. xfs_dinode_t *dip,
  560. int whichfork)
  561. {
  562. xfs_bmdr_block_t *dfp;
  563. xfs_ifork_t *ifp;
  564. /* REFERENCED */
  565. int nrecs;
  566. int size;
  567. ifp = XFS_IFORK_PTR(ip, whichfork);
  568. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  569. size = XFS_BMAP_BROOT_SPACE(dfp);
  570. nrecs = be16_to_cpu(dfp->bb_numrecs);
  571. /*
  572. * blow out if -- fork has less extents than can fit in
  573. * fork (fork shouldn't be a btree format), root btree
  574. * block has more records than can fit into the fork,
  575. * or the number of extents is greater than the number of
  576. * blocks.
  577. */
  578. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  579. || XFS_BMDR_SPACE_CALC(nrecs) >
  580. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  581. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  582. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  583. "corrupt inode %Lu (btree).",
  584. (unsigned long long) ip->i_ino);
  585. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  586. ip->i_mount);
  587. return XFS_ERROR(EFSCORRUPTED);
  588. }
  589. ifp->if_broot_bytes = size;
  590. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  591. ASSERT(ifp->if_broot != NULL);
  592. /*
  593. * Copy and convert from the on-disk structure
  594. * to the in-memory structure.
  595. */
  596. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  597. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  598. ifp->if_broot, size);
  599. ifp->if_flags &= ~XFS_IFEXTENTS;
  600. ifp->if_flags |= XFS_IFBROOT;
  601. return 0;
  602. }
  603. STATIC void
  604. xfs_dinode_from_disk(
  605. xfs_icdinode_t *to,
  606. xfs_dinode_t *from)
  607. {
  608. to->di_magic = be16_to_cpu(from->di_magic);
  609. to->di_mode = be16_to_cpu(from->di_mode);
  610. to->di_version = from ->di_version;
  611. to->di_format = from->di_format;
  612. to->di_onlink = be16_to_cpu(from->di_onlink);
  613. to->di_uid = be32_to_cpu(from->di_uid);
  614. to->di_gid = be32_to_cpu(from->di_gid);
  615. to->di_nlink = be32_to_cpu(from->di_nlink);
  616. to->di_projid = be16_to_cpu(from->di_projid);
  617. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  618. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  619. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  620. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  621. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  622. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  623. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  624. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  625. to->di_size = be64_to_cpu(from->di_size);
  626. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  627. to->di_extsize = be32_to_cpu(from->di_extsize);
  628. to->di_nextents = be32_to_cpu(from->di_nextents);
  629. to->di_anextents = be16_to_cpu(from->di_anextents);
  630. to->di_forkoff = from->di_forkoff;
  631. to->di_aformat = from->di_aformat;
  632. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  633. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  634. to->di_flags = be16_to_cpu(from->di_flags);
  635. to->di_gen = be32_to_cpu(from->di_gen);
  636. }
  637. void
  638. xfs_dinode_to_disk(
  639. xfs_dinode_t *to,
  640. xfs_icdinode_t *from)
  641. {
  642. to->di_magic = cpu_to_be16(from->di_magic);
  643. to->di_mode = cpu_to_be16(from->di_mode);
  644. to->di_version = from ->di_version;
  645. to->di_format = from->di_format;
  646. to->di_onlink = cpu_to_be16(from->di_onlink);
  647. to->di_uid = cpu_to_be32(from->di_uid);
  648. to->di_gid = cpu_to_be32(from->di_gid);
  649. to->di_nlink = cpu_to_be32(from->di_nlink);
  650. to->di_projid = cpu_to_be16(from->di_projid);
  651. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  652. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  653. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  654. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  655. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  656. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  657. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  658. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  659. to->di_size = cpu_to_be64(from->di_size);
  660. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  661. to->di_extsize = cpu_to_be32(from->di_extsize);
  662. to->di_nextents = cpu_to_be32(from->di_nextents);
  663. to->di_anextents = cpu_to_be16(from->di_anextents);
  664. to->di_forkoff = from->di_forkoff;
  665. to->di_aformat = from->di_aformat;
  666. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  667. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  668. to->di_flags = cpu_to_be16(from->di_flags);
  669. to->di_gen = cpu_to_be32(from->di_gen);
  670. }
  671. STATIC uint
  672. _xfs_dic2xflags(
  673. __uint16_t di_flags)
  674. {
  675. uint flags = 0;
  676. if (di_flags & XFS_DIFLAG_ANY) {
  677. if (di_flags & XFS_DIFLAG_REALTIME)
  678. flags |= XFS_XFLAG_REALTIME;
  679. if (di_flags & XFS_DIFLAG_PREALLOC)
  680. flags |= XFS_XFLAG_PREALLOC;
  681. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  682. flags |= XFS_XFLAG_IMMUTABLE;
  683. if (di_flags & XFS_DIFLAG_APPEND)
  684. flags |= XFS_XFLAG_APPEND;
  685. if (di_flags & XFS_DIFLAG_SYNC)
  686. flags |= XFS_XFLAG_SYNC;
  687. if (di_flags & XFS_DIFLAG_NOATIME)
  688. flags |= XFS_XFLAG_NOATIME;
  689. if (di_flags & XFS_DIFLAG_NODUMP)
  690. flags |= XFS_XFLAG_NODUMP;
  691. if (di_flags & XFS_DIFLAG_RTINHERIT)
  692. flags |= XFS_XFLAG_RTINHERIT;
  693. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  694. flags |= XFS_XFLAG_PROJINHERIT;
  695. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  696. flags |= XFS_XFLAG_NOSYMLINKS;
  697. if (di_flags & XFS_DIFLAG_EXTSIZE)
  698. flags |= XFS_XFLAG_EXTSIZE;
  699. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  700. flags |= XFS_XFLAG_EXTSZINHERIT;
  701. if (di_flags & XFS_DIFLAG_NODEFRAG)
  702. flags |= XFS_XFLAG_NODEFRAG;
  703. if (di_flags & XFS_DIFLAG_FILESTREAM)
  704. flags |= XFS_XFLAG_FILESTREAM;
  705. }
  706. return flags;
  707. }
  708. uint
  709. xfs_ip2xflags(
  710. xfs_inode_t *ip)
  711. {
  712. xfs_icdinode_t *dic = &ip->i_d;
  713. return _xfs_dic2xflags(dic->di_flags) |
  714. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  715. }
  716. uint
  717. xfs_dic2xflags(
  718. xfs_dinode_t *dip)
  719. {
  720. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  721. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  722. }
  723. /*
  724. * Read the disk inode attributes into the in-core inode structure.
  725. */
  726. int
  727. xfs_iread(
  728. xfs_mount_t *mp,
  729. xfs_trans_t *tp,
  730. xfs_inode_t *ip,
  731. xfs_daddr_t bno,
  732. uint iget_flags)
  733. {
  734. xfs_buf_t *bp;
  735. xfs_dinode_t *dip;
  736. int error;
  737. /*
  738. * Fill in the location information in the in-core inode.
  739. */
  740. ip->i_imap.im_blkno = bno;
  741. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  742. if (error)
  743. return error;
  744. ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
  745. /*
  746. * Get pointers to the on-disk inode and the buffer containing it.
  747. */
  748. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  749. XBF_LOCK, iget_flags);
  750. if (error)
  751. return error;
  752. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  753. /*
  754. * If we got something that isn't an inode it means someone
  755. * (nfs or dmi) has a stale handle.
  756. */
  757. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  758. #ifdef DEBUG
  759. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  760. "dip->di_magic (0x%x) != "
  761. "XFS_DINODE_MAGIC (0x%x)",
  762. be16_to_cpu(dip->di_magic),
  763. XFS_DINODE_MAGIC);
  764. #endif /* DEBUG */
  765. error = XFS_ERROR(EINVAL);
  766. goto out_brelse;
  767. }
  768. /*
  769. * If the on-disk inode is already linked to a directory
  770. * entry, copy all of the inode into the in-core inode.
  771. * xfs_iformat() handles copying in the inode format
  772. * specific information.
  773. * Otherwise, just get the truly permanent information.
  774. */
  775. if (dip->di_mode) {
  776. xfs_dinode_from_disk(&ip->i_d, dip);
  777. error = xfs_iformat(ip, dip);
  778. if (error) {
  779. #ifdef DEBUG
  780. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  781. "xfs_iformat() returned error %d",
  782. error);
  783. #endif /* DEBUG */
  784. goto out_brelse;
  785. }
  786. } else {
  787. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  788. ip->i_d.di_version = dip->di_version;
  789. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  790. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  791. /*
  792. * Make sure to pull in the mode here as well in
  793. * case the inode is released without being used.
  794. * This ensures that xfs_inactive() will see that
  795. * the inode is already free and not try to mess
  796. * with the uninitialized part of it.
  797. */
  798. ip->i_d.di_mode = 0;
  799. /*
  800. * Initialize the per-fork minima and maxima for a new
  801. * inode here. xfs_iformat will do it for old inodes.
  802. */
  803. ip->i_df.if_ext_max =
  804. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  805. }
  806. /*
  807. * The inode format changed when we moved the link count and
  808. * made it 32 bits long. If this is an old format inode,
  809. * convert it in memory to look like a new one. If it gets
  810. * flushed to disk we will convert back before flushing or
  811. * logging it. We zero out the new projid field and the old link
  812. * count field. We'll handle clearing the pad field (the remains
  813. * of the old uuid field) when we actually convert the inode to
  814. * the new format. We don't change the version number so that we
  815. * can distinguish this from a real new format inode.
  816. */
  817. if (ip->i_d.di_version == 1) {
  818. ip->i_d.di_nlink = ip->i_d.di_onlink;
  819. ip->i_d.di_onlink = 0;
  820. ip->i_d.di_projid = 0;
  821. }
  822. ip->i_delayed_blks = 0;
  823. ip->i_size = ip->i_d.di_size;
  824. /*
  825. * Mark the buffer containing the inode as something to keep
  826. * around for a while. This helps to keep recently accessed
  827. * meta-data in-core longer.
  828. */
  829. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  830. /*
  831. * Use xfs_trans_brelse() to release the buffer containing the
  832. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  833. * in xfs_itobp() above. If tp is NULL, this is just a normal
  834. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  835. * will only release the buffer if it is not dirty within the
  836. * transaction. It will be OK to release the buffer in this case,
  837. * because inodes on disk are never destroyed and we will be
  838. * locking the new in-core inode before putting it in the hash
  839. * table where other processes can find it. Thus we don't have
  840. * to worry about the inode being changed just because we released
  841. * the buffer.
  842. */
  843. out_brelse:
  844. xfs_trans_brelse(tp, bp);
  845. return error;
  846. }
  847. /*
  848. * Read in extents from a btree-format inode.
  849. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  850. */
  851. int
  852. xfs_iread_extents(
  853. xfs_trans_t *tp,
  854. xfs_inode_t *ip,
  855. int whichfork)
  856. {
  857. int error;
  858. xfs_ifork_t *ifp;
  859. xfs_extnum_t nextents;
  860. size_t size;
  861. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  862. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  863. ip->i_mount);
  864. return XFS_ERROR(EFSCORRUPTED);
  865. }
  866. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  867. size = nextents * sizeof(xfs_bmbt_rec_t);
  868. ifp = XFS_IFORK_PTR(ip, whichfork);
  869. /*
  870. * We know that the size is valid (it's checked in iformat_btree)
  871. */
  872. ifp->if_lastex = NULLEXTNUM;
  873. ifp->if_bytes = ifp->if_real_bytes = 0;
  874. ifp->if_flags |= XFS_IFEXTENTS;
  875. xfs_iext_add(ifp, 0, nextents);
  876. error = xfs_bmap_read_extents(tp, ip, whichfork);
  877. if (error) {
  878. xfs_iext_destroy(ifp);
  879. ifp->if_flags &= ~XFS_IFEXTENTS;
  880. return error;
  881. }
  882. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  883. return 0;
  884. }
  885. /*
  886. * Allocate an inode on disk and return a copy of its in-core version.
  887. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  888. * appropriately within the inode. The uid and gid for the inode are
  889. * set according to the contents of the given cred structure.
  890. *
  891. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  892. * has a free inode available, call xfs_iget()
  893. * to obtain the in-core version of the allocated inode. Finally,
  894. * fill in the inode and log its initial contents. In this case,
  895. * ialloc_context would be set to NULL and call_again set to false.
  896. *
  897. * If xfs_dialloc() does not have an available inode,
  898. * it will replenish its supply by doing an allocation. Since we can
  899. * only do one allocation within a transaction without deadlocks, we
  900. * must commit the current transaction before returning the inode itself.
  901. * In this case, therefore, we will set call_again to true and return.
  902. * The caller should then commit the current transaction, start a new
  903. * transaction, and call xfs_ialloc() again to actually get the inode.
  904. *
  905. * To ensure that some other process does not grab the inode that
  906. * was allocated during the first call to xfs_ialloc(), this routine
  907. * also returns the [locked] bp pointing to the head of the freelist
  908. * as ialloc_context. The caller should hold this buffer across
  909. * the commit and pass it back into this routine on the second call.
  910. *
  911. * If we are allocating quota inodes, we do not have a parent inode
  912. * to attach to or associate with (i.e. pip == NULL) because they
  913. * are not linked into the directory structure - they are attached
  914. * directly to the superblock - and so have no parent.
  915. */
  916. int
  917. xfs_ialloc(
  918. xfs_trans_t *tp,
  919. xfs_inode_t *pip,
  920. mode_t mode,
  921. xfs_nlink_t nlink,
  922. xfs_dev_t rdev,
  923. cred_t *cr,
  924. xfs_prid_t prid,
  925. int okalloc,
  926. xfs_buf_t **ialloc_context,
  927. boolean_t *call_again,
  928. xfs_inode_t **ipp)
  929. {
  930. xfs_ino_t ino;
  931. xfs_inode_t *ip;
  932. uint flags;
  933. int error;
  934. timespec_t tv;
  935. int filestreams = 0;
  936. /*
  937. * Call the space management code to pick
  938. * the on-disk inode to be allocated.
  939. */
  940. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  941. ialloc_context, call_again, &ino);
  942. if (error)
  943. return error;
  944. if (*call_again || ino == NULLFSINO) {
  945. *ipp = NULL;
  946. return 0;
  947. }
  948. ASSERT(*ialloc_context == NULL);
  949. /*
  950. * Get the in-core inode with the lock held exclusively.
  951. * This is because we're setting fields here we need
  952. * to prevent others from looking at until we're done.
  953. */
  954. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  955. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  956. if (error)
  957. return error;
  958. ASSERT(ip != NULL);
  959. ip->i_d.di_mode = (__uint16_t)mode;
  960. ip->i_d.di_onlink = 0;
  961. ip->i_d.di_nlink = nlink;
  962. ASSERT(ip->i_d.di_nlink == nlink);
  963. ip->i_d.di_uid = current_fsuid();
  964. ip->i_d.di_gid = current_fsgid();
  965. ip->i_d.di_projid = prid;
  966. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  967. /*
  968. * If the superblock version is up to where we support new format
  969. * inodes and this is currently an old format inode, then change
  970. * the inode version number now. This way we only do the conversion
  971. * here rather than here and in the flush/logging code.
  972. */
  973. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  974. ip->i_d.di_version == 1) {
  975. ip->i_d.di_version = 2;
  976. /*
  977. * We've already zeroed the old link count, the projid field,
  978. * and the pad field.
  979. */
  980. }
  981. /*
  982. * Project ids won't be stored on disk if we are using a version 1 inode.
  983. */
  984. if ((prid != 0) && (ip->i_d.di_version == 1))
  985. xfs_bump_ino_vers2(tp, ip);
  986. if (pip && XFS_INHERIT_GID(pip)) {
  987. ip->i_d.di_gid = pip->i_d.di_gid;
  988. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  989. ip->i_d.di_mode |= S_ISGID;
  990. }
  991. }
  992. /*
  993. * If the group ID of the new file does not match the effective group
  994. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  995. * (and only if the irix_sgid_inherit compatibility variable is set).
  996. */
  997. if ((irix_sgid_inherit) &&
  998. (ip->i_d.di_mode & S_ISGID) &&
  999. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1000. ip->i_d.di_mode &= ~S_ISGID;
  1001. }
  1002. ip->i_d.di_size = 0;
  1003. ip->i_size = 0;
  1004. ip->i_d.di_nextents = 0;
  1005. ASSERT(ip->i_d.di_nblocks == 0);
  1006. nanotime(&tv);
  1007. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1008. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1009. ip->i_d.di_atime = ip->i_d.di_mtime;
  1010. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1011. /*
  1012. * di_gen will have been taken care of in xfs_iread.
  1013. */
  1014. ip->i_d.di_extsize = 0;
  1015. ip->i_d.di_dmevmask = 0;
  1016. ip->i_d.di_dmstate = 0;
  1017. ip->i_d.di_flags = 0;
  1018. flags = XFS_ILOG_CORE;
  1019. switch (mode & S_IFMT) {
  1020. case S_IFIFO:
  1021. case S_IFCHR:
  1022. case S_IFBLK:
  1023. case S_IFSOCK:
  1024. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1025. ip->i_df.if_u2.if_rdev = rdev;
  1026. ip->i_df.if_flags = 0;
  1027. flags |= XFS_ILOG_DEV;
  1028. break;
  1029. case S_IFREG:
  1030. /*
  1031. * we can't set up filestreams until after the VFS inode
  1032. * is set up properly.
  1033. */
  1034. if (pip && xfs_inode_is_filestream(pip))
  1035. filestreams = 1;
  1036. /* fall through */
  1037. case S_IFDIR:
  1038. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1039. uint di_flags = 0;
  1040. if ((mode & S_IFMT) == S_IFDIR) {
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1042. di_flags |= XFS_DIFLAG_RTINHERIT;
  1043. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1044. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1045. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1046. }
  1047. } else if ((mode & S_IFMT) == S_IFREG) {
  1048. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1049. di_flags |= XFS_DIFLAG_REALTIME;
  1050. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1051. di_flags |= XFS_DIFLAG_EXTSIZE;
  1052. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1053. }
  1054. }
  1055. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1056. xfs_inherit_noatime)
  1057. di_flags |= XFS_DIFLAG_NOATIME;
  1058. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1059. xfs_inherit_nodump)
  1060. di_flags |= XFS_DIFLAG_NODUMP;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1062. xfs_inherit_sync)
  1063. di_flags |= XFS_DIFLAG_SYNC;
  1064. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1065. xfs_inherit_nosymlinks)
  1066. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1067. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1068. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1069. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1070. xfs_inherit_nodefrag)
  1071. di_flags |= XFS_DIFLAG_NODEFRAG;
  1072. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1073. di_flags |= XFS_DIFLAG_FILESTREAM;
  1074. ip->i_d.di_flags |= di_flags;
  1075. }
  1076. /* FALLTHROUGH */
  1077. case S_IFLNK:
  1078. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1079. ip->i_df.if_flags = XFS_IFEXTENTS;
  1080. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1081. ip->i_df.if_u1.if_extents = NULL;
  1082. break;
  1083. default:
  1084. ASSERT(0);
  1085. }
  1086. /*
  1087. * Attribute fork settings for new inode.
  1088. */
  1089. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1090. ip->i_d.di_anextents = 0;
  1091. /*
  1092. * Log the new values stuffed into the inode.
  1093. */
  1094. xfs_trans_log_inode(tp, ip, flags);
  1095. /* now that we have an i_mode we can setup inode ops and unlock */
  1096. xfs_setup_inode(ip);
  1097. /* now we have set up the vfs inode we can associate the filestream */
  1098. if (filestreams) {
  1099. error = xfs_filestream_associate(pip, ip);
  1100. if (error < 0)
  1101. return -error;
  1102. if (!error)
  1103. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1104. }
  1105. *ipp = ip;
  1106. return 0;
  1107. }
  1108. /*
  1109. * Check to make sure that there are no blocks allocated to the
  1110. * file beyond the size of the file. We don't check this for
  1111. * files with fixed size extents or real time extents, but we
  1112. * at least do it for regular files.
  1113. */
  1114. #ifdef DEBUG
  1115. void
  1116. xfs_isize_check(
  1117. xfs_mount_t *mp,
  1118. xfs_inode_t *ip,
  1119. xfs_fsize_t isize)
  1120. {
  1121. xfs_fileoff_t map_first;
  1122. int nimaps;
  1123. xfs_bmbt_irec_t imaps[2];
  1124. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1125. return;
  1126. if (XFS_IS_REALTIME_INODE(ip))
  1127. return;
  1128. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1129. return;
  1130. nimaps = 2;
  1131. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1132. /*
  1133. * The filesystem could be shutting down, so bmapi may return
  1134. * an error.
  1135. */
  1136. if (xfs_bmapi(NULL, ip, map_first,
  1137. (XFS_B_TO_FSB(mp,
  1138. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1139. map_first),
  1140. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1141. NULL, NULL))
  1142. return;
  1143. ASSERT(nimaps == 1);
  1144. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1145. }
  1146. #endif /* DEBUG */
  1147. /*
  1148. * Calculate the last possible buffered byte in a file. This must
  1149. * include data that was buffered beyond the EOF by the write code.
  1150. * This also needs to deal with overflowing the xfs_fsize_t type
  1151. * which can happen for sizes near the limit.
  1152. *
  1153. * We also need to take into account any blocks beyond the EOF. It
  1154. * may be the case that they were buffered by a write which failed.
  1155. * In that case the pages will still be in memory, but the inode size
  1156. * will never have been updated.
  1157. */
  1158. STATIC xfs_fsize_t
  1159. xfs_file_last_byte(
  1160. xfs_inode_t *ip)
  1161. {
  1162. xfs_mount_t *mp;
  1163. xfs_fsize_t last_byte;
  1164. xfs_fileoff_t last_block;
  1165. xfs_fileoff_t size_last_block;
  1166. int error;
  1167. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1168. mp = ip->i_mount;
  1169. /*
  1170. * Only check for blocks beyond the EOF if the extents have
  1171. * been read in. This eliminates the need for the inode lock,
  1172. * and it also saves us from looking when it really isn't
  1173. * necessary.
  1174. */
  1175. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1176. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1177. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1178. XFS_DATA_FORK);
  1179. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1180. if (error) {
  1181. last_block = 0;
  1182. }
  1183. } else {
  1184. last_block = 0;
  1185. }
  1186. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1187. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1188. last_byte = XFS_FSB_TO_B(mp, last_block);
  1189. if (last_byte < 0) {
  1190. return XFS_MAXIOFFSET(mp);
  1191. }
  1192. last_byte += (1 << mp->m_writeio_log);
  1193. if (last_byte < 0) {
  1194. return XFS_MAXIOFFSET(mp);
  1195. }
  1196. return last_byte;
  1197. }
  1198. /*
  1199. * Start the truncation of the file to new_size. The new size
  1200. * must be smaller than the current size. This routine will
  1201. * clear the buffer and page caches of file data in the removed
  1202. * range, and xfs_itruncate_finish() will remove the underlying
  1203. * disk blocks.
  1204. *
  1205. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1206. * must NOT have the inode lock held at all. This is because we're
  1207. * calling into the buffer/page cache code and we can't hold the
  1208. * inode lock when we do so.
  1209. *
  1210. * We need to wait for any direct I/Os in flight to complete before we
  1211. * proceed with the truncate. This is needed to prevent the extents
  1212. * being read or written by the direct I/Os from being removed while the
  1213. * I/O is in flight as there is no other method of synchronising
  1214. * direct I/O with the truncate operation. Also, because we hold
  1215. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1216. * started until the truncate completes and drops the lock. Essentially,
  1217. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1218. * ordering between direct I/Os and the truncate operation.
  1219. *
  1220. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1221. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1222. * in the case that the caller is locking things out of order and
  1223. * may not be able to call xfs_itruncate_finish() with the inode lock
  1224. * held without dropping the I/O lock. If the caller must drop the
  1225. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1226. * must be called again with all the same restrictions as the initial
  1227. * call.
  1228. */
  1229. int
  1230. xfs_itruncate_start(
  1231. xfs_inode_t *ip,
  1232. uint flags,
  1233. xfs_fsize_t new_size)
  1234. {
  1235. xfs_fsize_t last_byte;
  1236. xfs_off_t toss_start;
  1237. xfs_mount_t *mp;
  1238. int error = 0;
  1239. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1240. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1241. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1242. (flags == XFS_ITRUNC_MAYBE));
  1243. mp = ip->i_mount;
  1244. /* wait for the completion of any pending DIOs */
  1245. if (new_size == 0 || new_size < ip->i_size)
  1246. xfs_ioend_wait(ip);
  1247. /*
  1248. * Call toss_pages or flushinval_pages to get rid of pages
  1249. * overlapping the region being removed. We have to use
  1250. * the less efficient flushinval_pages in the case that the
  1251. * caller may not be able to finish the truncate without
  1252. * dropping the inode's I/O lock. Make sure
  1253. * to catch any pages brought in by buffers overlapping
  1254. * the EOF by searching out beyond the isize by our
  1255. * block size. We round new_size up to a block boundary
  1256. * so that we don't toss things on the same block as
  1257. * new_size but before it.
  1258. *
  1259. * Before calling toss_page or flushinval_pages, make sure to
  1260. * call remapf() over the same region if the file is mapped.
  1261. * This frees up mapped file references to the pages in the
  1262. * given range and for the flushinval_pages case it ensures
  1263. * that we get the latest mapped changes flushed out.
  1264. */
  1265. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1266. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1267. if (toss_start < 0) {
  1268. /*
  1269. * The place to start tossing is beyond our maximum
  1270. * file size, so there is no way that the data extended
  1271. * out there.
  1272. */
  1273. return 0;
  1274. }
  1275. last_byte = xfs_file_last_byte(ip);
  1276. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1277. if (last_byte > toss_start) {
  1278. if (flags & XFS_ITRUNC_DEFINITE) {
  1279. xfs_tosspages(ip, toss_start,
  1280. -1, FI_REMAPF_LOCKED);
  1281. } else {
  1282. error = xfs_flushinval_pages(ip, toss_start,
  1283. -1, FI_REMAPF_LOCKED);
  1284. }
  1285. }
  1286. #ifdef DEBUG
  1287. if (new_size == 0) {
  1288. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1289. }
  1290. #endif
  1291. return error;
  1292. }
  1293. /*
  1294. * Shrink the file to the given new_size. The new size must be smaller than
  1295. * the current size. This will free up the underlying blocks in the removed
  1296. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1297. *
  1298. * The transaction passed to this routine must have made a permanent log
  1299. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1300. * given transaction and start new ones, so make sure everything involved in
  1301. * the transaction is tidy before calling here. Some transaction will be
  1302. * returned to the caller to be committed. The incoming transaction must
  1303. * already include the inode, and both inode locks must be held exclusively.
  1304. * The inode must also be "held" within the transaction. On return the inode
  1305. * will be "held" within the returned transaction. This routine does NOT
  1306. * require any disk space to be reserved for it within the transaction.
  1307. *
  1308. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1309. * indicates the fork which is to be truncated. For the attribute fork we only
  1310. * support truncation to size 0.
  1311. *
  1312. * We use the sync parameter to indicate whether or not the first transaction
  1313. * we perform might have to be synchronous. For the attr fork, it needs to be
  1314. * so if the unlink of the inode is not yet known to be permanent in the log.
  1315. * This keeps us from freeing and reusing the blocks of the attribute fork
  1316. * before the unlink of the inode becomes permanent.
  1317. *
  1318. * For the data fork, we normally have to run synchronously if we're being
  1319. * called out of the inactive path or we're being called out of the create path
  1320. * where we're truncating an existing file. Either way, the truncate needs to
  1321. * be sync so blocks don't reappear in the file with altered data in case of a
  1322. * crash. wsync filesystems can run the first case async because anything that
  1323. * shrinks the inode has to run sync so by the time we're called here from
  1324. * inactive, the inode size is permanently set to 0.
  1325. *
  1326. * Calls from the truncate path always need to be sync unless we're in a wsync
  1327. * filesystem and the file has already been unlinked.
  1328. *
  1329. * The caller is responsible for correctly setting the sync parameter. It gets
  1330. * too hard for us to guess here which path we're being called out of just
  1331. * based on inode state.
  1332. *
  1333. * If we get an error, we must return with the inode locked and linked into the
  1334. * current transaction. This keeps things simple for the higher level code,
  1335. * because it always knows that the inode is locked and held in the transaction
  1336. * that returns to it whether errors occur or not. We don't mark the inode
  1337. * dirty on error so that transactions can be easily aborted if possible.
  1338. */
  1339. int
  1340. xfs_itruncate_finish(
  1341. xfs_trans_t **tp,
  1342. xfs_inode_t *ip,
  1343. xfs_fsize_t new_size,
  1344. int fork,
  1345. int sync)
  1346. {
  1347. xfs_fsblock_t first_block;
  1348. xfs_fileoff_t first_unmap_block;
  1349. xfs_fileoff_t last_block;
  1350. xfs_filblks_t unmap_len=0;
  1351. xfs_mount_t *mp;
  1352. xfs_trans_t *ntp;
  1353. int done;
  1354. int committed;
  1355. xfs_bmap_free_t free_list;
  1356. int error;
  1357. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1358. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1359. ASSERT(*tp != NULL);
  1360. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1361. ASSERT(ip->i_transp == *tp);
  1362. ASSERT(ip->i_itemp != NULL);
  1363. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1364. ntp = *tp;
  1365. mp = (ntp)->t_mountp;
  1366. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1367. /*
  1368. * We only support truncating the entire attribute fork.
  1369. */
  1370. if (fork == XFS_ATTR_FORK) {
  1371. new_size = 0LL;
  1372. }
  1373. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1374. trace_xfs_itruncate_finish_start(ip, new_size);
  1375. /*
  1376. * The first thing we do is set the size to new_size permanently
  1377. * on disk. This way we don't have to worry about anyone ever
  1378. * being able to look at the data being freed even in the face
  1379. * of a crash. What we're getting around here is the case where
  1380. * we free a block, it is allocated to another file, it is written
  1381. * to, and then we crash. If the new data gets written to the
  1382. * file but the log buffers containing the free and reallocation
  1383. * don't, then we'd end up with garbage in the blocks being freed.
  1384. * As long as we make the new_size permanent before actually
  1385. * freeing any blocks it doesn't matter if they get writtten to.
  1386. *
  1387. * The callers must signal into us whether or not the size
  1388. * setting here must be synchronous. There are a few cases
  1389. * where it doesn't have to be synchronous. Those cases
  1390. * occur if the file is unlinked and we know the unlink is
  1391. * permanent or if the blocks being truncated are guaranteed
  1392. * to be beyond the inode eof (regardless of the link count)
  1393. * and the eof value is permanent. Both of these cases occur
  1394. * only on wsync-mounted filesystems. In those cases, we're
  1395. * guaranteed that no user will ever see the data in the blocks
  1396. * that are being truncated so the truncate can run async.
  1397. * In the free beyond eof case, the file may wind up with
  1398. * more blocks allocated to it than it needs if we crash
  1399. * and that won't get fixed until the next time the file
  1400. * is re-opened and closed but that's ok as that shouldn't
  1401. * be too many blocks.
  1402. *
  1403. * However, we can't just make all wsync xactions run async
  1404. * because there's one call out of the create path that needs
  1405. * to run sync where it's truncating an existing file to size
  1406. * 0 whose size is > 0.
  1407. *
  1408. * It's probably possible to come up with a test in this
  1409. * routine that would correctly distinguish all the above
  1410. * cases from the values of the function parameters and the
  1411. * inode state but for sanity's sake, I've decided to let the
  1412. * layers above just tell us. It's simpler to correctly figure
  1413. * out in the layer above exactly under what conditions we
  1414. * can run async and I think it's easier for others read and
  1415. * follow the logic in case something has to be changed.
  1416. * cscope is your friend -- rcc.
  1417. *
  1418. * The attribute fork is much simpler.
  1419. *
  1420. * For the attribute fork we allow the caller to tell us whether
  1421. * the unlink of the inode that led to this call is yet permanent
  1422. * in the on disk log. If it is not and we will be freeing extents
  1423. * in this inode then we make the first transaction synchronous
  1424. * to make sure that the unlink is permanent by the time we free
  1425. * the blocks.
  1426. */
  1427. if (fork == XFS_DATA_FORK) {
  1428. if (ip->i_d.di_nextents > 0) {
  1429. /*
  1430. * If we are not changing the file size then do
  1431. * not update the on-disk file size - we may be
  1432. * called from xfs_inactive_free_eofblocks(). If we
  1433. * update the on-disk file size and then the system
  1434. * crashes before the contents of the file are
  1435. * flushed to disk then the files may be full of
  1436. * holes (ie NULL files bug).
  1437. */
  1438. if (ip->i_size != new_size) {
  1439. ip->i_d.di_size = new_size;
  1440. ip->i_size = new_size;
  1441. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1442. }
  1443. }
  1444. } else if (sync) {
  1445. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1446. if (ip->i_d.di_anextents > 0)
  1447. xfs_trans_set_sync(ntp);
  1448. }
  1449. ASSERT(fork == XFS_DATA_FORK ||
  1450. (fork == XFS_ATTR_FORK &&
  1451. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1452. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1453. /*
  1454. * Since it is possible for space to become allocated beyond
  1455. * the end of the file (in a crash where the space is allocated
  1456. * but the inode size is not yet updated), simply remove any
  1457. * blocks which show up between the new EOF and the maximum
  1458. * possible file size. If the first block to be removed is
  1459. * beyond the maximum file size (ie it is the same as last_block),
  1460. * then there is nothing to do.
  1461. */
  1462. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1463. ASSERT(first_unmap_block <= last_block);
  1464. done = 0;
  1465. if (last_block == first_unmap_block) {
  1466. done = 1;
  1467. } else {
  1468. unmap_len = last_block - first_unmap_block + 1;
  1469. }
  1470. while (!done) {
  1471. /*
  1472. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1473. * will tell us whether it freed the entire range or
  1474. * not. If this is a synchronous mount (wsync),
  1475. * then we can tell bunmapi to keep all the
  1476. * transactions asynchronous since the unlink
  1477. * transaction that made this inode inactive has
  1478. * already hit the disk. There's no danger of
  1479. * the freed blocks being reused, there being a
  1480. * crash, and the reused blocks suddenly reappearing
  1481. * in this file with garbage in them once recovery
  1482. * runs.
  1483. */
  1484. xfs_bmap_init(&free_list, &first_block);
  1485. error = xfs_bunmapi(ntp, ip,
  1486. first_unmap_block, unmap_len,
  1487. xfs_bmapi_aflag(fork) |
  1488. (sync ? 0 : XFS_BMAPI_ASYNC),
  1489. XFS_ITRUNC_MAX_EXTENTS,
  1490. &first_block, &free_list,
  1491. NULL, &done);
  1492. if (error) {
  1493. /*
  1494. * If the bunmapi call encounters an error,
  1495. * return to the caller where the transaction
  1496. * can be properly aborted. We just need to
  1497. * make sure we're not holding any resources
  1498. * that we were not when we came in.
  1499. */
  1500. xfs_bmap_cancel(&free_list);
  1501. return error;
  1502. }
  1503. /*
  1504. * Duplicate the transaction that has the permanent
  1505. * reservation and commit the old transaction.
  1506. */
  1507. error = xfs_bmap_finish(tp, &free_list, &committed);
  1508. ntp = *tp;
  1509. if (committed) {
  1510. /* link the inode into the next xact in the chain */
  1511. xfs_trans_ijoin(ntp, ip,
  1512. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1513. xfs_trans_ihold(ntp, ip);
  1514. }
  1515. if (error) {
  1516. /*
  1517. * If the bmap finish call encounters an error, return
  1518. * to the caller where the transaction can be properly
  1519. * aborted. We just need to make sure we're not
  1520. * holding any resources that we were not when we came
  1521. * in.
  1522. *
  1523. * Aborting from this point might lose some blocks in
  1524. * the file system, but oh well.
  1525. */
  1526. xfs_bmap_cancel(&free_list);
  1527. return error;
  1528. }
  1529. if (committed) {
  1530. /*
  1531. * Mark the inode dirty so it will be logged and
  1532. * moved forward in the log as part of every commit.
  1533. */
  1534. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1535. }
  1536. ntp = xfs_trans_dup(ntp);
  1537. error = xfs_trans_commit(*tp, 0);
  1538. *tp = ntp;
  1539. /* link the inode into the next transaction in the chain */
  1540. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1541. xfs_trans_ihold(ntp, ip);
  1542. if (error)
  1543. return error;
  1544. /*
  1545. * transaction commit worked ok so we can drop the extra ticket
  1546. * reference that we gained in xfs_trans_dup()
  1547. */
  1548. xfs_log_ticket_put(ntp->t_ticket);
  1549. error = xfs_trans_reserve(ntp, 0,
  1550. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1551. XFS_TRANS_PERM_LOG_RES,
  1552. XFS_ITRUNCATE_LOG_COUNT);
  1553. if (error)
  1554. return error;
  1555. }
  1556. /*
  1557. * Only update the size in the case of the data fork, but
  1558. * always re-log the inode so that our permanent transaction
  1559. * can keep on rolling it forward in the log.
  1560. */
  1561. if (fork == XFS_DATA_FORK) {
  1562. xfs_isize_check(mp, ip, new_size);
  1563. /*
  1564. * If we are not changing the file size then do
  1565. * not update the on-disk file size - we may be
  1566. * called from xfs_inactive_free_eofblocks(). If we
  1567. * update the on-disk file size and then the system
  1568. * crashes before the contents of the file are
  1569. * flushed to disk then the files may be full of
  1570. * holes (ie NULL files bug).
  1571. */
  1572. if (ip->i_size != new_size) {
  1573. ip->i_d.di_size = new_size;
  1574. ip->i_size = new_size;
  1575. }
  1576. }
  1577. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1578. ASSERT((new_size != 0) ||
  1579. (fork == XFS_ATTR_FORK) ||
  1580. (ip->i_delayed_blks == 0));
  1581. ASSERT((new_size != 0) ||
  1582. (fork == XFS_ATTR_FORK) ||
  1583. (ip->i_d.di_nextents == 0));
  1584. trace_xfs_itruncate_finish_end(ip, new_size);
  1585. return 0;
  1586. }
  1587. /*
  1588. * This is called when the inode's link count goes to 0.
  1589. * We place the on-disk inode on a list in the AGI. It
  1590. * will be pulled from this list when the inode is freed.
  1591. */
  1592. int
  1593. xfs_iunlink(
  1594. xfs_trans_t *tp,
  1595. xfs_inode_t *ip)
  1596. {
  1597. xfs_mount_t *mp;
  1598. xfs_agi_t *agi;
  1599. xfs_dinode_t *dip;
  1600. xfs_buf_t *agibp;
  1601. xfs_buf_t *ibp;
  1602. xfs_agino_t agino;
  1603. short bucket_index;
  1604. int offset;
  1605. int error;
  1606. ASSERT(ip->i_d.di_nlink == 0);
  1607. ASSERT(ip->i_d.di_mode != 0);
  1608. ASSERT(ip->i_transp == tp);
  1609. mp = tp->t_mountp;
  1610. /*
  1611. * Get the agi buffer first. It ensures lock ordering
  1612. * on the list.
  1613. */
  1614. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1615. if (error)
  1616. return error;
  1617. agi = XFS_BUF_TO_AGI(agibp);
  1618. /*
  1619. * Get the index into the agi hash table for the
  1620. * list this inode will go on.
  1621. */
  1622. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1623. ASSERT(agino != 0);
  1624. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1625. ASSERT(agi->agi_unlinked[bucket_index]);
  1626. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1627. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1628. /*
  1629. * There is already another inode in the bucket we need
  1630. * to add ourselves to. Add us at the front of the list.
  1631. * Here we put the head pointer into our next pointer,
  1632. * and then we fall through to point the head at us.
  1633. */
  1634. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1635. if (error)
  1636. return error;
  1637. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1638. /* both on-disk, don't endian flip twice */
  1639. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1640. offset = ip->i_imap.im_boffset +
  1641. offsetof(xfs_dinode_t, di_next_unlinked);
  1642. xfs_trans_inode_buf(tp, ibp);
  1643. xfs_trans_log_buf(tp, ibp, offset,
  1644. (offset + sizeof(xfs_agino_t) - 1));
  1645. xfs_inobp_check(mp, ibp);
  1646. }
  1647. /*
  1648. * Point the bucket head pointer at the inode being inserted.
  1649. */
  1650. ASSERT(agino != 0);
  1651. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1652. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1653. (sizeof(xfs_agino_t) * bucket_index);
  1654. xfs_trans_log_buf(tp, agibp, offset,
  1655. (offset + sizeof(xfs_agino_t) - 1));
  1656. return 0;
  1657. }
  1658. /*
  1659. * Pull the on-disk inode from the AGI unlinked list.
  1660. */
  1661. STATIC int
  1662. xfs_iunlink_remove(
  1663. xfs_trans_t *tp,
  1664. xfs_inode_t *ip)
  1665. {
  1666. xfs_ino_t next_ino;
  1667. xfs_mount_t *mp;
  1668. xfs_agi_t *agi;
  1669. xfs_dinode_t *dip;
  1670. xfs_buf_t *agibp;
  1671. xfs_buf_t *ibp;
  1672. xfs_agnumber_t agno;
  1673. xfs_agino_t agino;
  1674. xfs_agino_t next_agino;
  1675. xfs_buf_t *last_ibp;
  1676. xfs_dinode_t *last_dip = NULL;
  1677. short bucket_index;
  1678. int offset, last_offset = 0;
  1679. int error;
  1680. mp = tp->t_mountp;
  1681. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1682. /*
  1683. * Get the agi buffer first. It ensures lock ordering
  1684. * on the list.
  1685. */
  1686. error = xfs_read_agi(mp, tp, agno, &agibp);
  1687. if (error)
  1688. return error;
  1689. agi = XFS_BUF_TO_AGI(agibp);
  1690. /*
  1691. * Get the index into the agi hash table for the
  1692. * list this inode will go on.
  1693. */
  1694. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1695. ASSERT(agino != 0);
  1696. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1697. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1698. ASSERT(agi->agi_unlinked[bucket_index]);
  1699. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1700. /*
  1701. * We're at the head of the list. Get the inode's
  1702. * on-disk buffer to see if there is anyone after us
  1703. * on the list. Only modify our next pointer if it
  1704. * is not already NULLAGINO. This saves us the overhead
  1705. * of dealing with the buffer when there is no need to
  1706. * change it.
  1707. */
  1708. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1709. if (error) {
  1710. cmn_err(CE_WARN,
  1711. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1712. error, mp->m_fsname);
  1713. return error;
  1714. }
  1715. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1716. ASSERT(next_agino != 0);
  1717. if (next_agino != NULLAGINO) {
  1718. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1719. offset = ip->i_imap.im_boffset +
  1720. offsetof(xfs_dinode_t, di_next_unlinked);
  1721. xfs_trans_inode_buf(tp, ibp);
  1722. xfs_trans_log_buf(tp, ibp, offset,
  1723. (offset + sizeof(xfs_agino_t) - 1));
  1724. xfs_inobp_check(mp, ibp);
  1725. } else {
  1726. xfs_trans_brelse(tp, ibp);
  1727. }
  1728. /*
  1729. * Point the bucket head pointer at the next inode.
  1730. */
  1731. ASSERT(next_agino != 0);
  1732. ASSERT(next_agino != agino);
  1733. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1734. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1735. (sizeof(xfs_agino_t) * bucket_index);
  1736. xfs_trans_log_buf(tp, agibp, offset,
  1737. (offset + sizeof(xfs_agino_t) - 1));
  1738. } else {
  1739. /*
  1740. * We need to search the list for the inode being freed.
  1741. */
  1742. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1743. last_ibp = NULL;
  1744. while (next_agino != agino) {
  1745. /*
  1746. * If the last inode wasn't the one pointing to
  1747. * us, then release its buffer since we're not
  1748. * going to do anything with it.
  1749. */
  1750. if (last_ibp != NULL) {
  1751. xfs_trans_brelse(tp, last_ibp);
  1752. }
  1753. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1754. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1755. &last_ibp, &last_offset, 0);
  1756. if (error) {
  1757. cmn_err(CE_WARN,
  1758. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1759. error, mp->m_fsname);
  1760. return error;
  1761. }
  1762. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1763. ASSERT(next_agino != NULLAGINO);
  1764. ASSERT(next_agino != 0);
  1765. }
  1766. /*
  1767. * Now last_ibp points to the buffer previous to us on
  1768. * the unlinked list. Pull us from the list.
  1769. */
  1770. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1771. if (error) {
  1772. cmn_err(CE_WARN,
  1773. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1774. error, mp->m_fsname);
  1775. return error;
  1776. }
  1777. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1778. ASSERT(next_agino != 0);
  1779. ASSERT(next_agino != agino);
  1780. if (next_agino != NULLAGINO) {
  1781. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1782. offset = ip->i_imap.im_boffset +
  1783. offsetof(xfs_dinode_t, di_next_unlinked);
  1784. xfs_trans_inode_buf(tp, ibp);
  1785. xfs_trans_log_buf(tp, ibp, offset,
  1786. (offset + sizeof(xfs_agino_t) - 1));
  1787. xfs_inobp_check(mp, ibp);
  1788. } else {
  1789. xfs_trans_brelse(tp, ibp);
  1790. }
  1791. /*
  1792. * Point the previous inode on the list to the next inode.
  1793. */
  1794. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1795. ASSERT(next_agino != 0);
  1796. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1797. xfs_trans_inode_buf(tp, last_ibp);
  1798. xfs_trans_log_buf(tp, last_ibp, offset,
  1799. (offset + sizeof(xfs_agino_t) - 1));
  1800. xfs_inobp_check(mp, last_ibp);
  1801. }
  1802. return 0;
  1803. }
  1804. STATIC void
  1805. xfs_ifree_cluster(
  1806. xfs_inode_t *free_ip,
  1807. xfs_trans_t *tp,
  1808. xfs_ino_t inum)
  1809. {
  1810. xfs_mount_t *mp = free_ip->i_mount;
  1811. int blks_per_cluster;
  1812. int nbufs;
  1813. int ninodes;
  1814. int i, j;
  1815. xfs_daddr_t blkno;
  1816. xfs_buf_t *bp;
  1817. xfs_inode_t *ip;
  1818. xfs_inode_log_item_t *iip;
  1819. xfs_log_item_t *lip;
  1820. struct xfs_perag *pag;
  1821. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1822. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1823. blks_per_cluster = 1;
  1824. ninodes = mp->m_sb.sb_inopblock;
  1825. nbufs = XFS_IALLOC_BLOCKS(mp);
  1826. } else {
  1827. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1828. mp->m_sb.sb_blocksize;
  1829. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1830. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1831. }
  1832. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1833. int found = 0;
  1834. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1835. XFS_INO_TO_AGBNO(mp, inum));
  1836. /*
  1837. * We obtain and lock the backing buffer first in the process
  1838. * here, as we have to ensure that any dirty inode that we
  1839. * can't get the flush lock on is attached to the buffer.
  1840. * If we scan the in-memory inodes first, then buffer IO can
  1841. * complete before we get a lock on it, and hence we may fail
  1842. * to mark all the active inodes on the buffer stale.
  1843. */
  1844. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1845. mp->m_bsize * blks_per_cluster,
  1846. XBF_LOCK);
  1847. /*
  1848. * Walk the inodes already attached to the buffer and mark them
  1849. * stale. These will all have the flush locks held, so an
  1850. * in-memory inode walk can't lock them.
  1851. */
  1852. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1853. while (lip) {
  1854. if (lip->li_type == XFS_LI_INODE) {
  1855. iip = (xfs_inode_log_item_t *)lip;
  1856. ASSERT(iip->ili_logged == 1);
  1857. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1858. xfs_trans_ail_copy_lsn(mp->m_ail,
  1859. &iip->ili_flush_lsn,
  1860. &iip->ili_item.li_lsn);
  1861. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1862. found++;
  1863. }
  1864. lip = lip->li_bio_list;
  1865. }
  1866. /*
  1867. * For each inode in memory attempt to add it to the inode
  1868. * buffer and set it up for being staled on buffer IO
  1869. * completion. This is safe as we've locked out tail pushing
  1870. * and flushing by locking the buffer.
  1871. *
  1872. * We have already marked every inode that was part of a
  1873. * transaction stale above, which means there is no point in
  1874. * even trying to lock them.
  1875. */
  1876. for (i = 0; i < ninodes; i++) {
  1877. read_lock(&pag->pag_ici_lock);
  1878. ip = radix_tree_lookup(&pag->pag_ici_root,
  1879. XFS_INO_TO_AGINO(mp, (inum + i)));
  1880. /* Inode not in memory or stale, nothing to do */
  1881. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1882. read_unlock(&pag->pag_ici_lock);
  1883. continue;
  1884. }
  1885. /* don't try to lock/unlock the current inode */
  1886. if (ip != free_ip &&
  1887. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1888. read_unlock(&pag->pag_ici_lock);
  1889. continue;
  1890. }
  1891. read_unlock(&pag->pag_ici_lock);
  1892. if (!xfs_iflock_nowait(ip)) {
  1893. if (ip != free_ip)
  1894. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1895. continue;
  1896. }
  1897. xfs_iflags_set(ip, XFS_ISTALE);
  1898. if (xfs_inode_clean(ip)) {
  1899. ASSERT(ip != free_ip);
  1900. xfs_ifunlock(ip);
  1901. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1902. continue;
  1903. }
  1904. iip = ip->i_itemp;
  1905. if (!iip) {
  1906. /* inode with unlogged changes only */
  1907. ASSERT(ip != free_ip);
  1908. ip->i_update_core = 0;
  1909. xfs_ifunlock(ip);
  1910. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1911. continue;
  1912. }
  1913. found++;
  1914. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1915. iip->ili_format.ilf_fields = 0;
  1916. iip->ili_logged = 1;
  1917. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1918. &iip->ili_item.li_lsn);
  1919. xfs_buf_attach_iodone(bp,
  1920. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1921. xfs_istale_done, (xfs_log_item_t *)iip);
  1922. if (ip != free_ip)
  1923. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1924. }
  1925. if (found)
  1926. xfs_trans_stale_inode_buf(tp, bp);
  1927. xfs_trans_binval(tp, bp);
  1928. }
  1929. xfs_perag_put(pag);
  1930. }
  1931. /*
  1932. * This is called to return an inode to the inode free list.
  1933. * The inode should already be truncated to 0 length and have
  1934. * no pages associated with it. This routine also assumes that
  1935. * the inode is already a part of the transaction.
  1936. *
  1937. * The on-disk copy of the inode will have been added to the list
  1938. * of unlinked inodes in the AGI. We need to remove the inode from
  1939. * that list atomically with respect to freeing it here.
  1940. */
  1941. int
  1942. xfs_ifree(
  1943. xfs_trans_t *tp,
  1944. xfs_inode_t *ip,
  1945. xfs_bmap_free_t *flist)
  1946. {
  1947. int error;
  1948. int delete;
  1949. xfs_ino_t first_ino;
  1950. xfs_dinode_t *dip;
  1951. xfs_buf_t *ibp;
  1952. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1953. ASSERT(ip->i_transp == tp);
  1954. ASSERT(ip->i_d.di_nlink == 0);
  1955. ASSERT(ip->i_d.di_nextents == 0);
  1956. ASSERT(ip->i_d.di_anextents == 0);
  1957. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1958. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1959. ASSERT(ip->i_d.di_nblocks == 0);
  1960. /*
  1961. * Pull the on-disk inode from the AGI unlinked list.
  1962. */
  1963. error = xfs_iunlink_remove(tp, ip);
  1964. if (error != 0) {
  1965. return error;
  1966. }
  1967. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1968. if (error != 0) {
  1969. return error;
  1970. }
  1971. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1972. ip->i_d.di_flags = 0;
  1973. ip->i_d.di_dmevmask = 0;
  1974. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1975. ip->i_df.if_ext_max =
  1976. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1977. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1978. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1979. /*
  1980. * Bump the generation count so no one will be confused
  1981. * by reincarnations of this inode.
  1982. */
  1983. ip->i_d.di_gen++;
  1984. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1985. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1986. if (error)
  1987. return error;
  1988. /*
  1989. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1990. * from picking up this inode when it is reclaimed (its incore state
  1991. * initialzed but not flushed to disk yet). The in-core di_mode is
  1992. * already cleared and a corresponding transaction logged.
  1993. * The hack here just synchronizes the in-core to on-disk
  1994. * di_mode value in advance before the actual inode sync to disk.
  1995. * This is OK because the inode is already unlinked and would never
  1996. * change its di_mode again for this inode generation.
  1997. * This is a temporary hack that would require a proper fix
  1998. * in the future.
  1999. */
  2000. dip->di_mode = 0;
  2001. if (delete) {
  2002. xfs_ifree_cluster(ip, tp, first_ino);
  2003. }
  2004. return 0;
  2005. }
  2006. /*
  2007. * Reallocate the space for if_broot based on the number of records
  2008. * being added or deleted as indicated in rec_diff. Move the records
  2009. * and pointers in if_broot to fit the new size. When shrinking this
  2010. * will eliminate holes between the records and pointers created by
  2011. * the caller. When growing this will create holes to be filled in
  2012. * by the caller.
  2013. *
  2014. * The caller must not request to add more records than would fit in
  2015. * the on-disk inode root. If the if_broot is currently NULL, then
  2016. * if we adding records one will be allocated. The caller must also
  2017. * not request that the number of records go below zero, although
  2018. * it can go to zero.
  2019. *
  2020. * ip -- the inode whose if_broot area is changing
  2021. * ext_diff -- the change in the number of records, positive or negative,
  2022. * requested for the if_broot array.
  2023. */
  2024. void
  2025. xfs_iroot_realloc(
  2026. xfs_inode_t *ip,
  2027. int rec_diff,
  2028. int whichfork)
  2029. {
  2030. struct xfs_mount *mp = ip->i_mount;
  2031. int cur_max;
  2032. xfs_ifork_t *ifp;
  2033. struct xfs_btree_block *new_broot;
  2034. int new_max;
  2035. size_t new_size;
  2036. char *np;
  2037. char *op;
  2038. /*
  2039. * Handle the degenerate case quietly.
  2040. */
  2041. if (rec_diff == 0) {
  2042. return;
  2043. }
  2044. ifp = XFS_IFORK_PTR(ip, whichfork);
  2045. if (rec_diff > 0) {
  2046. /*
  2047. * If there wasn't any memory allocated before, just
  2048. * allocate it now and get out.
  2049. */
  2050. if (ifp->if_broot_bytes == 0) {
  2051. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2052. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2053. ifp->if_broot_bytes = (int)new_size;
  2054. return;
  2055. }
  2056. /*
  2057. * If there is already an existing if_broot, then we need
  2058. * to realloc() it and shift the pointers to their new
  2059. * location. The records don't change location because
  2060. * they are kept butted up against the btree block header.
  2061. */
  2062. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2063. new_max = cur_max + rec_diff;
  2064. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2065. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2066. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2067. KM_SLEEP);
  2068. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2069. ifp->if_broot_bytes);
  2070. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2071. (int)new_size);
  2072. ifp->if_broot_bytes = (int)new_size;
  2073. ASSERT(ifp->if_broot_bytes <=
  2074. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2075. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2076. return;
  2077. }
  2078. /*
  2079. * rec_diff is less than 0. In this case, we are shrinking the
  2080. * if_broot buffer. It must already exist. If we go to zero
  2081. * records, just get rid of the root and clear the status bit.
  2082. */
  2083. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2084. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2085. new_max = cur_max + rec_diff;
  2086. ASSERT(new_max >= 0);
  2087. if (new_max > 0)
  2088. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2089. else
  2090. new_size = 0;
  2091. if (new_size > 0) {
  2092. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2093. /*
  2094. * First copy over the btree block header.
  2095. */
  2096. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2097. } else {
  2098. new_broot = NULL;
  2099. ifp->if_flags &= ~XFS_IFBROOT;
  2100. }
  2101. /*
  2102. * Only copy the records and pointers if there are any.
  2103. */
  2104. if (new_max > 0) {
  2105. /*
  2106. * First copy the records.
  2107. */
  2108. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2109. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2110. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2111. /*
  2112. * Then copy the pointers.
  2113. */
  2114. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2115. ifp->if_broot_bytes);
  2116. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2117. (int)new_size);
  2118. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2119. }
  2120. kmem_free(ifp->if_broot);
  2121. ifp->if_broot = new_broot;
  2122. ifp->if_broot_bytes = (int)new_size;
  2123. ASSERT(ifp->if_broot_bytes <=
  2124. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2125. return;
  2126. }
  2127. /*
  2128. * This is called when the amount of space needed for if_data
  2129. * is increased or decreased. The change in size is indicated by
  2130. * the number of bytes that need to be added or deleted in the
  2131. * byte_diff parameter.
  2132. *
  2133. * If the amount of space needed has decreased below the size of the
  2134. * inline buffer, then switch to using the inline buffer. Otherwise,
  2135. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2136. * to what is needed.
  2137. *
  2138. * ip -- the inode whose if_data area is changing
  2139. * byte_diff -- the change in the number of bytes, positive or negative,
  2140. * requested for the if_data array.
  2141. */
  2142. void
  2143. xfs_idata_realloc(
  2144. xfs_inode_t *ip,
  2145. int byte_diff,
  2146. int whichfork)
  2147. {
  2148. xfs_ifork_t *ifp;
  2149. int new_size;
  2150. int real_size;
  2151. if (byte_diff == 0) {
  2152. return;
  2153. }
  2154. ifp = XFS_IFORK_PTR(ip, whichfork);
  2155. new_size = (int)ifp->if_bytes + byte_diff;
  2156. ASSERT(new_size >= 0);
  2157. if (new_size == 0) {
  2158. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2159. kmem_free(ifp->if_u1.if_data);
  2160. }
  2161. ifp->if_u1.if_data = NULL;
  2162. real_size = 0;
  2163. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2164. /*
  2165. * If the valid extents/data can fit in if_inline_ext/data,
  2166. * copy them from the malloc'd vector and free it.
  2167. */
  2168. if (ifp->if_u1.if_data == NULL) {
  2169. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2170. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2171. ASSERT(ifp->if_real_bytes != 0);
  2172. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2173. new_size);
  2174. kmem_free(ifp->if_u1.if_data);
  2175. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2176. }
  2177. real_size = 0;
  2178. } else {
  2179. /*
  2180. * Stuck with malloc/realloc.
  2181. * For inline data, the underlying buffer must be
  2182. * a multiple of 4 bytes in size so that it can be
  2183. * logged and stay on word boundaries. We enforce
  2184. * that here.
  2185. */
  2186. real_size = roundup(new_size, 4);
  2187. if (ifp->if_u1.if_data == NULL) {
  2188. ASSERT(ifp->if_real_bytes == 0);
  2189. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2190. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2191. /*
  2192. * Only do the realloc if the underlying size
  2193. * is really changing.
  2194. */
  2195. if (ifp->if_real_bytes != real_size) {
  2196. ifp->if_u1.if_data =
  2197. kmem_realloc(ifp->if_u1.if_data,
  2198. real_size,
  2199. ifp->if_real_bytes,
  2200. KM_SLEEP);
  2201. }
  2202. } else {
  2203. ASSERT(ifp->if_real_bytes == 0);
  2204. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2205. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2206. ifp->if_bytes);
  2207. }
  2208. }
  2209. ifp->if_real_bytes = real_size;
  2210. ifp->if_bytes = new_size;
  2211. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2212. }
  2213. void
  2214. xfs_idestroy_fork(
  2215. xfs_inode_t *ip,
  2216. int whichfork)
  2217. {
  2218. xfs_ifork_t *ifp;
  2219. ifp = XFS_IFORK_PTR(ip, whichfork);
  2220. if (ifp->if_broot != NULL) {
  2221. kmem_free(ifp->if_broot);
  2222. ifp->if_broot = NULL;
  2223. }
  2224. /*
  2225. * If the format is local, then we can't have an extents
  2226. * array so just look for an inline data array. If we're
  2227. * not local then we may or may not have an extents list,
  2228. * so check and free it up if we do.
  2229. */
  2230. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2231. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2232. (ifp->if_u1.if_data != NULL)) {
  2233. ASSERT(ifp->if_real_bytes != 0);
  2234. kmem_free(ifp->if_u1.if_data);
  2235. ifp->if_u1.if_data = NULL;
  2236. ifp->if_real_bytes = 0;
  2237. }
  2238. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2239. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2240. ((ifp->if_u1.if_extents != NULL) &&
  2241. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2242. ASSERT(ifp->if_real_bytes != 0);
  2243. xfs_iext_destroy(ifp);
  2244. }
  2245. ASSERT(ifp->if_u1.if_extents == NULL ||
  2246. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2247. ASSERT(ifp->if_real_bytes == 0);
  2248. if (whichfork == XFS_ATTR_FORK) {
  2249. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2250. ip->i_afp = NULL;
  2251. }
  2252. }
  2253. /*
  2254. * This is called to unpin an inode. The caller must have the inode locked
  2255. * in at least shared mode so that the buffer cannot be subsequently pinned
  2256. * once someone is waiting for it to be unpinned.
  2257. */
  2258. static void
  2259. xfs_iunpin_nowait(
  2260. struct xfs_inode *ip)
  2261. {
  2262. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2263. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2264. /* Give the log a push to start the unpinning I/O */
  2265. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2266. }
  2267. void
  2268. xfs_iunpin_wait(
  2269. struct xfs_inode *ip)
  2270. {
  2271. if (xfs_ipincount(ip)) {
  2272. xfs_iunpin_nowait(ip);
  2273. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2274. }
  2275. }
  2276. /*
  2277. * xfs_iextents_copy()
  2278. *
  2279. * This is called to copy the REAL extents (as opposed to the delayed
  2280. * allocation extents) from the inode into the given buffer. It
  2281. * returns the number of bytes copied into the buffer.
  2282. *
  2283. * If there are no delayed allocation extents, then we can just
  2284. * memcpy() the extents into the buffer. Otherwise, we need to
  2285. * examine each extent in turn and skip those which are delayed.
  2286. */
  2287. int
  2288. xfs_iextents_copy(
  2289. xfs_inode_t *ip,
  2290. xfs_bmbt_rec_t *dp,
  2291. int whichfork)
  2292. {
  2293. int copied;
  2294. int i;
  2295. xfs_ifork_t *ifp;
  2296. int nrecs;
  2297. xfs_fsblock_t start_block;
  2298. ifp = XFS_IFORK_PTR(ip, whichfork);
  2299. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2300. ASSERT(ifp->if_bytes > 0);
  2301. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2302. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2303. ASSERT(nrecs > 0);
  2304. /*
  2305. * There are some delayed allocation extents in the
  2306. * inode, so copy the extents one at a time and skip
  2307. * the delayed ones. There must be at least one
  2308. * non-delayed extent.
  2309. */
  2310. copied = 0;
  2311. for (i = 0; i < nrecs; i++) {
  2312. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2313. start_block = xfs_bmbt_get_startblock(ep);
  2314. if (isnullstartblock(start_block)) {
  2315. /*
  2316. * It's a delayed allocation extent, so skip it.
  2317. */
  2318. continue;
  2319. }
  2320. /* Translate to on disk format */
  2321. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2322. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2323. dp++;
  2324. copied++;
  2325. }
  2326. ASSERT(copied != 0);
  2327. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2328. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2329. }
  2330. /*
  2331. * Each of the following cases stores data into the same region
  2332. * of the on-disk inode, so only one of them can be valid at
  2333. * any given time. While it is possible to have conflicting formats
  2334. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2335. * in EXTENTS format, this can only happen when the fork has
  2336. * changed formats after being modified but before being flushed.
  2337. * In these cases, the format always takes precedence, because the
  2338. * format indicates the current state of the fork.
  2339. */
  2340. /*ARGSUSED*/
  2341. STATIC void
  2342. xfs_iflush_fork(
  2343. xfs_inode_t *ip,
  2344. xfs_dinode_t *dip,
  2345. xfs_inode_log_item_t *iip,
  2346. int whichfork,
  2347. xfs_buf_t *bp)
  2348. {
  2349. char *cp;
  2350. xfs_ifork_t *ifp;
  2351. xfs_mount_t *mp;
  2352. #ifdef XFS_TRANS_DEBUG
  2353. int first;
  2354. #endif
  2355. static const short brootflag[2] =
  2356. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2357. static const short dataflag[2] =
  2358. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2359. static const short extflag[2] =
  2360. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2361. if (!iip)
  2362. return;
  2363. ifp = XFS_IFORK_PTR(ip, whichfork);
  2364. /*
  2365. * This can happen if we gave up in iformat in an error path,
  2366. * for the attribute fork.
  2367. */
  2368. if (!ifp) {
  2369. ASSERT(whichfork == XFS_ATTR_FORK);
  2370. return;
  2371. }
  2372. cp = XFS_DFORK_PTR(dip, whichfork);
  2373. mp = ip->i_mount;
  2374. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2375. case XFS_DINODE_FMT_LOCAL:
  2376. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2377. (ifp->if_bytes > 0)) {
  2378. ASSERT(ifp->if_u1.if_data != NULL);
  2379. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2380. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2381. }
  2382. break;
  2383. case XFS_DINODE_FMT_EXTENTS:
  2384. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2385. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2386. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2387. (ifp->if_bytes == 0));
  2388. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2389. (ifp->if_bytes > 0));
  2390. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2391. (ifp->if_bytes > 0)) {
  2392. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2393. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2394. whichfork);
  2395. }
  2396. break;
  2397. case XFS_DINODE_FMT_BTREE:
  2398. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2399. (ifp->if_broot_bytes > 0)) {
  2400. ASSERT(ifp->if_broot != NULL);
  2401. ASSERT(ifp->if_broot_bytes <=
  2402. (XFS_IFORK_SIZE(ip, whichfork) +
  2403. XFS_BROOT_SIZE_ADJ));
  2404. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2405. (xfs_bmdr_block_t *)cp,
  2406. XFS_DFORK_SIZE(dip, mp, whichfork));
  2407. }
  2408. break;
  2409. case XFS_DINODE_FMT_DEV:
  2410. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2411. ASSERT(whichfork == XFS_DATA_FORK);
  2412. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2413. }
  2414. break;
  2415. case XFS_DINODE_FMT_UUID:
  2416. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2417. ASSERT(whichfork == XFS_DATA_FORK);
  2418. memcpy(XFS_DFORK_DPTR(dip),
  2419. &ip->i_df.if_u2.if_uuid,
  2420. sizeof(uuid_t));
  2421. }
  2422. break;
  2423. default:
  2424. ASSERT(0);
  2425. break;
  2426. }
  2427. }
  2428. STATIC int
  2429. xfs_iflush_cluster(
  2430. xfs_inode_t *ip,
  2431. xfs_buf_t *bp)
  2432. {
  2433. xfs_mount_t *mp = ip->i_mount;
  2434. struct xfs_perag *pag;
  2435. unsigned long first_index, mask;
  2436. unsigned long inodes_per_cluster;
  2437. int ilist_size;
  2438. xfs_inode_t **ilist;
  2439. xfs_inode_t *iq;
  2440. int nr_found;
  2441. int clcount = 0;
  2442. int bufwasdelwri;
  2443. int i;
  2444. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2445. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2446. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2447. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2448. if (!ilist)
  2449. goto out_put;
  2450. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2451. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2452. read_lock(&pag->pag_ici_lock);
  2453. /* really need a gang lookup range call here */
  2454. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2455. first_index, inodes_per_cluster);
  2456. if (nr_found == 0)
  2457. goto out_free;
  2458. for (i = 0; i < nr_found; i++) {
  2459. iq = ilist[i];
  2460. if (iq == ip)
  2461. continue;
  2462. /* if the inode lies outside this cluster, we're done. */
  2463. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2464. break;
  2465. /*
  2466. * Do an un-protected check to see if the inode is dirty and
  2467. * is a candidate for flushing. These checks will be repeated
  2468. * later after the appropriate locks are acquired.
  2469. */
  2470. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2471. continue;
  2472. /*
  2473. * Try to get locks. If any are unavailable or it is pinned,
  2474. * then this inode cannot be flushed and is skipped.
  2475. */
  2476. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2477. continue;
  2478. if (!xfs_iflock_nowait(iq)) {
  2479. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2480. continue;
  2481. }
  2482. if (xfs_ipincount(iq)) {
  2483. xfs_ifunlock(iq);
  2484. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2485. continue;
  2486. }
  2487. /*
  2488. * arriving here means that this inode can be flushed. First
  2489. * re-check that it's dirty before flushing.
  2490. */
  2491. if (!xfs_inode_clean(iq)) {
  2492. int error;
  2493. error = xfs_iflush_int(iq, bp);
  2494. if (error) {
  2495. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2496. goto cluster_corrupt_out;
  2497. }
  2498. clcount++;
  2499. } else {
  2500. xfs_ifunlock(iq);
  2501. }
  2502. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2503. }
  2504. if (clcount) {
  2505. XFS_STATS_INC(xs_icluster_flushcnt);
  2506. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2507. }
  2508. out_free:
  2509. read_unlock(&pag->pag_ici_lock);
  2510. kmem_free(ilist);
  2511. out_put:
  2512. xfs_perag_put(pag);
  2513. return 0;
  2514. cluster_corrupt_out:
  2515. /*
  2516. * Corruption detected in the clustering loop. Invalidate the
  2517. * inode buffer and shut down the filesystem.
  2518. */
  2519. read_unlock(&pag->pag_ici_lock);
  2520. /*
  2521. * Clean up the buffer. If it was B_DELWRI, just release it --
  2522. * brelse can handle it with no problems. If not, shut down the
  2523. * filesystem before releasing the buffer.
  2524. */
  2525. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2526. if (bufwasdelwri)
  2527. xfs_buf_relse(bp);
  2528. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2529. if (!bufwasdelwri) {
  2530. /*
  2531. * Just like incore_relse: if we have b_iodone functions,
  2532. * mark the buffer as an error and call them. Otherwise
  2533. * mark it as stale and brelse.
  2534. */
  2535. if (XFS_BUF_IODONE_FUNC(bp)) {
  2536. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2537. XFS_BUF_UNDONE(bp);
  2538. XFS_BUF_STALE(bp);
  2539. XFS_BUF_ERROR(bp,EIO);
  2540. xfs_biodone(bp);
  2541. } else {
  2542. XFS_BUF_STALE(bp);
  2543. xfs_buf_relse(bp);
  2544. }
  2545. }
  2546. /*
  2547. * Unlocks the flush lock
  2548. */
  2549. xfs_iflush_abort(iq);
  2550. kmem_free(ilist);
  2551. xfs_perag_put(pag);
  2552. return XFS_ERROR(EFSCORRUPTED);
  2553. }
  2554. /*
  2555. * xfs_iflush() will write a modified inode's changes out to the
  2556. * inode's on disk home. The caller must have the inode lock held
  2557. * in at least shared mode and the inode flush completion must be
  2558. * active as well. The inode lock will still be held upon return from
  2559. * the call and the caller is free to unlock it.
  2560. * The inode flush will be completed when the inode reaches the disk.
  2561. * The flags indicate how the inode's buffer should be written out.
  2562. */
  2563. int
  2564. xfs_iflush(
  2565. xfs_inode_t *ip,
  2566. uint flags)
  2567. {
  2568. xfs_inode_log_item_t *iip;
  2569. xfs_buf_t *bp;
  2570. xfs_dinode_t *dip;
  2571. xfs_mount_t *mp;
  2572. int error;
  2573. XFS_STATS_INC(xs_iflush_count);
  2574. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2575. ASSERT(!completion_done(&ip->i_flush));
  2576. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2577. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2578. iip = ip->i_itemp;
  2579. mp = ip->i_mount;
  2580. /*
  2581. * We can't flush the inode until it is unpinned, so wait for it if we
  2582. * are allowed to block. We know noone new can pin it, because we are
  2583. * holding the inode lock shared and you need to hold it exclusively to
  2584. * pin the inode.
  2585. *
  2586. * If we are not allowed to block, force the log out asynchronously so
  2587. * that when we come back the inode will be unpinned. If other inodes
  2588. * in the same cluster are dirty, they will probably write the inode
  2589. * out for us if they occur after the log force completes.
  2590. */
  2591. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2592. xfs_iunpin_nowait(ip);
  2593. xfs_ifunlock(ip);
  2594. return EAGAIN;
  2595. }
  2596. xfs_iunpin_wait(ip);
  2597. /*
  2598. * For stale inodes we cannot rely on the backing buffer remaining
  2599. * stale in cache for the remaining life of the stale inode and so
  2600. * xfs_itobp() below may give us a buffer that no longer contains
  2601. * inodes below. We have to check this after ensuring the inode is
  2602. * unpinned so that it is safe to reclaim the stale inode after the
  2603. * flush call.
  2604. */
  2605. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2606. xfs_ifunlock(ip);
  2607. return 0;
  2608. }
  2609. /*
  2610. * This may have been unpinned because the filesystem is shutting
  2611. * down forcibly. If that's the case we must not write this inode
  2612. * to disk, because the log record didn't make it to disk!
  2613. */
  2614. if (XFS_FORCED_SHUTDOWN(mp)) {
  2615. ip->i_update_core = 0;
  2616. if (iip)
  2617. iip->ili_format.ilf_fields = 0;
  2618. xfs_ifunlock(ip);
  2619. return XFS_ERROR(EIO);
  2620. }
  2621. /*
  2622. * Get the buffer containing the on-disk inode.
  2623. */
  2624. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2625. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2626. if (error || !bp) {
  2627. xfs_ifunlock(ip);
  2628. return error;
  2629. }
  2630. /*
  2631. * First flush out the inode that xfs_iflush was called with.
  2632. */
  2633. error = xfs_iflush_int(ip, bp);
  2634. if (error)
  2635. goto corrupt_out;
  2636. /*
  2637. * If the buffer is pinned then push on the log now so we won't
  2638. * get stuck waiting in the write for too long.
  2639. */
  2640. if (XFS_BUF_ISPINNED(bp))
  2641. xfs_log_force(mp, 0);
  2642. /*
  2643. * inode clustering:
  2644. * see if other inodes can be gathered into this write
  2645. */
  2646. error = xfs_iflush_cluster(ip, bp);
  2647. if (error)
  2648. goto cluster_corrupt_out;
  2649. if (flags & SYNC_WAIT)
  2650. error = xfs_bwrite(mp, bp);
  2651. else
  2652. xfs_bdwrite(mp, bp);
  2653. return error;
  2654. corrupt_out:
  2655. xfs_buf_relse(bp);
  2656. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2657. cluster_corrupt_out:
  2658. /*
  2659. * Unlocks the flush lock
  2660. */
  2661. xfs_iflush_abort(ip);
  2662. return XFS_ERROR(EFSCORRUPTED);
  2663. }
  2664. STATIC int
  2665. xfs_iflush_int(
  2666. xfs_inode_t *ip,
  2667. xfs_buf_t *bp)
  2668. {
  2669. xfs_inode_log_item_t *iip;
  2670. xfs_dinode_t *dip;
  2671. xfs_mount_t *mp;
  2672. #ifdef XFS_TRANS_DEBUG
  2673. int first;
  2674. #endif
  2675. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2676. ASSERT(!completion_done(&ip->i_flush));
  2677. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2678. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2679. iip = ip->i_itemp;
  2680. mp = ip->i_mount;
  2681. /* set *dip = inode's place in the buffer */
  2682. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2683. /*
  2684. * Clear i_update_core before copying out the data.
  2685. * This is for coordination with our timestamp updates
  2686. * that don't hold the inode lock. They will always
  2687. * update the timestamps BEFORE setting i_update_core,
  2688. * so if we clear i_update_core after they set it we
  2689. * are guaranteed to see their updates to the timestamps.
  2690. * I believe that this depends on strongly ordered memory
  2691. * semantics, but we have that. We use the SYNCHRONIZE
  2692. * macro to make sure that the compiler does not reorder
  2693. * the i_update_core access below the data copy below.
  2694. */
  2695. ip->i_update_core = 0;
  2696. SYNCHRONIZE();
  2697. /*
  2698. * Make sure to get the latest timestamps from the Linux inode.
  2699. */
  2700. xfs_synchronize_times(ip);
  2701. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2702. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2703. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2704. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2705. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2706. goto corrupt_out;
  2707. }
  2708. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2709. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2710. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2711. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2712. ip->i_ino, ip, ip->i_d.di_magic);
  2713. goto corrupt_out;
  2714. }
  2715. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2716. if (XFS_TEST_ERROR(
  2717. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2718. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2719. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2720. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2721. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2722. ip->i_ino, ip);
  2723. goto corrupt_out;
  2724. }
  2725. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2726. if (XFS_TEST_ERROR(
  2727. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2728. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2729. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2730. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2731. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2732. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2733. ip->i_ino, ip);
  2734. goto corrupt_out;
  2735. }
  2736. }
  2737. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2738. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2739. XFS_RANDOM_IFLUSH_5)) {
  2740. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2741. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2742. ip->i_ino,
  2743. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2744. ip->i_d.di_nblocks,
  2745. ip);
  2746. goto corrupt_out;
  2747. }
  2748. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2749. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2750. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2751. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2752. ip->i_ino, ip->i_d.di_forkoff, ip);
  2753. goto corrupt_out;
  2754. }
  2755. /*
  2756. * bump the flush iteration count, used to detect flushes which
  2757. * postdate a log record during recovery.
  2758. */
  2759. ip->i_d.di_flushiter++;
  2760. /*
  2761. * Copy the dirty parts of the inode into the on-disk
  2762. * inode. We always copy out the core of the inode,
  2763. * because if the inode is dirty at all the core must
  2764. * be.
  2765. */
  2766. xfs_dinode_to_disk(dip, &ip->i_d);
  2767. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2768. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2769. ip->i_d.di_flushiter = 0;
  2770. /*
  2771. * If this is really an old format inode and the superblock version
  2772. * has not been updated to support only new format inodes, then
  2773. * convert back to the old inode format. If the superblock version
  2774. * has been updated, then make the conversion permanent.
  2775. */
  2776. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2777. if (ip->i_d.di_version == 1) {
  2778. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2779. /*
  2780. * Convert it back.
  2781. */
  2782. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2783. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2784. } else {
  2785. /*
  2786. * The superblock version has already been bumped,
  2787. * so just make the conversion to the new inode
  2788. * format permanent.
  2789. */
  2790. ip->i_d.di_version = 2;
  2791. dip->di_version = 2;
  2792. ip->i_d.di_onlink = 0;
  2793. dip->di_onlink = 0;
  2794. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2795. memset(&(dip->di_pad[0]), 0,
  2796. sizeof(dip->di_pad));
  2797. ASSERT(ip->i_d.di_projid == 0);
  2798. }
  2799. }
  2800. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2801. if (XFS_IFORK_Q(ip))
  2802. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2803. xfs_inobp_check(mp, bp);
  2804. /*
  2805. * We've recorded everything logged in the inode, so we'd
  2806. * like to clear the ilf_fields bits so we don't log and
  2807. * flush things unnecessarily. However, we can't stop
  2808. * logging all this information until the data we've copied
  2809. * into the disk buffer is written to disk. If we did we might
  2810. * overwrite the copy of the inode in the log with all the
  2811. * data after re-logging only part of it, and in the face of
  2812. * a crash we wouldn't have all the data we need to recover.
  2813. *
  2814. * What we do is move the bits to the ili_last_fields field.
  2815. * When logging the inode, these bits are moved back to the
  2816. * ilf_fields field. In the xfs_iflush_done() routine we
  2817. * clear ili_last_fields, since we know that the information
  2818. * those bits represent is permanently on disk. As long as
  2819. * the flush completes before the inode is logged again, then
  2820. * both ilf_fields and ili_last_fields will be cleared.
  2821. *
  2822. * We can play with the ilf_fields bits here, because the inode
  2823. * lock must be held exclusively in order to set bits there
  2824. * and the flush lock protects the ili_last_fields bits.
  2825. * Set ili_logged so the flush done
  2826. * routine can tell whether or not to look in the AIL.
  2827. * Also, store the current LSN of the inode so that we can tell
  2828. * whether the item has moved in the AIL from xfs_iflush_done().
  2829. * In order to read the lsn we need the AIL lock, because
  2830. * it is a 64 bit value that cannot be read atomically.
  2831. */
  2832. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2833. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2834. iip->ili_format.ilf_fields = 0;
  2835. iip->ili_logged = 1;
  2836. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2837. &iip->ili_item.li_lsn);
  2838. /*
  2839. * Attach the function xfs_iflush_done to the inode's
  2840. * buffer. This will remove the inode from the AIL
  2841. * and unlock the inode's flush lock when the inode is
  2842. * completely written to disk.
  2843. */
  2844. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2845. xfs_iflush_done, (xfs_log_item_t *)iip);
  2846. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2847. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2848. } else {
  2849. /*
  2850. * We're flushing an inode which is not in the AIL and has
  2851. * not been logged but has i_update_core set. For this
  2852. * case we can use a B_DELWRI flush and immediately drop
  2853. * the inode flush lock because we can avoid the whole
  2854. * AIL state thing. It's OK to drop the flush lock now,
  2855. * because we've already locked the buffer and to do anything
  2856. * you really need both.
  2857. */
  2858. if (iip != NULL) {
  2859. ASSERT(iip->ili_logged == 0);
  2860. ASSERT(iip->ili_last_fields == 0);
  2861. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2862. }
  2863. xfs_ifunlock(ip);
  2864. }
  2865. return 0;
  2866. corrupt_out:
  2867. return XFS_ERROR(EFSCORRUPTED);
  2868. }
  2869. /*
  2870. * Return a pointer to the extent record at file index idx.
  2871. */
  2872. xfs_bmbt_rec_host_t *
  2873. xfs_iext_get_ext(
  2874. xfs_ifork_t *ifp, /* inode fork pointer */
  2875. xfs_extnum_t idx) /* index of target extent */
  2876. {
  2877. ASSERT(idx >= 0);
  2878. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2879. return ifp->if_u1.if_ext_irec->er_extbuf;
  2880. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2881. xfs_ext_irec_t *erp; /* irec pointer */
  2882. int erp_idx = 0; /* irec index */
  2883. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2884. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2885. return &erp->er_extbuf[page_idx];
  2886. } else if (ifp->if_bytes) {
  2887. return &ifp->if_u1.if_extents[idx];
  2888. } else {
  2889. return NULL;
  2890. }
  2891. }
  2892. /*
  2893. * Insert new item(s) into the extent records for incore inode
  2894. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2895. */
  2896. void
  2897. xfs_iext_insert(
  2898. xfs_inode_t *ip, /* incore inode pointer */
  2899. xfs_extnum_t idx, /* starting index of new items */
  2900. xfs_extnum_t count, /* number of inserted items */
  2901. xfs_bmbt_irec_t *new, /* items to insert */
  2902. int state) /* type of extent conversion */
  2903. {
  2904. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2905. xfs_extnum_t i; /* extent record index */
  2906. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2907. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2908. xfs_iext_add(ifp, idx, count);
  2909. for (i = idx; i < idx + count; i++, new++)
  2910. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2911. }
  2912. /*
  2913. * This is called when the amount of space required for incore file
  2914. * extents needs to be increased. The ext_diff parameter stores the
  2915. * number of new extents being added and the idx parameter contains
  2916. * the extent index where the new extents will be added. If the new
  2917. * extents are being appended, then we just need to (re)allocate and
  2918. * initialize the space. Otherwise, if the new extents are being
  2919. * inserted into the middle of the existing entries, a bit more work
  2920. * is required to make room for the new extents to be inserted. The
  2921. * caller is responsible for filling in the new extent entries upon
  2922. * return.
  2923. */
  2924. void
  2925. xfs_iext_add(
  2926. xfs_ifork_t *ifp, /* inode fork pointer */
  2927. xfs_extnum_t idx, /* index to begin adding exts */
  2928. int ext_diff) /* number of extents to add */
  2929. {
  2930. int byte_diff; /* new bytes being added */
  2931. int new_size; /* size of extents after adding */
  2932. xfs_extnum_t nextents; /* number of extents in file */
  2933. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2934. ASSERT((idx >= 0) && (idx <= nextents));
  2935. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2936. new_size = ifp->if_bytes + byte_diff;
  2937. /*
  2938. * If the new number of extents (nextents + ext_diff)
  2939. * fits inside the inode, then continue to use the inline
  2940. * extent buffer.
  2941. */
  2942. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2943. if (idx < nextents) {
  2944. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2945. &ifp->if_u2.if_inline_ext[idx],
  2946. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2947. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2948. }
  2949. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2950. ifp->if_real_bytes = 0;
  2951. ifp->if_lastex = nextents + ext_diff;
  2952. }
  2953. /*
  2954. * Otherwise use a linear (direct) extent list.
  2955. * If the extents are currently inside the inode,
  2956. * xfs_iext_realloc_direct will switch us from
  2957. * inline to direct extent allocation mode.
  2958. */
  2959. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2960. xfs_iext_realloc_direct(ifp, new_size);
  2961. if (idx < nextents) {
  2962. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2963. &ifp->if_u1.if_extents[idx],
  2964. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2965. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2966. }
  2967. }
  2968. /* Indirection array */
  2969. else {
  2970. xfs_ext_irec_t *erp;
  2971. int erp_idx = 0;
  2972. int page_idx = idx;
  2973. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2974. if (ifp->if_flags & XFS_IFEXTIREC) {
  2975. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2976. } else {
  2977. xfs_iext_irec_init(ifp);
  2978. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2979. erp = ifp->if_u1.if_ext_irec;
  2980. }
  2981. /* Extents fit in target extent page */
  2982. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2983. if (page_idx < erp->er_extcount) {
  2984. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2985. &erp->er_extbuf[page_idx],
  2986. (erp->er_extcount - page_idx) *
  2987. sizeof(xfs_bmbt_rec_t));
  2988. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2989. }
  2990. erp->er_extcount += ext_diff;
  2991. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2992. }
  2993. /* Insert a new extent page */
  2994. else if (erp) {
  2995. xfs_iext_add_indirect_multi(ifp,
  2996. erp_idx, page_idx, ext_diff);
  2997. }
  2998. /*
  2999. * If extent(s) are being appended to the last page in
  3000. * the indirection array and the new extent(s) don't fit
  3001. * in the page, then erp is NULL and erp_idx is set to
  3002. * the next index needed in the indirection array.
  3003. */
  3004. else {
  3005. int count = ext_diff;
  3006. while (count) {
  3007. erp = xfs_iext_irec_new(ifp, erp_idx);
  3008. erp->er_extcount = count;
  3009. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3010. if (count) {
  3011. erp_idx++;
  3012. }
  3013. }
  3014. }
  3015. }
  3016. ifp->if_bytes = new_size;
  3017. }
  3018. /*
  3019. * This is called when incore extents are being added to the indirection
  3020. * array and the new extents do not fit in the target extent list. The
  3021. * erp_idx parameter contains the irec index for the target extent list
  3022. * in the indirection array, and the idx parameter contains the extent
  3023. * index within the list. The number of extents being added is stored
  3024. * in the count parameter.
  3025. *
  3026. * |-------| |-------|
  3027. * | | | | idx - number of extents before idx
  3028. * | idx | | count |
  3029. * | | | | count - number of extents being inserted at idx
  3030. * |-------| |-------|
  3031. * | count | | nex2 | nex2 - number of extents after idx + count
  3032. * |-------| |-------|
  3033. */
  3034. void
  3035. xfs_iext_add_indirect_multi(
  3036. xfs_ifork_t *ifp, /* inode fork pointer */
  3037. int erp_idx, /* target extent irec index */
  3038. xfs_extnum_t idx, /* index within target list */
  3039. int count) /* new extents being added */
  3040. {
  3041. int byte_diff; /* new bytes being added */
  3042. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3043. xfs_extnum_t ext_diff; /* number of extents to add */
  3044. xfs_extnum_t ext_cnt; /* new extents still needed */
  3045. xfs_extnum_t nex2; /* extents after idx + count */
  3046. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3047. int nlists; /* number of irec's (lists) */
  3048. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3049. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3050. nex2 = erp->er_extcount - idx;
  3051. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3052. /*
  3053. * Save second part of target extent list
  3054. * (all extents past */
  3055. if (nex2) {
  3056. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3057. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3058. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3059. erp->er_extcount -= nex2;
  3060. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3061. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3062. }
  3063. /*
  3064. * Add the new extents to the end of the target
  3065. * list, then allocate new irec record(s) and
  3066. * extent buffer(s) as needed to store the rest
  3067. * of the new extents.
  3068. */
  3069. ext_cnt = count;
  3070. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3071. if (ext_diff) {
  3072. erp->er_extcount += ext_diff;
  3073. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3074. ext_cnt -= ext_diff;
  3075. }
  3076. while (ext_cnt) {
  3077. erp_idx++;
  3078. erp = xfs_iext_irec_new(ifp, erp_idx);
  3079. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3080. erp->er_extcount = ext_diff;
  3081. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3082. ext_cnt -= ext_diff;
  3083. }
  3084. /* Add nex2 extents back to indirection array */
  3085. if (nex2) {
  3086. xfs_extnum_t ext_avail;
  3087. int i;
  3088. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3089. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3090. i = 0;
  3091. /*
  3092. * If nex2 extents fit in the current page, append
  3093. * nex2_ep after the new extents.
  3094. */
  3095. if (nex2 <= ext_avail) {
  3096. i = erp->er_extcount;
  3097. }
  3098. /*
  3099. * Otherwise, check if space is available in the
  3100. * next page.
  3101. */
  3102. else if ((erp_idx < nlists - 1) &&
  3103. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3104. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3105. erp_idx++;
  3106. erp++;
  3107. /* Create a hole for nex2 extents */
  3108. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3109. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3110. }
  3111. /*
  3112. * Final choice, create a new extent page for
  3113. * nex2 extents.
  3114. */
  3115. else {
  3116. erp_idx++;
  3117. erp = xfs_iext_irec_new(ifp, erp_idx);
  3118. }
  3119. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3120. kmem_free(nex2_ep);
  3121. erp->er_extcount += nex2;
  3122. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3123. }
  3124. }
  3125. /*
  3126. * This is called when the amount of space required for incore file
  3127. * extents needs to be decreased. The ext_diff parameter stores the
  3128. * number of extents to be removed and the idx parameter contains
  3129. * the extent index where the extents will be removed from.
  3130. *
  3131. * If the amount of space needed has decreased below the linear
  3132. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3133. * extent array. Otherwise, use kmem_realloc() to adjust the
  3134. * size to what is needed.
  3135. */
  3136. void
  3137. xfs_iext_remove(
  3138. xfs_inode_t *ip, /* incore inode pointer */
  3139. xfs_extnum_t idx, /* index to begin removing exts */
  3140. int ext_diff, /* number of extents to remove */
  3141. int state) /* type of extent conversion */
  3142. {
  3143. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3144. xfs_extnum_t nextents; /* number of extents in file */
  3145. int new_size; /* size of extents after removal */
  3146. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3147. ASSERT(ext_diff > 0);
  3148. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3149. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3150. if (new_size == 0) {
  3151. xfs_iext_destroy(ifp);
  3152. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3153. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3154. } else if (ifp->if_real_bytes) {
  3155. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3156. } else {
  3157. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3158. }
  3159. ifp->if_bytes = new_size;
  3160. }
  3161. /*
  3162. * This removes ext_diff extents from the inline buffer, beginning
  3163. * at extent index idx.
  3164. */
  3165. void
  3166. xfs_iext_remove_inline(
  3167. xfs_ifork_t *ifp, /* inode fork pointer */
  3168. xfs_extnum_t idx, /* index to begin removing exts */
  3169. int ext_diff) /* number of extents to remove */
  3170. {
  3171. int nextents; /* number of extents in file */
  3172. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3173. ASSERT(idx < XFS_INLINE_EXTS);
  3174. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3175. ASSERT(((nextents - ext_diff) > 0) &&
  3176. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3177. if (idx + ext_diff < nextents) {
  3178. memmove(&ifp->if_u2.if_inline_ext[idx],
  3179. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3180. (nextents - (idx + ext_diff)) *
  3181. sizeof(xfs_bmbt_rec_t));
  3182. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3183. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3184. } else {
  3185. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3186. ext_diff * sizeof(xfs_bmbt_rec_t));
  3187. }
  3188. }
  3189. /*
  3190. * This removes ext_diff extents from a linear (direct) extent list,
  3191. * beginning at extent index idx. If the extents are being removed
  3192. * from the end of the list (ie. truncate) then we just need to re-
  3193. * allocate the list to remove the extra space. Otherwise, if the
  3194. * extents are being removed from the middle of the existing extent
  3195. * entries, then we first need to move the extent records beginning
  3196. * at idx + ext_diff up in the list to overwrite the records being
  3197. * removed, then remove the extra space via kmem_realloc.
  3198. */
  3199. void
  3200. xfs_iext_remove_direct(
  3201. xfs_ifork_t *ifp, /* inode fork pointer */
  3202. xfs_extnum_t idx, /* index to begin removing exts */
  3203. int ext_diff) /* number of extents to remove */
  3204. {
  3205. xfs_extnum_t nextents; /* number of extents in file */
  3206. int new_size; /* size of extents after removal */
  3207. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3208. new_size = ifp->if_bytes -
  3209. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3210. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3211. if (new_size == 0) {
  3212. xfs_iext_destroy(ifp);
  3213. return;
  3214. }
  3215. /* Move extents up in the list (if needed) */
  3216. if (idx + ext_diff < nextents) {
  3217. memmove(&ifp->if_u1.if_extents[idx],
  3218. &ifp->if_u1.if_extents[idx + ext_diff],
  3219. (nextents - (idx + ext_diff)) *
  3220. sizeof(xfs_bmbt_rec_t));
  3221. }
  3222. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3223. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3224. /*
  3225. * Reallocate the direct extent list. If the extents
  3226. * will fit inside the inode then xfs_iext_realloc_direct
  3227. * will switch from direct to inline extent allocation
  3228. * mode for us.
  3229. */
  3230. xfs_iext_realloc_direct(ifp, new_size);
  3231. ifp->if_bytes = new_size;
  3232. }
  3233. /*
  3234. * This is called when incore extents are being removed from the
  3235. * indirection array and the extents being removed span multiple extent
  3236. * buffers. The idx parameter contains the file extent index where we
  3237. * want to begin removing extents, and the count parameter contains
  3238. * how many extents need to be removed.
  3239. *
  3240. * |-------| |-------|
  3241. * | nex1 | | | nex1 - number of extents before idx
  3242. * |-------| | count |
  3243. * | | | | count - number of extents being removed at idx
  3244. * | count | |-------|
  3245. * | | | nex2 | nex2 - number of extents after idx + count
  3246. * |-------| |-------|
  3247. */
  3248. void
  3249. xfs_iext_remove_indirect(
  3250. xfs_ifork_t *ifp, /* inode fork pointer */
  3251. xfs_extnum_t idx, /* index to begin removing extents */
  3252. int count) /* number of extents to remove */
  3253. {
  3254. xfs_ext_irec_t *erp; /* indirection array pointer */
  3255. int erp_idx = 0; /* indirection array index */
  3256. xfs_extnum_t ext_cnt; /* extents left to remove */
  3257. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3258. xfs_extnum_t nex1; /* number of extents before idx */
  3259. xfs_extnum_t nex2; /* extents after idx + count */
  3260. int nlists; /* entries in indirection array */
  3261. int page_idx = idx; /* index in target extent list */
  3262. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3263. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3264. ASSERT(erp != NULL);
  3265. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3266. nex1 = page_idx;
  3267. ext_cnt = count;
  3268. while (ext_cnt) {
  3269. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3270. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3271. /*
  3272. * Check for deletion of entire list;
  3273. * xfs_iext_irec_remove() updates extent offsets.
  3274. */
  3275. if (ext_diff == erp->er_extcount) {
  3276. xfs_iext_irec_remove(ifp, erp_idx);
  3277. ext_cnt -= ext_diff;
  3278. nex1 = 0;
  3279. if (ext_cnt) {
  3280. ASSERT(erp_idx < ifp->if_real_bytes /
  3281. XFS_IEXT_BUFSZ);
  3282. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3283. nex1 = 0;
  3284. continue;
  3285. } else {
  3286. break;
  3287. }
  3288. }
  3289. /* Move extents up (if needed) */
  3290. if (nex2) {
  3291. memmove(&erp->er_extbuf[nex1],
  3292. &erp->er_extbuf[nex1 + ext_diff],
  3293. nex2 * sizeof(xfs_bmbt_rec_t));
  3294. }
  3295. /* Zero out rest of page */
  3296. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3297. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3298. /* Update remaining counters */
  3299. erp->er_extcount -= ext_diff;
  3300. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3301. ext_cnt -= ext_diff;
  3302. nex1 = 0;
  3303. erp_idx++;
  3304. erp++;
  3305. }
  3306. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3307. xfs_iext_irec_compact(ifp);
  3308. }
  3309. /*
  3310. * Create, destroy, or resize a linear (direct) block of extents.
  3311. */
  3312. void
  3313. xfs_iext_realloc_direct(
  3314. xfs_ifork_t *ifp, /* inode fork pointer */
  3315. int new_size) /* new size of extents */
  3316. {
  3317. int rnew_size; /* real new size of extents */
  3318. rnew_size = new_size;
  3319. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3320. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3321. (new_size != ifp->if_real_bytes)));
  3322. /* Free extent records */
  3323. if (new_size == 0) {
  3324. xfs_iext_destroy(ifp);
  3325. }
  3326. /* Resize direct extent list and zero any new bytes */
  3327. else if (ifp->if_real_bytes) {
  3328. /* Check if extents will fit inside the inode */
  3329. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3330. xfs_iext_direct_to_inline(ifp, new_size /
  3331. (uint)sizeof(xfs_bmbt_rec_t));
  3332. ifp->if_bytes = new_size;
  3333. return;
  3334. }
  3335. if (!is_power_of_2(new_size)){
  3336. rnew_size = roundup_pow_of_two(new_size);
  3337. }
  3338. if (rnew_size != ifp->if_real_bytes) {
  3339. ifp->if_u1.if_extents =
  3340. kmem_realloc(ifp->if_u1.if_extents,
  3341. rnew_size,
  3342. ifp->if_real_bytes, KM_NOFS);
  3343. }
  3344. if (rnew_size > ifp->if_real_bytes) {
  3345. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3346. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3347. rnew_size - ifp->if_real_bytes);
  3348. }
  3349. }
  3350. /*
  3351. * Switch from the inline extent buffer to a direct
  3352. * extent list. Be sure to include the inline extent
  3353. * bytes in new_size.
  3354. */
  3355. else {
  3356. new_size += ifp->if_bytes;
  3357. if (!is_power_of_2(new_size)) {
  3358. rnew_size = roundup_pow_of_two(new_size);
  3359. }
  3360. xfs_iext_inline_to_direct(ifp, rnew_size);
  3361. }
  3362. ifp->if_real_bytes = rnew_size;
  3363. ifp->if_bytes = new_size;
  3364. }
  3365. /*
  3366. * Switch from linear (direct) extent records to inline buffer.
  3367. */
  3368. void
  3369. xfs_iext_direct_to_inline(
  3370. xfs_ifork_t *ifp, /* inode fork pointer */
  3371. xfs_extnum_t nextents) /* number of extents in file */
  3372. {
  3373. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3374. ASSERT(nextents <= XFS_INLINE_EXTS);
  3375. /*
  3376. * The inline buffer was zeroed when we switched
  3377. * from inline to direct extent allocation mode,
  3378. * so we don't need to clear it here.
  3379. */
  3380. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3381. nextents * sizeof(xfs_bmbt_rec_t));
  3382. kmem_free(ifp->if_u1.if_extents);
  3383. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3384. ifp->if_real_bytes = 0;
  3385. }
  3386. /*
  3387. * Switch from inline buffer to linear (direct) extent records.
  3388. * new_size should already be rounded up to the next power of 2
  3389. * by the caller (when appropriate), so use new_size as it is.
  3390. * However, since new_size may be rounded up, we can't update
  3391. * if_bytes here. It is the caller's responsibility to update
  3392. * if_bytes upon return.
  3393. */
  3394. void
  3395. xfs_iext_inline_to_direct(
  3396. xfs_ifork_t *ifp, /* inode fork pointer */
  3397. int new_size) /* number of extents in file */
  3398. {
  3399. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3400. memset(ifp->if_u1.if_extents, 0, new_size);
  3401. if (ifp->if_bytes) {
  3402. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3403. ifp->if_bytes);
  3404. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3405. sizeof(xfs_bmbt_rec_t));
  3406. }
  3407. ifp->if_real_bytes = new_size;
  3408. }
  3409. /*
  3410. * Resize an extent indirection array to new_size bytes.
  3411. */
  3412. STATIC void
  3413. xfs_iext_realloc_indirect(
  3414. xfs_ifork_t *ifp, /* inode fork pointer */
  3415. int new_size) /* new indirection array size */
  3416. {
  3417. int nlists; /* number of irec's (ex lists) */
  3418. int size; /* current indirection array size */
  3419. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3420. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3421. size = nlists * sizeof(xfs_ext_irec_t);
  3422. ASSERT(ifp->if_real_bytes);
  3423. ASSERT((new_size >= 0) && (new_size != size));
  3424. if (new_size == 0) {
  3425. xfs_iext_destroy(ifp);
  3426. } else {
  3427. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3428. kmem_realloc(ifp->if_u1.if_ext_irec,
  3429. new_size, size, KM_NOFS);
  3430. }
  3431. }
  3432. /*
  3433. * Switch from indirection array to linear (direct) extent allocations.
  3434. */
  3435. STATIC void
  3436. xfs_iext_indirect_to_direct(
  3437. xfs_ifork_t *ifp) /* inode fork pointer */
  3438. {
  3439. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3440. xfs_extnum_t nextents; /* number of extents in file */
  3441. int size; /* size of file extents */
  3442. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3443. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3444. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3445. size = nextents * sizeof(xfs_bmbt_rec_t);
  3446. xfs_iext_irec_compact_pages(ifp);
  3447. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3448. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3449. kmem_free(ifp->if_u1.if_ext_irec);
  3450. ifp->if_flags &= ~XFS_IFEXTIREC;
  3451. ifp->if_u1.if_extents = ep;
  3452. ifp->if_bytes = size;
  3453. if (nextents < XFS_LINEAR_EXTS) {
  3454. xfs_iext_realloc_direct(ifp, size);
  3455. }
  3456. }
  3457. /*
  3458. * Free incore file extents.
  3459. */
  3460. void
  3461. xfs_iext_destroy(
  3462. xfs_ifork_t *ifp) /* inode fork pointer */
  3463. {
  3464. if (ifp->if_flags & XFS_IFEXTIREC) {
  3465. int erp_idx;
  3466. int nlists;
  3467. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3468. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3469. xfs_iext_irec_remove(ifp, erp_idx);
  3470. }
  3471. ifp->if_flags &= ~XFS_IFEXTIREC;
  3472. } else if (ifp->if_real_bytes) {
  3473. kmem_free(ifp->if_u1.if_extents);
  3474. } else if (ifp->if_bytes) {
  3475. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3476. sizeof(xfs_bmbt_rec_t));
  3477. }
  3478. ifp->if_u1.if_extents = NULL;
  3479. ifp->if_real_bytes = 0;
  3480. ifp->if_bytes = 0;
  3481. }
  3482. /*
  3483. * Return a pointer to the extent record for file system block bno.
  3484. */
  3485. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3486. xfs_iext_bno_to_ext(
  3487. xfs_ifork_t *ifp, /* inode fork pointer */
  3488. xfs_fileoff_t bno, /* block number to search for */
  3489. xfs_extnum_t *idxp) /* index of target extent */
  3490. {
  3491. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3492. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3493. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3494. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3495. int high; /* upper boundary in search */
  3496. xfs_extnum_t idx = 0; /* index of target extent */
  3497. int low; /* lower boundary in search */
  3498. xfs_extnum_t nextents; /* number of file extents */
  3499. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3500. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3501. if (nextents == 0) {
  3502. *idxp = 0;
  3503. return NULL;
  3504. }
  3505. low = 0;
  3506. if (ifp->if_flags & XFS_IFEXTIREC) {
  3507. /* Find target extent list */
  3508. int erp_idx = 0;
  3509. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3510. base = erp->er_extbuf;
  3511. high = erp->er_extcount - 1;
  3512. } else {
  3513. base = ifp->if_u1.if_extents;
  3514. high = nextents - 1;
  3515. }
  3516. /* Binary search extent records */
  3517. while (low <= high) {
  3518. idx = (low + high) >> 1;
  3519. ep = base + idx;
  3520. startoff = xfs_bmbt_get_startoff(ep);
  3521. blockcount = xfs_bmbt_get_blockcount(ep);
  3522. if (bno < startoff) {
  3523. high = idx - 1;
  3524. } else if (bno >= startoff + blockcount) {
  3525. low = idx + 1;
  3526. } else {
  3527. /* Convert back to file-based extent index */
  3528. if (ifp->if_flags & XFS_IFEXTIREC) {
  3529. idx += erp->er_extoff;
  3530. }
  3531. *idxp = idx;
  3532. return ep;
  3533. }
  3534. }
  3535. /* Convert back to file-based extent index */
  3536. if (ifp->if_flags & XFS_IFEXTIREC) {
  3537. idx += erp->er_extoff;
  3538. }
  3539. if (bno >= startoff + blockcount) {
  3540. if (++idx == nextents) {
  3541. ep = NULL;
  3542. } else {
  3543. ep = xfs_iext_get_ext(ifp, idx);
  3544. }
  3545. }
  3546. *idxp = idx;
  3547. return ep;
  3548. }
  3549. /*
  3550. * Return a pointer to the indirection array entry containing the
  3551. * extent record for filesystem block bno. Store the index of the
  3552. * target irec in *erp_idxp.
  3553. */
  3554. xfs_ext_irec_t * /* pointer to found extent record */
  3555. xfs_iext_bno_to_irec(
  3556. xfs_ifork_t *ifp, /* inode fork pointer */
  3557. xfs_fileoff_t bno, /* block number to search for */
  3558. int *erp_idxp) /* irec index of target ext list */
  3559. {
  3560. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3561. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3562. int erp_idx; /* indirection array index */
  3563. int nlists; /* number of extent irec's (lists) */
  3564. int high; /* binary search upper limit */
  3565. int low; /* binary search lower limit */
  3566. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3567. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3568. erp_idx = 0;
  3569. low = 0;
  3570. high = nlists - 1;
  3571. while (low <= high) {
  3572. erp_idx = (low + high) >> 1;
  3573. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3574. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3575. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3576. high = erp_idx - 1;
  3577. } else if (erp_next && bno >=
  3578. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3579. low = erp_idx + 1;
  3580. } else {
  3581. break;
  3582. }
  3583. }
  3584. *erp_idxp = erp_idx;
  3585. return erp;
  3586. }
  3587. /*
  3588. * Return a pointer to the indirection array entry containing the
  3589. * extent record at file extent index *idxp. Store the index of the
  3590. * target irec in *erp_idxp and store the page index of the target
  3591. * extent record in *idxp.
  3592. */
  3593. xfs_ext_irec_t *
  3594. xfs_iext_idx_to_irec(
  3595. xfs_ifork_t *ifp, /* inode fork pointer */
  3596. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3597. int *erp_idxp, /* pointer to target irec */
  3598. int realloc) /* new bytes were just added */
  3599. {
  3600. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3601. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3602. int erp_idx; /* indirection array index */
  3603. int nlists; /* number of irec's (ex lists) */
  3604. int high; /* binary search upper limit */
  3605. int low; /* binary search lower limit */
  3606. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3607. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3608. ASSERT(page_idx >= 0 && page_idx <=
  3609. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3610. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3611. erp_idx = 0;
  3612. low = 0;
  3613. high = nlists - 1;
  3614. /* Binary search extent irec's */
  3615. while (low <= high) {
  3616. erp_idx = (low + high) >> 1;
  3617. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3618. prev = erp_idx > 0 ? erp - 1 : NULL;
  3619. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3620. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3621. high = erp_idx - 1;
  3622. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3623. (page_idx == erp->er_extoff + erp->er_extcount &&
  3624. !realloc)) {
  3625. low = erp_idx + 1;
  3626. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3627. erp->er_extcount == XFS_LINEAR_EXTS) {
  3628. ASSERT(realloc);
  3629. page_idx = 0;
  3630. erp_idx++;
  3631. erp = erp_idx < nlists ? erp + 1 : NULL;
  3632. break;
  3633. } else {
  3634. page_idx -= erp->er_extoff;
  3635. break;
  3636. }
  3637. }
  3638. *idxp = page_idx;
  3639. *erp_idxp = erp_idx;
  3640. return(erp);
  3641. }
  3642. /*
  3643. * Allocate and initialize an indirection array once the space needed
  3644. * for incore extents increases above XFS_IEXT_BUFSZ.
  3645. */
  3646. void
  3647. xfs_iext_irec_init(
  3648. xfs_ifork_t *ifp) /* inode fork pointer */
  3649. {
  3650. xfs_ext_irec_t *erp; /* indirection array pointer */
  3651. xfs_extnum_t nextents; /* number of extents in file */
  3652. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3653. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3654. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3655. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3656. if (nextents == 0) {
  3657. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3658. } else if (!ifp->if_real_bytes) {
  3659. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3660. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3661. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3662. }
  3663. erp->er_extbuf = ifp->if_u1.if_extents;
  3664. erp->er_extcount = nextents;
  3665. erp->er_extoff = 0;
  3666. ifp->if_flags |= XFS_IFEXTIREC;
  3667. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3668. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3669. ifp->if_u1.if_ext_irec = erp;
  3670. return;
  3671. }
  3672. /*
  3673. * Allocate and initialize a new entry in the indirection array.
  3674. */
  3675. xfs_ext_irec_t *
  3676. xfs_iext_irec_new(
  3677. xfs_ifork_t *ifp, /* inode fork pointer */
  3678. int erp_idx) /* index for new irec */
  3679. {
  3680. xfs_ext_irec_t *erp; /* indirection array pointer */
  3681. int i; /* loop counter */
  3682. int nlists; /* number of irec's (ex lists) */
  3683. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3684. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3685. /* Resize indirection array */
  3686. xfs_iext_realloc_indirect(ifp, ++nlists *
  3687. sizeof(xfs_ext_irec_t));
  3688. /*
  3689. * Move records down in the array so the
  3690. * new page can use erp_idx.
  3691. */
  3692. erp = ifp->if_u1.if_ext_irec;
  3693. for (i = nlists - 1; i > erp_idx; i--) {
  3694. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3695. }
  3696. ASSERT(i == erp_idx);
  3697. /* Initialize new extent record */
  3698. erp = ifp->if_u1.if_ext_irec;
  3699. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3700. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3701. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3702. erp[erp_idx].er_extcount = 0;
  3703. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3704. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3705. return (&erp[erp_idx]);
  3706. }
  3707. /*
  3708. * Remove a record from the indirection array.
  3709. */
  3710. void
  3711. xfs_iext_irec_remove(
  3712. xfs_ifork_t *ifp, /* inode fork pointer */
  3713. int erp_idx) /* irec index to remove */
  3714. {
  3715. xfs_ext_irec_t *erp; /* indirection array pointer */
  3716. int i; /* loop counter */
  3717. int nlists; /* number of irec's (ex lists) */
  3718. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3719. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3720. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3721. if (erp->er_extbuf) {
  3722. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3723. -erp->er_extcount);
  3724. kmem_free(erp->er_extbuf);
  3725. }
  3726. /* Compact extent records */
  3727. erp = ifp->if_u1.if_ext_irec;
  3728. for (i = erp_idx; i < nlists - 1; i++) {
  3729. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3730. }
  3731. /*
  3732. * Manually free the last extent record from the indirection
  3733. * array. A call to xfs_iext_realloc_indirect() with a size
  3734. * of zero would result in a call to xfs_iext_destroy() which
  3735. * would in turn call this function again, creating a nasty
  3736. * infinite loop.
  3737. */
  3738. if (--nlists) {
  3739. xfs_iext_realloc_indirect(ifp,
  3740. nlists * sizeof(xfs_ext_irec_t));
  3741. } else {
  3742. kmem_free(ifp->if_u1.if_ext_irec);
  3743. }
  3744. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3745. }
  3746. /*
  3747. * This is called to clean up large amounts of unused memory allocated
  3748. * by the indirection array. Before compacting anything though, verify
  3749. * that the indirection array is still needed and switch back to the
  3750. * linear extent list (or even the inline buffer) if possible. The
  3751. * compaction policy is as follows:
  3752. *
  3753. * Full Compaction: Extents fit into a single page (or inline buffer)
  3754. * Partial Compaction: Extents occupy less than 50% of allocated space
  3755. * No Compaction: Extents occupy at least 50% of allocated space
  3756. */
  3757. void
  3758. xfs_iext_irec_compact(
  3759. xfs_ifork_t *ifp) /* inode fork pointer */
  3760. {
  3761. xfs_extnum_t nextents; /* number of extents in file */
  3762. int nlists; /* number of irec's (ex lists) */
  3763. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3764. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3765. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3766. if (nextents == 0) {
  3767. xfs_iext_destroy(ifp);
  3768. } else if (nextents <= XFS_INLINE_EXTS) {
  3769. xfs_iext_indirect_to_direct(ifp);
  3770. xfs_iext_direct_to_inline(ifp, nextents);
  3771. } else if (nextents <= XFS_LINEAR_EXTS) {
  3772. xfs_iext_indirect_to_direct(ifp);
  3773. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3774. xfs_iext_irec_compact_pages(ifp);
  3775. }
  3776. }
  3777. /*
  3778. * Combine extents from neighboring extent pages.
  3779. */
  3780. void
  3781. xfs_iext_irec_compact_pages(
  3782. xfs_ifork_t *ifp) /* inode fork pointer */
  3783. {
  3784. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3785. int erp_idx = 0; /* indirection array index */
  3786. int nlists; /* number of irec's (ex lists) */
  3787. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3788. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3789. while (erp_idx < nlists - 1) {
  3790. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3791. erp_next = erp + 1;
  3792. if (erp_next->er_extcount <=
  3793. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3794. memcpy(&erp->er_extbuf[erp->er_extcount],
  3795. erp_next->er_extbuf, erp_next->er_extcount *
  3796. sizeof(xfs_bmbt_rec_t));
  3797. erp->er_extcount += erp_next->er_extcount;
  3798. /*
  3799. * Free page before removing extent record
  3800. * so er_extoffs don't get modified in
  3801. * xfs_iext_irec_remove.
  3802. */
  3803. kmem_free(erp_next->er_extbuf);
  3804. erp_next->er_extbuf = NULL;
  3805. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3806. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3807. } else {
  3808. erp_idx++;
  3809. }
  3810. }
  3811. }
  3812. /*
  3813. * This is called to update the er_extoff field in the indirection
  3814. * array when extents have been added or removed from one of the
  3815. * extent lists. erp_idx contains the irec index to begin updating
  3816. * at and ext_diff contains the number of extents that were added
  3817. * or removed.
  3818. */
  3819. void
  3820. xfs_iext_irec_update_extoffs(
  3821. xfs_ifork_t *ifp, /* inode fork pointer */
  3822. int erp_idx, /* irec index to update */
  3823. int ext_diff) /* number of new extents */
  3824. {
  3825. int i; /* loop counter */
  3826. int nlists; /* number of irec's (ex lists */
  3827. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3828. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3829. for (i = erp_idx; i < nlists; i++) {
  3830. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3831. }
  3832. }