fair.c 158 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/mempolicy.h>
  29. #include <linux/migrate.h>
  30. #include <linux/task_work.h>
  31. #include <trace/events/sched.h>
  32. #include "sched.h"
  33. /*
  34. * Targeted preemption latency for CPU-bound tasks:
  35. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  36. *
  37. * NOTE: this latency value is not the same as the concept of
  38. * 'timeslice length' - timeslices in CFS are of variable length
  39. * and have no persistent notion like in traditional, time-slice
  40. * based scheduling concepts.
  41. *
  42. * (to see the precise effective timeslice length of your workload,
  43. * run vmstat and monitor the context-switches (cs) field)
  44. */
  45. unsigned int sysctl_sched_latency = 6000000ULL;
  46. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  47. /*
  48. * The initial- and re-scaling of tunables is configurable
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. *
  51. * Options are:
  52. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  53. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  54. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  55. */
  56. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  57. = SCHED_TUNABLESCALING_LOG;
  58. /*
  59. * Minimal preemption granularity for CPU-bound tasks:
  60. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  61. */
  62. unsigned int sysctl_sched_min_granularity = 750000ULL;
  63. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  64. /*
  65. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  66. */
  67. static unsigned int sched_nr_latency = 8;
  68. /*
  69. * After fork, child runs first. If set to 0 (default) then
  70. * parent will (try to) run first.
  71. */
  72. unsigned int sysctl_sched_child_runs_first __read_mostly;
  73. /*
  74. * SCHED_OTHER wake-up granularity.
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. *
  77. * This option delays the preemption effects of decoupled workloads
  78. * and reduces their over-scheduling. Synchronous workloads will still
  79. * have immediate wakeup/sleep latencies.
  80. */
  81. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  82. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  83. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84. /*
  85. * The exponential sliding window over which load is averaged for shares
  86. * distribution.
  87. * (default: 10msec)
  88. */
  89. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  90. #ifdef CONFIG_CFS_BANDWIDTH
  91. /*
  92. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  93. * each time a cfs_rq requests quota.
  94. *
  95. * Note: in the case that the slice exceeds the runtime remaining (either due
  96. * to consumption or the quota being specified to be smaller than the slice)
  97. * we will always only issue the remaining available time.
  98. *
  99. * default: 5 msec, units: microseconds
  100. */
  101. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  102. #endif
  103. /*
  104. * Increase the granularity value when there are more CPUs,
  105. * because with more CPUs the 'effective latency' as visible
  106. * to users decreases. But the relationship is not linear,
  107. * so pick a second-best guess by going with the log2 of the
  108. * number of CPUs.
  109. *
  110. * This idea comes from the SD scheduler of Con Kolivas:
  111. */
  112. static int get_update_sysctl_factor(void)
  113. {
  114. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  115. unsigned int factor;
  116. switch (sysctl_sched_tunable_scaling) {
  117. case SCHED_TUNABLESCALING_NONE:
  118. factor = 1;
  119. break;
  120. case SCHED_TUNABLESCALING_LINEAR:
  121. factor = cpus;
  122. break;
  123. case SCHED_TUNABLESCALING_LOG:
  124. default:
  125. factor = 1 + ilog2(cpus);
  126. break;
  127. }
  128. return factor;
  129. }
  130. static void update_sysctl(void)
  131. {
  132. unsigned int factor = get_update_sysctl_factor();
  133. #define SET_SYSCTL(name) \
  134. (sysctl_##name = (factor) * normalized_sysctl_##name)
  135. SET_SYSCTL(sched_min_granularity);
  136. SET_SYSCTL(sched_latency);
  137. SET_SYSCTL(sched_wakeup_granularity);
  138. #undef SET_SYSCTL
  139. }
  140. void sched_init_granularity(void)
  141. {
  142. update_sysctl();
  143. }
  144. #if BITS_PER_LONG == 32
  145. # define WMULT_CONST (~0UL)
  146. #else
  147. # define WMULT_CONST (1UL << 32)
  148. #endif
  149. #define WMULT_SHIFT 32
  150. /*
  151. * Shift right and round:
  152. */
  153. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  154. /*
  155. * delta *= weight / lw
  156. */
  157. static unsigned long
  158. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  159. struct load_weight *lw)
  160. {
  161. u64 tmp;
  162. /*
  163. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  164. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  165. * 2^SCHED_LOAD_RESOLUTION.
  166. */
  167. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  168. tmp = (u64)delta_exec * scale_load_down(weight);
  169. else
  170. tmp = (u64)delta_exec;
  171. if (!lw->inv_weight) {
  172. unsigned long w = scale_load_down(lw->weight);
  173. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  174. lw->inv_weight = 1;
  175. else if (unlikely(!w))
  176. lw->inv_weight = WMULT_CONST;
  177. else
  178. lw->inv_weight = WMULT_CONST / w;
  179. }
  180. /*
  181. * Check whether we'd overflow the 64-bit multiplication:
  182. */
  183. if (unlikely(tmp > WMULT_CONST))
  184. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  185. WMULT_SHIFT/2);
  186. else
  187. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  188. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  189. }
  190. const struct sched_class fair_sched_class;
  191. /**************************************************************
  192. * CFS operations on generic schedulable entities:
  193. */
  194. #ifdef CONFIG_FAIR_GROUP_SCHED
  195. /* cpu runqueue to which this cfs_rq is attached */
  196. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  197. {
  198. return cfs_rq->rq;
  199. }
  200. /* An entity is a task if it doesn't "own" a runqueue */
  201. #define entity_is_task(se) (!se->my_q)
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. #ifdef CONFIG_SCHED_DEBUG
  205. WARN_ON_ONCE(!entity_is_task(se));
  206. #endif
  207. return container_of(se, struct task_struct, se);
  208. }
  209. /* Walk up scheduling entities hierarchy */
  210. #define for_each_sched_entity(se) \
  211. for (; se; se = se->parent)
  212. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  213. {
  214. return p->se.cfs_rq;
  215. }
  216. /* runqueue on which this entity is (to be) queued */
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. return se->cfs_rq;
  220. }
  221. /* runqueue "owned" by this group */
  222. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  223. {
  224. return grp->my_q;
  225. }
  226. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  227. int force_update);
  228. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  229. {
  230. if (!cfs_rq->on_list) {
  231. /*
  232. * Ensure we either appear before our parent (if already
  233. * enqueued) or force our parent to appear after us when it is
  234. * enqueued. The fact that we always enqueue bottom-up
  235. * reduces this to two cases.
  236. */
  237. if (cfs_rq->tg->parent &&
  238. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  239. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  240. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  241. } else {
  242. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  243. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  244. }
  245. cfs_rq->on_list = 1;
  246. /* We should have no load, but we need to update last_decay. */
  247. update_cfs_rq_blocked_load(cfs_rq, 0);
  248. }
  249. }
  250. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  251. {
  252. if (cfs_rq->on_list) {
  253. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  254. cfs_rq->on_list = 0;
  255. }
  256. }
  257. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  258. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  259. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  260. /* Do the two (enqueued) entities belong to the same group ? */
  261. static inline int
  262. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  263. {
  264. if (se->cfs_rq == pse->cfs_rq)
  265. return 1;
  266. return 0;
  267. }
  268. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  269. {
  270. return se->parent;
  271. }
  272. /* return depth at which a sched entity is present in the hierarchy */
  273. static inline int depth_se(struct sched_entity *se)
  274. {
  275. int depth = 0;
  276. for_each_sched_entity(se)
  277. depth++;
  278. return depth;
  279. }
  280. static void
  281. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  282. {
  283. int se_depth, pse_depth;
  284. /*
  285. * preemption test can be made between sibling entities who are in the
  286. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  287. * both tasks until we find their ancestors who are siblings of common
  288. * parent.
  289. */
  290. /* First walk up until both entities are at same depth */
  291. se_depth = depth_se(*se);
  292. pse_depth = depth_se(*pse);
  293. while (se_depth > pse_depth) {
  294. se_depth--;
  295. *se = parent_entity(*se);
  296. }
  297. while (pse_depth > se_depth) {
  298. pse_depth--;
  299. *pse = parent_entity(*pse);
  300. }
  301. while (!is_same_group(*se, *pse)) {
  302. *se = parent_entity(*se);
  303. *pse = parent_entity(*pse);
  304. }
  305. }
  306. #else /* !CONFIG_FAIR_GROUP_SCHED */
  307. static inline struct task_struct *task_of(struct sched_entity *se)
  308. {
  309. return container_of(se, struct task_struct, se);
  310. }
  311. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  312. {
  313. return container_of(cfs_rq, struct rq, cfs);
  314. }
  315. #define entity_is_task(se) 1
  316. #define for_each_sched_entity(se) \
  317. for (; se; se = NULL)
  318. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  319. {
  320. return &task_rq(p)->cfs;
  321. }
  322. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  323. {
  324. struct task_struct *p = task_of(se);
  325. struct rq *rq = task_rq(p);
  326. return &rq->cfs;
  327. }
  328. /* runqueue "owned" by this group */
  329. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  330. {
  331. return NULL;
  332. }
  333. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  334. {
  335. }
  336. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  337. {
  338. }
  339. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  340. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  341. static inline int
  342. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  343. {
  344. return 1;
  345. }
  346. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  347. {
  348. return NULL;
  349. }
  350. static inline void
  351. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  352. {
  353. }
  354. #endif /* CONFIG_FAIR_GROUP_SCHED */
  355. static __always_inline
  356. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  357. /**************************************************************
  358. * Scheduling class tree data structure manipulation methods:
  359. */
  360. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - max_vruntime);
  363. if (delta > 0)
  364. max_vruntime = vruntime;
  365. return max_vruntime;
  366. }
  367. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  368. {
  369. s64 delta = (s64)(vruntime - min_vruntime);
  370. if (delta < 0)
  371. min_vruntime = vruntime;
  372. return min_vruntime;
  373. }
  374. static inline int entity_before(struct sched_entity *a,
  375. struct sched_entity *b)
  376. {
  377. return (s64)(a->vruntime - b->vruntime) < 0;
  378. }
  379. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  380. {
  381. u64 vruntime = cfs_rq->min_vruntime;
  382. if (cfs_rq->curr)
  383. vruntime = cfs_rq->curr->vruntime;
  384. if (cfs_rq->rb_leftmost) {
  385. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  386. struct sched_entity,
  387. run_node);
  388. if (!cfs_rq->curr)
  389. vruntime = se->vruntime;
  390. else
  391. vruntime = min_vruntime(vruntime, se->vruntime);
  392. }
  393. /* ensure we never gain time by being placed backwards. */
  394. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  395. #ifndef CONFIG_64BIT
  396. smp_wmb();
  397. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  398. #endif
  399. }
  400. /*
  401. * Enqueue an entity into the rb-tree:
  402. */
  403. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  404. {
  405. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  406. struct rb_node *parent = NULL;
  407. struct sched_entity *entry;
  408. int leftmost = 1;
  409. /*
  410. * Find the right place in the rbtree:
  411. */
  412. while (*link) {
  413. parent = *link;
  414. entry = rb_entry(parent, struct sched_entity, run_node);
  415. /*
  416. * We dont care about collisions. Nodes with
  417. * the same key stay together.
  418. */
  419. if (entity_before(se, entry)) {
  420. link = &parent->rb_left;
  421. } else {
  422. link = &parent->rb_right;
  423. leftmost = 0;
  424. }
  425. }
  426. /*
  427. * Maintain a cache of leftmost tree entries (it is frequently
  428. * used):
  429. */
  430. if (leftmost)
  431. cfs_rq->rb_leftmost = &se->run_node;
  432. rb_link_node(&se->run_node, parent, link);
  433. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  434. }
  435. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  436. {
  437. if (cfs_rq->rb_leftmost == &se->run_node) {
  438. struct rb_node *next_node;
  439. next_node = rb_next(&se->run_node);
  440. cfs_rq->rb_leftmost = next_node;
  441. }
  442. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  443. }
  444. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  445. {
  446. struct rb_node *left = cfs_rq->rb_leftmost;
  447. if (!left)
  448. return NULL;
  449. return rb_entry(left, struct sched_entity, run_node);
  450. }
  451. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  452. {
  453. struct rb_node *next = rb_next(&se->run_node);
  454. if (!next)
  455. return NULL;
  456. return rb_entry(next, struct sched_entity, run_node);
  457. }
  458. #ifdef CONFIG_SCHED_DEBUG
  459. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  460. {
  461. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  462. if (!last)
  463. return NULL;
  464. return rb_entry(last, struct sched_entity, run_node);
  465. }
  466. /**************************************************************
  467. * Scheduling class statistics methods:
  468. */
  469. int sched_proc_update_handler(struct ctl_table *table, int write,
  470. void __user *buffer, size_t *lenp,
  471. loff_t *ppos)
  472. {
  473. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  474. int factor = get_update_sysctl_factor();
  475. if (ret || !write)
  476. return ret;
  477. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  478. sysctl_sched_min_granularity);
  479. #define WRT_SYSCTL(name) \
  480. (normalized_sysctl_##name = sysctl_##name / (factor))
  481. WRT_SYSCTL(sched_min_granularity);
  482. WRT_SYSCTL(sched_latency);
  483. WRT_SYSCTL(sched_wakeup_granularity);
  484. #undef WRT_SYSCTL
  485. return 0;
  486. }
  487. #endif
  488. /*
  489. * delta /= w
  490. */
  491. static inline unsigned long
  492. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  493. {
  494. if (unlikely(se->load.weight != NICE_0_LOAD))
  495. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  496. return delta;
  497. }
  498. /*
  499. * The idea is to set a period in which each task runs once.
  500. *
  501. * When there are too many tasks (sched_nr_latency) we have to stretch
  502. * this period because otherwise the slices get too small.
  503. *
  504. * p = (nr <= nl) ? l : l*nr/nl
  505. */
  506. static u64 __sched_period(unsigned long nr_running)
  507. {
  508. u64 period = sysctl_sched_latency;
  509. unsigned long nr_latency = sched_nr_latency;
  510. if (unlikely(nr_running > nr_latency)) {
  511. period = sysctl_sched_min_granularity;
  512. period *= nr_running;
  513. }
  514. return period;
  515. }
  516. /*
  517. * We calculate the wall-time slice from the period by taking a part
  518. * proportional to the weight.
  519. *
  520. * s = p*P[w/rw]
  521. */
  522. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  523. {
  524. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  525. for_each_sched_entity(se) {
  526. struct load_weight *load;
  527. struct load_weight lw;
  528. cfs_rq = cfs_rq_of(se);
  529. load = &cfs_rq->load;
  530. if (unlikely(!se->on_rq)) {
  531. lw = cfs_rq->load;
  532. update_load_add(&lw, se->load.weight);
  533. load = &lw;
  534. }
  535. slice = calc_delta_mine(slice, se->load.weight, load);
  536. }
  537. return slice;
  538. }
  539. /*
  540. * We calculate the vruntime slice of a to-be-inserted task.
  541. *
  542. * vs = s/w
  543. */
  544. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  545. {
  546. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  547. }
  548. /*
  549. * Update the current task's runtime statistics. Skip current tasks that
  550. * are not in our scheduling class.
  551. */
  552. static inline void
  553. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  554. unsigned long delta_exec)
  555. {
  556. unsigned long delta_exec_weighted;
  557. schedstat_set(curr->statistics.exec_max,
  558. max((u64)delta_exec, curr->statistics.exec_max));
  559. curr->sum_exec_runtime += delta_exec;
  560. schedstat_add(cfs_rq, exec_clock, delta_exec);
  561. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  562. curr->vruntime += delta_exec_weighted;
  563. update_min_vruntime(cfs_rq);
  564. }
  565. static void update_curr(struct cfs_rq *cfs_rq)
  566. {
  567. struct sched_entity *curr = cfs_rq->curr;
  568. u64 now = rq_of(cfs_rq)->clock_task;
  569. unsigned long delta_exec;
  570. if (unlikely(!curr))
  571. return;
  572. /*
  573. * Get the amount of time the current task was running
  574. * since the last time we changed load (this cannot
  575. * overflow on 32 bits):
  576. */
  577. delta_exec = (unsigned long)(now - curr->exec_start);
  578. if (!delta_exec)
  579. return;
  580. __update_curr(cfs_rq, curr, delta_exec);
  581. curr->exec_start = now;
  582. if (entity_is_task(curr)) {
  583. struct task_struct *curtask = task_of(curr);
  584. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  585. cpuacct_charge(curtask, delta_exec);
  586. account_group_exec_runtime(curtask, delta_exec);
  587. }
  588. account_cfs_rq_runtime(cfs_rq, delta_exec);
  589. }
  590. static inline void
  591. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  592. {
  593. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  594. }
  595. /*
  596. * Task is being enqueued - update stats:
  597. */
  598. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  599. {
  600. /*
  601. * Are we enqueueing a waiting task? (for current tasks
  602. * a dequeue/enqueue event is a NOP)
  603. */
  604. if (se != cfs_rq->curr)
  605. update_stats_wait_start(cfs_rq, se);
  606. }
  607. static void
  608. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  609. {
  610. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  612. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  613. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  614. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  615. #ifdef CONFIG_SCHEDSTATS
  616. if (entity_is_task(se)) {
  617. trace_sched_stat_wait(task_of(se),
  618. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  619. }
  620. #endif
  621. schedstat_set(se->statistics.wait_start, 0);
  622. }
  623. static inline void
  624. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  625. {
  626. /*
  627. * Mark the end of the wait period if dequeueing a
  628. * waiting task:
  629. */
  630. if (se != cfs_rq->curr)
  631. update_stats_wait_end(cfs_rq, se);
  632. }
  633. /*
  634. * We are picking a new current task - update its stats:
  635. */
  636. static inline void
  637. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  638. {
  639. /*
  640. * We are starting a new run period:
  641. */
  642. se->exec_start = rq_of(cfs_rq)->clock_task;
  643. }
  644. /**************************************************
  645. * Scheduling class queueing methods:
  646. */
  647. #ifdef CONFIG_NUMA_BALANCING
  648. /*
  649. * numa task sample period in ms
  650. */
  651. unsigned int sysctl_numa_balancing_scan_period_min = 100;
  652. unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
  653. unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
  654. /* Portion of address space to scan in MB */
  655. unsigned int sysctl_numa_balancing_scan_size = 256;
  656. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  657. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  658. static void task_numa_placement(struct task_struct *p)
  659. {
  660. int seq;
  661. if (!p->mm) /* for example, ksmd faulting in a user's mm */
  662. return;
  663. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  664. if (p->numa_scan_seq == seq)
  665. return;
  666. p->numa_scan_seq = seq;
  667. /* FIXME: Scheduling placement policy hints go here */
  668. }
  669. /*
  670. * Got a PROT_NONE fault for a page on @node.
  671. */
  672. void task_numa_fault(int node, int pages, bool migrated)
  673. {
  674. struct task_struct *p = current;
  675. if (!sched_feat_numa(NUMA))
  676. return;
  677. /* FIXME: Allocate task-specific structure for placement policy here */
  678. /*
  679. * If pages are properly placed (did not migrate) then scan slower.
  680. * This is reset periodically in case of phase changes
  681. */
  682. if (!migrated)
  683. p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
  684. p->numa_scan_period + jiffies_to_msecs(10));
  685. task_numa_placement(p);
  686. }
  687. static void reset_ptenuma_scan(struct task_struct *p)
  688. {
  689. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  690. p->mm->numa_scan_offset = 0;
  691. }
  692. /*
  693. * The expensive part of numa migration is done from task_work context.
  694. * Triggered from task_tick_numa().
  695. */
  696. void task_numa_work(struct callback_head *work)
  697. {
  698. unsigned long migrate, next_scan, now = jiffies;
  699. struct task_struct *p = current;
  700. struct mm_struct *mm = p->mm;
  701. struct vm_area_struct *vma;
  702. unsigned long start, end;
  703. long pages;
  704. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  705. work->next = work; /* protect against double add */
  706. /*
  707. * Who cares about NUMA placement when they're dying.
  708. *
  709. * NOTE: make sure not to dereference p->mm before this check,
  710. * exit_task_work() happens _after_ exit_mm() so we could be called
  711. * without p->mm even though we still had it when we enqueued this
  712. * work.
  713. */
  714. if (p->flags & PF_EXITING)
  715. return;
  716. /*
  717. * We do not care about task placement until a task runs on a node
  718. * other than the first one used by the address space. This is
  719. * largely because migrations are driven by what CPU the task
  720. * is running on. If it's never scheduled on another node, it'll
  721. * not migrate so why bother trapping the fault.
  722. */
  723. if (mm->first_nid == NUMA_PTE_SCAN_INIT)
  724. mm->first_nid = numa_node_id();
  725. if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
  726. /* Are we running on a new node yet? */
  727. if (numa_node_id() == mm->first_nid &&
  728. !sched_feat_numa(NUMA_FORCE))
  729. return;
  730. mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
  731. }
  732. /*
  733. * Reset the scan period if enough time has gone by. Objective is that
  734. * scanning will be reduced if pages are properly placed. As tasks
  735. * can enter different phases this needs to be re-examined. Lacking
  736. * proper tracking of reference behaviour, this blunt hammer is used.
  737. */
  738. migrate = mm->numa_next_reset;
  739. if (time_after(now, migrate)) {
  740. p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  741. next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
  742. xchg(&mm->numa_next_reset, next_scan);
  743. }
  744. /*
  745. * Enforce maximal scan/migration frequency..
  746. */
  747. migrate = mm->numa_next_scan;
  748. if (time_before(now, migrate))
  749. return;
  750. if (p->numa_scan_period == 0)
  751. p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  752. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  753. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  754. return;
  755. /*
  756. * Do not set pte_numa if the current running node is rate-limited.
  757. * This loses statistics on the fault but if we are unwilling to
  758. * migrate to this node, it is less likely we can do useful work
  759. */
  760. if (migrate_ratelimited(numa_node_id()))
  761. return;
  762. start = mm->numa_scan_offset;
  763. pages = sysctl_numa_balancing_scan_size;
  764. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  765. if (!pages)
  766. return;
  767. down_read(&mm->mmap_sem);
  768. vma = find_vma(mm, start);
  769. if (!vma) {
  770. reset_ptenuma_scan(p);
  771. start = 0;
  772. vma = mm->mmap;
  773. }
  774. for (; vma; vma = vma->vm_next) {
  775. if (!vma_migratable(vma))
  776. continue;
  777. /* Skip small VMAs. They are not likely to be of relevance */
  778. if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
  779. continue;
  780. do {
  781. start = max(start, vma->vm_start);
  782. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  783. end = min(end, vma->vm_end);
  784. pages -= change_prot_numa(vma, start, end);
  785. start = end;
  786. if (pages <= 0)
  787. goto out;
  788. } while (end != vma->vm_end);
  789. }
  790. out:
  791. /*
  792. * It is possible to reach the end of the VMA list but the last few VMAs are
  793. * not guaranteed to the vma_migratable. If they are not, we would find the
  794. * !migratable VMA on the next scan but not reset the scanner to the start
  795. * so check it now.
  796. */
  797. if (vma)
  798. mm->numa_scan_offset = start;
  799. else
  800. reset_ptenuma_scan(p);
  801. up_read(&mm->mmap_sem);
  802. }
  803. /*
  804. * Drive the periodic memory faults..
  805. */
  806. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  807. {
  808. struct callback_head *work = &curr->numa_work;
  809. u64 period, now;
  810. /*
  811. * We don't care about NUMA placement if we don't have memory.
  812. */
  813. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  814. return;
  815. /*
  816. * Using runtime rather than walltime has the dual advantage that
  817. * we (mostly) drive the selection from busy threads and that the
  818. * task needs to have done some actual work before we bother with
  819. * NUMA placement.
  820. */
  821. now = curr->se.sum_exec_runtime;
  822. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  823. if (now - curr->node_stamp > period) {
  824. if (!curr->node_stamp)
  825. curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
  826. curr->node_stamp = now;
  827. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  828. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  829. task_work_add(curr, work, true);
  830. }
  831. }
  832. }
  833. #else
  834. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  835. {
  836. }
  837. #endif /* CONFIG_NUMA_BALANCING */
  838. static void
  839. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  840. {
  841. update_load_add(&cfs_rq->load, se->load.weight);
  842. if (!parent_entity(se))
  843. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  844. #ifdef CONFIG_SMP
  845. if (entity_is_task(se))
  846. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  847. #endif
  848. cfs_rq->nr_running++;
  849. }
  850. static void
  851. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  852. {
  853. update_load_sub(&cfs_rq->load, se->load.weight);
  854. if (!parent_entity(se))
  855. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  856. if (entity_is_task(se))
  857. list_del_init(&se->group_node);
  858. cfs_rq->nr_running--;
  859. }
  860. #ifdef CONFIG_FAIR_GROUP_SCHED
  861. # ifdef CONFIG_SMP
  862. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  863. {
  864. long tg_weight;
  865. /*
  866. * Use this CPU's actual weight instead of the last load_contribution
  867. * to gain a more accurate current total weight. See
  868. * update_cfs_rq_load_contribution().
  869. */
  870. tg_weight = atomic64_read(&tg->load_avg);
  871. tg_weight -= cfs_rq->tg_load_contrib;
  872. tg_weight += cfs_rq->load.weight;
  873. return tg_weight;
  874. }
  875. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  876. {
  877. long tg_weight, load, shares;
  878. tg_weight = calc_tg_weight(tg, cfs_rq);
  879. load = cfs_rq->load.weight;
  880. shares = (tg->shares * load);
  881. if (tg_weight)
  882. shares /= tg_weight;
  883. if (shares < MIN_SHARES)
  884. shares = MIN_SHARES;
  885. if (shares > tg->shares)
  886. shares = tg->shares;
  887. return shares;
  888. }
  889. # else /* CONFIG_SMP */
  890. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  891. {
  892. return tg->shares;
  893. }
  894. # endif /* CONFIG_SMP */
  895. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  896. unsigned long weight)
  897. {
  898. if (se->on_rq) {
  899. /* commit outstanding execution time */
  900. if (cfs_rq->curr == se)
  901. update_curr(cfs_rq);
  902. account_entity_dequeue(cfs_rq, se);
  903. }
  904. update_load_set(&se->load, weight);
  905. if (se->on_rq)
  906. account_entity_enqueue(cfs_rq, se);
  907. }
  908. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  909. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  910. {
  911. struct task_group *tg;
  912. struct sched_entity *se;
  913. long shares;
  914. tg = cfs_rq->tg;
  915. se = tg->se[cpu_of(rq_of(cfs_rq))];
  916. if (!se || throttled_hierarchy(cfs_rq))
  917. return;
  918. #ifndef CONFIG_SMP
  919. if (likely(se->load.weight == tg->shares))
  920. return;
  921. #endif
  922. shares = calc_cfs_shares(cfs_rq, tg);
  923. reweight_entity(cfs_rq_of(se), se, shares);
  924. }
  925. #else /* CONFIG_FAIR_GROUP_SCHED */
  926. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  927. {
  928. }
  929. #endif /* CONFIG_FAIR_GROUP_SCHED */
  930. /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
  931. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  932. /*
  933. * We choose a half-life close to 1 scheduling period.
  934. * Note: The tables below are dependent on this value.
  935. */
  936. #define LOAD_AVG_PERIOD 32
  937. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  938. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  939. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  940. static const u32 runnable_avg_yN_inv[] = {
  941. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  942. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  943. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  944. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  945. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  946. 0x85aac367, 0x82cd8698,
  947. };
  948. /*
  949. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  950. * over-estimates when re-combining.
  951. */
  952. static const u32 runnable_avg_yN_sum[] = {
  953. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  954. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  955. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  956. };
  957. /*
  958. * Approximate:
  959. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  960. */
  961. static __always_inline u64 decay_load(u64 val, u64 n)
  962. {
  963. unsigned int local_n;
  964. if (!n)
  965. return val;
  966. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  967. return 0;
  968. /* after bounds checking we can collapse to 32-bit */
  969. local_n = n;
  970. /*
  971. * As y^PERIOD = 1/2, we can combine
  972. * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  973. * With a look-up table which covers k^n (n<PERIOD)
  974. *
  975. * To achieve constant time decay_load.
  976. */
  977. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  978. val >>= local_n / LOAD_AVG_PERIOD;
  979. local_n %= LOAD_AVG_PERIOD;
  980. }
  981. val *= runnable_avg_yN_inv[local_n];
  982. /* We don't use SRR here since we always want to round down. */
  983. return val >> 32;
  984. }
  985. /*
  986. * For updates fully spanning n periods, the contribution to runnable
  987. * average will be: \Sum 1024*y^n
  988. *
  989. * We can compute this reasonably efficiently by combining:
  990. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  991. */
  992. static u32 __compute_runnable_contrib(u64 n)
  993. {
  994. u32 contrib = 0;
  995. if (likely(n <= LOAD_AVG_PERIOD))
  996. return runnable_avg_yN_sum[n];
  997. else if (unlikely(n >= LOAD_AVG_MAX_N))
  998. return LOAD_AVG_MAX;
  999. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  1000. do {
  1001. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  1002. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  1003. n -= LOAD_AVG_PERIOD;
  1004. } while (n > LOAD_AVG_PERIOD);
  1005. contrib = decay_load(contrib, n);
  1006. return contrib + runnable_avg_yN_sum[n];
  1007. }
  1008. /*
  1009. * We can represent the historical contribution to runnable average as the
  1010. * coefficients of a geometric series. To do this we sub-divide our runnable
  1011. * history into segments of approximately 1ms (1024us); label the segment that
  1012. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  1013. *
  1014. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  1015. * p0 p1 p2
  1016. * (now) (~1ms ago) (~2ms ago)
  1017. *
  1018. * Let u_i denote the fraction of p_i that the entity was runnable.
  1019. *
  1020. * We then designate the fractions u_i as our co-efficients, yielding the
  1021. * following representation of historical load:
  1022. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  1023. *
  1024. * We choose y based on the with of a reasonably scheduling period, fixing:
  1025. * y^32 = 0.5
  1026. *
  1027. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  1028. * approximately half as much as the contribution to load within the last ms
  1029. * (u_0).
  1030. *
  1031. * When a period "rolls over" and we have new u_0`, multiplying the previous
  1032. * sum again by y is sufficient to update:
  1033. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  1034. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  1035. */
  1036. static __always_inline int __update_entity_runnable_avg(u64 now,
  1037. struct sched_avg *sa,
  1038. int runnable)
  1039. {
  1040. u64 delta, periods;
  1041. u32 runnable_contrib;
  1042. int delta_w, decayed = 0;
  1043. delta = now - sa->last_runnable_update;
  1044. /*
  1045. * This should only happen when time goes backwards, which it
  1046. * unfortunately does during sched clock init when we swap over to TSC.
  1047. */
  1048. if ((s64)delta < 0) {
  1049. sa->last_runnable_update = now;
  1050. return 0;
  1051. }
  1052. /*
  1053. * Use 1024ns as the unit of measurement since it's a reasonable
  1054. * approximation of 1us and fast to compute.
  1055. */
  1056. delta >>= 10;
  1057. if (!delta)
  1058. return 0;
  1059. sa->last_runnable_update = now;
  1060. /* delta_w is the amount already accumulated against our next period */
  1061. delta_w = sa->runnable_avg_period % 1024;
  1062. if (delta + delta_w >= 1024) {
  1063. /* period roll-over */
  1064. decayed = 1;
  1065. /*
  1066. * Now that we know we're crossing a period boundary, figure
  1067. * out how much from delta we need to complete the current
  1068. * period and accrue it.
  1069. */
  1070. delta_w = 1024 - delta_w;
  1071. if (runnable)
  1072. sa->runnable_avg_sum += delta_w;
  1073. sa->runnable_avg_period += delta_w;
  1074. delta -= delta_w;
  1075. /* Figure out how many additional periods this update spans */
  1076. periods = delta / 1024;
  1077. delta %= 1024;
  1078. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  1079. periods + 1);
  1080. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  1081. periods + 1);
  1082. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  1083. runnable_contrib = __compute_runnable_contrib(periods);
  1084. if (runnable)
  1085. sa->runnable_avg_sum += runnable_contrib;
  1086. sa->runnable_avg_period += runnable_contrib;
  1087. }
  1088. /* Remainder of delta accrued against u_0` */
  1089. if (runnable)
  1090. sa->runnable_avg_sum += delta;
  1091. sa->runnable_avg_period += delta;
  1092. return decayed;
  1093. }
  1094. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  1095. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  1096. {
  1097. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1098. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  1099. decays -= se->avg.decay_count;
  1100. if (!decays)
  1101. return 0;
  1102. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  1103. se->avg.decay_count = 0;
  1104. return decays;
  1105. }
  1106. #ifdef CONFIG_FAIR_GROUP_SCHED
  1107. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1108. int force_update)
  1109. {
  1110. struct task_group *tg = cfs_rq->tg;
  1111. s64 tg_contrib;
  1112. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  1113. tg_contrib -= cfs_rq->tg_load_contrib;
  1114. if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  1115. atomic64_add(tg_contrib, &tg->load_avg);
  1116. cfs_rq->tg_load_contrib += tg_contrib;
  1117. }
  1118. }
  1119. /*
  1120. * Aggregate cfs_rq runnable averages into an equivalent task_group
  1121. * representation for computing load contributions.
  1122. */
  1123. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1124. struct cfs_rq *cfs_rq)
  1125. {
  1126. struct task_group *tg = cfs_rq->tg;
  1127. long contrib;
  1128. /* The fraction of a cpu used by this cfs_rq */
  1129. contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
  1130. sa->runnable_avg_period + 1);
  1131. contrib -= cfs_rq->tg_runnable_contrib;
  1132. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  1133. atomic_add(contrib, &tg->runnable_avg);
  1134. cfs_rq->tg_runnable_contrib += contrib;
  1135. }
  1136. }
  1137. static inline void __update_group_entity_contrib(struct sched_entity *se)
  1138. {
  1139. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  1140. struct task_group *tg = cfs_rq->tg;
  1141. int runnable_avg;
  1142. u64 contrib;
  1143. contrib = cfs_rq->tg_load_contrib * tg->shares;
  1144. se->avg.load_avg_contrib = div64_u64(contrib,
  1145. atomic64_read(&tg->load_avg) + 1);
  1146. /*
  1147. * For group entities we need to compute a correction term in the case
  1148. * that they are consuming <1 cpu so that we would contribute the same
  1149. * load as a task of equal weight.
  1150. *
  1151. * Explicitly co-ordinating this measurement would be expensive, but
  1152. * fortunately the sum of each cpus contribution forms a usable
  1153. * lower-bound on the true value.
  1154. *
  1155. * Consider the aggregate of 2 contributions. Either they are disjoint
  1156. * (and the sum represents true value) or they are disjoint and we are
  1157. * understating by the aggregate of their overlap.
  1158. *
  1159. * Extending this to N cpus, for a given overlap, the maximum amount we
  1160. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  1161. * cpus that overlap for this interval and w_i is the interval width.
  1162. *
  1163. * On a small machine; the first term is well-bounded which bounds the
  1164. * total error since w_i is a subset of the period. Whereas on a
  1165. * larger machine, while this first term can be larger, if w_i is the
  1166. * of consequential size guaranteed to see n_i*w_i quickly converge to
  1167. * our upper bound of 1-cpu.
  1168. */
  1169. runnable_avg = atomic_read(&tg->runnable_avg);
  1170. if (runnable_avg < NICE_0_LOAD) {
  1171. se->avg.load_avg_contrib *= runnable_avg;
  1172. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  1173. }
  1174. }
  1175. #else
  1176. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1177. int force_update) {}
  1178. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1179. struct cfs_rq *cfs_rq) {}
  1180. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  1181. #endif
  1182. static inline void __update_task_entity_contrib(struct sched_entity *se)
  1183. {
  1184. u32 contrib;
  1185. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  1186. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  1187. contrib /= (se->avg.runnable_avg_period + 1);
  1188. se->avg.load_avg_contrib = scale_load(contrib);
  1189. }
  1190. /* Compute the current contribution to load_avg by se, return any delta */
  1191. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  1192. {
  1193. long old_contrib = se->avg.load_avg_contrib;
  1194. if (entity_is_task(se)) {
  1195. __update_task_entity_contrib(se);
  1196. } else {
  1197. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  1198. __update_group_entity_contrib(se);
  1199. }
  1200. return se->avg.load_avg_contrib - old_contrib;
  1201. }
  1202. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  1203. long load_contrib)
  1204. {
  1205. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  1206. cfs_rq->blocked_load_avg -= load_contrib;
  1207. else
  1208. cfs_rq->blocked_load_avg = 0;
  1209. }
  1210. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  1211. /* Update a sched_entity's runnable average */
  1212. static inline void update_entity_load_avg(struct sched_entity *se,
  1213. int update_cfs_rq)
  1214. {
  1215. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1216. long contrib_delta;
  1217. u64 now;
  1218. /*
  1219. * For a group entity we need to use their owned cfs_rq_clock_task() in
  1220. * case they are the parent of a throttled hierarchy.
  1221. */
  1222. if (entity_is_task(se))
  1223. now = cfs_rq_clock_task(cfs_rq);
  1224. else
  1225. now = cfs_rq_clock_task(group_cfs_rq(se));
  1226. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  1227. return;
  1228. contrib_delta = __update_entity_load_avg_contrib(se);
  1229. if (!update_cfs_rq)
  1230. return;
  1231. if (se->on_rq)
  1232. cfs_rq->runnable_load_avg += contrib_delta;
  1233. else
  1234. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  1235. }
  1236. /*
  1237. * Decay the load contributed by all blocked children and account this so that
  1238. * their contribution may appropriately discounted when they wake up.
  1239. */
  1240. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  1241. {
  1242. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  1243. u64 decays;
  1244. decays = now - cfs_rq->last_decay;
  1245. if (!decays && !force_update)
  1246. return;
  1247. if (atomic64_read(&cfs_rq->removed_load)) {
  1248. u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
  1249. subtract_blocked_load_contrib(cfs_rq, removed_load);
  1250. }
  1251. if (decays) {
  1252. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  1253. decays);
  1254. atomic64_add(decays, &cfs_rq->decay_counter);
  1255. cfs_rq->last_decay = now;
  1256. }
  1257. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  1258. }
  1259. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  1260. {
  1261. __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
  1262. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  1263. }
  1264. /* Add the load generated by se into cfs_rq's child load-average */
  1265. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1266. struct sched_entity *se,
  1267. int wakeup)
  1268. {
  1269. /*
  1270. * We track migrations using entity decay_count <= 0, on a wake-up
  1271. * migration we use a negative decay count to track the remote decays
  1272. * accumulated while sleeping.
  1273. */
  1274. if (unlikely(se->avg.decay_count <= 0)) {
  1275. se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
  1276. if (se->avg.decay_count) {
  1277. /*
  1278. * In a wake-up migration we have to approximate the
  1279. * time sleeping. This is because we can't synchronize
  1280. * clock_task between the two cpus, and it is not
  1281. * guaranteed to be read-safe. Instead, we can
  1282. * approximate this using our carried decays, which are
  1283. * explicitly atomically readable.
  1284. */
  1285. se->avg.last_runnable_update -= (-se->avg.decay_count)
  1286. << 20;
  1287. update_entity_load_avg(se, 0);
  1288. /* Indicate that we're now synchronized and on-rq */
  1289. se->avg.decay_count = 0;
  1290. }
  1291. wakeup = 0;
  1292. } else {
  1293. __synchronize_entity_decay(se);
  1294. }
  1295. /* migrated tasks did not contribute to our blocked load */
  1296. if (wakeup) {
  1297. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  1298. update_entity_load_avg(se, 0);
  1299. }
  1300. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  1301. /* we force update consideration on load-balancer moves */
  1302. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  1303. }
  1304. /*
  1305. * Remove se's load from this cfs_rq child load-average, if the entity is
  1306. * transitioning to a blocked state we track its projected decay using
  1307. * blocked_load_avg.
  1308. */
  1309. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1310. struct sched_entity *se,
  1311. int sleep)
  1312. {
  1313. update_entity_load_avg(se, 1);
  1314. /* we force update consideration on load-balancer moves */
  1315. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  1316. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1317. if (sleep) {
  1318. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1319. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1320. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1321. }
  1322. #else
  1323. static inline void update_entity_load_avg(struct sched_entity *se,
  1324. int update_cfs_rq) {}
  1325. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  1326. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1327. struct sched_entity *se,
  1328. int wakeup) {}
  1329. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1330. struct sched_entity *se,
  1331. int sleep) {}
  1332. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  1333. int force_update) {}
  1334. #endif
  1335. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1336. {
  1337. #ifdef CONFIG_SCHEDSTATS
  1338. struct task_struct *tsk = NULL;
  1339. if (entity_is_task(se))
  1340. tsk = task_of(se);
  1341. if (se->statistics.sleep_start) {
  1342. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  1343. if ((s64)delta < 0)
  1344. delta = 0;
  1345. if (unlikely(delta > se->statistics.sleep_max))
  1346. se->statistics.sleep_max = delta;
  1347. se->statistics.sleep_start = 0;
  1348. se->statistics.sum_sleep_runtime += delta;
  1349. if (tsk) {
  1350. account_scheduler_latency(tsk, delta >> 10, 1);
  1351. trace_sched_stat_sleep(tsk, delta);
  1352. }
  1353. }
  1354. if (se->statistics.block_start) {
  1355. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  1356. if ((s64)delta < 0)
  1357. delta = 0;
  1358. if (unlikely(delta > se->statistics.block_max))
  1359. se->statistics.block_max = delta;
  1360. se->statistics.block_start = 0;
  1361. se->statistics.sum_sleep_runtime += delta;
  1362. if (tsk) {
  1363. if (tsk->in_iowait) {
  1364. se->statistics.iowait_sum += delta;
  1365. se->statistics.iowait_count++;
  1366. trace_sched_stat_iowait(tsk, delta);
  1367. }
  1368. trace_sched_stat_blocked(tsk, delta);
  1369. /*
  1370. * Blocking time is in units of nanosecs, so shift by
  1371. * 20 to get a milliseconds-range estimation of the
  1372. * amount of time that the task spent sleeping:
  1373. */
  1374. if (unlikely(prof_on == SLEEP_PROFILING)) {
  1375. profile_hits(SLEEP_PROFILING,
  1376. (void *)get_wchan(tsk),
  1377. delta >> 20);
  1378. }
  1379. account_scheduler_latency(tsk, delta >> 10, 0);
  1380. }
  1381. }
  1382. #endif
  1383. }
  1384. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1385. {
  1386. #ifdef CONFIG_SCHED_DEBUG
  1387. s64 d = se->vruntime - cfs_rq->min_vruntime;
  1388. if (d < 0)
  1389. d = -d;
  1390. if (d > 3*sysctl_sched_latency)
  1391. schedstat_inc(cfs_rq, nr_spread_over);
  1392. #endif
  1393. }
  1394. static void
  1395. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  1396. {
  1397. u64 vruntime = cfs_rq->min_vruntime;
  1398. /*
  1399. * The 'current' period is already promised to the current tasks,
  1400. * however the extra weight of the new task will slow them down a
  1401. * little, place the new task so that it fits in the slot that
  1402. * stays open at the end.
  1403. */
  1404. if (initial && sched_feat(START_DEBIT))
  1405. vruntime += sched_vslice(cfs_rq, se);
  1406. /* sleeps up to a single latency don't count. */
  1407. if (!initial) {
  1408. unsigned long thresh = sysctl_sched_latency;
  1409. /*
  1410. * Halve their sleep time's effect, to allow
  1411. * for a gentler effect of sleepers:
  1412. */
  1413. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  1414. thresh >>= 1;
  1415. vruntime -= thresh;
  1416. }
  1417. /* ensure we never gain time by being placed backwards. */
  1418. se->vruntime = max_vruntime(se->vruntime, vruntime);
  1419. }
  1420. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  1421. static void
  1422. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1423. {
  1424. /*
  1425. * Update the normalized vruntime before updating min_vruntime
  1426. * through callig update_curr().
  1427. */
  1428. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  1429. se->vruntime += cfs_rq->min_vruntime;
  1430. /*
  1431. * Update run-time statistics of the 'current'.
  1432. */
  1433. update_curr(cfs_rq);
  1434. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  1435. account_entity_enqueue(cfs_rq, se);
  1436. update_cfs_shares(cfs_rq);
  1437. if (flags & ENQUEUE_WAKEUP) {
  1438. place_entity(cfs_rq, se, 0);
  1439. enqueue_sleeper(cfs_rq, se);
  1440. }
  1441. update_stats_enqueue(cfs_rq, se);
  1442. check_spread(cfs_rq, se);
  1443. if (se != cfs_rq->curr)
  1444. __enqueue_entity(cfs_rq, se);
  1445. se->on_rq = 1;
  1446. if (cfs_rq->nr_running == 1) {
  1447. list_add_leaf_cfs_rq(cfs_rq);
  1448. check_enqueue_throttle(cfs_rq);
  1449. }
  1450. }
  1451. static void __clear_buddies_last(struct sched_entity *se)
  1452. {
  1453. for_each_sched_entity(se) {
  1454. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1455. if (cfs_rq->last == se)
  1456. cfs_rq->last = NULL;
  1457. else
  1458. break;
  1459. }
  1460. }
  1461. static void __clear_buddies_next(struct sched_entity *se)
  1462. {
  1463. for_each_sched_entity(se) {
  1464. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1465. if (cfs_rq->next == se)
  1466. cfs_rq->next = NULL;
  1467. else
  1468. break;
  1469. }
  1470. }
  1471. static void __clear_buddies_skip(struct sched_entity *se)
  1472. {
  1473. for_each_sched_entity(se) {
  1474. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1475. if (cfs_rq->skip == se)
  1476. cfs_rq->skip = NULL;
  1477. else
  1478. break;
  1479. }
  1480. }
  1481. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1482. {
  1483. if (cfs_rq->last == se)
  1484. __clear_buddies_last(se);
  1485. if (cfs_rq->next == se)
  1486. __clear_buddies_next(se);
  1487. if (cfs_rq->skip == se)
  1488. __clear_buddies_skip(se);
  1489. }
  1490. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1491. static void
  1492. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1493. {
  1494. /*
  1495. * Update run-time statistics of the 'current'.
  1496. */
  1497. update_curr(cfs_rq);
  1498. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  1499. update_stats_dequeue(cfs_rq, se);
  1500. if (flags & DEQUEUE_SLEEP) {
  1501. #ifdef CONFIG_SCHEDSTATS
  1502. if (entity_is_task(se)) {
  1503. struct task_struct *tsk = task_of(se);
  1504. if (tsk->state & TASK_INTERRUPTIBLE)
  1505. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  1506. if (tsk->state & TASK_UNINTERRUPTIBLE)
  1507. se->statistics.block_start = rq_of(cfs_rq)->clock;
  1508. }
  1509. #endif
  1510. }
  1511. clear_buddies(cfs_rq, se);
  1512. if (se != cfs_rq->curr)
  1513. __dequeue_entity(cfs_rq, se);
  1514. se->on_rq = 0;
  1515. account_entity_dequeue(cfs_rq, se);
  1516. /*
  1517. * Normalize the entity after updating the min_vruntime because the
  1518. * update can refer to the ->curr item and we need to reflect this
  1519. * movement in our normalized position.
  1520. */
  1521. if (!(flags & DEQUEUE_SLEEP))
  1522. se->vruntime -= cfs_rq->min_vruntime;
  1523. /* return excess runtime on last dequeue */
  1524. return_cfs_rq_runtime(cfs_rq);
  1525. update_min_vruntime(cfs_rq);
  1526. update_cfs_shares(cfs_rq);
  1527. }
  1528. /*
  1529. * Preempt the current task with a newly woken task if needed:
  1530. */
  1531. static void
  1532. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1533. {
  1534. unsigned long ideal_runtime, delta_exec;
  1535. struct sched_entity *se;
  1536. s64 delta;
  1537. ideal_runtime = sched_slice(cfs_rq, curr);
  1538. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1539. if (delta_exec > ideal_runtime) {
  1540. resched_task(rq_of(cfs_rq)->curr);
  1541. /*
  1542. * The current task ran long enough, ensure it doesn't get
  1543. * re-elected due to buddy favours.
  1544. */
  1545. clear_buddies(cfs_rq, curr);
  1546. return;
  1547. }
  1548. /*
  1549. * Ensure that a task that missed wakeup preemption by a
  1550. * narrow margin doesn't have to wait for a full slice.
  1551. * This also mitigates buddy induced latencies under load.
  1552. */
  1553. if (delta_exec < sysctl_sched_min_granularity)
  1554. return;
  1555. se = __pick_first_entity(cfs_rq);
  1556. delta = curr->vruntime - se->vruntime;
  1557. if (delta < 0)
  1558. return;
  1559. if (delta > ideal_runtime)
  1560. resched_task(rq_of(cfs_rq)->curr);
  1561. }
  1562. static void
  1563. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1564. {
  1565. /* 'current' is not kept within the tree. */
  1566. if (se->on_rq) {
  1567. /*
  1568. * Any task has to be enqueued before it get to execute on
  1569. * a CPU. So account for the time it spent waiting on the
  1570. * runqueue.
  1571. */
  1572. update_stats_wait_end(cfs_rq, se);
  1573. __dequeue_entity(cfs_rq, se);
  1574. }
  1575. update_stats_curr_start(cfs_rq, se);
  1576. cfs_rq->curr = se;
  1577. #ifdef CONFIG_SCHEDSTATS
  1578. /*
  1579. * Track our maximum slice length, if the CPU's load is at
  1580. * least twice that of our own weight (i.e. dont track it
  1581. * when there are only lesser-weight tasks around):
  1582. */
  1583. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1584. se->statistics.slice_max = max(se->statistics.slice_max,
  1585. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1586. }
  1587. #endif
  1588. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1589. }
  1590. static int
  1591. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1592. /*
  1593. * Pick the next process, keeping these things in mind, in this order:
  1594. * 1) keep things fair between processes/task groups
  1595. * 2) pick the "next" process, since someone really wants that to run
  1596. * 3) pick the "last" process, for cache locality
  1597. * 4) do not run the "skip" process, if something else is available
  1598. */
  1599. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1600. {
  1601. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1602. struct sched_entity *left = se;
  1603. /*
  1604. * Avoid running the skip buddy, if running something else can
  1605. * be done without getting too unfair.
  1606. */
  1607. if (cfs_rq->skip == se) {
  1608. struct sched_entity *second = __pick_next_entity(se);
  1609. if (second && wakeup_preempt_entity(second, left) < 1)
  1610. se = second;
  1611. }
  1612. /*
  1613. * Prefer last buddy, try to return the CPU to a preempted task.
  1614. */
  1615. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1616. se = cfs_rq->last;
  1617. /*
  1618. * Someone really wants this to run. If it's not unfair, run it.
  1619. */
  1620. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1621. se = cfs_rq->next;
  1622. clear_buddies(cfs_rq, se);
  1623. return se;
  1624. }
  1625. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1626. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1627. {
  1628. /*
  1629. * If still on the runqueue then deactivate_task()
  1630. * was not called and update_curr() has to be done:
  1631. */
  1632. if (prev->on_rq)
  1633. update_curr(cfs_rq);
  1634. /* throttle cfs_rqs exceeding runtime */
  1635. check_cfs_rq_runtime(cfs_rq);
  1636. check_spread(cfs_rq, prev);
  1637. if (prev->on_rq) {
  1638. update_stats_wait_start(cfs_rq, prev);
  1639. /* Put 'current' back into the tree. */
  1640. __enqueue_entity(cfs_rq, prev);
  1641. /* in !on_rq case, update occurred at dequeue */
  1642. update_entity_load_avg(prev, 1);
  1643. }
  1644. cfs_rq->curr = NULL;
  1645. }
  1646. static void
  1647. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1648. {
  1649. /*
  1650. * Update run-time statistics of the 'current'.
  1651. */
  1652. update_curr(cfs_rq);
  1653. /*
  1654. * Ensure that runnable average is periodically updated.
  1655. */
  1656. update_entity_load_avg(curr, 1);
  1657. update_cfs_rq_blocked_load(cfs_rq, 1);
  1658. #ifdef CONFIG_SCHED_HRTICK
  1659. /*
  1660. * queued ticks are scheduled to match the slice, so don't bother
  1661. * validating it and just reschedule.
  1662. */
  1663. if (queued) {
  1664. resched_task(rq_of(cfs_rq)->curr);
  1665. return;
  1666. }
  1667. /*
  1668. * don't let the period tick interfere with the hrtick preemption
  1669. */
  1670. if (!sched_feat(DOUBLE_TICK) &&
  1671. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1672. return;
  1673. #endif
  1674. if (cfs_rq->nr_running > 1)
  1675. check_preempt_tick(cfs_rq, curr);
  1676. }
  1677. /**************************************************
  1678. * CFS bandwidth control machinery
  1679. */
  1680. #ifdef CONFIG_CFS_BANDWIDTH
  1681. #ifdef HAVE_JUMP_LABEL
  1682. static struct static_key __cfs_bandwidth_used;
  1683. static inline bool cfs_bandwidth_used(void)
  1684. {
  1685. return static_key_false(&__cfs_bandwidth_used);
  1686. }
  1687. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1688. {
  1689. /* only need to count groups transitioning between enabled/!enabled */
  1690. if (enabled && !was_enabled)
  1691. static_key_slow_inc(&__cfs_bandwidth_used);
  1692. else if (!enabled && was_enabled)
  1693. static_key_slow_dec(&__cfs_bandwidth_used);
  1694. }
  1695. #else /* HAVE_JUMP_LABEL */
  1696. static bool cfs_bandwidth_used(void)
  1697. {
  1698. return true;
  1699. }
  1700. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1701. #endif /* HAVE_JUMP_LABEL */
  1702. /*
  1703. * default period for cfs group bandwidth.
  1704. * default: 0.1s, units: nanoseconds
  1705. */
  1706. static inline u64 default_cfs_period(void)
  1707. {
  1708. return 100000000ULL;
  1709. }
  1710. static inline u64 sched_cfs_bandwidth_slice(void)
  1711. {
  1712. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1713. }
  1714. /*
  1715. * Replenish runtime according to assigned quota and update expiration time.
  1716. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1717. * additional synchronization around rq->lock.
  1718. *
  1719. * requires cfs_b->lock
  1720. */
  1721. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1722. {
  1723. u64 now;
  1724. if (cfs_b->quota == RUNTIME_INF)
  1725. return;
  1726. now = sched_clock_cpu(smp_processor_id());
  1727. cfs_b->runtime = cfs_b->quota;
  1728. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1729. }
  1730. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1731. {
  1732. return &tg->cfs_bandwidth;
  1733. }
  1734. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  1735. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  1736. {
  1737. if (unlikely(cfs_rq->throttle_count))
  1738. return cfs_rq->throttled_clock_task;
  1739. return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
  1740. }
  1741. /* returns 0 on failure to allocate runtime */
  1742. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1743. {
  1744. struct task_group *tg = cfs_rq->tg;
  1745. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1746. u64 amount = 0, min_amount, expires;
  1747. /* note: this is a positive sum as runtime_remaining <= 0 */
  1748. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1749. raw_spin_lock(&cfs_b->lock);
  1750. if (cfs_b->quota == RUNTIME_INF)
  1751. amount = min_amount;
  1752. else {
  1753. /*
  1754. * If the bandwidth pool has become inactive, then at least one
  1755. * period must have elapsed since the last consumption.
  1756. * Refresh the global state and ensure bandwidth timer becomes
  1757. * active.
  1758. */
  1759. if (!cfs_b->timer_active) {
  1760. __refill_cfs_bandwidth_runtime(cfs_b);
  1761. __start_cfs_bandwidth(cfs_b);
  1762. }
  1763. if (cfs_b->runtime > 0) {
  1764. amount = min(cfs_b->runtime, min_amount);
  1765. cfs_b->runtime -= amount;
  1766. cfs_b->idle = 0;
  1767. }
  1768. }
  1769. expires = cfs_b->runtime_expires;
  1770. raw_spin_unlock(&cfs_b->lock);
  1771. cfs_rq->runtime_remaining += amount;
  1772. /*
  1773. * we may have advanced our local expiration to account for allowed
  1774. * spread between our sched_clock and the one on which runtime was
  1775. * issued.
  1776. */
  1777. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1778. cfs_rq->runtime_expires = expires;
  1779. return cfs_rq->runtime_remaining > 0;
  1780. }
  1781. /*
  1782. * Note: This depends on the synchronization provided by sched_clock and the
  1783. * fact that rq->clock snapshots this value.
  1784. */
  1785. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1786. {
  1787. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1788. struct rq *rq = rq_of(cfs_rq);
  1789. /* if the deadline is ahead of our clock, nothing to do */
  1790. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1791. return;
  1792. if (cfs_rq->runtime_remaining < 0)
  1793. return;
  1794. /*
  1795. * If the local deadline has passed we have to consider the
  1796. * possibility that our sched_clock is 'fast' and the global deadline
  1797. * has not truly expired.
  1798. *
  1799. * Fortunately we can check determine whether this the case by checking
  1800. * whether the global deadline has advanced.
  1801. */
  1802. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1803. /* extend local deadline, drift is bounded above by 2 ticks */
  1804. cfs_rq->runtime_expires += TICK_NSEC;
  1805. } else {
  1806. /* global deadline is ahead, expiration has passed */
  1807. cfs_rq->runtime_remaining = 0;
  1808. }
  1809. }
  1810. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1811. unsigned long delta_exec)
  1812. {
  1813. /* dock delta_exec before expiring quota (as it could span periods) */
  1814. cfs_rq->runtime_remaining -= delta_exec;
  1815. expire_cfs_rq_runtime(cfs_rq);
  1816. if (likely(cfs_rq->runtime_remaining > 0))
  1817. return;
  1818. /*
  1819. * if we're unable to extend our runtime we resched so that the active
  1820. * hierarchy can be throttled
  1821. */
  1822. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1823. resched_task(rq_of(cfs_rq)->curr);
  1824. }
  1825. static __always_inline
  1826. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1827. {
  1828. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1829. return;
  1830. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1831. }
  1832. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1833. {
  1834. return cfs_bandwidth_used() && cfs_rq->throttled;
  1835. }
  1836. /* check whether cfs_rq, or any parent, is throttled */
  1837. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1838. {
  1839. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1840. }
  1841. /*
  1842. * Ensure that neither of the group entities corresponding to src_cpu or
  1843. * dest_cpu are members of a throttled hierarchy when performing group
  1844. * load-balance operations.
  1845. */
  1846. static inline int throttled_lb_pair(struct task_group *tg,
  1847. int src_cpu, int dest_cpu)
  1848. {
  1849. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1850. src_cfs_rq = tg->cfs_rq[src_cpu];
  1851. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1852. return throttled_hierarchy(src_cfs_rq) ||
  1853. throttled_hierarchy(dest_cfs_rq);
  1854. }
  1855. /* updated child weight may affect parent so we have to do this bottom up */
  1856. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1857. {
  1858. struct rq *rq = data;
  1859. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1860. cfs_rq->throttle_count--;
  1861. #ifdef CONFIG_SMP
  1862. if (!cfs_rq->throttle_count) {
  1863. /* adjust cfs_rq_clock_task() */
  1864. cfs_rq->throttled_clock_task_time += rq->clock_task -
  1865. cfs_rq->throttled_clock_task;
  1866. }
  1867. #endif
  1868. return 0;
  1869. }
  1870. static int tg_throttle_down(struct task_group *tg, void *data)
  1871. {
  1872. struct rq *rq = data;
  1873. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1874. /* group is entering throttled state, stop time */
  1875. if (!cfs_rq->throttle_count)
  1876. cfs_rq->throttled_clock_task = rq->clock_task;
  1877. cfs_rq->throttle_count++;
  1878. return 0;
  1879. }
  1880. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1881. {
  1882. struct rq *rq = rq_of(cfs_rq);
  1883. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1884. struct sched_entity *se;
  1885. long task_delta, dequeue = 1;
  1886. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1887. /* freeze hierarchy runnable averages while throttled */
  1888. rcu_read_lock();
  1889. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1890. rcu_read_unlock();
  1891. task_delta = cfs_rq->h_nr_running;
  1892. for_each_sched_entity(se) {
  1893. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1894. /* throttled entity or throttle-on-deactivate */
  1895. if (!se->on_rq)
  1896. break;
  1897. if (dequeue)
  1898. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1899. qcfs_rq->h_nr_running -= task_delta;
  1900. if (qcfs_rq->load.weight)
  1901. dequeue = 0;
  1902. }
  1903. if (!se)
  1904. rq->nr_running -= task_delta;
  1905. cfs_rq->throttled = 1;
  1906. cfs_rq->throttled_clock = rq->clock;
  1907. raw_spin_lock(&cfs_b->lock);
  1908. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1909. raw_spin_unlock(&cfs_b->lock);
  1910. }
  1911. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1912. {
  1913. struct rq *rq = rq_of(cfs_rq);
  1914. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1915. struct sched_entity *se;
  1916. int enqueue = 1;
  1917. long task_delta;
  1918. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1919. cfs_rq->throttled = 0;
  1920. raw_spin_lock(&cfs_b->lock);
  1921. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
  1922. list_del_rcu(&cfs_rq->throttled_list);
  1923. raw_spin_unlock(&cfs_b->lock);
  1924. update_rq_clock(rq);
  1925. /* update hierarchical throttle state */
  1926. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1927. if (!cfs_rq->load.weight)
  1928. return;
  1929. task_delta = cfs_rq->h_nr_running;
  1930. for_each_sched_entity(se) {
  1931. if (se->on_rq)
  1932. enqueue = 0;
  1933. cfs_rq = cfs_rq_of(se);
  1934. if (enqueue)
  1935. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1936. cfs_rq->h_nr_running += task_delta;
  1937. if (cfs_rq_throttled(cfs_rq))
  1938. break;
  1939. }
  1940. if (!se)
  1941. rq->nr_running += task_delta;
  1942. /* determine whether we need to wake up potentially idle cpu */
  1943. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1944. resched_task(rq->curr);
  1945. }
  1946. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1947. u64 remaining, u64 expires)
  1948. {
  1949. struct cfs_rq *cfs_rq;
  1950. u64 runtime = remaining;
  1951. rcu_read_lock();
  1952. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1953. throttled_list) {
  1954. struct rq *rq = rq_of(cfs_rq);
  1955. raw_spin_lock(&rq->lock);
  1956. if (!cfs_rq_throttled(cfs_rq))
  1957. goto next;
  1958. runtime = -cfs_rq->runtime_remaining + 1;
  1959. if (runtime > remaining)
  1960. runtime = remaining;
  1961. remaining -= runtime;
  1962. cfs_rq->runtime_remaining += runtime;
  1963. cfs_rq->runtime_expires = expires;
  1964. /* we check whether we're throttled above */
  1965. if (cfs_rq->runtime_remaining > 0)
  1966. unthrottle_cfs_rq(cfs_rq);
  1967. next:
  1968. raw_spin_unlock(&rq->lock);
  1969. if (!remaining)
  1970. break;
  1971. }
  1972. rcu_read_unlock();
  1973. return remaining;
  1974. }
  1975. /*
  1976. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1977. * cfs_rqs as appropriate. If there has been no activity within the last
  1978. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1979. * used to track this state.
  1980. */
  1981. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1982. {
  1983. u64 runtime, runtime_expires;
  1984. int idle = 1, throttled;
  1985. raw_spin_lock(&cfs_b->lock);
  1986. /* no need to continue the timer with no bandwidth constraint */
  1987. if (cfs_b->quota == RUNTIME_INF)
  1988. goto out_unlock;
  1989. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1990. /* idle depends on !throttled (for the case of a large deficit) */
  1991. idle = cfs_b->idle && !throttled;
  1992. cfs_b->nr_periods += overrun;
  1993. /* if we're going inactive then everything else can be deferred */
  1994. if (idle)
  1995. goto out_unlock;
  1996. __refill_cfs_bandwidth_runtime(cfs_b);
  1997. if (!throttled) {
  1998. /* mark as potentially idle for the upcoming period */
  1999. cfs_b->idle = 1;
  2000. goto out_unlock;
  2001. }
  2002. /* account preceding periods in which throttling occurred */
  2003. cfs_b->nr_throttled += overrun;
  2004. /*
  2005. * There are throttled entities so we must first use the new bandwidth
  2006. * to unthrottle them before making it generally available. This
  2007. * ensures that all existing debts will be paid before a new cfs_rq is
  2008. * allowed to run.
  2009. */
  2010. runtime = cfs_b->runtime;
  2011. runtime_expires = cfs_b->runtime_expires;
  2012. cfs_b->runtime = 0;
  2013. /*
  2014. * This check is repeated as we are holding onto the new bandwidth
  2015. * while we unthrottle. This can potentially race with an unthrottled
  2016. * group trying to acquire new bandwidth from the global pool.
  2017. */
  2018. while (throttled && runtime > 0) {
  2019. raw_spin_unlock(&cfs_b->lock);
  2020. /* we can't nest cfs_b->lock while distributing bandwidth */
  2021. runtime = distribute_cfs_runtime(cfs_b, runtime,
  2022. runtime_expires);
  2023. raw_spin_lock(&cfs_b->lock);
  2024. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2025. }
  2026. /* return (any) remaining runtime */
  2027. cfs_b->runtime = runtime;
  2028. /*
  2029. * While we are ensured activity in the period following an
  2030. * unthrottle, this also covers the case in which the new bandwidth is
  2031. * insufficient to cover the existing bandwidth deficit. (Forcing the
  2032. * timer to remain active while there are any throttled entities.)
  2033. */
  2034. cfs_b->idle = 0;
  2035. out_unlock:
  2036. if (idle)
  2037. cfs_b->timer_active = 0;
  2038. raw_spin_unlock(&cfs_b->lock);
  2039. return idle;
  2040. }
  2041. /* a cfs_rq won't donate quota below this amount */
  2042. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  2043. /* minimum remaining period time to redistribute slack quota */
  2044. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  2045. /* how long we wait to gather additional slack before distributing */
  2046. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  2047. /* are we near the end of the current quota period? */
  2048. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  2049. {
  2050. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  2051. u64 remaining;
  2052. /* if the call-back is running a quota refresh is already occurring */
  2053. if (hrtimer_callback_running(refresh_timer))
  2054. return 1;
  2055. /* is a quota refresh about to occur? */
  2056. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  2057. if (remaining < min_expire)
  2058. return 1;
  2059. return 0;
  2060. }
  2061. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  2062. {
  2063. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  2064. /* if there's a quota refresh soon don't bother with slack */
  2065. if (runtime_refresh_within(cfs_b, min_left))
  2066. return;
  2067. start_bandwidth_timer(&cfs_b->slack_timer,
  2068. ns_to_ktime(cfs_bandwidth_slack_period));
  2069. }
  2070. /* we know any runtime found here is valid as update_curr() precedes return */
  2071. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2072. {
  2073. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2074. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  2075. if (slack_runtime <= 0)
  2076. return;
  2077. raw_spin_lock(&cfs_b->lock);
  2078. if (cfs_b->quota != RUNTIME_INF &&
  2079. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  2080. cfs_b->runtime += slack_runtime;
  2081. /* we are under rq->lock, defer unthrottling using a timer */
  2082. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  2083. !list_empty(&cfs_b->throttled_cfs_rq))
  2084. start_cfs_slack_bandwidth(cfs_b);
  2085. }
  2086. raw_spin_unlock(&cfs_b->lock);
  2087. /* even if it's not valid for return we don't want to try again */
  2088. cfs_rq->runtime_remaining -= slack_runtime;
  2089. }
  2090. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2091. {
  2092. if (!cfs_bandwidth_used())
  2093. return;
  2094. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  2095. return;
  2096. __return_cfs_rq_runtime(cfs_rq);
  2097. }
  2098. /*
  2099. * This is done with a timer (instead of inline with bandwidth return) since
  2100. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  2101. */
  2102. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  2103. {
  2104. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  2105. u64 expires;
  2106. /* confirm we're still not at a refresh boundary */
  2107. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  2108. return;
  2109. raw_spin_lock(&cfs_b->lock);
  2110. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  2111. runtime = cfs_b->runtime;
  2112. cfs_b->runtime = 0;
  2113. }
  2114. expires = cfs_b->runtime_expires;
  2115. raw_spin_unlock(&cfs_b->lock);
  2116. if (!runtime)
  2117. return;
  2118. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  2119. raw_spin_lock(&cfs_b->lock);
  2120. if (expires == cfs_b->runtime_expires)
  2121. cfs_b->runtime = runtime;
  2122. raw_spin_unlock(&cfs_b->lock);
  2123. }
  2124. /*
  2125. * When a group wakes up we want to make sure that its quota is not already
  2126. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  2127. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  2128. */
  2129. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  2130. {
  2131. if (!cfs_bandwidth_used())
  2132. return;
  2133. /* an active group must be handled by the update_curr()->put() path */
  2134. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  2135. return;
  2136. /* ensure the group is not already throttled */
  2137. if (cfs_rq_throttled(cfs_rq))
  2138. return;
  2139. /* update runtime allocation */
  2140. account_cfs_rq_runtime(cfs_rq, 0);
  2141. if (cfs_rq->runtime_remaining <= 0)
  2142. throttle_cfs_rq(cfs_rq);
  2143. }
  2144. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  2145. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2146. {
  2147. if (!cfs_bandwidth_used())
  2148. return;
  2149. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  2150. return;
  2151. /*
  2152. * it's possible for a throttled entity to be forced into a running
  2153. * state (e.g. set_curr_task), in this case we're finished.
  2154. */
  2155. if (cfs_rq_throttled(cfs_rq))
  2156. return;
  2157. throttle_cfs_rq(cfs_rq);
  2158. }
  2159. static inline u64 default_cfs_period(void);
  2160. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  2161. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  2162. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  2163. {
  2164. struct cfs_bandwidth *cfs_b =
  2165. container_of(timer, struct cfs_bandwidth, slack_timer);
  2166. do_sched_cfs_slack_timer(cfs_b);
  2167. return HRTIMER_NORESTART;
  2168. }
  2169. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  2170. {
  2171. struct cfs_bandwidth *cfs_b =
  2172. container_of(timer, struct cfs_bandwidth, period_timer);
  2173. ktime_t now;
  2174. int overrun;
  2175. int idle = 0;
  2176. for (;;) {
  2177. now = hrtimer_cb_get_time(timer);
  2178. overrun = hrtimer_forward(timer, now, cfs_b->period);
  2179. if (!overrun)
  2180. break;
  2181. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  2182. }
  2183. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  2184. }
  2185. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2186. {
  2187. raw_spin_lock_init(&cfs_b->lock);
  2188. cfs_b->runtime = 0;
  2189. cfs_b->quota = RUNTIME_INF;
  2190. cfs_b->period = ns_to_ktime(default_cfs_period());
  2191. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  2192. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2193. cfs_b->period_timer.function = sched_cfs_period_timer;
  2194. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2195. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  2196. }
  2197. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2198. {
  2199. cfs_rq->runtime_enabled = 0;
  2200. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  2201. }
  2202. /* requires cfs_b->lock, may release to reprogram timer */
  2203. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2204. {
  2205. /*
  2206. * The timer may be active because we're trying to set a new bandwidth
  2207. * period or because we're racing with the tear-down path
  2208. * (timer_active==0 becomes visible before the hrtimer call-back
  2209. * terminates). In either case we ensure that it's re-programmed
  2210. */
  2211. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  2212. raw_spin_unlock(&cfs_b->lock);
  2213. /* ensure cfs_b->lock is available while we wait */
  2214. hrtimer_cancel(&cfs_b->period_timer);
  2215. raw_spin_lock(&cfs_b->lock);
  2216. /* if someone else restarted the timer then we're done */
  2217. if (cfs_b->timer_active)
  2218. return;
  2219. }
  2220. cfs_b->timer_active = 1;
  2221. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  2222. }
  2223. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2224. {
  2225. hrtimer_cancel(&cfs_b->period_timer);
  2226. hrtimer_cancel(&cfs_b->slack_timer);
  2227. }
  2228. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  2229. {
  2230. struct cfs_rq *cfs_rq;
  2231. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2232. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2233. if (!cfs_rq->runtime_enabled)
  2234. continue;
  2235. /*
  2236. * clock_task is not advancing so we just need to make sure
  2237. * there's some valid quota amount
  2238. */
  2239. cfs_rq->runtime_remaining = cfs_b->quota;
  2240. if (cfs_rq_throttled(cfs_rq))
  2241. unthrottle_cfs_rq(cfs_rq);
  2242. }
  2243. }
  2244. #else /* CONFIG_CFS_BANDWIDTH */
  2245. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2246. {
  2247. return rq_of(cfs_rq)->clock_task;
  2248. }
  2249. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  2250. unsigned long delta_exec) {}
  2251. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2252. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  2253. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2254. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2255. {
  2256. return 0;
  2257. }
  2258. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2259. {
  2260. return 0;
  2261. }
  2262. static inline int throttled_lb_pair(struct task_group *tg,
  2263. int src_cpu, int dest_cpu)
  2264. {
  2265. return 0;
  2266. }
  2267. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2268. #ifdef CONFIG_FAIR_GROUP_SCHED
  2269. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2270. #endif
  2271. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2272. {
  2273. return NULL;
  2274. }
  2275. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2276. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  2277. #endif /* CONFIG_CFS_BANDWIDTH */
  2278. /**************************************************
  2279. * CFS operations on tasks:
  2280. */
  2281. #ifdef CONFIG_SCHED_HRTICK
  2282. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2283. {
  2284. struct sched_entity *se = &p->se;
  2285. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2286. WARN_ON(task_rq(p) != rq);
  2287. if (cfs_rq->nr_running > 1) {
  2288. u64 slice = sched_slice(cfs_rq, se);
  2289. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  2290. s64 delta = slice - ran;
  2291. if (delta < 0) {
  2292. if (rq->curr == p)
  2293. resched_task(p);
  2294. return;
  2295. }
  2296. /*
  2297. * Don't schedule slices shorter than 10000ns, that just
  2298. * doesn't make sense. Rely on vruntime for fairness.
  2299. */
  2300. if (rq->curr != p)
  2301. delta = max_t(s64, 10000LL, delta);
  2302. hrtick_start(rq, delta);
  2303. }
  2304. }
  2305. /*
  2306. * called from enqueue/dequeue and updates the hrtick when the
  2307. * current task is from our class and nr_running is low enough
  2308. * to matter.
  2309. */
  2310. static void hrtick_update(struct rq *rq)
  2311. {
  2312. struct task_struct *curr = rq->curr;
  2313. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  2314. return;
  2315. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  2316. hrtick_start_fair(rq, curr);
  2317. }
  2318. #else /* !CONFIG_SCHED_HRTICK */
  2319. static inline void
  2320. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2321. {
  2322. }
  2323. static inline void hrtick_update(struct rq *rq)
  2324. {
  2325. }
  2326. #endif
  2327. /*
  2328. * The enqueue_task method is called before nr_running is
  2329. * increased. Here we update the fair scheduling stats and
  2330. * then put the task into the rbtree:
  2331. */
  2332. static void
  2333. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2334. {
  2335. struct cfs_rq *cfs_rq;
  2336. struct sched_entity *se = &p->se;
  2337. for_each_sched_entity(se) {
  2338. if (se->on_rq)
  2339. break;
  2340. cfs_rq = cfs_rq_of(se);
  2341. enqueue_entity(cfs_rq, se, flags);
  2342. /*
  2343. * end evaluation on encountering a throttled cfs_rq
  2344. *
  2345. * note: in the case of encountering a throttled cfs_rq we will
  2346. * post the final h_nr_running increment below.
  2347. */
  2348. if (cfs_rq_throttled(cfs_rq))
  2349. break;
  2350. cfs_rq->h_nr_running++;
  2351. flags = ENQUEUE_WAKEUP;
  2352. }
  2353. for_each_sched_entity(se) {
  2354. cfs_rq = cfs_rq_of(se);
  2355. cfs_rq->h_nr_running++;
  2356. if (cfs_rq_throttled(cfs_rq))
  2357. break;
  2358. update_cfs_shares(cfs_rq);
  2359. update_entity_load_avg(se, 1);
  2360. }
  2361. if (!se) {
  2362. update_rq_runnable_avg(rq, rq->nr_running);
  2363. inc_nr_running(rq);
  2364. }
  2365. hrtick_update(rq);
  2366. }
  2367. static void set_next_buddy(struct sched_entity *se);
  2368. /*
  2369. * The dequeue_task method is called before nr_running is
  2370. * decreased. We remove the task from the rbtree and
  2371. * update the fair scheduling stats:
  2372. */
  2373. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2374. {
  2375. struct cfs_rq *cfs_rq;
  2376. struct sched_entity *se = &p->se;
  2377. int task_sleep = flags & DEQUEUE_SLEEP;
  2378. for_each_sched_entity(se) {
  2379. cfs_rq = cfs_rq_of(se);
  2380. dequeue_entity(cfs_rq, se, flags);
  2381. /*
  2382. * end evaluation on encountering a throttled cfs_rq
  2383. *
  2384. * note: in the case of encountering a throttled cfs_rq we will
  2385. * post the final h_nr_running decrement below.
  2386. */
  2387. if (cfs_rq_throttled(cfs_rq))
  2388. break;
  2389. cfs_rq->h_nr_running--;
  2390. /* Don't dequeue parent if it has other entities besides us */
  2391. if (cfs_rq->load.weight) {
  2392. /*
  2393. * Bias pick_next to pick a task from this cfs_rq, as
  2394. * p is sleeping when it is within its sched_slice.
  2395. */
  2396. if (task_sleep && parent_entity(se))
  2397. set_next_buddy(parent_entity(se));
  2398. /* avoid re-evaluating load for this entity */
  2399. se = parent_entity(se);
  2400. break;
  2401. }
  2402. flags |= DEQUEUE_SLEEP;
  2403. }
  2404. for_each_sched_entity(se) {
  2405. cfs_rq = cfs_rq_of(se);
  2406. cfs_rq->h_nr_running--;
  2407. if (cfs_rq_throttled(cfs_rq))
  2408. break;
  2409. update_cfs_shares(cfs_rq);
  2410. update_entity_load_avg(se, 1);
  2411. }
  2412. if (!se) {
  2413. dec_nr_running(rq);
  2414. update_rq_runnable_avg(rq, 1);
  2415. }
  2416. hrtick_update(rq);
  2417. }
  2418. #ifdef CONFIG_SMP
  2419. /* Used instead of source_load when we know the type == 0 */
  2420. static unsigned long weighted_cpuload(const int cpu)
  2421. {
  2422. return cpu_rq(cpu)->load.weight;
  2423. }
  2424. /*
  2425. * Return a low guess at the load of a migration-source cpu weighted
  2426. * according to the scheduling class and "nice" value.
  2427. *
  2428. * We want to under-estimate the load of migration sources, to
  2429. * balance conservatively.
  2430. */
  2431. static unsigned long source_load(int cpu, int type)
  2432. {
  2433. struct rq *rq = cpu_rq(cpu);
  2434. unsigned long total = weighted_cpuload(cpu);
  2435. if (type == 0 || !sched_feat(LB_BIAS))
  2436. return total;
  2437. return min(rq->cpu_load[type-1], total);
  2438. }
  2439. /*
  2440. * Return a high guess at the load of a migration-target cpu weighted
  2441. * according to the scheduling class and "nice" value.
  2442. */
  2443. static unsigned long target_load(int cpu, int type)
  2444. {
  2445. struct rq *rq = cpu_rq(cpu);
  2446. unsigned long total = weighted_cpuload(cpu);
  2447. if (type == 0 || !sched_feat(LB_BIAS))
  2448. return total;
  2449. return max(rq->cpu_load[type-1], total);
  2450. }
  2451. static unsigned long power_of(int cpu)
  2452. {
  2453. return cpu_rq(cpu)->cpu_power;
  2454. }
  2455. static unsigned long cpu_avg_load_per_task(int cpu)
  2456. {
  2457. struct rq *rq = cpu_rq(cpu);
  2458. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  2459. if (nr_running)
  2460. return rq->load.weight / nr_running;
  2461. return 0;
  2462. }
  2463. static void task_waking_fair(struct task_struct *p)
  2464. {
  2465. struct sched_entity *se = &p->se;
  2466. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2467. u64 min_vruntime;
  2468. #ifndef CONFIG_64BIT
  2469. u64 min_vruntime_copy;
  2470. do {
  2471. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  2472. smp_rmb();
  2473. min_vruntime = cfs_rq->min_vruntime;
  2474. } while (min_vruntime != min_vruntime_copy);
  2475. #else
  2476. min_vruntime = cfs_rq->min_vruntime;
  2477. #endif
  2478. se->vruntime -= min_vruntime;
  2479. }
  2480. #ifdef CONFIG_FAIR_GROUP_SCHED
  2481. /*
  2482. * effective_load() calculates the load change as seen from the root_task_group
  2483. *
  2484. * Adding load to a group doesn't make a group heavier, but can cause movement
  2485. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2486. * can calculate the shift in shares.
  2487. *
  2488. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2489. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2490. * total group weight.
  2491. *
  2492. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2493. * distribution (s_i) using:
  2494. *
  2495. * s_i = rw_i / \Sum rw_j (1)
  2496. *
  2497. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2498. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2499. * shares distribution (s_i):
  2500. *
  2501. * rw_i = { 2, 4, 1, 0 }
  2502. * s_i = { 2/7, 4/7, 1/7, 0 }
  2503. *
  2504. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2505. * task used to run on and the CPU the waker is running on), we need to
  2506. * compute the effect of waking a task on either CPU and, in case of a sync
  2507. * wakeup, compute the effect of the current task going to sleep.
  2508. *
  2509. * So for a change of @wl to the local @cpu with an overall group weight change
  2510. * of @wl we can compute the new shares distribution (s'_i) using:
  2511. *
  2512. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2513. *
  2514. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2515. * differences in waking a task to CPU 0. The additional task changes the
  2516. * weight and shares distributions like:
  2517. *
  2518. * rw'_i = { 3, 4, 1, 0 }
  2519. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2520. *
  2521. * We can then compute the difference in effective weight by using:
  2522. *
  2523. * dw_i = S * (s'_i - s_i) (3)
  2524. *
  2525. * Where 'S' is the group weight as seen by its parent.
  2526. *
  2527. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2528. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2529. * 4/7) times the weight of the group.
  2530. */
  2531. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2532. {
  2533. struct sched_entity *se = tg->se[cpu];
  2534. if (!tg->parent) /* the trivial, non-cgroup case */
  2535. return wl;
  2536. for_each_sched_entity(se) {
  2537. long w, W;
  2538. tg = se->my_q->tg;
  2539. /*
  2540. * W = @wg + \Sum rw_j
  2541. */
  2542. W = wg + calc_tg_weight(tg, se->my_q);
  2543. /*
  2544. * w = rw_i + @wl
  2545. */
  2546. w = se->my_q->load.weight + wl;
  2547. /*
  2548. * wl = S * s'_i; see (2)
  2549. */
  2550. if (W > 0 && w < W)
  2551. wl = (w * tg->shares) / W;
  2552. else
  2553. wl = tg->shares;
  2554. /*
  2555. * Per the above, wl is the new se->load.weight value; since
  2556. * those are clipped to [MIN_SHARES, ...) do so now. See
  2557. * calc_cfs_shares().
  2558. */
  2559. if (wl < MIN_SHARES)
  2560. wl = MIN_SHARES;
  2561. /*
  2562. * wl = dw_i = S * (s'_i - s_i); see (3)
  2563. */
  2564. wl -= se->load.weight;
  2565. /*
  2566. * Recursively apply this logic to all parent groups to compute
  2567. * the final effective load change on the root group. Since
  2568. * only the @tg group gets extra weight, all parent groups can
  2569. * only redistribute existing shares. @wl is the shift in shares
  2570. * resulting from this level per the above.
  2571. */
  2572. wg = 0;
  2573. }
  2574. return wl;
  2575. }
  2576. #else
  2577. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2578. unsigned long wl, unsigned long wg)
  2579. {
  2580. return wl;
  2581. }
  2582. #endif
  2583. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2584. {
  2585. s64 this_load, load;
  2586. int idx, this_cpu, prev_cpu;
  2587. unsigned long tl_per_task;
  2588. struct task_group *tg;
  2589. unsigned long weight;
  2590. int balanced;
  2591. idx = sd->wake_idx;
  2592. this_cpu = smp_processor_id();
  2593. prev_cpu = task_cpu(p);
  2594. load = source_load(prev_cpu, idx);
  2595. this_load = target_load(this_cpu, idx);
  2596. /*
  2597. * If sync wakeup then subtract the (maximum possible)
  2598. * effect of the currently running task from the load
  2599. * of the current CPU:
  2600. */
  2601. if (sync) {
  2602. tg = task_group(current);
  2603. weight = current->se.load.weight;
  2604. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2605. load += effective_load(tg, prev_cpu, 0, -weight);
  2606. }
  2607. tg = task_group(p);
  2608. weight = p->se.load.weight;
  2609. /*
  2610. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2611. * due to the sync cause above having dropped this_load to 0, we'll
  2612. * always have an imbalance, but there's really nothing you can do
  2613. * about that, so that's good too.
  2614. *
  2615. * Otherwise check if either cpus are near enough in load to allow this
  2616. * task to be woken on this_cpu.
  2617. */
  2618. if (this_load > 0) {
  2619. s64 this_eff_load, prev_eff_load;
  2620. this_eff_load = 100;
  2621. this_eff_load *= power_of(prev_cpu);
  2622. this_eff_load *= this_load +
  2623. effective_load(tg, this_cpu, weight, weight);
  2624. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2625. prev_eff_load *= power_of(this_cpu);
  2626. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2627. balanced = this_eff_load <= prev_eff_load;
  2628. } else
  2629. balanced = true;
  2630. /*
  2631. * If the currently running task will sleep within
  2632. * a reasonable amount of time then attract this newly
  2633. * woken task:
  2634. */
  2635. if (sync && balanced)
  2636. return 1;
  2637. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2638. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2639. if (balanced ||
  2640. (this_load <= load &&
  2641. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2642. /*
  2643. * This domain has SD_WAKE_AFFINE and
  2644. * p is cache cold in this domain, and
  2645. * there is no bad imbalance.
  2646. */
  2647. schedstat_inc(sd, ttwu_move_affine);
  2648. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2649. return 1;
  2650. }
  2651. return 0;
  2652. }
  2653. /*
  2654. * find_idlest_group finds and returns the least busy CPU group within the
  2655. * domain.
  2656. */
  2657. static struct sched_group *
  2658. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2659. int this_cpu, int load_idx)
  2660. {
  2661. struct sched_group *idlest = NULL, *group = sd->groups;
  2662. unsigned long min_load = ULONG_MAX, this_load = 0;
  2663. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2664. do {
  2665. unsigned long load, avg_load;
  2666. int local_group;
  2667. int i;
  2668. /* Skip over this group if it has no CPUs allowed */
  2669. if (!cpumask_intersects(sched_group_cpus(group),
  2670. tsk_cpus_allowed(p)))
  2671. continue;
  2672. local_group = cpumask_test_cpu(this_cpu,
  2673. sched_group_cpus(group));
  2674. /* Tally up the load of all CPUs in the group */
  2675. avg_load = 0;
  2676. for_each_cpu(i, sched_group_cpus(group)) {
  2677. /* Bias balancing toward cpus of our domain */
  2678. if (local_group)
  2679. load = source_load(i, load_idx);
  2680. else
  2681. load = target_load(i, load_idx);
  2682. avg_load += load;
  2683. }
  2684. /* Adjust by relative CPU power of the group */
  2685. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2686. if (local_group) {
  2687. this_load = avg_load;
  2688. } else if (avg_load < min_load) {
  2689. min_load = avg_load;
  2690. idlest = group;
  2691. }
  2692. } while (group = group->next, group != sd->groups);
  2693. if (!idlest || 100*this_load < imbalance*min_load)
  2694. return NULL;
  2695. return idlest;
  2696. }
  2697. /*
  2698. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2699. */
  2700. static int
  2701. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2702. {
  2703. unsigned long load, min_load = ULONG_MAX;
  2704. int idlest = -1;
  2705. int i;
  2706. /* Traverse only the allowed CPUs */
  2707. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2708. load = weighted_cpuload(i);
  2709. if (load < min_load || (load == min_load && i == this_cpu)) {
  2710. min_load = load;
  2711. idlest = i;
  2712. }
  2713. }
  2714. return idlest;
  2715. }
  2716. /*
  2717. * Try and locate an idle CPU in the sched_domain.
  2718. */
  2719. static int select_idle_sibling(struct task_struct *p, int target)
  2720. {
  2721. struct sched_domain *sd;
  2722. struct sched_group *sg;
  2723. int i = task_cpu(p);
  2724. if (idle_cpu(target))
  2725. return target;
  2726. /*
  2727. * If the prevous cpu is cache affine and idle, don't be stupid.
  2728. */
  2729. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  2730. return i;
  2731. /*
  2732. * Otherwise, iterate the domains and find an elegible idle cpu.
  2733. */
  2734. sd = rcu_dereference(per_cpu(sd_llc, target));
  2735. for_each_lower_domain(sd) {
  2736. sg = sd->groups;
  2737. do {
  2738. if (!cpumask_intersects(sched_group_cpus(sg),
  2739. tsk_cpus_allowed(p)))
  2740. goto next;
  2741. for_each_cpu(i, sched_group_cpus(sg)) {
  2742. if (i == target || !idle_cpu(i))
  2743. goto next;
  2744. }
  2745. target = cpumask_first_and(sched_group_cpus(sg),
  2746. tsk_cpus_allowed(p));
  2747. goto done;
  2748. next:
  2749. sg = sg->next;
  2750. } while (sg != sd->groups);
  2751. }
  2752. done:
  2753. return target;
  2754. }
  2755. /*
  2756. * sched_balance_self: balance the current task (running on cpu) in domains
  2757. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2758. * SD_BALANCE_EXEC.
  2759. *
  2760. * Balance, ie. select the least loaded group.
  2761. *
  2762. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2763. *
  2764. * preempt must be disabled.
  2765. */
  2766. static int
  2767. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2768. {
  2769. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2770. int cpu = smp_processor_id();
  2771. int prev_cpu = task_cpu(p);
  2772. int new_cpu = cpu;
  2773. int want_affine = 0;
  2774. int sync = wake_flags & WF_SYNC;
  2775. if (p->nr_cpus_allowed == 1)
  2776. return prev_cpu;
  2777. if (sd_flag & SD_BALANCE_WAKE) {
  2778. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2779. want_affine = 1;
  2780. new_cpu = prev_cpu;
  2781. }
  2782. rcu_read_lock();
  2783. for_each_domain(cpu, tmp) {
  2784. if (!(tmp->flags & SD_LOAD_BALANCE))
  2785. continue;
  2786. /*
  2787. * If both cpu and prev_cpu are part of this domain,
  2788. * cpu is a valid SD_WAKE_AFFINE target.
  2789. */
  2790. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2791. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2792. affine_sd = tmp;
  2793. break;
  2794. }
  2795. if (tmp->flags & sd_flag)
  2796. sd = tmp;
  2797. }
  2798. if (affine_sd) {
  2799. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  2800. prev_cpu = cpu;
  2801. new_cpu = select_idle_sibling(p, prev_cpu);
  2802. goto unlock;
  2803. }
  2804. while (sd) {
  2805. int load_idx = sd->forkexec_idx;
  2806. struct sched_group *group;
  2807. int weight;
  2808. if (!(sd->flags & sd_flag)) {
  2809. sd = sd->child;
  2810. continue;
  2811. }
  2812. if (sd_flag & SD_BALANCE_WAKE)
  2813. load_idx = sd->wake_idx;
  2814. group = find_idlest_group(sd, p, cpu, load_idx);
  2815. if (!group) {
  2816. sd = sd->child;
  2817. continue;
  2818. }
  2819. new_cpu = find_idlest_cpu(group, p, cpu);
  2820. if (new_cpu == -1 || new_cpu == cpu) {
  2821. /* Now try balancing at a lower domain level of cpu */
  2822. sd = sd->child;
  2823. continue;
  2824. }
  2825. /* Now try balancing at a lower domain level of new_cpu */
  2826. cpu = new_cpu;
  2827. weight = sd->span_weight;
  2828. sd = NULL;
  2829. for_each_domain(cpu, tmp) {
  2830. if (weight <= tmp->span_weight)
  2831. break;
  2832. if (tmp->flags & sd_flag)
  2833. sd = tmp;
  2834. }
  2835. /* while loop will break here if sd == NULL */
  2836. }
  2837. unlock:
  2838. rcu_read_unlock();
  2839. return new_cpu;
  2840. }
  2841. /*
  2842. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  2843. * removed when useful for applications beyond shares distribution (e.g.
  2844. * load-balance).
  2845. */
  2846. #ifdef CONFIG_FAIR_GROUP_SCHED
  2847. /*
  2848. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  2849. * cfs_rq_of(p) references at time of call are still valid and identify the
  2850. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  2851. * other assumptions, including the state of rq->lock, should be made.
  2852. */
  2853. static void
  2854. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  2855. {
  2856. struct sched_entity *se = &p->se;
  2857. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2858. /*
  2859. * Load tracking: accumulate removed load so that it can be processed
  2860. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  2861. * to blocked load iff they have a positive decay-count. It can never
  2862. * be negative here since on-rq tasks have decay-count == 0.
  2863. */
  2864. if (se->avg.decay_count) {
  2865. se->avg.decay_count = -__synchronize_entity_decay(se);
  2866. atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
  2867. }
  2868. }
  2869. #endif
  2870. #endif /* CONFIG_SMP */
  2871. static unsigned long
  2872. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2873. {
  2874. unsigned long gran = sysctl_sched_wakeup_granularity;
  2875. /*
  2876. * Since its curr running now, convert the gran from real-time
  2877. * to virtual-time in his units.
  2878. *
  2879. * By using 'se' instead of 'curr' we penalize light tasks, so
  2880. * they get preempted easier. That is, if 'se' < 'curr' then
  2881. * the resulting gran will be larger, therefore penalizing the
  2882. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2883. * be smaller, again penalizing the lighter task.
  2884. *
  2885. * This is especially important for buddies when the leftmost
  2886. * task is higher priority than the buddy.
  2887. */
  2888. return calc_delta_fair(gran, se);
  2889. }
  2890. /*
  2891. * Should 'se' preempt 'curr'.
  2892. *
  2893. * |s1
  2894. * |s2
  2895. * |s3
  2896. * g
  2897. * |<--->|c
  2898. *
  2899. * w(c, s1) = -1
  2900. * w(c, s2) = 0
  2901. * w(c, s3) = 1
  2902. *
  2903. */
  2904. static int
  2905. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2906. {
  2907. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2908. if (vdiff <= 0)
  2909. return -1;
  2910. gran = wakeup_gran(curr, se);
  2911. if (vdiff > gran)
  2912. return 1;
  2913. return 0;
  2914. }
  2915. static void set_last_buddy(struct sched_entity *se)
  2916. {
  2917. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2918. return;
  2919. for_each_sched_entity(se)
  2920. cfs_rq_of(se)->last = se;
  2921. }
  2922. static void set_next_buddy(struct sched_entity *se)
  2923. {
  2924. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2925. return;
  2926. for_each_sched_entity(se)
  2927. cfs_rq_of(se)->next = se;
  2928. }
  2929. static void set_skip_buddy(struct sched_entity *se)
  2930. {
  2931. for_each_sched_entity(se)
  2932. cfs_rq_of(se)->skip = se;
  2933. }
  2934. /*
  2935. * Preempt the current task with a newly woken task if needed:
  2936. */
  2937. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2938. {
  2939. struct task_struct *curr = rq->curr;
  2940. struct sched_entity *se = &curr->se, *pse = &p->se;
  2941. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2942. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2943. int next_buddy_marked = 0;
  2944. if (unlikely(se == pse))
  2945. return;
  2946. /*
  2947. * This is possible from callers such as move_task(), in which we
  2948. * unconditionally check_prempt_curr() after an enqueue (which may have
  2949. * lead to a throttle). This both saves work and prevents false
  2950. * next-buddy nomination below.
  2951. */
  2952. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2953. return;
  2954. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2955. set_next_buddy(pse);
  2956. next_buddy_marked = 1;
  2957. }
  2958. /*
  2959. * We can come here with TIF_NEED_RESCHED already set from new task
  2960. * wake up path.
  2961. *
  2962. * Note: this also catches the edge-case of curr being in a throttled
  2963. * group (e.g. via set_curr_task), since update_curr() (in the
  2964. * enqueue of curr) will have resulted in resched being set. This
  2965. * prevents us from potentially nominating it as a false LAST_BUDDY
  2966. * below.
  2967. */
  2968. if (test_tsk_need_resched(curr))
  2969. return;
  2970. /* Idle tasks are by definition preempted by non-idle tasks. */
  2971. if (unlikely(curr->policy == SCHED_IDLE) &&
  2972. likely(p->policy != SCHED_IDLE))
  2973. goto preempt;
  2974. /*
  2975. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2976. * is driven by the tick):
  2977. */
  2978. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  2979. return;
  2980. find_matching_se(&se, &pse);
  2981. update_curr(cfs_rq_of(se));
  2982. BUG_ON(!pse);
  2983. if (wakeup_preempt_entity(se, pse) == 1) {
  2984. /*
  2985. * Bias pick_next to pick the sched entity that is
  2986. * triggering this preemption.
  2987. */
  2988. if (!next_buddy_marked)
  2989. set_next_buddy(pse);
  2990. goto preempt;
  2991. }
  2992. return;
  2993. preempt:
  2994. resched_task(curr);
  2995. /*
  2996. * Only set the backward buddy when the current task is still
  2997. * on the rq. This can happen when a wakeup gets interleaved
  2998. * with schedule on the ->pre_schedule() or idle_balance()
  2999. * point, either of which can * drop the rq lock.
  3000. *
  3001. * Also, during early boot the idle thread is in the fair class,
  3002. * for obvious reasons its a bad idea to schedule back to it.
  3003. */
  3004. if (unlikely(!se->on_rq || curr == rq->idle))
  3005. return;
  3006. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  3007. set_last_buddy(se);
  3008. }
  3009. static struct task_struct *pick_next_task_fair(struct rq *rq)
  3010. {
  3011. struct task_struct *p;
  3012. struct cfs_rq *cfs_rq = &rq->cfs;
  3013. struct sched_entity *se;
  3014. if (!cfs_rq->nr_running)
  3015. return NULL;
  3016. do {
  3017. se = pick_next_entity(cfs_rq);
  3018. set_next_entity(cfs_rq, se);
  3019. cfs_rq = group_cfs_rq(se);
  3020. } while (cfs_rq);
  3021. p = task_of(se);
  3022. if (hrtick_enabled(rq))
  3023. hrtick_start_fair(rq, p);
  3024. return p;
  3025. }
  3026. /*
  3027. * Account for a descheduled task:
  3028. */
  3029. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  3030. {
  3031. struct sched_entity *se = &prev->se;
  3032. struct cfs_rq *cfs_rq;
  3033. for_each_sched_entity(se) {
  3034. cfs_rq = cfs_rq_of(se);
  3035. put_prev_entity(cfs_rq, se);
  3036. }
  3037. }
  3038. /*
  3039. * sched_yield() is very simple
  3040. *
  3041. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  3042. */
  3043. static void yield_task_fair(struct rq *rq)
  3044. {
  3045. struct task_struct *curr = rq->curr;
  3046. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3047. struct sched_entity *se = &curr->se;
  3048. /*
  3049. * Are we the only task in the tree?
  3050. */
  3051. if (unlikely(rq->nr_running == 1))
  3052. return;
  3053. clear_buddies(cfs_rq, se);
  3054. if (curr->policy != SCHED_BATCH) {
  3055. update_rq_clock(rq);
  3056. /*
  3057. * Update run-time statistics of the 'current'.
  3058. */
  3059. update_curr(cfs_rq);
  3060. /*
  3061. * Tell update_rq_clock() that we've just updated,
  3062. * so we don't do microscopic update in schedule()
  3063. * and double the fastpath cost.
  3064. */
  3065. rq->skip_clock_update = 1;
  3066. }
  3067. set_skip_buddy(se);
  3068. }
  3069. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  3070. {
  3071. struct sched_entity *se = &p->se;
  3072. /* throttled hierarchies are not runnable */
  3073. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  3074. return false;
  3075. /* Tell the scheduler that we'd really like pse to run next. */
  3076. set_next_buddy(se);
  3077. yield_task_fair(rq);
  3078. return true;
  3079. }
  3080. #ifdef CONFIG_SMP
  3081. /**************************************************
  3082. * Fair scheduling class load-balancing methods.
  3083. *
  3084. * BASICS
  3085. *
  3086. * The purpose of load-balancing is to achieve the same basic fairness the
  3087. * per-cpu scheduler provides, namely provide a proportional amount of compute
  3088. * time to each task. This is expressed in the following equation:
  3089. *
  3090. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  3091. *
  3092. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  3093. * W_i,0 is defined as:
  3094. *
  3095. * W_i,0 = \Sum_j w_i,j (2)
  3096. *
  3097. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  3098. * is derived from the nice value as per prio_to_weight[].
  3099. *
  3100. * The weight average is an exponential decay average of the instantaneous
  3101. * weight:
  3102. *
  3103. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  3104. *
  3105. * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
  3106. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  3107. * can also include other factors [XXX].
  3108. *
  3109. * To achieve this balance we define a measure of imbalance which follows
  3110. * directly from (1):
  3111. *
  3112. * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
  3113. *
  3114. * We them move tasks around to minimize the imbalance. In the continuous
  3115. * function space it is obvious this converges, in the discrete case we get
  3116. * a few fun cases generally called infeasible weight scenarios.
  3117. *
  3118. * [XXX expand on:
  3119. * - infeasible weights;
  3120. * - local vs global optima in the discrete case. ]
  3121. *
  3122. *
  3123. * SCHED DOMAINS
  3124. *
  3125. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  3126. * for all i,j solution, we create a tree of cpus that follows the hardware
  3127. * topology where each level pairs two lower groups (or better). This results
  3128. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  3129. * tree to only the first of the previous level and we decrease the frequency
  3130. * of load-balance at each level inv. proportional to the number of cpus in
  3131. * the groups.
  3132. *
  3133. * This yields:
  3134. *
  3135. * log_2 n 1 n
  3136. * \Sum { --- * --- * 2^i } = O(n) (5)
  3137. * i = 0 2^i 2^i
  3138. * `- size of each group
  3139. * | | `- number of cpus doing load-balance
  3140. * | `- freq
  3141. * `- sum over all levels
  3142. *
  3143. * Coupled with a limit on how many tasks we can migrate every balance pass,
  3144. * this makes (5) the runtime complexity of the balancer.
  3145. *
  3146. * An important property here is that each CPU is still (indirectly) connected
  3147. * to every other cpu in at most O(log n) steps:
  3148. *
  3149. * The adjacency matrix of the resulting graph is given by:
  3150. *
  3151. * log_2 n
  3152. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  3153. * k = 0
  3154. *
  3155. * And you'll find that:
  3156. *
  3157. * A^(log_2 n)_i,j != 0 for all i,j (7)
  3158. *
  3159. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  3160. * The task movement gives a factor of O(m), giving a convergence complexity
  3161. * of:
  3162. *
  3163. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  3164. *
  3165. *
  3166. * WORK CONSERVING
  3167. *
  3168. * In order to avoid CPUs going idle while there's still work to do, new idle
  3169. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  3170. * tree itself instead of relying on other CPUs to bring it work.
  3171. *
  3172. * This adds some complexity to both (5) and (8) but it reduces the total idle
  3173. * time.
  3174. *
  3175. * [XXX more?]
  3176. *
  3177. *
  3178. * CGROUPS
  3179. *
  3180. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  3181. *
  3182. * s_k,i
  3183. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  3184. * S_k
  3185. *
  3186. * Where
  3187. *
  3188. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  3189. *
  3190. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  3191. *
  3192. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  3193. * property.
  3194. *
  3195. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  3196. * rewrite all of this once again.]
  3197. */
  3198. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3199. #define LBF_ALL_PINNED 0x01
  3200. #define LBF_NEED_BREAK 0x02
  3201. #define LBF_SOME_PINNED 0x04
  3202. struct lb_env {
  3203. struct sched_domain *sd;
  3204. struct rq *src_rq;
  3205. int src_cpu;
  3206. int dst_cpu;
  3207. struct rq *dst_rq;
  3208. struct cpumask *dst_grpmask;
  3209. int new_dst_cpu;
  3210. enum cpu_idle_type idle;
  3211. long imbalance;
  3212. /* The set of CPUs under consideration for load-balancing */
  3213. struct cpumask *cpus;
  3214. unsigned int flags;
  3215. unsigned int loop;
  3216. unsigned int loop_break;
  3217. unsigned int loop_max;
  3218. };
  3219. /*
  3220. * move_task - move a task from one runqueue to another runqueue.
  3221. * Both runqueues must be locked.
  3222. */
  3223. static void move_task(struct task_struct *p, struct lb_env *env)
  3224. {
  3225. deactivate_task(env->src_rq, p, 0);
  3226. set_task_cpu(p, env->dst_cpu);
  3227. activate_task(env->dst_rq, p, 0);
  3228. check_preempt_curr(env->dst_rq, p, 0);
  3229. }
  3230. /*
  3231. * Is this task likely cache-hot:
  3232. */
  3233. static int
  3234. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  3235. {
  3236. s64 delta;
  3237. if (p->sched_class != &fair_sched_class)
  3238. return 0;
  3239. if (unlikely(p->policy == SCHED_IDLE))
  3240. return 0;
  3241. /*
  3242. * Buddy candidates are cache hot:
  3243. */
  3244. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  3245. (&p->se == cfs_rq_of(&p->se)->next ||
  3246. &p->se == cfs_rq_of(&p->se)->last))
  3247. return 1;
  3248. if (sysctl_sched_migration_cost == -1)
  3249. return 1;
  3250. if (sysctl_sched_migration_cost == 0)
  3251. return 0;
  3252. delta = now - p->se.exec_start;
  3253. return delta < (s64)sysctl_sched_migration_cost;
  3254. }
  3255. /*
  3256. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  3257. */
  3258. static
  3259. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  3260. {
  3261. int tsk_cache_hot = 0;
  3262. /*
  3263. * We do not migrate tasks that are:
  3264. * 1) running (obviously), or
  3265. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  3266. * 3) are cache-hot on their current CPU.
  3267. */
  3268. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  3269. int new_dst_cpu;
  3270. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  3271. /*
  3272. * Remember if this task can be migrated to any other cpu in
  3273. * our sched_group. We may want to revisit it if we couldn't
  3274. * meet load balance goals by pulling other tasks on src_cpu.
  3275. *
  3276. * Also avoid computing new_dst_cpu if we have already computed
  3277. * one in current iteration.
  3278. */
  3279. if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
  3280. return 0;
  3281. new_dst_cpu = cpumask_first_and(env->dst_grpmask,
  3282. tsk_cpus_allowed(p));
  3283. if (new_dst_cpu < nr_cpu_ids) {
  3284. env->flags |= LBF_SOME_PINNED;
  3285. env->new_dst_cpu = new_dst_cpu;
  3286. }
  3287. return 0;
  3288. }
  3289. /* Record that we found atleast one task that could run on dst_cpu */
  3290. env->flags &= ~LBF_ALL_PINNED;
  3291. if (task_running(env->src_rq, p)) {
  3292. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  3293. return 0;
  3294. }
  3295. /*
  3296. * Aggressive migration if:
  3297. * 1) task is cache cold, or
  3298. * 2) too many balance attempts have failed.
  3299. */
  3300. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  3301. if (!tsk_cache_hot ||
  3302. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  3303. #ifdef CONFIG_SCHEDSTATS
  3304. if (tsk_cache_hot) {
  3305. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  3306. schedstat_inc(p, se.statistics.nr_forced_migrations);
  3307. }
  3308. #endif
  3309. return 1;
  3310. }
  3311. if (tsk_cache_hot) {
  3312. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  3313. return 0;
  3314. }
  3315. return 1;
  3316. }
  3317. /*
  3318. * move_one_task tries to move exactly one task from busiest to this_rq, as
  3319. * part of active balancing operations within "domain".
  3320. * Returns 1 if successful and 0 otherwise.
  3321. *
  3322. * Called with both runqueues locked.
  3323. */
  3324. static int move_one_task(struct lb_env *env)
  3325. {
  3326. struct task_struct *p, *n;
  3327. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  3328. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  3329. continue;
  3330. if (!can_migrate_task(p, env))
  3331. continue;
  3332. move_task(p, env);
  3333. /*
  3334. * Right now, this is only the second place move_task()
  3335. * is called, so we can safely collect move_task()
  3336. * stats here rather than inside move_task().
  3337. */
  3338. schedstat_inc(env->sd, lb_gained[env->idle]);
  3339. return 1;
  3340. }
  3341. return 0;
  3342. }
  3343. static unsigned long task_h_load(struct task_struct *p);
  3344. static const unsigned int sched_nr_migrate_break = 32;
  3345. /*
  3346. * move_tasks tries to move up to imbalance weighted load from busiest to
  3347. * this_rq, as part of a balancing operation within domain "sd".
  3348. * Returns 1 if successful and 0 otherwise.
  3349. *
  3350. * Called with both runqueues locked.
  3351. */
  3352. static int move_tasks(struct lb_env *env)
  3353. {
  3354. struct list_head *tasks = &env->src_rq->cfs_tasks;
  3355. struct task_struct *p;
  3356. unsigned long load;
  3357. int pulled = 0;
  3358. if (env->imbalance <= 0)
  3359. return 0;
  3360. while (!list_empty(tasks)) {
  3361. p = list_first_entry(tasks, struct task_struct, se.group_node);
  3362. env->loop++;
  3363. /* We've more or less seen every task there is, call it quits */
  3364. if (env->loop > env->loop_max)
  3365. break;
  3366. /* take a breather every nr_migrate tasks */
  3367. if (env->loop > env->loop_break) {
  3368. env->loop_break += sched_nr_migrate_break;
  3369. env->flags |= LBF_NEED_BREAK;
  3370. break;
  3371. }
  3372. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  3373. goto next;
  3374. load = task_h_load(p);
  3375. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  3376. goto next;
  3377. if ((load / 2) > env->imbalance)
  3378. goto next;
  3379. if (!can_migrate_task(p, env))
  3380. goto next;
  3381. move_task(p, env);
  3382. pulled++;
  3383. env->imbalance -= load;
  3384. #ifdef CONFIG_PREEMPT
  3385. /*
  3386. * NEWIDLE balancing is a source of latency, so preemptible
  3387. * kernels will stop after the first task is pulled to minimize
  3388. * the critical section.
  3389. */
  3390. if (env->idle == CPU_NEWLY_IDLE)
  3391. break;
  3392. #endif
  3393. /*
  3394. * We only want to steal up to the prescribed amount of
  3395. * weighted load.
  3396. */
  3397. if (env->imbalance <= 0)
  3398. break;
  3399. continue;
  3400. next:
  3401. list_move_tail(&p->se.group_node, tasks);
  3402. }
  3403. /*
  3404. * Right now, this is one of only two places move_task() is called,
  3405. * so we can safely collect move_task() stats here rather than
  3406. * inside move_task().
  3407. */
  3408. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  3409. return pulled;
  3410. }
  3411. #ifdef CONFIG_FAIR_GROUP_SCHED
  3412. /*
  3413. * update tg->load_weight by folding this cpu's load_avg
  3414. */
  3415. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  3416. {
  3417. struct sched_entity *se = tg->se[cpu];
  3418. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  3419. /* throttled entities do not contribute to load */
  3420. if (throttled_hierarchy(cfs_rq))
  3421. return;
  3422. update_cfs_rq_blocked_load(cfs_rq, 1);
  3423. if (se) {
  3424. update_entity_load_avg(se, 1);
  3425. /*
  3426. * We pivot on our runnable average having decayed to zero for
  3427. * list removal. This generally implies that all our children
  3428. * have also been removed (modulo rounding error or bandwidth
  3429. * control); however, such cases are rare and we can fix these
  3430. * at enqueue.
  3431. *
  3432. * TODO: fix up out-of-order children on enqueue.
  3433. */
  3434. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  3435. list_del_leaf_cfs_rq(cfs_rq);
  3436. } else {
  3437. struct rq *rq = rq_of(cfs_rq);
  3438. update_rq_runnable_avg(rq, rq->nr_running);
  3439. }
  3440. }
  3441. static void update_blocked_averages(int cpu)
  3442. {
  3443. struct rq *rq = cpu_rq(cpu);
  3444. struct cfs_rq *cfs_rq;
  3445. unsigned long flags;
  3446. raw_spin_lock_irqsave(&rq->lock, flags);
  3447. update_rq_clock(rq);
  3448. /*
  3449. * Iterates the task_group tree in a bottom up fashion, see
  3450. * list_add_leaf_cfs_rq() for details.
  3451. */
  3452. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3453. /*
  3454. * Note: We may want to consider periodically releasing
  3455. * rq->lock about these updates so that creating many task
  3456. * groups does not result in continually extending hold time.
  3457. */
  3458. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  3459. }
  3460. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3461. }
  3462. /*
  3463. * Compute the cpu's hierarchical load factor for each task group.
  3464. * This needs to be done in a top-down fashion because the load of a child
  3465. * group is a fraction of its parents load.
  3466. */
  3467. static int tg_load_down(struct task_group *tg, void *data)
  3468. {
  3469. unsigned long load;
  3470. long cpu = (long)data;
  3471. if (!tg->parent) {
  3472. load = cpu_rq(cpu)->load.weight;
  3473. } else {
  3474. load = tg->parent->cfs_rq[cpu]->h_load;
  3475. load *= tg->se[cpu]->load.weight;
  3476. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  3477. }
  3478. tg->cfs_rq[cpu]->h_load = load;
  3479. return 0;
  3480. }
  3481. static void update_h_load(long cpu)
  3482. {
  3483. struct rq *rq = cpu_rq(cpu);
  3484. unsigned long now = jiffies;
  3485. if (rq->h_load_throttle == now)
  3486. return;
  3487. rq->h_load_throttle = now;
  3488. rcu_read_lock();
  3489. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  3490. rcu_read_unlock();
  3491. }
  3492. static unsigned long task_h_load(struct task_struct *p)
  3493. {
  3494. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3495. unsigned long load;
  3496. load = p->se.load.weight;
  3497. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  3498. return load;
  3499. }
  3500. #else
  3501. static inline void update_blocked_averages(int cpu)
  3502. {
  3503. }
  3504. static inline void update_h_load(long cpu)
  3505. {
  3506. }
  3507. static unsigned long task_h_load(struct task_struct *p)
  3508. {
  3509. return p->se.load.weight;
  3510. }
  3511. #endif
  3512. /********** Helpers for find_busiest_group ************************/
  3513. /*
  3514. * sd_lb_stats - Structure to store the statistics of a sched_domain
  3515. * during load balancing.
  3516. */
  3517. struct sd_lb_stats {
  3518. struct sched_group *busiest; /* Busiest group in this sd */
  3519. struct sched_group *this; /* Local group in this sd */
  3520. unsigned long total_load; /* Total load of all groups in sd */
  3521. unsigned long total_pwr; /* Total power of all groups in sd */
  3522. unsigned long avg_load; /* Average load across all groups in sd */
  3523. /** Statistics of this group */
  3524. unsigned long this_load;
  3525. unsigned long this_load_per_task;
  3526. unsigned long this_nr_running;
  3527. unsigned long this_has_capacity;
  3528. unsigned int this_idle_cpus;
  3529. /* Statistics of the busiest group */
  3530. unsigned int busiest_idle_cpus;
  3531. unsigned long max_load;
  3532. unsigned long busiest_load_per_task;
  3533. unsigned long busiest_nr_running;
  3534. unsigned long busiest_group_capacity;
  3535. unsigned long busiest_has_capacity;
  3536. unsigned int busiest_group_weight;
  3537. int group_imb; /* Is there imbalance in this sd */
  3538. };
  3539. /*
  3540. * sg_lb_stats - stats of a sched_group required for load_balancing
  3541. */
  3542. struct sg_lb_stats {
  3543. unsigned long avg_load; /*Avg load across the CPUs of the group */
  3544. unsigned long group_load; /* Total load over the CPUs of the group */
  3545. unsigned long sum_nr_running; /* Nr tasks running in the group */
  3546. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  3547. unsigned long group_capacity;
  3548. unsigned long idle_cpus;
  3549. unsigned long group_weight;
  3550. int group_imb; /* Is there an imbalance in the group ? */
  3551. int group_has_capacity; /* Is there extra capacity in the group? */
  3552. };
  3553. /**
  3554. * get_sd_load_idx - Obtain the load index for a given sched domain.
  3555. * @sd: The sched_domain whose load_idx is to be obtained.
  3556. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  3557. */
  3558. static inline int get_sd_load_idx(struct sched_domain *sd,
  3559. enum cpu_idle_type idle)
  3560. {
  3561. int load_idx;
  3562. switch (idle) {
  3563. case CPU_NOT_IDLE:
  3564. load_idx = sd->busy_idx;
  3565. break;
  3566. case CPU_NEWLY_IDLE:
  3567. load_idx = sd->newidle_idx;
  3568. break;
  3569. default:
  3570. load_idx = sd->idle_idx;
  3571. break;
  3572. }
  3573. return load_idx;
  3574. }
  3575. static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3576. {
  3577. return SCHED_POWER_SCALE;
  3578. }
  3579. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3580. {
  3581. return default_scale_freq_power(sd, cpu);
  3582. }
  3583. static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3584. {
  3585. unsigned long weight = sd->span_weight;
  3586. unsigned long smt_gain = sd->smt_gain;
  3587. smt_gain /= weight;
  3588. return smt_gain;
  3589. }
  3590. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3591. {
  3592. return default_scale_smt_power(sd, cpu);
  3593. }
  3594. static unsigned long scale_rt_power(int cpu)
  3595. {
  3596. struct rq *rq = cpu_rq(cpu);
  3597. u64 total, available, age_stamp, avg;
  3598. /*
  3599. * Since we're reading these variables without serialization make sure
  3600. * we read them once before doing sanity checks on them.
  3601. */
  3602. age_stamp = ACCESS_ONCE(rq->age_stamp);
  3603. avg = ACCESS_ONCE(rq->rt_avg);
  3604. total = sched_avg_period() + (rq->clock - age_stamp);
  3605. if (unlikely(total < avg)) {
  3606. /* Ensures that power won't end up being negative */
  3607. available = 0;
  3608. } else {
  3609. available = total - avg;
  3610. }
  3611. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3612. total = SCHED_POWER_SCALE;
  3613. total >>= SCHED_POWER_SHIFT;
  3614. return div_u64(available, total);
  3615. }
  3616. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3617. {
  3618. unsigned long weight = sd->span_weight;
  3619. unsigned long power = SCHED_POWER_SCALE;
  3620. struct sched_group *sdg = sd->groups;
  3621. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3622. if (sched_feat(ARCH_POWER))
  3623. power *= arch_scale_smt_power(sd, cpu);
  3624. else
  3625. power *= default_scale_smt_power(sd, cpu);
  3626. power >>= SCHED_POWER_SHIFT;
  3627. }
  3628. sdg->sgp->power_orig = power;
  3629. if (sched_feat(ARCH_POWER))
  3630. power *= arch_scale_freq_power(sd, cpu);
  3631. else
  3632. power *= default_scale_freq_power(sd, cpu);
  3633. power >>= SCHED_POWER_SHIFT;
  3634. power *= scale_rt_power(cpu);
  3635. power >>= SCHED_POWER_SHIFT;
  3636. if (!power)
  3637. power = 1;
  3638. cpu_rq(cpu)->cpu_power = power;
  3639. sdg->sgp->power = power;
  3640. }
  3641. void update_group_power(struct sched_domain *sd, int cpu)
  3642. {
  3643. struct sched_domain *child = sd->child;
  3644. struct sched_group *group, *sdg = sd->groups;
  3645. unsigned long power;
  3646. unsigned long interval;
  3647. interval = msecs_to_jiffies(sd->balance_interval);
  3648. interval = clamp(interval, 1UL, max_load_balance_interval);
  3649. sdg->sgp->next_update = jiffies + interval;
  3650. if (!child) {
  3651. update_cpu_power(sd, cpu);
  3652. return;
  3653. }
  3654. power = 0;
  3655. if (child->flags & SD_OVERLAP) {
  3656. /*
  3657. * SD_OVERLAP domains cannot assume that child groups
  3658. * span the current group.
  3659. */
  3660. for_each_cpu(cpu, sched_group_cpus(sdg))
  3661. power += power_of(cpu);
  3662. } else {
  3663. /*
  3664. * !SD_OVERLAP domains can assume that child groups
  3665. * span the current group.
  3666. */
  3667. group = child->groups;
  3668. do {
  3669. power += group->sgp->power;
  3670. group = group->next;
  3671. } while (group != child->groups);
  3672. }
  3673. sdg->sgp->power_orig = sdg->sgp->power = power;
  3674. }
  3675. /*
  3676. * Try and fix up capacity for tiny siblings, this is needed when
  3677. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3678. * which on its own isn't powerful enough.
  3679. *
  3680. * See update_sd_pick_busiest() and check_asym_packing().
  3681. */
  3682. static inline int
  3683. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3684. {
  3685. /*
  3686. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3687. */
  3688. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3689. return 0;
  3690. /*
  3691. * If ~90% of the cpu_power is still there, we're good.
  3692. */
  3693. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3694. return 1;
  3695. return 0;
  3696. }
  3697. /**
  3698. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3699. * @env: The load balancing environment.
  3700. * @group: sched_group whose statistics are to be updated.
  3701. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3702. * @local_group: Does group contain this_cpu.
  3703. * @balance: Should we balance.
  3704. * @sgs: variable to hold the statistics for this group.
  3705. */
  3706. static inline void update_sg_lb_stats(struct lb_env *env,
  3707. struct sched_group *group, int load_idx,
  3708. int local_group, int *balance, struct sg_lb_stats *sgs)
  3709. {
  3710. unsigned long nr_running, max_nr_running, min_nr_running;
  3711. unsigned long load, max_cpu_load, min_cpu_load;
  3712. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3713. unsigned long avg_load_per_task = 0;
  3714. int i;
  3715. if (local_group)
  3716. balance_cpu = group_balance_cpu(group);
  3717. /* Tally up the load of all CPUs in the group */
  3718. max_cpu_load = 0;
  3719. min_cpu_load = ~0UL;
  3720. max_nr_running = 0;
  3721. min_nr_running = ~0UL;
  3722. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  3723. struct rq *rq = cpu_rq(i);
  3724. nr_running = rq->nr_running;
  3725. /* Bias balancing toward cpus of our domain */
  3726. if (local_group) {
  3727. if (idle_cpu(i) && !first_idle_cpu &&
  3728. cpumask_test_cpu(i, sched_group_mask(group))) {
  3729. first_idle_cpu = 1;
  3730. balance_cpu = i;
  3731. }
  3732. load = target_load(i, load_idx);
  3733. } else {
  3734. load = source_load(i, load_idx);
  3735. if (load > max_cpu_load)
  3736. max_cpu_load = load;
  3737. if (min_cpu_load > load)
  3738. min_cpu_load = load;
  3739. if (nr_running > max_nr_running)
  3740. max_nr_running = nr_running;
  3741. if (min_nr_running > nr_running)
  3742. min_nr_running = nr_running;
  3743. }
  3744. sgs->group_load += load;
  3745. sgs->sum_nr_running += nr_running;
  3746. sgs->sum_weighted_load += weighted_cpuload(i);
  3747. if (idle_cpu(i))
  3748. sgs->idle_cpus++;
  3749. }
  3750. /*
  3751. * First idle cpu or the first cpu(busiest) in this sched group
  3752. * is eligible for doing load balancing at this and above
  3753. * domains. In the newly idle case, we will allow all the cpu's
  3754. * to do the newly idle load balance.
  3755. */
  3756. if (local_group) {
  3757. if (env->idle != CPU_NEWLY_IDLE) {
  3758. if (balance_cpu != env->dst_cpu) {
  3759. *balance = 0;
  3760. return;
  3761. }
  3762. update_group_power(env->sd, env->dst_cpu);
  3763. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3764. update_group_power(env->sd, env->dst_cpu);
  3765. }
  3766. /* Adjust by relative CPU power of the group */
  3767. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3768. /*
  3769. * Consider the group unbalanced when the imbalance is larger
  3770. * than the average weight of a task.
  3771. *
  3772. * APZ: with cgroup the avg task weight can vary wildly and
  3773. * might not be a suitable number - should we keep a
  3774. * normalized nr_running number somewhere that negates
  3775. * the hierarchy?
  3776. */
  3777. if (sgs->sum_nr_running)
  3778. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3779. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3780. (max_nr_running - min_nr_running) > 1)
  3781. sgs->group_imb = 1;
  3782. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3783. SCHED_POWER_SCALE);
  3784. if (!sgs->group_capacity)
  3785. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3786. sgs->group_weight = group->group_weight;
  3787. if (sgs->group_capacity > sgs->sum_nr_running)
  3788. sgs->group_has_capacity = 1;
  3789. }
  3790. /**
  3791. * update_sd_pick_busiest - return 1 on busiest group
  3792. * @env: The load balancing environment.
  3793. * @sds: sched_domain statistics
  3794. * @sg: sched_group candidate to be checked for being the busiest
  3795. * @sgs: sched_group statistics
  3796. *
  3797. * Determine if @sg is a busier group than the previously selected
  3798. * busiest group.
  3799. */
  3800. static bool update_sd_pick_busiest(struct lb_env *env,
  3801. struct sd_lb_stats *sds,
  3802. struct sched_group *sg,
  3803. struct sg_lb_stats *sgs)
  3804. {
  3805. if (sgs->avg_load <= sds->max_load)
  3806. return false;
  3807. if (sgs->sum_nr_running > sgs->group_capacity)
  3808. return true;
  3809. if (sgs->group_imb)
  3810. return true;
  3811. /*
  3812. * ASYM_PACKING needs to move all the work to the lowest
  3813. * numbered CPUs in the group, therefore mark all groups
  3814. * higher than ourself as busy.
  3815. */
  3816. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3817. env->dst_cpu < group_first_cpu(sg)) {
  3818. if (!sds->busiest)
  3819. return true;
  3820. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3821. return true;
  3822. }
  3823. return false;
  3824. }
  3825. /**
  3826. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3827. * @env: The load balancing environment.
  3828. * @balance: Should we balance.
  3829. * @sds: variable to hold the statistics for this sched_domain.
  3830. */
  3831. static inline void update_sd_lb_stats(struct lb_env *env,
  3832. int *balance, struct sd_lb_stats *sds)
  3833. {
  3834. struct sched_domain *child = env->sd->child;
  3835. struct sched_group *sg = env->sd->groups;
  3836. struct sg_lb_stats sgs;
  3837. int load_idx, prefer_sibling = 0;
  3838. if (child && child->flags & SD_PREFER_SIBLING)
  3839. prefer_sibling = 1;
  3840. load_idx = get_sd_load_idx(env->sd, env->idle);
  3841. do {
  3842. int local_group;
  3843. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3844. memset(&sgs, 0, sizeof(sgs));
  3845. update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
  3846. if (local_group && !(*balance))
  3847. return;
  3848. sds->total_load += sgs.group_load;
  3849. sds->total_pwr += sg->sgp->power;
  3850. /*
  3851. * In case the child domain prefers tasks go to siblings
  3852. * first, lower the sg capacity to one so that we'll try
  3853. * and move all the excess tasks away. We lower the capacity
  3854. * of a group only if the local group has the capacity to fit
  3855. * these excess tasks, i.e. nr_running < group_capacity. The
  3856. * extra check prevents the case where you always pull from the
  3857. * heaviest group when it is already under-utilized (possible
  3858. * with a large weight task outweighs the tasks on the system).
  3859. */
  3860. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3861. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3862. if (local_group) {
  3863. sds->this_load = sgs.avg_load;
  3864. sds->this = sg;
  3865. sds->this_nr_running = sgs.sum_nr_running;
  3866. sds->this_load_per_task = sgs.sum_weighted_load;
  3867. sds->this_has_capacity = sgs.group_has_capacity;
  3868. sds->this_idle_cpus = sgs.idle_cpus;
  3869. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3870. sds->max_load = sgs.avg_load;
  3871. sds->busiest = sg;
  3872. sds->busiest_nr_running = sgs.sum_nr_running;
  3873. sds->busiest_idle_cpus = sgs.idle_cpus;
  3874. sds->busiest_group_capacity = sgs.group_capacity;
  3875. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3876. sds->busiest_has_capacity = sgs.group_has_capacity;
  3877. sds->busiest_group_weight = sgs.group_weight;
  3878. sds->group_imb = sgs.group_imb;
  3879. }
  3880. sg = sg->next;
  3881. } while (sg != env->sd->groups);
  3882. }
  3883. /**
  3884. * check_asym_packing - Check to see if the group is packed into the
  3885. * sched doman.
  3886. *
  3887. * This is primarily intended to used at the sibling level. Some
  3888. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3889. * case of POWER7, it can move to lower SMT modes only when higher
  3890. * threads are idle. When in lower SMT modes, the threads will
  3891. * perform better since they share less core resources. Hence when we
  3892. * have idle threads, we want them to be the higher ones.
  3893. *
  3894. * This packing function is run on idle threads. It checks to see if
  3895. * the busiest CPU in this domain (core in the P7 case) has a higher
  3896. * CPU number than the packing function is being run on. Here we are
  3897. * assuming lower CPU number will be equivalent to lower a SMT thread
  3898. * number.
  3899. *
  3900. * Returns 1 when packing is required and a task should be moved to
  3901. * this CPU. The amount of the imbalance is returned in *imbalance.
  3902. *
  3903. * @env: The load balancing environment.
  3904. * @sds: Statistics of the sched_domain which is to be packed
  3905. */
  3906. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3907. {
  3908. int busiest_cpu;
  3909. if (!(env->sd->flags & SD_ASYM_PACKING))
  3910. return 0;
  3911. if (!sds->busiest)
  3912. return 0;
  3913. busiest_cpu = group_first_cpu(sds->busiest);
  3914. if (env->dst_cpu > busiest_cpu)
  3915. return 0;
  3916. env->imbalance = DIV_ROUND_CLOSEST(
  3917. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3918. return 1;
  3919. }
  3920. /**
  3921. * fix_small_imbalance - Calculate the minor imbalance that exists
  3922. * amongst the groups of a sched_domain, during
  3923. * load balancing.
  3924. * @env: The load balancing environment.
  3925. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3926. */
  3927. static inline
  3928. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3929. {
  3930. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3931. unsigned int imbn = 2;
  3932. unsigned long scaled_busy_load_per_task;
  3933. if (sds->this_nr_running) {
  3934. sds->this_load_per_task /= sds->this_nr_running;
  3935. if (sds->busiest_load_per_task >
  3936. sds->this_load_per_task)
  3937. imbn = 1;
  3938. } else {
  3939. sds->this_load_per_task =
  3940. cpu_avg_load_per_task(env->dst_cpu);
  3941. }
  3942. scaled_busy_load_per_task = sds->busiest_load_per_task
  3943. * SCHED_POWER_SCALE;
  3944. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3945. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3946. (scaled_busy_load_per_task * imbn)) {
  3947. env->imbalance = sds->busiest_load_per_task;
  3948. return;
  3949. }
  3950. /*
  3951. * OK, we don't have enough imbalance to justify moving tasks,
  3952. * however we may be able to increase total CPU power used by
  3953. * moving them.
  3954. */
  3955. pwr_now += sds->busiest->sgp->power *
  3956. min(sds->busiest_load_per_task, sds->max_load);
  3957. pwr_now += sds->this->sgp->power *
  3958. min(sds->this_load_per_task, sds->this_load);
  3959. pwr_now /= SCHED_POWER_SCALE;
  3960. /* Amount of load we'd subtract */
  3961. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3962. sds->busiest->sgp->power;
  3963. if (sds->max_load > tmp)
  3964. pwr_move += sds->busiest->sgp->power *
  3965. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3966. /* Amount of load we'd add */
  3967. if (sds->max_load * sds->busiest->sgp->power <
  3968. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3969. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3970. sds->this->sgp->power;
  3971. else
  3972. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3973. sds->this->sgp->power;
  3974. pwr_move += sds->this->sgp->power *
  3975. min(sds->this_load_per_task, sds->this_load + tmp);
  3976. pwr_move /= SCHED_POWER_SCALE;
  3977. /* Move if we gain throughput */
  3978. if (pwr_move > pwr_now)
  3979. env->imbalance = sds->busiest_load_per_task;
  3980. }
  3981. /**
  3982. * calculate_imbalance - Calculate the amount of imbalance present within the
  3983. * groups of a given sched_domain during load balance.
  3984. * @env: load balance environment
  3985. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3986. */
  3987. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3988. {
  3989. unsigned long max_pull, load_above_capacity = ~0UL;
  3990. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3991. if (sds->group_imb) {
  3992. sds->busiest_load_per_task =
  3993. min(sds->busiest_load_per_task, sds->avg_load);
  3994. }
  3995. /*
  3996. * In the presence of smp nice balancing, certain scenarios can have
  3997. * max load less than avg load(as we skip the groups at or below
  3998. * its cpu_power, while calculating max_load..)
  3999. */
  4000. if (sds->max_load < sds->avg_load) {
  4001. env->imbalance = 0;
  4002. return fix_small_imbalance(env, sds);
  4003. }
  4004. if (!sds->group_imb) {
  4005. /*
  4006. * Don't want to pull so many tasks that a group would go idle.
  4007. */
  4008. load_above_capacity = (sds->busiest_nr_running -
  4009. sds->busiest_group_capacity);
  4010. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  4011. load_above_capacity /= sds->busiest->sgp->power;
  4012. }
  4013. /*
  4014. * We're trying to get all the cpus to the average_load, so we don't
  4015. * want to push ourselves above the average load, nor do we wish to
  4016. * reduce the max loaded cpu below the average load. At the same time,
  4017. * we also don't want to reduce the group load below the group capacity
  4018. * (so that we can implement power-savings policies etc). Thus we look
  4019. * for the minimum possible imbalance.
  4020. * Be careful of negative numbers as they'll appear as very large values
  4021. * with unsigned longs.
  4022. */
  4023. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  4024. /* How much load to actually move to equalise the imbalance */
  4025. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  4026. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  4027. / SCHED_POWER_SCALE;
  4028. /*
  4029. * if *imbalance is less than the average load per runnable task
  4030. * there is no guarantee that any tasks will be moved so we'll have
  4031. * a think about bumping its value to force at least one task to be
  4032. * moved
  4033. */
  4034. if (env->imbalance < sds->busiest_load_per_task)
  4035. return fix_small_imbalance(env, sds);
  4036. }
  4037. /******* find_busiest_group() helpers end here *********************/
  4038. /**
  4039. * find_busiest_group - Returns the busiest group within the sched_domain
  4040. * if there is an imbalance. If there isn't an imbalance, and
  4041. * the user has opted for power-savings, it returns a group whose
  4042. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  4043. * such a group exists.
  4044. *
  4045. * Also calculates the amount of weighted load which should be moved
  4046. * to restore balance.
  4047. *
  4048. * @env: The load balancing environment.
  4049. * @balance: Pointer to a variable indicating if this_cpu
  4050. * is the appropriate cpu to perform load balancing at this_level.
  4051. *
  4052. * Returns: - the busiest group if imbalance exists.
  4053. * - If no imbalance and user has opted for power-savings balance,
  4054. * return the least loaded group whose CPUs can be
  4055. * put to idle by rebalancing its tasks onto our group.
  4056. */
  4057. static struct sched_group *
  4058. find_busiest_group(struct lb_env *env, int *balance)
  4059. {
  4060. struct sd_lb_stats sds;
  4061. memset(&sds, 0, sizeof(sds));
  4062. /*
  4063. * Compute the various statistics relavent for load balancing at
  4064. * this level.
  4065. */
  4066. update_sd_lb_stats(env, balance, &sds);
  4067. /*
  4068. * this_cpu is not the appropriate cpu to perform load balancing at
  4069. * this level.
  4070. */
  4071. if (!(*balance))
  4072. goto ret;
  4073. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  4074. check_asym_packing(env, &sds))
  4075. return sds.busiest;
  4076. /* There is no busy sibling group to pull tasks from */
  4077. if (!sds.busiest || sds.busiest_nr_running == 0)
  4078. goto out_balanced;
  4079. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  4080. /*
  4081. * If the busiest group is imbalanced the below checks don't
  4082. * work because they assumes all things are equal, which typically
  4083. * isn't true due to cpus_allowed constraints and the like.
  4084. */
  4085. if (sds.group_imb)
  4086. goto force_balance;
  4087. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  4088. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  4089. !sds.busiest_has_capacity)
  4090. goto force_balance;
  4091. /*
  4092. * If the local group is more busy than the selected busiest group
  4093. * don't try and pull any tasks.
  4094. */
  4095. if (sds.this_load >= sds.max_load)
  4096. goto out_balanced;
  4097. /*
  4098. * Don't pull any tasks if this group is already above the domain
  4099. * average load.
  4100. */
  4101. if (sds.this_load >= sds.avg_load)
  4102. goto out_balanced;
  4103. if (env->idle == CPU_IDLE) {
  4104. /*
  4105. * This cpu is idle. If the busiest group load doesn't
  4106. * have more tasks than the number of available cpu's and
  4107. * there is no imbalance between this and busiest group
  4108. * wrt to idle cpu's, it is balanced.
  4109. */
  4110. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  4111. sds.busiest_nr_running <= sds.busiest_group_weight)
  4112. goto out_balanced;
  4113. } else {
  4114. /*
  4115. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  4116. * imbalance_pct to be conservative.
  4117. */
  4118. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  4119. goto out_balanced;
  4120. }
  4121. force_balance:
  4122. /* Looks like there is an imbalance. Compute it */
  4123. calculate_imbalance(env, &sds);
  4124. return sds.busiest;
  4125. out_balanced:
  4126. ret:
  4127. env->imbalance = 0;
  4128. return NULL;
  4129. }
  4130. /*
  4131. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  4132. */
  4133. static struct rq *find_busiest_queue(struct lb_env *env,
  4134. struct sched_group *group)
  4135. {
  4136. struct rq *busiest = NULL, *rq;
  4137. unsigned long max_load = 0;
  4138. int i;
  4139. for_each_cpu(i, sched_group_cpus(group)) {
  4140. unsigned long power = power_of(i);
  4141. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  4142. SCHED_POWER_SCALE);
  4143. unsigned long wl;
  4144. if (!capacity)
  4145. capacity = fix_small_capacity(env->sd, group);
  4146. if (!cpumask_test_cpu(i, env->cpus))
  4147. continue;
  4148. rq = cpu_rq(i);
  4149. wl = weighted_cpuload(i);
  4150. /*
  4151. * When comparing with imbalance, use weighted_cpuload()
  4152. * which is not scaled with the cpu power.
  4153. */
  4154. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  4155. continue;
  4156. /*
  4157. * For the load comparisons with the other cpu's, consider
  4158. * the weighted_cpuload() scaled with the cpu power, so that
  4159. * the load can be moved away from the cpu that is potentially
  4160. * running at a lower capacity.
  4161. */
  4162. wl = (wl * SCHED_POWER_SCALE) / power;
  4163. if (wl > max_load) {
  4164. max_load = wl;
  4165. busiest = rq;
  4166. }
  4167. }
  4168. return busiest;
  4169. }
  4170. /*
  4171. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  4172. * so long as it is large enough.
  4173. */
  4174. #define MAX_PINNED_INTERVAL 512
  4175. /* Working cpumask for load_balance and load_balance_newidle. */
  4176. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  4177. static int need_active_balance(struct lb_env *env)
  4178. {
  4179. struct sched_domain *sd = env->sd;
  4180. if (env->idle == CPU_NEWLY_IDLE) {
  4181. /*
  4182. * ASYM_PACKING needs to force migrate tasks from busy but
  4183. * higher numbered CPUs in order to pack all tasks in the
  4184. * lowest numbered CPUs.
  4185. */
  4186. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  4187. return 1;
  4188. }
  4189. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  4190. }
  4191. static int active_load_balance_cpu_stop(void *data);
  4192. /*
  4193. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  4194. * tasks if there is an imbalance.
  4195. */
  4196. static int load_balance(int this_cpu, struct rq *this_rq,
  4197. struct sched_domain *sd, enum cpu_idle_type idle,
  4198. int *balance)
  4199. {
  4200. int ld_moved, cur_ld_moved, active_balance = 0;
  4201. int lb_iterations, max_lb_iterations;
  4202. struct sched_group *group;
  4203. struct rq *busiest;
  4204. unsigned long flags;
  4205. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  4206. struct lb_env env = {
  4207. .sd = sd,
  4208. .dst_cpu = this_cpu,
  4209. .dst_rq = this_rq,
  4210. .dst_grpmask = sched_group_cpus(sd->groups),
  4211. .idle = idle,
  4212. .loop_break = sched_nr_migrate_break,
  4213. .cpus = cpus,
  4214. };
  4215. cpumask_copy(cpus, cpu_active_mask);
  4216. max_lb_iterations = cpumask_weight(env.dst_grpmask);
  4217. schedstat_inc(sd, lb_count[idle]);
  4218. redo:
  4219. group = find_busiest_group(&env, balance);
  4220. if (*balance == 0)
  4221. goto out_balanced;
  4222. if (!group) {
  4223. schedstat_inc(sd, lb_nobusyg[idle]);
  4224. goto out_balanced;
  4225. }
  4226. busiest = find_busiest_queue(&env, group);
  4227. if (!busiest) {
  4228. schedstat_inc(sd, lb_nobusyq[idle]);
  4229. goto out_balanced;
  4230. }
  4231. BUG_ON(busiest == env.dst_rq);
  4232. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  4233. ld_moved = 0;
  4234. lb_iterations = 1;
  4235. if (busiest->nr_running > 1) {
  4236. /*
  4237. * Attempt to move tasks. If find_busiest_group has found
  4238. * an imbalance but busiest->nr_running <= 1, the group is
  4239. * still unbalanced. ld_moved simply stays zero, so it is
  4240. * correctly treated as an imbalance.
  4241. */
  4242. env.flags |= LBF_ALL_PINNED;
  4243. env.src_cpu = busiest->cpu;
  4244. env.src_rq = busiest;
  4245. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  4246. update_h_load(env.src_cpu);
  4247. more_balance:
  4248. local_irq_save(flags);
  4249. double_rq_lock(env.dst_rq, busiest);
  4250. /*
  4251. * cur_ld_moved - load moved in current iteration
  4252. * ld_moved - cumulative load moved across iterations
  4253. */
  4254. cur_ld_moved = move_tasks(&env);
  4255. ld_moved += cur_ld_moved;
  4256. double_rq_unlock(env.dst_rq, busiest);
  4257. local_irq_restore(flags);
  4258. if (env.flags & LBF_NEED_BREAK) {
  4259. env.flags &= ~LBF_NEED_BREAK;
  4260. goto more_balance;
  4261. }
  4262. /*
  4263. * some other cpu did the load balance for us.
  4264. */
  4265. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  4266. resched_cpu(env.dst_cpu);
  4267. /*
  4268. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  4269. * us and move them to an alternate dst_cpu in our sched_group
  4270. * where they can run. The upper limit on how many times we
  4271. * iterate on same src_cpu is dependent on number of cpus in our
  4272. * sched_group.
  4273. *
  4274. * This changes load balance semantics a bit on who can move
  4275. * load to a given_cpu. In addition to the given_cpu itself
  4276. * (or a ilb_cpu acting on its behalf where given_cpu is
  4277. * nohz-idle), we now have balance_cpu in a position to move
  4278. * load to given_cpu. In rare situations, this may cause
  4279. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  4280. * _independently_ and at _same_ time to move some load to
  4281. * given_cpu) causing exceess load to be moved to given_cpu.
  4282. * This however should not happen so much in practice and
  4283. * moreover subsequent load balance cycles should correct the
  4284. * excess load moved.
  4285. */
  4286. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
  4287. lb_iterations++ < max_lb_iterations) {
  4288. env.dst_rq = cpu_rq(env.new_dst_cpu);
  4289. env.dst_cpu = env.new_dst_cpu;
  4290. env.flags &= ~LBF_SOME_PINNED;
  4291. env.loop = 0;
  4292. env.loop_break = sched_nr_migrate_break;
  4293. /*
  4294. * Go back to "more_balance" rather than "redo" since we
  4295. * need to continue with same src_cpu.
  4296. */
  4297. goto more_balance;
  4298. }
  4299. /* All tasks on this runqueue were pinned by CPU affinity */
  4300. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  4301. cpumask_clear_cpu(cpu_of(busiest), cpus);
  4302. if (!cpumask_empty(cpus)) {
  4303. env.loop = 0;
  4304. env.loop_break = sched_nr_migrate_break;
  4305. goto redo;
  4306. }
  4307. goto out_balanced;
  4308. }
  4309. }
  4310. if (!ld_moved) {
  4311. schedstat_inc(sd, lb_failed[idle]);
  4312. /*
  4313. * Increment the failure counter only on periodic balance.
  4314. * We do not want newidle balance, which can be very
  4315. * frequent, pollute the failure counter causing
  4316. * excessive cache_hot migrations and active balances.
  4317. */
  4318. if (idle != CPU_NEWLY_IDLE)
  4319. sd->nr_balance_failed++;
  4320. if (need_active_balance(&env)) {
  4321. raw_spin_lock_irqsave(&busiest->lock, flags);
  4322. /* don't kick the active_load_balance_cpu_stop,
  4323. * if the curr task on busiest cpu can't be
  4324. * moved to this_cpu
  4325. */
  4326. if (!cpumask_test_cpu(this_cpu,
  4327. tsk_cpus_allowed(busiest->curr))) {
  4328. raw_spin_unlock_irqrestore(&busiest->lock,
  4329. flags);
  4330. env.flags |= LBF_ALL_PINNED;
  4331. goto out_one_pinned;
  4332. }
  4333. /*
  4334. * ->active_balance synchronizes accesses to
  4335. * ->active_balance_work. Once set, it's cleared
  4336. * only after active load balance is finished.
  4337. */
  4338. if (!busiest->active_balance) {
  4339. busiest->active_balance = 1;
  4340. busiest->push_cpu = this_cpu;
  4341. active_balance = 1;
  4342. }
  4343. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  4344. if (active_balance) {
  4345. stop_one_cpu_nowait(cpu_of(busiest),
  4346. active_load_balance_cpu_stop, busiest,
  4347. &busiest->active_balance_work);
  4348. }
  4349. /*
  4350. * We've kicked active balancing, reset the failure
  4351. * counter.
  4352. */
  4353. sd->nr_balance_failed = sd->cache_nice_tries+1;
  4354. }
  4355. } else
  4356. sd->nr_balance_failed = 0;
  4357. if (likely(!active_balance)) {
  4358. /* We were unbalanced, so reset the balancing interval */
  4359. sd->balance_interval = sd->min_interval;
  4360. } else {
  4361. /*
  4362. * If we've begun active balancing, start to back off. This
  4363. * case may not be covered by the all_pinned logic if there
  4364. * is only 1 task on the busy runqueue (because we don't call
  4365. * move_tasks).
  4366. */
  4367. if (sd->balance_interval < sd->max_interval)
  4368. sd->balance_interval *= 2;
  4369. }
  4370. goto out;
  4371. out_balanced:
  4372. schedstat_inc(sd, lb_balanced[idle]);
  4373. sd->nr_balance_failed = 0;
  4374. out_one_pinned:
  4375. /* tune up the balancing interval */
  4376. if (((env.flags & LBF_ALL_PINNED) &&
  4377. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  4378. (sd->balance_interval < sd->max_interval))
  4379. sd->balance_interval *= 2;
  4380. ld_moved = 0;
  4381. out:
  4382. return ld_moved;
  4383. }
  4384. /*
  4385. * idle_balance is called by schedule() if this_cpu is about to become
  4386. * idle. Attempts to pull tasks from other CPUs.
  4387. */
  4388. void idle_balance(int this_cpu, struct rq *this_rq)
  4389. {
  4390. struct sched_domain *sd;
  4391. int pulled_task = 0;
  4392. unsigned long next_balance = jiffies + HZ;
  4393. this_rq->idle_stamp = this_rq->clock;
  4394. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  4395. return;
  4396. update_rq_runnable_avg(this_rq, 1);
  4397. /*
  4398. * Drop the rq->lock, but keep IRQ/preempt disabled.
  4399. */
  4400. raw_spin_unlock(&this_rq->lock);
  4401. update_blocked_averages(this_cpu);
  4402. rcu_read_lock();
  4403. for_each_domain(this_cpu, sd) {
  4404. unsigned long interval;
  4405. int balance = 1;
  4406. if (!(sd->flags & SD_LOAD_BALANCE))
  4407. continue;
  4408. if (sd->flags & SD_BALANCE_NEWIDLE) {
  4409. /* If we've pulled tasks over stop searching: */
  4410. pulled_task = load_balance(this_cpu, this_rq,
  4411. sd, CPU_NEWLY_IDLE, &balance);
  4412. }
  4413. interval = msecs_to_jiffies(sd->balance_interval);
  4414. if (time_after(next_balance, sd->last_balance + interval))
  4415. next_balance = sd->last_balance + interval;
  4416. if (pulled_task) {
  4417. this_rq->idle_stamp = 0;
  4418. break;
  4419. }
  4420. }
  4421. rcu_read_unlock();
  4422. raw_spin_lock(&this_rq->lock);
  4423. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  4424. /*
  4425. * We are going idle. next_balance may be set based on
  4426. * a busy processor. So reset next_balance.
  4427. */
  4428. this_rq->next_balance = next_balance;
  4429. }
  4430. }
  4431. /*
  4432. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  4433. * running tasks off the busiest CPU onto idle CPUs. It requires at
  4434. * least 1 task to be running on each physical CPU where possible, and
  4435. * avoids physical / logical imbalances.
  4436. */
  4437. static int active_load_balance_cpu_stop(void *data)
  4438. {
  4439. struct rq *busiest_rq = data;
  4440. int busiest_cpu = cpu_of(busiest_rq);
  4441. int target_cpu = busiest_rq->push_cpu;
  4442. struct rq *target_rq = cpu_rq(target_cpu);
  4443. struct sched_domain *sd;
  4444. raw_spin_lock_irq(&busiest_rq->lock);
  4445. /* make sure the requested cpu hasn't gone down in the meantime */
  4446. if (unlikely(busiest_cpu != smp_processor_id() ||
  4447. !busiest_rq->active_balance))
  4448. goto out_unlock;
  4449. /* Is there any task to move? */
  4450. if (busiest_rq->nr_running <= 1)
  4451. goto out_unlock;
  4452. /*
  4453. * This condition is "impossible", if it occurs
  4454. * we need to fix it. Originally reported by
  4455. * Bjorn Helgaas on a 128-cpu setup.
  4456. */
  4457. BUG_ON(busiest_rq == target_rq);
  4458. /* move a task from busiest_rq to target_rq */
  4459. double_lock_balance(busiest_rq, target_rq);
  4460. /* Search for an sd spanning us and the target CPU. */
  4461. rcu_read_lock();
  4462. for_each_domain(target_cpu, sd) {
  4463. if ((sd->flags & SD_LOAD_BALANCE) &&
  4464. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4465. break;
  4466. }
  4467. if (likely(sd)) {
  4468. struct lb_env env = {
  4469. .sd = sd,
  4470. .dst_cpu = target_cpu,
  4471. .dst_rq = target_rq,
  4472. .src_cpu = busiest_rq->cpu,
  4473. .src_rq = busiest_rq,
  4474. .idle = CPU_IDLE,
  4475. };
  4476. schedstat_inc(sd, alb_count);
  4477. if (move_one_task(&env))
  4478. schedstat_inc(sd, alb_pushed);
  4479. else
  4480. schedstat_inc(sd, alb_failed);
  4481. }
  4482. rcu_read_unlock();
  4483. double_unlock_balance(busiest_rq, target_rq);
  4484. out_unlock:
  4485. busiest_rq->active_balance = 0;
  4486. raw_spin_unlock_irq(&busiest_rq->lock);
  4487. return 0;
  4488. }
  4489. #ifdef CONFIG_NO_HZ
  4490. /*
  4491. * idle load balancing details
  4492. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4493. * needed, they will kick the idle load balancer, which then does idle
  4494. * load balancing for all the idle CPUs.
  4495. */
  4496. static struct {
  4497. cpumask_var_t idle_cpus_mask;
  4498. atomic_t nr_cpus;
  4499. unsigned long next_balance; /* in jiffy units */
  4500. } nohz ____cacheline_aligned;
  4501. static inline int find_new_ilb(int call_cpu)
  4502. {
  4503. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4504. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4505. return ilb;
  4506. return nr_cpu_ids;
  4507. }
  4508. /*
  4509. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4510. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4511. * CPU (if there is one).
  4512. */
  4513. static void nohz_balancer_kick(int cpu)
  4514. {
  4515. int ilb_cpu;
  4516. nohz.next_balance++;
  4517. ilb_cpu = find_new_ilb(cpu);
  4518. if (ilb_cpu >= nr_cpu_ids)
  4519. return;
  4520. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4521. return;
  4522. /*
  4523. * Use smp_send_reschedule() instead of resched_cpu().
  4524. * This way we generate a sched IPI on the target cpu which
  4525. * is idle. And the softirq performing nohz idle load balance
  4526. * will be run before returning from the IPI.
  4527. */
  4528. smp_send_reschedule(ilb_cpu);
  4529. return;
  4530. }
  4531. static inline void nohz_balance_exit_idle(int cpu)
  4532. {
  4533. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4534. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4535. atomic_dec(&nohz.nr_cpus);
  4536. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4537. }
  4538. }
  4539. static inline void set_cpu_sd_state_busy(void)
  4540. {
  4541. struct sched_domain *sd;
  4542. int cpu = smp_processor_id();
  4543. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4544. return;
  4545. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4546. rcu_read_lock();
  4547. for_each_domain(cpu, sd)
  4548. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4549. rcu_read_unlock();
  4550. }
  4551. void set_cpu_sd_state_idle(void)
  4552. {
  4553. struct sched_domain *sd;
  4554. int cpu = smp_processor_id();
  4555. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4556. return;
  4557. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4558. rcu_read_lock();
  4559. for_each_domain(cpu, sd)
  4560. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4561. rcu_read_unlock();
  4562. }
  4563. /*
  4564. * This routine will record that the cpu is going idle with tick stopped.
  4565. * This info will be used in performing idle load balancing in the future.
  4566. */
  4567. void nohz_balance_enter_idle(int cpu)
  4568. {
  4569. /*
  4570. * If this cpu is going down, then nothing needs to be done.
  4571. */
  4572. if (!cpu_active(cpu))
  4573. return;
  4574. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4575. return;
  4576. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4577. atomic_inc(&nohz.nr_cpus);
  4578. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4579. }
  4580. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4581. unsigned long action, void *hcpu)
  4582. {
  4583. switch (action & ~CPU_TASKS_FROZEN) {
  4584. case CPU_DYING:
  4585. nohz_balance_exit_idle(smp_processor_id());
  4586. return NOTIFY_OK;
  4587. default:
  4588. return NOTIFY_DONE;
  4589. }
  4590. }
  4591. #endif
  4592. static DEFINE_SPINLOCK(balancing);
  4593. /*
  4594. * Scale the max load_balance interval with the number of CPUs in the system.
  4595. * This trades load-balance latency on larger machines for less cross talk.
  4596. */
  4597. void update_max_interval(void)
  4598. {
  4599. max_load_balance_interval = HZ*num_online_cpus()/10;
  4600. }
  4601. /*
  4602. * It checks each scheduling domain to see if it is due to be balanced,
  4603. * and initiates a balancing operation if so.
  4604. *
  4605. * Balancing parameters are set up in arch_init_sched_domains.
  4606. */
  4607. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4608. {
  4609. int balance = 1;
  4610. struct rq *rq = cpu_rq(cpu);
  4611. unsigned long interval;
  4612. struct sched_domain *sd;
  4613. /* Earliest time when we have to do rebalance again */
  4614. unsigned long next_balance = jiffies + 60*HZ;
  4615. int update_next_balance = 0;
  4616. int need_serialize;
  4617. update_blocked_averages(cpu);
  4618. rcu_read_lock();
  4619. for_each_domain(cpu, sd) {
  4620. if (!(sd->flags & SD_LOAD_BALANCE))
  4621. continue;
  4622. interval = sd->balance_interval;
  4623. if (idle != CPU_IDLE)
  4624. interval *= sd->busy_factor;
  4625. /* scale ms to jiffies */
  4626. interval = msecs_to_jiffies(interval);
  4627. interval = clamp(interval, 1UL, max_load_balance_interval);
  4628. need_serialize = sd->flags & SD_SERIALIZE;
  4629. if (need_serialize) {
  4630. if (!spin_trylock(&balancing))
  4631. goto out;
  4632. }
  4633. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4634. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4635. /*
  4636. * We've pulled tasks over so either we're no
  4637. * longer idle.
  4638. */
  4639. idle = CPU_NOT_IDLE;
  4640. }
  4641. sd->last_balance = jiffies;
  4642. }
  4643. if (need_serialize)
  4644. spin_unlock(&balancing);
  4645. out:
  4646. if (time_after(next_balance, sd->last_balance + interval)) {
  4647. next_balance = sd->last_balance + interval;
  4648. update_next_balance = 1;
  4649. }
  4650. /*
  4651. * Stop the load balance at this level. There is another
  4652. * CPU in our sched group which is doing load balancing more
  4653. * actively.
  4654. */
  4655. if (!balance)
  4656. break;
  4657. }
  4658. rcu_read_unlock();
  4659. /*
  4660. * next_balance will be updated only when there is a need.
  4661. * When the cpu is attached to null domain for ex, it will not be
  4662. * updated.
  4663. */
  4664. if (likely(update_next_balance))
  4665. rq->next_balance = next_balance;
  4666. }
  4667. #ifdef CONFIG_NO_HZ
  4668. /*
  4669. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4670. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4671. */
  4672. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4673. {
  4674. struct rq *this_rq = cpu_rq(this_cpu);
  4675. struct rq *rq;
  4676. int balance_cpu;
  4677. if (idle != CPU_IDLE ||
  4678. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4679. goto end;
  4680. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4681. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4682. continue;
  4683. /*
  4684. * If this cpu gets work to do, stop the load balancing
  4685. * work being done for other cpus. Next load
  4686. * balancing owner will pick it up.
  4687. */
  4688. if (need_resched())
  4689. break;
  4690. rq = cpu_rq(balance_cpu);
  4691. raw_spin_lock_irq(&rq->lock);
  4692. update_rq_clock(rq);
  4693. update_idle_cpu_load(rq);
  4694. raw_spin_unlock_irq(&rq->lock);
  4695. rebalance_domains(balance_cpu, CPU_IDLE);
  4696. if (time_after(this_rq->next_balance, rq->next_balance))
  4697. this_rq->next_balance = rq->next_balance;
  4698. }
  4699. nohz.next_balance = this_rq->next_balance;
  4700. end:
  4701. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4702. }
  4703. /*
  4704. * Current heuristic for kicking the idle load balancer in the presence
  4705. * of an idle cpu is the system.
  4706. * - This rq has more than one task.
  4707. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4708. * busy cpu's exceeding the group's power.
  4709. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4710. * domain span are idle.
  4711. */
  4712. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4713. {
  4714. unsigned long now = jiffies;
  4715. struct sched_domain *sd;
  4716. if (unlikely(idle_cpu(cpu)))
  4717. return 0;
  4718. /*
  4719. * We may be recently in ticked or tickless idle mode. At the first
  4720. * busy tick after returning from idle, we will update the busy stats.
  4721. */
  4722. set_cpu_sd_state_busy();
  4723. nohz_balance_exit_idle(cpu);
  4724. /*
  4725. * None are in tickless mode and hence no need for NOHZ idle load
  4726. * balancing.
  4727. */
  4728. if (likely(!atomic_read(&nohz.nr_cpus)))
  4729. return 0;
  4730. if (time_before(now, nohz.next_balance))
  4731. return 0;
  4732. if (rq->nr_running >= 2)
  4733. goto need_kick;
  4734. rcu_read_lock();
  4735. for_each_domain(cpu, sd) {
  4736. struct sched_group *sg = sd->groups;
  4737. struct sched_group_power *sgp = sg->sgp;
  4738. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4739. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4740. goto need_kick_unlock;
  4741. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4742. && (cpumask_first_and(nohz.idle_cpus_mask,
  4743. sched_domain_span(sd)) < cpu))
  4744. goto need_kick_unlock;
  4745. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4746. break;
  4747. }
  4748. rcu_read_unlock();
  4749. return 0;
  4750. need_kick_unlock:
  4751. rcu_read_unlock();
  4752. need_kick:
  4753. return 1;
  4754. }
  4755. #else
  4756. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4757. #endif
  4758. /*
  4759. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4760. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4761. */
  4762. static void run_rebalance_domains(struct softirq_action *h)
  4763. {
  4764. int this_cpu = smp_processor_id();
  4765. struct rq *this_rq = cpu_rq(this_cpu);
  4766. enum cpu_idle_type idle = this_rq->idle_balance ?
  4767. CPU_IDLE : CPU_NOT_IDLE;
  4768. rebalance_domains(this_cpu, idle);
  4769. /*
  4770. * If this cpu has a pending nohz_balance_kick, then do the
  4771. * balancing on behalf of the other idle cpus whose ticks are
  4772. * stopped.
  4773. */
  4774. nohz_idle_balance(this_cpu, idle);
  4775. }
  4776. static inline int on_null_domain(int cpu)
  4777. {
  4778. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4779. }
  4780. /*
  4781. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4782. */
  4783. void trigger_load_balance(struct rq *rq, int cpu)
  4784. {
  4785. /* Don't need to rebalance while attached to NULL domain */
  4786. if (time_after_eq(jiffies, rq->next_balance) &&
  4787. likely(!on_null_domain(cpu)))
  4788. raise_softirq(SCHED_SOFTIRQ);
  4789. #ifdef CONFIG_NO_HZ
  4790. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4791. nohz_balancer_kick(cpu);
  4792. #endif
  4793. }
  4794. static void rq_online_fair(struct rq *rq)
  4795. {
  4796. update_sysctl();
  4797. }
  4798. static void rq_offline_fair(struct rq *rq)
  4799. {
  4800. update_sysctl();
  4801. /* Ensure any throttled groups are reachable by pick_next_task */
  4802. unthrottle_offline_cfs_rqs(rq);
  4803. }
  4804. #endif /* CONFIG_SMP */
  4805. /*
  4806. * scheduler tick hitting a task of our scheduling class:
  4807. */
  4808. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4809. {
  4810. struct cfs_rq *cfs_rq;
  4811. struct sched_entity *se = &curr->se;
  4812. for_each_sched_entity(se) {
  4813. cfs_rq = cfs_rq_of(se);
  4814. entity_tick(cfs_rq, se, queued);
  4815. }
  4816. if (sched_feat_numa(NUMA))
  4817. task_tick_numa(rq, curr);
  4818. update_rq_runnable_avg(rq, 1);
  4819. }
  4820. /*
  4821. * called on fork with the child task as argument from the parent's context
  4822. * - child not yet on the tasklist
  4823. * - preemption disabled
  4824. */
  4825. static void task_fork_fair(struct task_struct *p)
  4826. {
  4827. struct cfs_rq *cfs_rq;
  4828. struct sched_entity *se = &p->se, *curr;
  4829. int this_cpu = smp_processor_id();
  4830. struct rq *rq = this_rq();
  4831. unsigned long flags;
  4832. raw_spin_lock_irqsave(&rq->lock, flags);
  4833. update_rq_clock(rq);
  4834. cfs_rq = task_cfs_rq(current);
  4835. curr = cfs_rq->curr;
  4836. if (unlikely(task_cpu(p) != this_cpu)) {
  4837. rcu_read_lock();
  4838. __set_task_cpu(p, this_cpu);
  4839. rcu_read_unlock();
  4840. }
  4841. update_curr(cfs_rq);
  4842. if (curr)
  4843. se->vruntime = curr->vruntime;
  4844. place_entity(cfs_rq, se, 1);
  4845. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4846. /*
  4847. * Upon rescheduling, sched_class::put_prev_task() will place
  4848. * 'current' within the tree based on its new key value.
  4849. */
  4850. swap(curr->vruntime, se->vruntime);
  4851. resched_task(rq->curr);
  4852. }
  4853. se->vruntime -= cfs_rq->min_vruntime;
  4854. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4855. }
  4856. /*
  4857. * Priority of the task has changed. Check to see if we preempt
  4858. * the current task.
  4859. */
  4860. static void
  4861. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4862. {
  4863. if (!p->se.on_rq)
  4864. return;
  4865. /*
  4866. * Reschedule if we are currently running on this runqueue and
  4867. * our priority decreased, or if we are not currently running on
  4868. * this runqueue and our priority is higher than the current's
  4869. */
  4870. if (rq->curr == p) {
  4871. if (p->prio > oldprio)
  4872. resched_task(rq->curr);
  4873. } else
  4874. check_preempt_curr(rq, p, 0);
  4875. }
  4876. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4877. {
  4878. struct sched_entity *se = &p->se;
  4879. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4880. /*
  4881. * Ensure the task's vruntime is normalized, so that when its
  4882. * switched back to the fair class the enqueue_entity(.flags=0) will
  4883. * do the right thing.
  4884. *
  4885. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4886. * have normalized the vruntime, if it was !on_rq, then only when
  4887. * the task is sleeping will it still have non-normalized vruntime.
  4888. */
  4889. if (!se->on_rq && p->state != TASK_RUNNING) {
  4890. /*
  4891. * Fix up our vruntime so that the current sleep doesn't
  4892. * cause 'unlimited' sleep bonus.
  4893. */
  4894. place_entity(cfs_rq, se, 0);
  4895. se->vruntime -= cfs_rq->min_vruntime;
  4896. }
  4897. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4898. /*
  4899. * Remove our load from contribution when we leave sched_fair
  4900. * and ensure we don't carry in an old decay_count if we
  4901. * switch back.
  4902. */
  4903. if (p->se.avg.decay_count) {
  4904. struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
  4905. __synchronize_entity_decay(&p->se);
  4906. subtract_blocked_load_contrib(cfs_rq,
  4907. p->se.avg.load_avg_contrib);
  4908. }
  4909. #endif
  4910. }
  4911. /*
  4912. * We switched to the sched_fair class.
  4913. */
  4914. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4915. {
  4916. if (!p->se.on_rq)
  4917. return;
  4918. /*
  4919. * We were most likely switched from sched_rt, so
  4920. * kick off the schedule if running, otherwise just see
  4921. * if we can still preempt the current task.
  4922. */
  4923. if (rq->curr == p)
  4924. resched_task(rq->curr);
  4925. else
  4926. check_preempt_curr(rq, p, 0);
  4927. }
  4928. /* Account for a task changing its policy or group.
  4929. *
  4930. * This routine is mostly called to set cfs_rq->curr field when a task
  4931. * migrates between groups/classes.
  4932. */
  4933. static void set_curr_task_fair(struct rq *rq)
  4934. {
  4935. struct sched_entity *se = &rq->curr->se;
  4936. for_each_sched_entity(se) {
  4937. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4938. set_next_entity(cfs_rq, se);
  4939. /* ensure bandwidth has been allocated on our new cfs_rq */
  4940. account_cfs_rq_runtime(cfs_rq, 0);
  4941. }
  4942. }
  4943. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4944. {
  4945. cfs_rq->tasks_timeline = RB_ROOT;
  4946. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4947. #ifndef CONFIG_64BIT
  4948. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4949. #endif
  4950. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4951. atomic64_set(&cfs_rq->decay_counter, 1);
  4952. atomic64_set(&cfs_rq->removed_load, 0);
  4953. #endif
  4954. }
  4955. #ifdef CONFIG_FAIR_GROUP_SCHED
  4956. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4957. {
  4958. struct cfs_rq *cfs_rq;
  4959. /*
  4960. * If the task was not on the rq at the time of this cgroup movement
  4961. * it must have been asleep, sleeping tasks keep their ->vruntime
  4962. * absolute on their old rq until wakeup (needed for the fair sleeper
  4963. * bonus in place_entity()).
  4964. *
  4965. * If it was on the rq, we've just 'preempted' it, which does convert
  4966. * ->vruntime to a relative base.
  4967. *
  4968. * Make sure both cases convert their relative position when migrating
  4969. * to another cgroup's rq. This does somewhat interfere with the
  4970. * fair sleeper stuff for the first placement, but who cares.
  4971. */
  4972. /*
  4973. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4974. * But there are some cases where it has already been normalized:
  4975. *
  4976. * - Moving a forked child which is waiting for being woken up by
  4977. * wake_up_new_task().
  4978. * - Moving a task which has been woken up by try_to_wake_up() and
  4979. * waiting for actually being woken up by sched_ttwu_pending().
  4980. *
  4981. * To prevent boost or penalty in the new cfs_rq caused by delta
  4982. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4983. */
  4984. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4985. on_rq = 1;
  4986. if (!on_rq)
  4987. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4988. set_task_rq(p, task_cpu(p));
  4989. if (!on_rq) {
  4990. cfs_rq = cfs_rq_of(&p->se);
  4991. p->se.vruntime += cfs_rq->min_vruntime;
  4992. #ifdef CONFIG_SMP
  4993. /*
  4994. * migrate_task_rq_fair() will have removed our previous
  4995. * contribution, but we must synchronize for ongoing future
  4996. * decay.
  4997. */
  4998. p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  4999. cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
  5000. #endif
  5001. }
  5002. }
  5003. void free_fair_sched_group(struct task_group *tg)
  5004. {
  5005. int i;
  5006. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5007. for_each_possible_cpu(i) {
  5008. if (tg->cfs_rq)
  5009. kfree(tg->cfs_rq[i]);
  5010. if (tg->se)
  5011. kfree(tg->se[i]);
  5012. }
  5013. kfree(tg->cfs_rq);
  5014. kfree(tg->se);
  5015. }
  5016. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5017. {
  5018. struct cfs_rq *cfs_rq;
  5019. struct sched_entity *se;
  5020. int i;
  5021. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  5022. if (!tg->cfs_rq)
  5023. goto err;
  5024. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  5025. if (!tg->se)
  5026. goto err;
  5027. tg->shares = NICE_0_LOAD;
  5028. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5029. for_each_possible_cpu(i) {
  5030. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  5031. GFP_KERNEL, cpu_to_node(i));
  5032. if (!cfs_rq)
  5033. goto err;
  5034. se = kzalloc_node(sizeof(struct sched_entity),
  5035. GFP_KERNEL, cpu_to_node(i));
  5036. if (!se)
  5037. goto err_free_rq;
  5038. init_cfs_rq(cfs_rq);
  5039. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  5040. }
  5041. return 1;
  5042. err_free_rq:
  5043. kfree(cfs_rq);
  5044. err:
  5045. return 0;
  5046. }
  5047. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  5048. {
  5049. struct rq *rq = cpu_rq(cpu);
  5050. unsigned long flags;
  5051. /*
  5052. * Only empty task groups can be destroyed; so we can speculatively
  5053. * check on_list without danger of it being re-added.
  5054. */
  5055. if (!tg->cfs_rq[cpu]->on_list)
  5056. return;
  5057. raw_spin_lock_irqsave(&rq->lock, flags);
  5058. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  5059. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5060. }
  5061. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  5062. struct sched_entity *se, int cpu,
  5063. struct sched_entity *parent)
  5064. {
  5065. struct rq *rq = cpu_rq(cpu);
  5066. cfs_rq->tg = tg;
  5067. cfs_rq->rq = rq;
  5068. init_cfs_rq_runtime(cfs_rq);
  5069. tg->cfs_rq[cpu] = cfs_rq;
  5070. tg->se[cpu] = se;
  5071. /* se could be NULL for root_task_group */
  5072. if (!se)
  5073. return;
  5074. if (!parent)
  5075. se->cfs_rq = &rq->cfs;
  5076. else
  5077. se->cfs_rq = parent->my_q;
  5078. se->my_q = cfs_rq;
  5079. update_load_set(&se->load, 0);
  5080. se->parent = parent;
  5081. }
  5082. static DEFINE_MUTEX(shares_mutex);
  5083. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5084. {
  5085. int i;
  5086. unsigned long flags;
  5087. /*
  5088. * We can't change the weight of the root cgroup.
  5089. */
  5090. if (!tg->se[0])
  5091. return -EINVAL;
  5092. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  5093. mutex_lock(&shares_mutex);
  5094. if (tg->shares == shares)
  5095. goto done;
  5096. tg->shares = shares;
  5097. for_each_possible_cpu(i) {
  5098. struct rq *rq = cpu_rq(i);
  5099. struct sched_entity *se;
  5100. se = tg->se[i];
  5101. /* Propagate contribution to hierarchy */
  5102. raw_spin_lock_irqsave(&rq->lock, flags);
  5103. for_each_sched_entity(se)
  5104. update_cfs_shares(group_cfs_rq(se));
  5105. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5106. }
  5107. done:
  5108. mutex_unlock(&shares_mutex);
  5109. return 0;
  5110. }
  5111. #else /* CONFIG_FAIR_GROUP_SCHED */
  5112. void free_fair_sched_group(struct task_group *tg) { }
  5113. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  5114. {
  5115. return 1;
  5116. }
  5117. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  5118. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5119. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  5120. {
  5121. struct sched_entity *se = &task->se;
  5122. unsigned int rr_interval = 0;
  5123. /*
  5124. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  5125. * idle runqueue:
  5126. */
  5127. if (rq->cfs.load.weight)
  5128. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  5129. return rr_interval;
  5130. }
  5131. /*
  5132. * All the scheduling class methods:
  5133. */
  5134. const struct sched_class fair_sched_class = {
  5135. .next = &idle_sched_class,
  5136. .enqueue_task = enqueue_task_fair,
  5137. .dequeue_task = dequeue_task_fair,
  5138. .yield_task = yield_task_fair,
  5139. .yield_to_task = yield_to_task_fair,
  5140. .check_preempt_curr = check_preempt_wakeup,
  5141. .pick_next_task = pick_next_task_fair,
  5142. .put_prev_task = put_prev_task_fair,
  5143. #ifdef CONFIG_SMP
  5144. .select_task_rq = select_task_rq_fair,
  5145. #ifdef CONFIG_FAIR_GROUP_SCHED
  5146. .migrate_task_rq = migrate_task_rq_fair,
  5147. #endif
  5148. .rq_online = rq_online_fair,
  5149. .rq_offline = rq_offline_fair,
  5150. .task_waking = task_waking_fair,
  5151. #endif
  5152. .set_curr_task = set_curr_task_fair,
  5153. .task_tick = task_tick_fair,
  5154. .task_fork = task_fork_fair,
  5155. .prio_changed = prio_changed_fair,
  5156. .switched_from = switched_from_fair,
  5157. .switched_to = switched_to_fair,
  5158. .get_rr_interval = get_rr_interval_fair,
  5159. #ifdef CONFIG_FAIR_GROUP_SCHED
  5160. .task_move_group = task_move_group_fair,
  5161. #endif
  5162. };
  5163. #ifdef CONFIG_SCHED_DEBUG
  5164. void print_cfs_stats(struct seq_file *m, int cpu)
  5165. {
  5166. struct cfs_rq *cfs_rq;
  5167. rcu_read_lock();
  5168. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  5169. print_cfs_rq(m, cpu, cfs_rq);
  5170. rcu_read_unlock();
  5171. }
  5172. #endif
  5173. __init void init_sched_fair_class(void)
  5174. {
  5175. #ifdef CONFIG_SMP
  5176. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  5177. #ifdef CONFIG_NO_HZ
  5178. nohz.next_balance = jiffies;
  5179. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  5180. cpu_notifier(sched_ilb_notifier, 0);
  5181. #endif
  5182. #endif /* SMP */
  5183. }