xfs_sync.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_inode.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_error.h"
  39. #include "xfs_mru_cache.h"
  40. #include "xfs_filestream.h"
  41. #include "xfs_vnodeops.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_inode_item.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_trace.h"
  48. #include <linux/kthread.h>
  49. #include <linux/freezer.h>
  50. STATIC xfs_inode_t *
  51. xfs_inode_ag_lookup(
  52. struct xfs_mount *mp,
  53. struct xfs_perag *pag,
  54. uint32_t *first_index,
  55. int tag)
  56. {
  57. int nr_found;
  58. struct xfs_inode *ip;
  59. /*
  60. * use a gang lookup to find the next inode in the tree
  61. * as the tree is sparse and a gang lookup walks to find
  62. * the number of objects requested.
  63. */
  64. if (tag == XFS_ICI_NO_TAG) {
  65. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
  66. (void **)&ip, *first_index, 1);
  67. } else {
  68. nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
  69. (void **)&ip, *first_index, 1, tag);
  70. }
  71. if (!nr_found)
  72. return NULL;
  73. /*
  74. * Update the index for the next lookup. Catch overflows
  75. * into the next AG range which can occur if we have inodes
  76. * in the last block of the AG and we are currently
  77. * pointing to the last inode.
  78. */
  79. *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  80. if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  81. return NULL;
  82. return ip;
  83. }
  84. STATIC int
  85. xfs_inode_ag_walk(
  86. struct xfs_mount *mp,
  87. struct xfs_perag *pag,
  88. int (*execute)(struct xfs_inode *ip,
  89. struct xfs_perag *pag, int flags),
  90. int flags,
  91. int tag,
  92. int exclusive,
  93. int *nr_to_scan)
  94. {
  95. uint32_t first_index;
  96. int last_error = 0;
  97. int skipped;
  98. restart:
  99. skipped = 0;
  100. first_index = 0;
  101. do {
  102. int error = 0;
  103. xfs_inode_t *ip;
  104. if (exclusive)
  105. write_lock(&pag->pag_ici_lock);
  106. else
  107. read_lock(&pag->pag_ici_lock);
  108. ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
  109. if (!ip) {
  110. if (exclusive)
  111. write_unlock(&pag->pag_ici_lock);
  112. else
  113. read_unlock(&pag->pag_ici_lock);
  114. break;
  115. }
  116. /* execute releases pag->pag_ici_lock */
  117. error = execute(ip, pag, flags);
  118. if (error == EAGAIN) {
  119. skipped++;
  120. continue;
  121. }
  122. if (error)
  123. last_error = error;
  124. /* bail out if the filesystem is corrupted. */
  125. if (error == EFSCORRUPTED)
  126. break;
  127. } while ((*nr_to_scan)--);
  128. if (skipped) {
  129. delay(1);
  130. goto restart;
  131. }
  132. return last_error;
  133. }
  134. int
  135. xfs_inode_ag_iterator(
  136. struct xfs_mount *mp,
  137. int (*execute)(struct xfs_inode *ip,
  138. struct xfs_perag *pag, int flags),
  139. int flags,
  140. int tag,
  141. int exclusive,
  142. int *nr_to_scan)
  143. {
  144. int error = 0;
  145. int last_error = 0;
  146. xfs_agnumber_t ag;
  147. int nr;
  148. nr = nr_to_scan ? *nr_to_scan : INT_MAX;
  149. for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
  150. struct xfs_perag *pag;
  151. pag = xfs_perag_get(mp, ag);
  152. error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
  153. exclusive, &nr);
  154. xfs_perag_put(pag);
  155. if (error) {
  156. last_error = error;
  157. if (error == EFSCORRUPTED)
  158. break;
  159. }
  160. if (nr <= 0)
  161. break;
  162. }
  163. if (nr_to_scan)
  164. *nr_to_scan = nr;
  165. return XFS_ERROR(last_error);
  166. }
  167. /* must be called with pag_ici_lock held and releases it */
  168. int
  169. xfs_sync_inode_valid(
  170. struct xfs_inode *ip,
  171. struct xfs_perag *pag)
  172. {
  173. struct inode *inode = VFS_I(ip);
  174. int error = EFSCORRUPTED;
  175. /* nothing to sync during shutdown */
  176. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  177. goto out_unlock;
  178. /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
  179. error = ENOENT;
  180. if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
  181. goto out_unlock;
  182. /* If we can't grab the inode, it must on it's way to reclaim. */
  183. if (!igrab(inode))
  184. goto out_unlock;
  185. if (is_bad_inode(inode)) {
  186. IRELE(ip);
  187. goto out_unlock;
  188. }
  189. /* inode is valid */
  190. error = 0;
  191. out_unlock:
  192. read_unlock(&pag->pag_ici_lock);
  193. return error;
  194. }
  195. STATIC int
  196. xfs_sync_inode_data(
  197. struct xfs_inode *ip,
  198. struct xfs_perag *pag,
  199. int flags)
  200. {
  201. struct inode *inode = VFS_I(ip);
  202. struct address_space *mapping = inode->i_mapping;
  203. int error = 0;
  204. error = xfs_sync_inode_valid(ip, pag);
  205. if (error)
  206. return error;
  207. if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  208. goto out_wait;
  209. if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
  210. if (flags & SYNC_TRYLOCK)
  211. goto out_wait;
  212. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  213. }
  214. error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
  215. 0 : XBF_ASYNC, FI_NONE);
  216. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  217. out_wait:
  218. if (flags & SYNC_WAIT)
  219. xfs_ioend_wait(ip);
  220. IRELE(ip);
  221. return error;
  222. }
  223. STATIC int
  224. xfs_sync_inode_attr(
  225. struct xfs_inode *ip,
  226. struct xfs_perag *pag,
  227. int flags)
  228. {
  229. int error = 0;
  230. error = xfs_sync_inode_valid(ip, pag);
  231. if (error)
  232. return error;
  233. xfs_ilock(ip, XFS_ILOCK_SHARED);
  234. if (xfs_inode_clean(ip))
  235. goto out_unlock;
  236. if (!xfs_iflock_nowait(ip)) {
  237. if (!(flags & SYNC_WAIT))
  238. goto out_unlock;
  239. xfs_iflock(ip);
  240. }
  241. if (xfs_inode_clean(ip)) {
  242. xfs_ifunlock(ip);
  243. goto out_unlock;
  244. }
  245. error = xfs_iflush(ip, flags);
  246. out_unlock:
  247. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  248. IRELE(ip);
  249. return error;
  250. }
  251. /*
  252. * Write out pagecache data for the whole filesystem.
  253. */
  254. int
  255. xfs_sync_data(
  256. struct xfs_mount *mp,
  257. int flags)
  258. {
  259. int error;
  260. ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
  261. error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
  262. XFS_ICI_NO_TAG, 0, NULL);
  263. if (error)
  264. return XFS_ERROR(error);
  265. xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
  266. return 0;
  267. }
  268. /*
  269. * Write out inode metadata (attributes) for the whole filesystem.
  270. */
  271. int
  272. xfs_sync_attr(
  273. struct xfs_mount *mp,
  274. int flags)
  275. {
  276. ASSERT((flags & ~SYNC_WAIT) == 0);
  277. return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
  278. XFS_ICI_NO_TAG, 0, NULL);
  279. }
  280. STATIC int
  281. xfs_commit_dummy_trans(
  282. struct xfs_mount *mp,
  283. uint flags)
  284. {
  285. struct xfs_inode *ip = mp->m_rootip;
  286. struct xfs_trans *tp;
  287. int error;
  288. /*
  289. * Put a dummy transaction in the log to tell recovery
  290. * that all others are OK.
  291. */
  292. tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
  293. error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
  294. if (error) {
  295. xfs_trans_cancel(tp, 0);
  296. return error;
  297. }
  298. xfs_ilock(ip, XFS_ILOCK_EXCL);
  299. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  300. xfs_trans_ihold(tp, ip);
  301. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  302. error = xfs_trans_commit(tp, 0);
  303. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  304. /* the log force ensures this transaction is pushed to disk */
  305. xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
  306. return error;
  307. }
  308. STATIC int
  309. xfs_sync_fsdata(
  310. struct xfs_mount *mp)
  311. {
  312. struct xfs_buf *bp;
  313. /*
  314. * If the buffer is pinned then push on the log so we won't get stuck
  315. * waiting in the write for someone, maybe ourselves, to flush the log.
  316. *
  317. * Even though we just pushed the log above, we did not have the
  318. * superblock buffer locked at that point so it can become pinned in
  319. * between there and here.
  320. */
  321. bp = xfs_getsb(mp, 0);
  322. if (XFS_BUF_ISPINNED(bp))
  323. xfs_log_force(mp, 0);
  324. return xfs_bwrite(mp, bp);
  325. }
  326. /*
  327. * When remounting a filesystem read-only or freezing the filesystem, we have
  328. * two phases to execute. This first phase is syncing the data before we
  329. * quiesce the filesystem, and the second is flushing all the inodes out after
  330. * we've waited for all the transactions created by the first phase to
  331. * complete. The second phase ensures that the inodes are written to their
  332. * location on disk rather than just existing in transactions in the log. This
  333. * means after a quiesce there is no log replay required to write the inodes to
  334. * disk (this is the main difference between a sync and a quiesce).
  335. */
  336. /*
  337. * First stage of freeze - no writers will make progress now we are here,
  338. * so we flush delwri and delalloc buffers here, then wait for all I/O to
  339. * complete. Data is frozen at that point. Metadata is not frozen,
  340. * transactions can still occur here so don't bother flushing the buftarg
  341. * because it'll just get dirty again.
  342. */
  343. int
  344. xfs_quiesce_data(
  345. struct xfs_mount *mp)
  346. {
  347. int error, error2 = 0;
  348. /* push non-blocking */
  349. xfs_sync_data(mp, 0);
  350. xfs_qm_sync(mp, SYNC_TRYLOCK);
  351. /* push and block till complete */
  352. xfs_sync_data(mp, SYNC_WAIT);
  353. xfs_qm_sync(mp, SYNC_WAIT);
  354. /* write superblock and hoover up shutdown errors */
  355. error = xfs_sync_fsdata(mp);
  356. /* make sure all delwri buffers are written out */
  357. xfs_flush_buftarg(mp->m_ddev_targp, 1);
  358. /* mark the log as covered if needed */
  359. if (xfs_log_need_covered(mp))
  360. error2 = xfs_commit_dummy_trans(mp, SYNC_WAIT);
  361. /* flush data-only devices */
  362. if (mp->m_rtdev_targp)
  363. XFS_bflush(mp->m_rtdev_targp);
  364. return error ? error : error2;
  365. }
  366. STATIC void
  367. xfs_quiesce_fs(
  368. struct xfs_mount *mp)
  369. {
  370. int count = 0, pincount;
  371. xfs_reclaim_inodes(mp, 0);
  372. xfs_flush_buftarg(mp->m_ddev_targp, 0);
  373. /*
  374. * This loop must run at least twice. The first instance of the loop
  375. * will flush most meta data but that will generate more meta data
  376. * (typically directory updates). Which then must be flushed and
  377. * logged before we can write the unmount record. We also so sync
  378. * reclaim of inodes to catch any that the above delwri flush skipped.
  379. */
  380. do {
  381. xfs_reclaim_inodes(mp, SYNC_WAIT);
  382. xfs_sync_attr(mp, SYNC_WAIT);
  383. pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
  384. if (!pincount) {
  385. delay(50);
  386. count++;
  387. }
  388. } while (count < 2);
  389. }
  390. /*
  391. * Second stage of a quiesce. The data is already synced, now we have to take
  392. * care of the metadata. New transactions are already blocked, so we need to
  393. * wait for any remaining transactions to drain out before proceding.
  394. */
  395. void
  396. xfs_quiesce_attr(
  397. struct xfs_mount *mp)
  398. {
  399. int error = 0;
  400. /* wait for all modifications to complete */
  401. while (atomic_read(&mp->m_active_trans) > 0)
  402. delay(100);
  403. /* flush inodes and push all remaining buffers out to disk */
  404. xfs_quiesce_fs(mp);
  405. /*
  406. * Just warn here till VFS can correctly support
  407. * read-only remount without racing.
  408. */
  409. WARN_ON(atomic_read(&mp->m_active_trans) != 0);
  410. /* Push the superblock and write an unmount record */
  411. error = xfs_log_sbcount(mp, 1);
  412. if (error)
  413. xfs_fs_cmn_err(CE_WARN, mp,
  414. "xfs_attr_quiesce: failed to log sb changes. "
  415. "Frozen image may not be consistent.");
  416. xfs_log_unmount_write(mp);
  417. xfs_unmountfs_writesb(mp);
  418. }
  419. /*
  420. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  421. * Doing this has two advantages:
  422. * - It saves on stack space, which is tight in certain situations
  423. * - It can be used (with care) as a mechanism to avoid deadlocks.
  424. * Flushing while allocating in a full filesystem requires both.
  425. */
  426. STATIC void
  427. xfs_syncd_queue_work(
  428. struct xfs_mount *mp,
  429. void *data,
  430. void (*syncer)(struct xfs_mount *, void *),
  431. struct completion *completion)
  432. {
  433. struct xfs_sync_work *work;
  434. work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
  435. INIT_LIST_HEAD(&work->w_list);
  436. work->w_syncer = syncer;
  437. work->w_data = data;
  438. work->w_mount = mp;
  439. work->w_completion = completion;
  440. spin_lock(&mp->m_sync_lock);
  441. list_add_tail(&work->w_list, &mp->m_sync_list);
  442. spin_unlock(&mp->m_sync_lock);
  443. wake_up_process(mp->m_sync_task);
  444. }
  445. /*
  446. * Flush delayed allocate data, attempting to free up reserved space
  447. * from existing allocations. At this point a new allocation attempt
  448. * has failed with ENOSPC and we are in the process of scratching our
  449. * heads, looking about for more room...
  450. */
  451. STATIC void
  452. xfs_flush_inodes_work(
  453. struct xfs_mount *mp,
  454. void *arg)
  455. {
  456. struct inode *inode = arg;
  457. xfs_sync_data(mp, SYNC_TRYLOCK);
  458. xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
  459. iput(inode);
  460. }
  461. void
  462. xfs_flush_inodes(
  463. xfs_inode_t *ip)
  464. {
  465. struct inode *inode = VFS_I(ip);
  466. DECLARE_COMPLETION_ONSTACK(completion);
  467. igrab(inode);
  468. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
  469. wait_for_completion(&completion);
  470. xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
  471. }
  472. /*
  473. * Every sync period we need to unpin all items, reclaim inodes and sync
  474. * disk quotas. We might need to cover the log to indicate that the
  475. * filesystem is idle.
  476. */
  477. STATIC void
  478. xfs_sync_worker(
  479. struct xfs_mount *mp,
  480. void *unused)
  481. {
  482. int error;
  483. if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
  484. xfs_log_force(mp, 0);
  485. xfs_reclaim_inodes(mp, 0);
  486. /* dgc: errors ignored here */
  487. error = xfs_qm_sync(mp, SYNC_TRYLOCK);
  488. if (xfs_log_need_covered(mp))
  489. error = xfs_commit_dummy_trans(mp, 0);
  490. }
  491. mp->m_sync_seq++;
  492. wake_up(&mp->m_wait_single_sync_task);
  493. }
  494. STATIC int
  495. xfssyncd(
  496. void *arg)
  497. {
  498. struct xfs_mount *mp = arg;
  499. long timeleft;
  500. xfs_sync_work_t *work, *n;
  501. LIST_HEAD (tmp);
  502. set_freezable();
  503. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  504. for (;;) {
  505. if (list_empty(&mp->m_sync_list))
  506. timeleft = schedule_timeout_interruptible(timeleft);
  507. /* swsusp */
  508. try_to_freeze();
  509. if (kthread_should_stop() && list_empty(&mp->m_sync_list))
  510. break;
  511. spin_lock(&mp->m_sync_lock);
  512. /*
  513. * We can get woken by laptop mode, to do a sync -
  514. * that's the (only!) case where the list would be
  515. * empty with time remaining.
  516. */
  517. if (!timeleft || list_empty(&mp->m_sync_list)) {
  518. if (!timeleft)
  519. timeleft = xfs_syncd_centisecs *
  520. msecs_to_jiffies(10);
  521. INIT_LIST_HEAD(&mp->m_sync_work.w_list);
  522. list_add_tail(&mp->m_sync_work.w_list,
  523. &mp->m_sync_list);
  524. }
  525. list_splice_init(&mp->m_sync_list, &tmp);
  526. spin_unlock(&mp->m_sync_lock);
  527. list_for_each_entry_safe(work, n, &tmp, w_list) {
  528. (*work->w_syncer)(mp, work->w_data);
  529. list_del(&work->w_list);
  530. if (work == &mp->m_sync_work)
  531. continue;
  532. if (work->w_completion)
  533. complete(work->w_completion);
  534. kmem_free(work);
  535. }
  536. }
  537. return 0;
  538. }
  539. int
  540. xfs_syncd_init(
  541. struct xfs_mount *mp)
  542. {
  543. mp->m_sync_work.w_syncer = xfs_sync_worker;
  544. mp->m_sync_work.w_mount = mp;
  545. mp->m_sync_work.w_completion = NULL;
  546. mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
  547. if (IS_ERR(mp->m_sync_task))
  548. return -PTR_ERR(mp->m_sync_task);
  549. return 0;
  550. }
  551. void
  552. xfs_syncd_stop(
  553. struct xfs_mount *mp)
  554. {
  555. kthread_stop(mp->m_sync_task);
  556. }
  557. void
  558. __xfs_inode_set_reclaim_tag(
  559. struct xfs_perag *pag,
  560. struct xfs_inode *ip)
  561. {
  562. radix_tree_tag_set(&pag->pag_ici_root,
  563. XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
  564. XFS_ICI_RECLAIM_TAG);
  565. pag->pag_ici_reclaimable++;
  566. }
  567. /*
  568. * We set the inode flag atomically with the radix tree tag.
  569. * Once we get tag lookups on the radix tree, this inode flag
  570. * can go away.
  571. */
  572. void
  573. xfs_inode_set_reclaim_tag(
  574. xfs_inode_t *ip)
  575. {
  576. struct xfs_mount *mp = ip->i_mount;
  577. struct xfs_perag *pag;
  578. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  579. write_lock(&pag->pag_ici_lock);
  580. spin_lock(&ip->i_flags_lock);
  581. __xfs_inode_set_reclaim_tag(pag, ip);
  582. __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
  583. spin_unlock(&ip->i_flags_lock);
  584. write_unlock(&pag->pag_ici_lock);
  585. xfs_perag_put(pag);
  586. }
  587. void
  588. __xfs_inode_clear_reclaim_tag(
  589. xfs_mount_t *mp,
  590. xfs_perag_t *pag,
  591. xfs_inode_t *ip)
  592. {
  593. radix_tree_tag_clear(&pag->pag_ici_root,
  594. XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
  595. pag->pag_ici_reclaimable--;
  596. }
  597. /*
  598. * Inodes in different states need to be treated differently, and the return
  599. * value of xfs_iflush is not sufficient to get this right. The following table
  600. * lists the inode states and the reclaim actions necessary for non-blocking
  601. * reclaim:
  602. *
  603. *
  604. * inode state iflush ret required action
  605. * --------------- ---------- ---------------
  606. * bad - reclaim
  607. * shutdown EIO unpin and reclaim
  608. * clean, unpinned 0 reclaim
  609. * stale, unpinned 0 reclaim
  610. * clean, pinned(*) 0 requeue
  611. * stale, pinned EAGAIN requeue
  612. * dirty, delwri ok 0 requeue
  613. * dirty, delwri blocked EAGAIN requeue
  614. * dirty, sync flush 0 reclaim
  615. *
  616. * (*) dgc: I don't think the clean, pinned state is possible but it gets
  617. * handled anyway given the order of checks implemented.
  618. *
  619. * As can be seen from the table, the return value of xfs_iflush() is not
  620. * sufficient to correctly decide the reclaim action here. The checks in
  621. * xfs_iflush() might look like duplicates, but they are not.
  622. *
  623. * Also, because we get the flush lock first, we know that any inode that has
  624. * been flushed delwri has had the flush completed by the time we check that
  625. * the inode is clean. The clean inode check needs to be done before flushing
  626. * the inode delwri otherwise we would loop forever requeuing clean inodes as
  627. * we cannot tell apart a successful delwri flush and a clean inode from the
  628. * return value of xfs_iflush().
  629. *
  630. * Note that because the inode is flushed delayed write by background
  631. * writeback, the flush lock may already be held here and waiting on it can
  632. * result in very long latencies. Hence for sync reclaims, where we wait on the
  633. * flush lock, the caller should push out delayed write inodes first before
  634. * trying to reclaim them to minimise the amount of time spent waiting. For
  635. * background relaim, we just requeue the inode for the next pass.
  636. *
  637. * Hence the order of actions after gaining the locks should be:
  638. * bad => reclaim
  639. * shutdown => unpin and reclaim
  640. * pinned, delwri => requeue
  641. * pinned, sync => unpin
  642. * stale => reclaim
  643. * clean => reclaim
  644. * dirty, delwri => flush and requeue
  645. * dirty, sync => flush, wait and reclaim
  646. */
  647. STATIC int
  648. xfs_reclaim_inode(
  649. struct xfs_inode *ip,
  650. struct xfs_perag *pag,
  651. int sync_mode)
  652. {
  653. int error = 0;
  654. /*
  655. * The radix tree lock here protects a thread in xfs_iget from racing
  656. * with us starting reclaim on the inode. Once we have the
  657. * XFS_IRECLAIM flag set it will not touch us.
  658. */
  659. spin_lock(&ip->i_flags_lock);
  660. ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
  661. if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
  662. /* ignore as it is already under reclaim */
  663. spin_unlock(&ip->i_flags_lock);
  664. write_unlock(&pag->pag_ici_lock);
  665. return 0;
  666. }
  667. __xfs_iflags_set(ip, XFS_IRECLAIM);
  668. spin_unlock(&ip->i_flags_lock);
  669. write_unlock(&pag->pag_ici_lock);
  670. xfs_ilock(ip, XFS_ILOCK_EXCL);
  671. if (!xfs_iflock_nowait(ip)) {
  672. if (!(sync_mode & SYNC_WAIT))
  673. goto out;
  674. xfs_iflock(ip);
  675. }
  676. if (is_bad_inode(VFS_I(ip)))
  677. goto reclaim;
  678. if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  679. xfs_iunpin_wait(ip);
  680. goto reclaim;
  681. }
  682. if (xfs_ipincount(ip)) {
  683. if (!(sync_mode & SYNC_WAIT)) {
  684. xfs_ifunlock(ip);
  685. goto out;
  686. }
  687. xfs_iunpin_wait(ip);
  688. }
  689. if (xfs_iflags_test(ip, XFS_ISTALE))
  690. goto reclaim;
  691. if (xfs_inode_clean(ip))
  692. goto reclaim;
  693. /* Now we have an inode that needs flushing */
  694. error = xfs_iflush(ip, sync_mode);
  695. if (sync_mode & SYNC_WAIT) {
  696. xfs_iflock(ip);
  697. goto reclaim;
  698. }
  699. /*
  700. * When we have to flush an inode but don't have SYNC_WAIT set, we
  701. * flush the inode out using a delwri buffer and wait for the next
  702. * call into reclaim to find it in a clean state instead of waiting for
  703. * it now. We also don't return errors here - if the error is transient
  704. * then the next reclaim pass will flush the inode, and if the error
  705. * is permanent then the next sync reclaim will reclaim the inode and
  706. * pass on the error.
  707. */
  708. if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  709. xfs_fs_cmn_err(CE_WARN, ip->i_mount,
  710. "inode 0x%llx background reclaim flush failed with %d",
  711. (long long)ip->i_ino, error);
  712. }
  713. out:
  714. xfs_iflags_clear(ip, XFS_IRECLAIM);
  715. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  716. /*
  717. * We could return EAGAIN here to make reclaim rescan the inode tree in
  718. * a short while. However, this just burns CPU time scanning the tree
  719. * waiting for IO to complete and xfssyncd never goes back to the idle
  720. * state. Instead, return 0 to let the next scheduled background reclaim
  721. * attempt to reclaim the inode again.
  722. */
  723. return 0;
  724. reclaim:
  725. xfs_ifunlock(ip);
  726. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  727. xfs_ireclaim(ip);
  728. return error;
  729. }
  730. int
  731. xfs_reclaim_inodes(
  732. xfs_mount_t *mp,
  733. int mode)
  734. {
  735. return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
  736. XFS_ICI_RECLAIM_TAG, 1, NULL);
  737. }
  738. /*
  739. * Shrinker infrastructure.
  740. *
  741. * This is all far more complex than it needs to be. It adds a global list of
  742. * mounts because the shrinkers can only call a global context. We need to make
  743. * the shrinkers pass a context to avoid the need for global state.
  744. */
  745. static LIST_HEAD(xfs_mount_list);
  746. static struct rw_semaphore xfs_mount_list_lock;
  747. static int
  748. xfs_reclaim_inode_shrink(
  749. int nr_to_scan,
  750. gfp_t gfp_mask)
  751. {
  752. struct xfs_mount *mp;
  753. struct xfs_perag *pag;
  754. xfs_agnumber_t ag;
  755. int reclaimable = 0;
  756. if (nr_to_scan) {
  757. if (!(gfp_mask & __GFP_FS))
  758. return -1;
  759. down_read(&xfs_mount_list_lock);
  760. list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
  761. xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
  762. XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
  763. if (nr_to_scan <= 0)
  764. break;
  765. }
  766. up_read(&xfs_mount_list_lock);
  767. }
  768. down_read(&xfs_mount_list_lock);
  769. list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
  770. for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
  771. pag = xfs_perag_get(mp, ag);
  772. reclaimable += pag->pag_ici_reclaimable;
  773. xfs_perag_put(pag);
  774. }
  775. }
  776. up_read(&xfs_mount_list_lock);
  777. return reclaimable;
  778. }
  779. static struct shrinker xfs_inode_shrinker = {
  780. .shrink = xfs_reclaim_inode_shrink,
  781. .seeks = DEFAULT_SEEKS,
  782. };
  783. void __init
  784. xfs_inode_shrinker_init(void)
  785. {
  786. init_rwsem(&xfs_mount_list_lock);
  787. register_shrinker(&xfs_inode_shrinker);
  788. }
  789. void
  790. xfs_inode_shrinker_destroy(void)
  791. {
  792. ASSERT(list_empty(&xfs_mount_list));
  793. unregister_shrinker(&xfs_inode_shrinker);
  794. }
  795. void
  796. xfs_inode_shrinker_register(
  797. struct xfs_mount *mp)
  798. {
  799. down_write(&xfs_mount_list_lock);
  800. list_add_tail(&mp->m_mplist, &xfs_mount_list);
  801. up_write(&xfs_mount_list_lock);
  802. }
  803. void
  804. xfs_inode_shrinker_unregister(
  805. struct xfs_mount *mp)
  806. {
  807. down_write(&xfs_mount_list_lock);
  808. list_del(&mp->m_mplist);
  809. up_write(&xfs_mount_list_lock);
  810. }