workqueue.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include <linux/nodemask.h>
  47. #include "workqueue_internal.h"
  48. enum {
  49. /*
  50. * worker_pool flags
  51. *
  52. * A bound pool is either associated or disassociated with its CPU.
  53. * While associated (!DISASSOCIATED), all workers are bound to the
  54. * CPU and none has %WORKER_UNBOUND set and concurrency management
  55. * is in effect.
  56. *
  57. * While DISASSOCIATED, the cpu may be offline and all workers have
  58. * %WORKER_UNBOUND set and concurrency management disabled, and may
  59. * be executing on any CPU. The pool behaves as an unbound one.
  60. *
  61. * Note that DISASSOCIATED should be flipped only while holding
  62. * manager_mutex to avoid changing binding state while
  63. * create_worker() is in progress.
  64. */
  65. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  66. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  67. POOL_FREEZING = 1 << 3, /* freeze in progress */
  68. /* worker flags */
  69. WORKER_STARTED = 1 << 0, /* started */
  70. WORKER_DIE = 1 << 1, /* die die die */
  71. WORKER_IDLE = 1 << 2, /* is idle */
  72. WORKER_PREP = 1 << 3, /* preparing to run works */
  73. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  74. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  75. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  76. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  77. WORKER_UNBOUND | WORKER_REBOUND,
  78. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  79. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  80. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  81. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  82. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  83. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  84. /* call for help after 10ms
  85. (min two ticks) */
  86. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  87. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  88. /*
  89. * Rescue workers are used only on emergencies and shared by
  90. * all cpus. Give -20.
  91. */
  92. RESCUER_NICE_LEVEL = -20,
  93. HIGHPRI_NICE_LEVEL = -20,
  94. WQ_NAME_LEN = 24,
  95. };
  96. /*
  97. * Structure fields follow one of the following exclusion rules.
  98. *
  99. * I: Modifiable by initialization/destruction paths and read-only for
  100. * everyone else.
  101. *
  102. * P: Preemption protected. Disabling preemption is enough and should
  103. * only be modified and accessed from the local cpu.
  104. *
  105. * L: pool->lock protected. Access with pool->lock held.
  106. *
  107. * X: During normal operation, modification requires pool->lock and should
  108. * be done only from local cpu. Either disabling preemption on local
  109. * cpu or grabbing pool->lock is enough for read access. If
  110. * POOL_DISASSOCIATED is set, it's identical to L.
  111. *
  112. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  113. * locks. Reads can happen under either lock.
  114. *
  115. * PL: wq_pool_mutex protected.
  116. *
  117. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  118. *
  119. * WQ: wq->mutex protected.
  120. *
  121. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  122. *
  123. * MD: wq_mayday_lock protected.
  124. */
  125. /* struct worker is defined in workqueue_internal.h */
  126. struct worker_pool {
  127. spinlock_t lock; /* the pool lock */
  128. int cpu; /* I: the associated cpu */
  129. int node; /* I: the associated node ID */
  130. int id; /* I: pool ID */
  131. unsigned int flags; /* X: flags */
  132. struct list_head worklist; /* L: list of pending works */
  133. int nr_workers; /* L: total number of workers */
  134. /* nr_idle includes the ones off idle_list for rebinding */
  135. int nr_idle; /* L: currently idle ones */
  136. struct list_head idle_list; /* X: list of idle workers */
  137. struct timer_list idle_timer; /* L: worker idle timeout */
  138. struct timer_list mayday_timer; /* L: SOS timer for workers */
  139. /* a workers is either on busy_hash or idle_list, or the manager */
  140. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  141. /* L: hash of busy workers */
  142. /* see manage_workers() for details on the two manager mutexes */
  143. struct mutex manager_arb; /* manager arbitration */
  144. struct mutex manager_mutex; /* manager exclusion */
  145. struct idr worker_idr; /* MG: worker IDs and iteration */
  146. struct workqueue_attrs *attrs; /* I: worker attributes */
  147. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  148. int refcnt; /* PL: refcnt for unbound pools */
  149. /*
  150. * The current concurrency level. As it's likely to be accessed
  151. * from other CPUs during try_to_wake_up(), put it in a separate
  152. * cacheline.
  153. */
  154. atomic_t nr_running ____cacheline_aligned_in_smp;
  155. /*
  156. * Destruction of pool is sched-RCU protected to allow dereferences
  157. * from get_work_pool().
  158. */
  159. struct rcu_head rcu;
  160. } ____cacheline_aligned_in_smp;
  161. /*
  162. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  163. * of work_struct->data are used for flags and the remaining high bits
  164. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  165. * number of flag bits.
  166. */
  167. struct pool_workqueue {
  168. struct worker_pool *pool; /* I: the associated pool */
  169. struct workqueue_struct *wq; /* I: the owning workqueue */
  170. int work_color; /* L: current color */
  171. int flush_color; /* L: flushing color */
  172. int refcnt; /* L: reference count */
  173. int nr_in_flight[WORK_NR_COLORS];
  174. /* L: nr of in_flight works */
  175. int nr_active; /* L: nr of active works */
  176. int max_active; /* L: max active works */
  177. struct list_head delayed_works; /* L: delayed works */
  178. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  179. struct list_head mayday_node; /* MD: node on wq->maydays */
  180. /*
  181. * Release of unbound pwq is punted to system_wq. See put_pwq()
  182. * and pwq_unbound_release_workfn() for details. pool_workqueue
  183. * itself is also sched-RCU protected so that the first pwq can be
  184. * determined without grabbing wq->mutex.
  185. */
  186. struct work_struct unbound_release_work;
  187. struct rcu_head rcu;
  188. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  189. /*
  190. * Structure used to wait for workqueue flush.
  191. */
  192. struct wq_flusher {
  193. struct list_head list; /* WQ: list of flushers */
  194. int flush_color; /* WQ: flush color waiting for */
  195. struct completion done; /* flush completion */
  196. };
  197. struct wq_device;
  198. /*
  199. * The externally visible workqueue. It relays the issued work items to
  200. * the appropriate worker_pool through its pool_workqueues.
  201. */
  202. struct workqueue_struct {
  203. struct list_head pwqs; /* WR: all pwqs of this wq */
  204. struct list_head list; /* PL: list of all workqueues */
  205. struct mutex mutex; /* protects this wq */
  206. int work_color; /* WQ: current work color */
  207. int flush_color; /* WQ: current flush color */
  208. atomic_t nr_pwqs_to_flush; /* flush in progress */
  209. struct wq_flusher *first_flusher; /* WQ: first flusher */
  210. struct list_head flusher_queue; /* WQ: flush waiters */
  211. struct list_head flusher_overflow; /* WQ: flush overflow list */
  212. struct list_head maydays; /* MD: pwqs requesting rescue */
  213. struct worker *rescuer; /* I: rescue worker */
  214. int nr_drainers; /* WQ: drain in progress */
  215. int saved_max_active; /* WQ: saved pwq max_active */
  216. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  217. #ifdef CONFIG_SYSFS
  218. struct wq_device *wq_dev; /* I: for sysfs interface */
  219. #endif
  220. #ifdef CONFIG_LOCKDEP
  221. struct lockdep_map lockdep_map;
  222. #endif
  223. char name[WQ_NAME_LEN]; /* I: workqueue name */
  224. /* hot fields used during command issue, aligned to cacheline */
  225. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  226. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  227. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  228. };
  229. static struct kmem_cache *pwq_cache;
  230. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  231. static cpumask_var_t *wq_numa_possible_cpumask;
  232. /* possible CPUs of each node */
  233. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  234. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  235. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  236. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  237. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  238. /* the per-cpu worker pools */
  239. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  240. cpu_worker_pools);
  241. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  242. /* PL: hash of all unbound pools keyed by pool->attrs */
  243. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  244. /* I: attributes used when instantiating standard unbound pools on demand */
  245. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  246. struct workqueue_struct *system_wq __read_mostly;
  247. EXPORT_SYMBOL_GPL(system_wq);
  248. struct workqueue_struct *system_highpri_wq __read_mostly;
  249. EXPORT_SYMBOL_GPL(system_highpri_wq);
  250. struct workqueue_struct *system_long_wq __read_mostly;
  251. EXPORT_SYMBOL_GPL(system_long_wq);
  252. struct workqueue_struct *system_unbound_wq __read_mostly;
  253. EXPORT_SYMBOL_GPL(system_unbound_wq);
  254. struct workqueue_struct *system_freezable_wq __read_mostly;
  255. EXPORT_SYMBOL_GPL(system_freezable_wq);
  256. static int worker_thread(void *__worker);
  257. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  258. const struct workqueue_attrs *from);
  259. #define CREATE_TRACE_POINTS
  260. #include <trace/events/workqueue.h>
  261. #define assert_rcu_or_pool_mutex() \
  262. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  263. lockdep_is_held(&wq_pool_mutex), \
  264. "sched RCU or wq_pool_mutex should be held")
  265. #define assert_rcu_or_wq_mutex(wq) \
  266. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  267. lockdep_is_held(&wq->mutex), \
  268. "sched RCU or wq->mutex should be held")
  269. #ifdef CONFIG_LOCKDEP
  270. #define assert_manager_or_pool_lock(pool) \
  271. WARN_ONCE(debug_locks && \
  272. !lockdep_is_held(&(pool)->manager_mutex) && \
  273. !lockdep_is_held(&(pool)->lock), \
  274. "pool->manager_mutex or ->lock should be held")
  275. #else
  276. #define assert_manager_or_pool_lock(pool) do { } while (0)
  277. #endif
  278. #define for_each_cpu_worker_pool(pool, cpu) \
  279. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  280. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  281. (pool)++)
  282. /**
  283. * for_each_pool - iterate through all worker_pools in the system
  284. * @pool: iteration cursor
  285. * @pi: integer used for iteration
  286. *
  287. * This must be called either with wq_pool_mutex held or sched RCU read
  288. * locked. If the pool needs to be used beyond the locking in effect, the
  289. * caller is responsible for guaranteeing that the pool stays online.
  290. *
  291. * The if/else clause exists only for the lockdep assertion and can be
  292. * ignored.
  293. */
  294. #define for_each_pool(pool, pi) \
  295. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  296. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  297. else
  298. /**
  299. * for_each_pool_worker - iterate through all workers of a worker_pool
  300. * @worker: iteration cursor
  301. * @wi: integer used for iteration
  302. * @pool: worker_pool to iterate workers of
  303. *
  304. * This must be called with either @pool->manager_mutex or ->lock held.
  305. *
  306. * The if/else clause exists only for the lockdep assertion and can be
  307. * ignored.
  308. */
  309. #define for_each_pool_worker(worker, wi, pool) \
  310. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  311. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  312. else
  313. /**
  314. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  315. * @pwq: iteration cursor
  316. * @wq: the target workqueue
  317. *
  318. * This must be called either with wq->mutex held or sched RCU read locked.
  319. * If the pwq needs to be used beyond the locking in effect, the caller is
  320. * responsible for guaranteeing that the pwq stays online.
  321. *
  322. * The if/else clause exists only for the lockdep assertion and can be
  323. * ignored.
  324. */
  325. #define for_each_pwq(pwq, wq) \
  326. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  327. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  328. else
  329. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  330. static struct debug_obj_descr work_debug_descr;
  331. static void *work_debug_hint(void *addr)
  332. {
  333. return ((struct work_struct *) addr)->func;
  334. }
  335. /*
  336. * fixup_init is called when:
  337. * - an active object is initialized
  338. */
  339. static int work_fixup_init(void *addr, enum debug_obj_state state)
  340. {
  341. struct work_struct *work = addr;
  342. switch (state) {
  343. case ODEBUG_STATE_ACTIVE:
  344. cancel_work_sync(work);
  345. debug_object_init(work, &work_debug_descr);
  346. return 1;
  347. default:
  348. return 0;
  349. }
  350. }
  351. /*
  352. * fixup_activate is called when:
  353. * - an active object is activated
  354. * - an unknown object is activated (might be a statically initialized object)
  355. */
  356. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  357. {
  358. struct work_struct *work = addr;
  359. switch (state) {
  360. case ODEBUG_STATE_NOTAVAILABLE:
  361. /*
  362. * This is not really a fixup. The work struct was
  363. * statically initialized. We just make sure that it
  364. * is tracked in the object tracker.
  365. */
  366. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  367. debug_object_init(work, &work_debug_descr);
  368. debug_object_activate(work, &work_debug_descr);
  369. return 0;
  370. }
  371. WARN_ON_ONCE(1);
  372. return 0;
  373. case ODEBUG_STATE_ACTIVE:
  374. WARN_ON(1);
  375. default:
  376. return 0;
  377. }
  378. }
  379. /*
  380. * fixup_free is called when:
  381. * - an active object is freed
  382. */
  383. static int work_fixup_free(void *addr, enum debug_obj_state state)
  384. {
  385. struct work_struct *work = addr;
  386. switch (state) {
  387. case ODEBUG_STATE_ACTIVE:
  388. cancel_work_sync(work);
  389. debug_object_free(work, &work_debug_descr);
  390. return 1;
  391. default:
  392. return 0;
  393. }
  394. }
  395. static struct debug_obj_descr work_debug_descr = {
  396. .name = "work_struct",
  397. .debug_hint = work_debug_hint,
  398. .fixup_init = work_fixup_init,
  399. .fixup_activate = work_fixup_activate,
  400. .fixup_free = work_fixup_free,
  401. };
  402. static inline void debug_work_activate(struct work_struct *work)
  403. {
  404. debug_object_activate(work, &work_debug_descr);
  405. }
  406. static inline void debug_work_deactivate(struct work_struct *work)
  407. {
  408. debug_object_deactivate(work, &work_debug_descr);
  409. }
  410. void __init_work(struct work_struct *work, int onstack)
  411. {
  412. if (onstack)
  413. debug_object_init_on_stack(work, &work_debug_descr);
  414. else
  415. debug_object_init(work, &work_debug_descr);
  416. }
  417. EXPORT_SYMBOL_GPL(__init_work);
  418. void destroy_work_on_stack(struct work_struct *work)
  419. {
  420. debug_object_free(work, &work_debug_descr);
  421. }
  422. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  423. #else
  424. static inline void debug_work_activate(struct work_struct *work) { }
  425. static inline void debug_work_deactivate(struct work_struct *work) { }
  426. #endif
  427. /* allocate ID and assign it to @pool */
  428. static int worker_pool_assign_id(struct worker_pool *pool)
  429. {
  430. int ret;
  431. lockdep_assert_held(&wq_pool_mutex);
  432. do {
  433. if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
  434. return -ENOMEM;
  435. ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
  436. } while (ret == -EAGAIN);
  437. return ret;
  438. }
  439. /**
  440. * first_pwq - return the first pool_workqueue of the specified workqueue
  441. * @wq: the target workqueue
  442. *
  443. * This must be called either with wq->mutex held or sched RCU read locked.
  444. * If the pwq needs to be used beyond the locking in effect, the caller is
  445. * responsible for guaranteeing that the pwq stays online.
  446. */
  447. static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
  448. {
  449. assert_rcu_or_wq_mutex(wq);
  450. return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
  451. pwqs_node);
  452. }
  453. /**
  454. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  455. * @wq: the target workqueue
  456. * @node: the node ID
  457. *
  458. * This must be called either with pwq_lock held or sched RCU read locked.
  459. * If the pwq needs to be used beyond the locking in effect, the caller is
  460. * responsible for guaranteeing that the pwq stays online.
  461. */
  462. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  463. int node)
  464. {
  465. assert_rcu_or_wq_mutex(wq);
  466. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  467. }
  468. static unsigned int work_color_to_flags(int color)
  469. {
  470. return color << WORK_STRUCT_COLOR_SHIFT;
  471. }
  472. static int get_work_color(struct work_struct *work)
  473. {
  474. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  475. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  476. }
  477. static int work_next_color(int color)
  478. {
  479. return (color + 1) % WORK_NR_COLORS;
  480. }
  481. /*
  482. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  483. * contain the pointer to the queued pwq. Once execution starts, the flag
  484. * is cleared and the high bits contain OFFQ flags and pool ID.
  485. *
  486. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  487. * and clear_work_data() can be used to set the pwq, pool or clear
  488. * work->data. These functions should only be called while the work is
  489. * owned - ie. while the PENDING bit is set.
  490. *
  491. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  492. * corresponding to a work. Pool is available once the work has been
  493. * queued anywhere after initialization until it is sync canceled. pwq is
  494. * available only while the work item is queued.
  495. *
  496. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  497. * canceled. While being canceled, a work item may have its PENDING set
  498. * but stay off timer and worklist for arbitrarily long and nobody should
  499. * try to steal the PENDING bit.
  500. */
  501. static inline void set_work_data(struct work_struct *work, unsigned long data,
  502. unsigned long flags)
  503. {
  504. WARN_ON_ONCE(!work_pending(work));
  505. atomic_long_set(&work->data, data | flags | work_static(work));
  506. }
  507. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  508. unsigned long extra_flags)
  509. {
  510. set_work_data(work, (unsigned long)pwq,
  511. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  512. }
  513. static void set_work_pool_and_keep_pending(struct work_struct *work,
  514. int pool_id)
  515. {
  516. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  517. WORK_STRUCT_PENDING);
  518. }
  519. static void set_work_pool_and_clear_pending(struct work_struct *work,
  520. int pool_id)
  521. {
  522. /*
  523. * The following wmb is paired with the implied mb in
  524. * test_and_set_bit(PENDING) and ensures all updates to @work made
  525. * here are visible to and precede any updates by the next PENDING
  526. * owner.
  527. */
  528. smp_wmb();
  529. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  530. }
  531. static void clear_work_data(struct work_struct *work)
  532. {
  533. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  534. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  535. }
  536. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  537. {
  538. unsigned long data = atomic_long_read(&work->data);
  539. if (data & WORK_STRUCT_PWQ)
  540. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  541. else
  542. return NULL;
  543. }
  544. /**
  545. * get_work_pool - return the worker_pool a given work was associated with
  546. * @work: the work item of interest
  547. *
  548. * Return the worker_pool @work was last associated with. %NULL if none.
  549. *
  550. * Pools are created and destroyed under wq_pool_mutex, and allows read
  551. * access under sched-RCU read lock. As such, this function should be
  552. * called under wq_pool_mutex or with preemption disabled.
  553. *
  554. * All fields of the returned pool are accessible as long as the above
  555. * mentioned locking is in effect. If the returned pool needs to be used
  556. * beyond the critical section, the caller is responsible for ensuring the
  557. * returned pool is and stays online.
  558. */
  559. static struct worker_pool *get_work_pool(struct work_struct *work)
  560. {
  561. unsigned long data = atomic_long_read(&work->data);
  562. int pool_id;
  563. assert_rcu_or_pool_mutex();
  564. if (data & WORK_STRUCT_PWQ)
  565. return ((struct pool_workqueue *)
  566. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  567. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  568. if (pool_id == WORK_OFFQ_POOL_NONE)
  569. return NULL;
  570. return idr_find(&worker_pool_idr, pool_id);
  571. }
  572. /**
  573. * get_work_pool_id - return the worker pool ID a given work is associated with
  574. * @work: the work item of interest
  575. *
  576. * Return the worker_pool ID @work was last associated with.
  577. * %WORK_OFFQ_POOL_NONE if none.
  578. */
  579. static int get_work_pool_id(struct work_struct *work)
  580. {
  581. unsigned long data = atomic_long_read(&work->data);
  582. if (data & WORK_STRUCT_PWQ)
  583. return ((struct pool_workqueue *)
  584. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  585. return data >> WORK_OFFQ_POOL_SHIFT;
  586. }
  587. static void mark_work_canceling(struct work_struct *work)
  588. {
  589. unsigned long pool_id = get_work_pool_id(work);
  590. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  591. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  592. }
  593. static bool work_is_canceling(struct work_struct *work)
  594. {
  595. unsigned long data = atomic_long_read(&work->data);
  596. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  597. }
  598. /*
  599. * Policy functions. These define the policies on how the global worker
  600. * pools are managed. Unless noted otherwise, these functions assume that
  601. * they're being called with pool->lock held.
  602. */
  603. static bool __need_more_worker(struct worker_pool *pool)
  604. {
  605. return !atomic_read(&pool->nr_running);
  606. }
  607. /*
  608. * Need to wake up a worker? Called from anything but currently
  609. * running workers.
  610. *
  611. * Note that, because unbound workers never contribute to nr_running, this
  612. * function will always return %true for unbound pools as long as the
  613. * worklist isn't empty.
  614. */
  615. static bool need_more_worker(struct worker_pool *pool)
  616. {
  617. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  618. }
  619. /* Can I start working? Called from busy but !running workers. */
  620. static bool may_start_working(struct worker_pool *pool)
  621. {
  622. return pool->nr_idle;
  623. }
  624. /* Do I need to keep working? Called from currently running workers. */
  625. static bool keep_working(struct worker_pool *pool)
  626. {
  627. return !list_empty(&pool->worklist) &&
  628. atomic_read(&pool->nr_running) <= 1;
  629. }
  630. /* Do we need a new worker? Called from manager. */
  631. static bool need_to_create_worker(struct worker_pool *pool)
  632. {
  633. return need_more_worker(pool) && !may_start_working(pool);
  634. }
  635. /* Do I need to be the manager? */
  636. static bool need_to_manage_workers(struct worker_pool *pool)
  637. {
  638. return need_to_create_worker(pool) ||
  639. (pool->flags & POOL_MANAGE_WORKERS);
  640. }
  641. /* Do we have too many workers and should some go away? */
  642. static bool too_many_workers(struct worker_pool *pool)
  643. {
  644. bool managing = mutex_is_locked(&pool->manager_arb);
  645. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  646. int nr_busy = pool->nr_workers - nr_idle;
  647. /*
  648. * nr_idle and idle_list may disagree if idle rebinding is in
  649. * progress. Never return %true if idle_list is empty.
  650. */
  651. if (list_empty(&pool->idle_list))
  652. return false;
  653. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  654. }
  655. /*
  656. * Wake up functions.
  657. */
  658. /* Return the first worker. Safe with preemption disabled */
  659. static struct worker *first_worker(struct worker_pool *pool)
  660. {
  661. if (unlikely(list_empty(&pool->idle_list)))
  662. return NULL;
  663. return list_first_entry(&pool->idle_list, struct worker, entry);
  664. }
  665. /**
  666. * wake_up_worker - wake up an idle worker
  667. * @pool: worker pool to wake worker from
  668. *
  669. * Wake up the first idle worker of @pool.
  670. *
  671. * CONTEXT:
  672. * spin_lock_irq(pool->lock).
  673. */
  674. static void wake_up_worker(struct worker_pool *pool)
  675. {
  676. struct worker *worker = first_worker(pool);
  677. if (likely(worker))
  678. wake_up_process(worker->task);
  679. }
  680. /**
  681. * wq_worker_waking_up - a worker is waking up
  682. * @task: task waking up
  683. * @cpu: CPU @task is waking up to
  684. *
  685. * This function is called during try_to_wake_up() when a worker is
  686. * being awoken.
  687. *
  688. * CONTEXT:
  689. * spin_lock_irq(rq->lock)
  690. */
  691. void wq_worker_waking_up(struct task_struct *task, int cpu)
  692. {
  693. struct worker *worker = kthread_data(task);
  694. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  695. WARN_ON_ONCE(worker->pool->cpu != cpu);
  696. atomic_inc(&worker->pool->nr_running);
  697. }
  698. }
  699. /**
  700. * wq_worker_sleeping - a worker is going to sleep
  701. * @task: task going to sleep
  702. * @cpu: CPU in question, must be the current CPU number
  703. *
  704. * This function is called during schedule() when a busy worker is
  705. * going to sleep. Worker on the same cpu can be woken up by
  706. * returning pointer to its task.
  707. *
  708. * CONTEXT:
  709. * spin_lock_irq(rq->lock)
  710. *
  711. * RETURNS:
  712. * Worker task on @cpu to wake up, %NULL if none.
  713. */
  714. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  715. {
  716. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  717. struct worker_pool *pool;
  718. /*
  719. * Rescuers, which may not have all the fields set up like normal
  720. * workers, also reach here, let's not access anything before
  721. * checking NOT_RUNNING.
  722. */
  723. if (worker->flags & WORKER_NOT_RUNNING)
  724. return NULL;
  725. pool = worker->pool;
  726. /* this can only happen on the local cpu */
  727. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  728. return NULL;
  729. /*
  730. * The counterpart of the following dec_and_test, implied mb,
  731. * worklist not empty test sequence is in insert_work().
  732. * Please read comment there.
  733. *
  734. * NOT_RUNNING is clear. This means that we're bound to and
  735. * running on the local cpu w/ rq lock held and preemption
  736. * disabled, which in turn means that none else could be
  737. * manipulating idle_list, so dereferencing idle_list without pool
  738. * lock is safe.
  739. */
  740. if (atomic_dec_and_test(&pool->nr_running) &&
  741. !list_empty(&pool->worklist))
  742. to_wakeup = first_worker(pool);
  743. return to_wakeup ? to_wakeup->task : NULL;
  744. }
  745. /**
  746. * worker_set_flags - set worker flags and adjust nr_running accordingly
  747. * @worker: self
  748. * @flags: flags to set
  749. * @wakeup: wakeup an idle worker if necessary
  750. *
  751. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  752. * nr_running becomes zero and @wakeup is %true, an idle worker is
  753. * woken up.
  754. *
  755. * CONTEXT:
  756. * spin_lock_irq(pool->lock)
  757. */
  758. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  759. bool wakeup)
  760. {
  761. struct worker_pool *pool = worker->pool;
  762. WARN_ON_ONCE(worker->task != current);
  763. /*
  764. * If transitioning into NOT_RUNNING, adjust nr_running and
  765. * wake up an idle worker as necessary if requested by
  766. * @wakeup.
  767. */
  768. if ((flags & WORKER_NOT_RUNNING) &&
  769. !(worker->flags & WORKER_NOT_RUNNING)) {
  770. if (wakeup) {
  771. if (atomic_dec_and_test(&pool->nr_running) &&
  772. !list_empty(&pool->worklist))
  773. wake_up_worker(pool);
  774. } else
  775. atomic_dec(&pool->nr_running);
  776. }
  777. worker->flags |= flags;
  778. }
  779. /**
  780. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  781. * @worker: self
  782. * @flags: flags to clear
  783. *
  784. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  785. *
  786. * CONTEXT:
  787. * spin_lock_irq(pool->lock)
  788. */
  789. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  790. {
  791. struct worker_pool *pool = worker->pool;
  792. unsigned int oflags = worker->flags;
  793. WARN_ON_ONCE(worker->task != current);
  794. worker->flags &= ~flags;
  795. /*
  796. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  797. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  798. * of multiple flags, not a single flag.
  799. */
  800. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  801. if (!(worker->flags & WORKER_NOT_RUNNING))
  802. atomic_inc(&pool->nr_running);
  803. }
  804. /**
  805. * find_worker_executing_work - find worker which is executing a work
  806. * @pool: pool of interest
  807. * @work: work to find worker for
  808. *
  809. * Find a worker which is executing @work on @pool by searching
  810. * @pool->busy_hash which is keyed by the address of @work. For a worker
  811. * to match, its current execution should match the address of @work and
  812. * its work function. This is to avoid unwanted dependency between
  813. * unrelated work executions through a work item being recycled while still
  814. * being executed.
  815. *
  816. * This is a bit tricky. A work item may be freed once its execution
  817. * starts and nothing prevents the freed area from being recycled for
  818. * another work item. If the same work item address ends up being reused
  819. * before the original execution finishes, workqueue will identify the
  820. * recycled work item as currently executing and make it wait until the
  821. * current execution finishes, introducing an unwanted dependency.
  822. *
  823. * This function checks the work item address and work function to avoid
  824. * false positives. Note that this isn't complete as one may construct a
  825. * work function which can introduce dependency onto itself through a
  826. * recycled work item. Well, if somebody wants to shoot oneself in the
  827. * foot that badly, there's only so much we can do, and if such deadlock
  828. * actually occurs, it should be easy to locate the culprit work function.
  829. *
  830. * CONTEXT:
  831. * spin_lock_irq(pool->lock).
  832. *
  833. * RETURNS:
  834. * Pointer to worker which is executing @work if found, NULL
  835. * otherwise.
  836. */
  837. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  838. struct work_struct *work)
  839. {
  840. struct worker *worker;
  841. hash_for_each_possible(pool->busy_hash, worker, hentry,
  842. (unsigned long)work)
  843. if (worker->current_work == work &&
  844. worker->current_func == work->func)
  845. return worker;
  846. return NULL;
  847. }
  848. /**
  849. * move_linked_works - move linked works to a list
  850. * @work: start of series of works to be scheduled
  851. * @head: target list to append @work to
  852. * @nextp: out paramter for nested worklist walking
  853. *
  854. * Schedule linked works starting from @work to @head. Work series to
  855. * be scheduled starts at @work and includes any consecutive work with
  856. * WORK_STRUCT_LINKED set in its predecessor.
  857. *
  858. * If @nextp is not NULL, it's updated to point to the next work of
  859. * the last scheduled work. This allows move_linked_works() to be
  860. * nested inside outer list_for_each_entry_safe().
  861. *
  862. * CONTEXT:
  863. * spin_lock_irq(pool->lock).
  864. */
  865. static void move_linked_works(struct work_struct *work, struct list_head *head,
  866. struct work_struct **nextp)
  867. {
  868. struct work_struct *n;
  869. /*
  870. * Linked worklist will always end before the end of the list,
  871. * use NULL for list head.
  872. */
  873. list_for_each_entry_safe_from(work, n, NULL, entry) {
  874. list_move_tail(&work->entry, head);
  875. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  876. break;
  877. }
  878. /*
  879. * If we're already inside safe list traversal and have moved
  880. * multiple works to the scheduled queue, the next position
  881. * needs to be updated.
  882. */
  883. if (nextp)
  884. *nextp = n;
  885. }
  886. /**
  887. * get_pwq - get an extra reference on the specified pool_workqueue
  888. * @pwq: pool_workqueue to get
  889. *
  890. * Obtain an extra reference on @pwq. The caller should guarantee that
  891. * @pwq has positive refcnt and be holding the matching pool->lock.
  892. */
  893. static void get_pwq(struct pool_workqueue *pwq)
  894. {
  895. lockdep_assert_held(&pwq->pool->lock);
  896. WARN_ON_ONCE(pwq->refcnt <= 0);
  897. pwq->refcnt++;
  898. }
  899. /**
  900. * put_pwq - put a pool_workqueue reference
  901. * @pwq: pool_workqueue to put
  902. *
  903. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  904. * destruction. The caller should be holding the matching pool->lock.
  905. */
  906. static void put_pwq(struct pool_workqueue *pwq)
  907. {
  908. lockdep_assert_held(&pwq->pool->lock);
  909. if (likely(--pwq->refcnt))
  910. return;
  911. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  912. return;
  913. /*
  914. * @pwq can't be released under pool->lock, bounce to
  915. * pwq_unbound_release_workfn(). This never recurses on the same
  916. * pool->lock as this path is taken only for unbound workqueues and
  917. * the release work item is scheduled on a per-cpu workqueue. To
  918. * avoid lockdep warning, unbound pool->locks are given lockdep
  919. * subclass of 1 in get_unbound_pool().
  920. */
  921. schedule_work(&pwq->unbound_release_work);
  922. }
  923. static void pwq_activate_delayed_work(struct work_struct *work)
  924. {
  925. struct pool_workqueue *pwq = get_work_pwq(work);
  926. trace_workqueue_activate_work(work);
  927. move_linked_works(work, &pwq->pool->worklist, NULL);
  928. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  929. pwq->nr_active++;
  930. }
  931. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  932. {
  933. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  934. struct work_struct, entry);
  935. pwq_activate_delayed_work(work);
  936. }
  937. /**
  938. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  939. * @pwq: pwq of interest
  940. * @color: color of work which left the queue
  941. *
  942. * A work either has completed or is removed from pending queue,
  943. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  944. *
  945. * CONTEXT:
  946. * spin_lock_irq(pool->lock).
  947. */
  948. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  949. {
  950. /* uncolored work items don't participate in flushing or nr_active */
  951. if (color == WORK_NO_COLOR)
  952. goto out_put;
  953. pwq->nr_in_flight[color]--;
  954. pwq->nr_active--;
  955. if (!list_empty(&pwq->delayed_works)) {
  956. /* one down, submit a delayed one */
  957. if (pwq->nr_active < pwq->max_active)
  958. pwq_activate_first_delayed(pwq);
  959. }
  960. /* is flush in progress and are we at the flushing tip? */
  961. if (likely(pwq->flush_color != color))
  962. goto out_put;
  963. /* are there still in-flight works? */
  964. if (pwq->nr_in_flight[color])
  965. goto out_put;
  966. /* this pwq is done, clear flush_color */
  967. pwq->flush_color = -1;
  968. /*
  969. * If this was the last pwq, wake up the first flusher. It
  970. * will handle the rest.
  971. */
  972. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  973. complete(&pwq->wq->first_flusher->done);
  974. out_put:
  975. put_pwq(pwq);
  976. }
  977. /**
  978. * try_to_grab_pending - steal work item from worklist and disable irq
  979. * @work: work item to steal
  980. * @is_dwork: @work is a delayed_work
  981. * @flags: place to store irq state
  982. *
  983. * Try to grab PENDING bit of @work. This function can handle @work in any
  984. * stable state - idle, on timer or on worklist. Return values are
  985. *
  986. * 1 if @work was pending and we successfully stole PENDING
  987. * 0 if @work was idle and we claimed PENDING
  988. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  989. * -ENOENT if someone else is canceling @work, this state may persist
  990. * for arbitrarily long
  991. *
  992. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  993. * interrupted while holding PENDING and @work off queue, irq must be
  994. * disabled on entry. This, combined with delayed_work->timer being
  995. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  996. *
  997. * On successful return, >= 0, irq is disabled and the caller is
  998. * responsible for releasing it using local_irq_restore(*@flags).
  999. *
  1000. * This function is safe to call from any context including IRQ handler.
  1001. */
  1002. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1003. unsigned long *flags)
  1004. {
  1005. struct worker_pool *pool;
  1006. struct pool_workqueue *pwq;
  1007. local_irq_save(*flags);
  1008. /* try to steal the timer if it exists */
  1009. if (is_dwork) {
  1010. struct delayed_work *dwork = to_delayed_work(work);
  1011. /*
  1012. * dwork->timer is irqsafe. If del_timer() fails, it's
  1013. * guaranteed that the timer is not queued anywhere and not
  1014. * running on the local CPU.
  1015. */
  1016. if (likely(del_timer(&dwork->timer)))
  1017. return 1;
  1018. }
  1019. /* try to claim PENDING the normal way */
  1020. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1021. return 0;
  1022. /*
  1023. * The queueing is in progress, or it is already queued. Try to
  1024. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1025. */
  1026. pool = get_work_pool(work);
  1027. if (!pool)
  1028. goto fail;
  1029. spin_lock(&pool->lock);
  1030. /*
  1031. * work->data is guaranteed to point to pwq only while the work
  1032. * item is queued on pwq->wq, and both updating work->data to point
  1033. * to pwq on queueing and to pool on dequeueing are done under
  1034. * pwq->pool->lock. This in turn guarantees that, if work->data
  1035. * points to pwq which is associated with a locked pool, the work
  1036. * item is currently queued on that pool.
  1037. */
  1038. pwq = get_work_pwq(work);
  1039. if (pwq && pwq->pool == pool) {
  1040. debug_work_deactivate(work);
  1041. /*
  1042. * A delayed work item cannot be grabbed directly because
  1043. * it might have linked NO_COLOR work items which, if left
  1044. * on the delayed_list, will confuse pwq->nr_active
  1045. * management later on and cause stall. Make sure the work
  1046. * item is activated before grabbing.
  1047. */
  1048. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1049. pwq_activate_delayed_work(work);
  1050. list_del_init(&work->entry);
  1051. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1052. /* work->data points to pwq iff queued, point to pool */
  1053. set_work_pool_and_keep_pending(work, pool->id);
  1054. spin_unlock(&pool->lock);
  1055. return 1;
  1056. }
  1057. spin_unlock(&pool->lock);
  1058. fail:
  1059. local_irq_restore(*flags);
  1060. if (work_is_canceling(work))
  1061. return -ENOENT;
  1062. cpu_relax();
  1063. return -EAGAIN;
  1064. }
  1065. /**
  1066. * insert_work - insert a work into a pool
  1067. * @pwq: pwq @work belongs to
  1068. * @work: work to insert
  1069. * @head: insertion point
  1070. * @extra_flags: extra WORK_STRUCT_* flags to set
  1071. *
  1072. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1073. * work_struct flags.
  1074. *
  1075. * CONTEXT:
  1076. * spin_lock_irq(pool->lock).
  1077. */
  1078. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1079. struct list_head *head, unsigned int extra_flags)
  1080. {
  1081. struct worker_pool *pool = pwq->pool;
  1082. /* we own @work, set data and link */
  1083. set_work_pwq(work, pwq, extra_flags);
  1084. list_add_tail(&work->entry, head);
  1085. get_pwq(pwq);
  1086. /*
  1087. * Ensure either wq_worker_sleeping() sees the above
  1088. * list_add_tail() or we see zero nr_running to avoid workers lying
  1089. * around lazily while there are works to be processed.
  1090. */
  1091. smp_mb();
  1092. if (__need_more_worker(pool))
  1093. wake_up_worker(pool);
  1094. }
  1095. /*
  1096. * Test whether @work is being queued from another work executing on the
  1097. * same workqueue.
  1098. */
  1099. static bool is_chained_work(struct workqueue_struct *wq)
  1100. {
  1101. struct worker *worker;
  1102. worker = current_wq_worker();
  1103. /*
  1104. * Return %true iff I'm a worker execuing a work item on @wq. If
  1105. * I'm @worker, it's safe to dereference it without locking.
  1106. */
  1107. return worker && worker->current_pwq->wq == wq;
  1108. }
  1109. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1110. struct work_struct *work)
  1111. {
  1112. struct pool_workqueue *pwq;
  1113. struct worker_pool *last_pool;
  1114. struct list_head *worklist;
  1115. unsigned int work_flags;
  1116. unsigned int req_cpu = cpu;
  1117. /*
  1118. * While a work item is PENDING && off queue, a task trying to
  1119. * steal the PENDING will busy-loop waiting for it to either get
  1120. * queued or lose PENDING. Grabbing PENDING and queueing should
  1121. * happen with IRQ disabled.
  1122. */
  1123. WARN_ON_ONCE(!irqs_disabled());
  1124. debug_work_activate(work);
  1125. /* if dying, only works from the same workqueue are allowed */
  1126. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1127. WARN_ON_ONCE(!is_chained_work(wq)))
  1128. return;
  1129. retry:
  1130. if (req_cpu == WORK_CPU_UNBOUND)
  1131. cpu = raw_smp_processor_id();
  1132. /* pwq which will be used unless @work is executing elsewhere */
  1133. if (!(wq->flags & WQ_UNBOUND))
  1134. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1135. else
  1136. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1137. /*
  1138. * If @work was previously on a different pool, it might still be
  1139. * running there, in which case the work needs to be queued on that
  1140. * pool to guarantee non-reentrancy.
  1141. */
  1142. last_pool = get_work_pool(work);
  1143. if (last_pool && last_pool != pwq->pool) {
  1144. struct worker *worker;
  1145. spin_lock(&last_pool->lock);
  1146. worker = find_worker_executing_work(last_pool, work);
  1147. if (worker && worker->current_pwq->wq == wq) {
  1148. pwq = worker->current_pwq;
  1149. } else {
  1150. /* meh... not running there, queue here */
  1151. spin_unlock(&last_pool->lock);
  1152. spin_lock(&pwq->pool->lock);
  1153. }
  1154. } else {
  1155. spin_lock(&pwq->pool->lock);
  1156. }
  1157. /*
  1158. * pwq is determined and locked. For unbound pools, we could have
  1159. * raced with pwq release and it could already be dead. If its
  1160. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1161. * without another pwq replacing it in the numa_pwq_tbl or while
  1162. * work items are executing on it, so the retrying is guaranteed to
  1163. * make forward-progress.
  1164. */
  1165. if (unlikely(!pwq->refcnt)) {
  1166. if (wq->flags & WQ_UNBOUND) {
  1167. spin_unlock(&pwq->pool->lock);
  1168. cpu_relax();
  1169. goto retry;
  1170. }
  1171. /* oops */
  1172. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1173. wq->name, cpu);
  1174. }
  1175. /* pwq determined, queue */
  1176. trace_workqueue_queue_work(req_cpu, pwq, work);
  1177. if (WARN_ON(!list_empty(&work->entry))) {
  1178. spin_unlock(&pwq->pool->lock);
  1179. return;
  1180. }
  1181. pwq->nr_in_flight[pwq->work_color]++;
  1182. work_flags = work_color_to_flags(pwq->work_color);
  1183. if (likely(pwq->nr_active < pwq->max_active)) {
  1184. trace_workqueue_activate_work(work);
  1185. pwq->nr_active++;
  1186. worklist = &pwq->pool->worklist;
  1187. } else {
  1188. work_flags |= WORK_STRUCT_DELAYED;
  1189. worklist = &pwq->delayed_works;
  1190. }
  1191. insert_work(pwq, work, worklist, work_flags);
  1192. spin_unlock(&pwq->pool->lock);
  1193. }
  1194. /**
  1195. * queue_work_on - queue work on specific cpu
  1196. * @cpu: CPU number to execute work on
  1197. * @wq: workqueue to use
  1198. * @work: work to queue
  1199. *
  1200. * Returns %false if @work was already on a queue, %true otherwise.
  1201. *
  1202. * We queue the work to a specific CPU, the caller must ensure it
  1203. * can't go away.
  1204. */
  1205. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1206. struct work_struct *work)
  1207. {
  1208. bool ret = false;
  1209. unsigned long flags;
  1210. local_irq_save(flags);
  1211. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1212. __queue_work(cpu, wq, work);
  1213. ret = true;
  1214. }
  1215. local_irq_restore(flags);
  1216. return ret;
  1217. }
  1218. EXPORT_SYMBOL_GPL(queue_work_on);
  1219. void delayed_work_timer_fn(unsigned long __data)
  1220. {
  1221. struct delayed_work *dwork = (struct delayed_work *)__data;
  1222. /* should have been called from irqsafe timer with irq already off */
  1223. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1224. }
  1225. EXPORT_SYMBOL(delayed_work_timer_fn);
  1226. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1227. struct delayed_work *dwork, unsigned long delay)
  1228. {
  1229. struct timer_list *timer = &dwork->timer;
  1230. struct work_struct *work = &dwork->work;
  1231. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1232. timer->data != (unsigned long)dwork);
  1233. WARN_ON_ONCE(timer_pending(timer));
  1234. WARN_ON_ONCE(!list_empty(&work->entry));
  1235. /*
  1236. * If @delay is 0, queue @dwork->work immediately. This is for
  1237. * both optimization and correctness. The earliest @timer can
  1238. * expire is on the closest next tick and delayed_work users depend
  1239. * on that there's no such delay when @delay is 0.
  1240. */
  1241. if (!delay) {
  1242. __queue_work(cpu, wq, &dwork->work);
  1243. return;
  1244. }
  1245. timer_stats_timer_set_start_info(&dwork->timer);
  1246. dwork->wq = wq;
  1247. dwork->cpu = cpu;
  1248. timer->expires = jiffies + delay;
  1249. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1250. add_timer_on(timer, cpu);
  1251. else
  1252. add_timer(timer);
  1253. }
  1254. /**
  1255. * queue_delayed_work_on - queue work on specific CPU after delay
  1256. * @cpu: CPU number to execute work on
  1257. * @wq: workqueue to use
  1258. * @dwork: work to queue
  1259. * @delay: number of jiffies to wait before queueing
  1260. *
  1261. * Returns %false if @work was already on a queue, %true otherwise. If
  1262. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1263. * execution.
  1264. */
  1265. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1266. struct delayed_work *dwork, unsigned long delay)
  1267. {
  1268. struct work_struct *work = &dwork->work;
  1269. bool ret = false;
  1270. unsigned long flags;
  1271. /* read the comment in __queue_work() */
  1272. local_irq_save(flags);
  1273. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1274. __queue_delayed_work(cpu, wq, dwork, delay);
  1275. ret = true;
  1276. }
  1277. local_irq_restore(flags);
  1278. return ret;
  1279. }
  1280. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1281. /**
  1282. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1283. * @cpu: CPU number to execute work on
  1284. * @wq: workqueue to use
  1285. * @dwork: work to queue
  1286. * @delay: number of jiffies to wait before queueing
  1287. *
  1288. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1289. * modify @dwork's timer so that it expires after @delay. If @delay is
  1290. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1291. * current state.
  1292. *
  1293. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1294. * pending and its timer was modified.
  1295. *
  1296. * This function is safe to call from any context including IRQ handler.
  1297. * See try_to_grab_pending() for details.
  1298. */
  1299. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1300. struct delayed_work *dwork, unsigned long delay)
  1301. {
  1302. unsigned long flags;
  1303. int ret;
  1304. do {
  1305. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1306. } while (unlikely(ret == -EAGAIN));
  1307. if (likely(ret >= 0)) {
  1308. __queue_delayed_work(cpu, wq, dwork, delay);
  1309. local_irq_restore(flags);
  1310. }
  1311. /* -ENOENT from try_to_grab_pending() becomes %true */
  1312. return ret;
  1313. }
  1314. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1315. /**
  1316. * worker_enter_idle - enter idle state
  1317. * @worker: worker which is entering idle state
  1318. *
  1319. * @worker is entering idle state. Update stats and idle timer if
  1320. * necessary.
  1321. *
  1322. * LOCKING:
  1323. * spin_lock_irq(pool->lock).
  1324. */
  1325. static void worker_enter_idle(struct worker *worker)
  1326. {
  1327. struct worker_pool *pool = worker->pool;
  1328. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1329. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1330. (worker->hentry.next || worker->hentry.pprev)))
  1331. return;
  1332. /* can't use worker_set_flags(), also called from start_worker() */
  1333. worker->flags |= WORKER_IDLE;
  1334. pool->nr_idle++;
  1335. worker->last_active = jiffies;
  1336. /* idle_list is LIFO */
  1337. list_add(&worker->entry, &pool->idle_list);
  1338. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1339. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1340. /*
  1341. * Sanity check nr_running. Because wq_unbind_fn() releases
  1342. * pool->lock between setting %WORKER_UNBOUND and zapping
  1343. * nr_running, the warning may trigger spuriously. Check iff
  1344. * unbind is not in progress.
  1345. */
  1346. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1347. pool->nr_workers == pool->nr_idle &&
  1348. atomic_read(&pool->nr_running));
  1349. }
  1350. /**
  1351. * worker_leave_idle - leave idle state
  1352. * @worker: worker which is leaving idle state
  1353. *
  1354. * @worker is leaving idle state. Update stats.
  1355. *
  1356. * LOCKING:
  1357. * spin_lock_irq(pool->lock).
  1358. */
  1359. static void worker_leave_idle(struct worker *worker)
  1360. {
  1361. struct worker_pool *pool = worker->pool;
  1362. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1363. return;
  1364. worker_clr_flags(worker, WORKER_IDLE);
  1365. pool->nr_idle--;
  1366. list_del_init(&worker->entry);
  1367. }
  1368. /**
  1369. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1370. * @pool: target worker_pool
  1371. *
  1372. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1373. *
  1374. * Works which are scheduled while the cpu is online must at least be
  1375. * scheduled to a worker which is bound to the cpu so that if they are
  1376. * flushed from cpu callbacks while cpu is going down, they are
  1377. * guaranteed to execute on the cpu.
  1378. *
  1379. * This function is to be used by unbound workers and rescuers to bind
  1380. * themselves to the target cpu and may race with cpu going down or
  1381. * coming online. kthread_bind() can't be used because it may put the
  1382. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1383. * verbatim as it's best effort and blocking and pool may be
  1384. * [dis]associated in the meantime.
  1385. *
  1386. * This function tries set_cpus_allowed() and locks pool and verifies the
  1387. * binding against %POOL_DISASSOCIATED which is set during
  1388. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1389. * enters idle state or fetches works without dropping lock, it can
  1390. * guarantee the scheduling requirement described in the first paragraph.
  1391. *
  1392. * CONTEXT:
  1393. * Might sleep. Called without any lock but returns with pool->lock
  1394. * held.
  1395. *
  1396. * RETURNS:
  1397. * %true if the associated pool is online (@worker is successfully
  1398. * bound), %false if offline.
  1399. */
  1400. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1401. __acquires(&pool->lock)
  1402. {
  1403. while (true) {
  1404. /*
  1405. * The following call may fail, succeed or succeed
  1406. * without actually migrating the task to the cpu if
  1407. * it races with cpu hotunplug operation. Verify
  1408. * against POOL_DISASSOCIATED.
  1409. */
  1410. if (!(pool->flags & POOL_DISASSOCIATED))
  1411. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1412. spin_lock_irq(&pool->lock);
  1413. if (pool->flags & POOL_DISASSOCIATED)
  1414. return false;
  1415. if (task_cpu(current) == pool->cpu &&
  1416. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1417. return true;
  1418. spin_unlock_irq(&pool->lock);
  1419. /*
  1420. * We've raced with CPU hot[un]plug. Give it a breather
  1421. * and retry migration. cond_resched() is required here;
  1422. * otherwise, we might deadlock against cpu_stop trying to
  1423. * bring down the CPU on non-preemptive kernel.
  1424. */
  1425. cpu_relax();
  1426. cond_resched();
  1427. }
  1428. }
  1429. static struct worker *alloc_worker(void)
  1430. {
  1431. struct worker *worker;
  1432. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1433. if (worker) {
  1434. INIT_LIST_HEAD(&worker->entry);
  1435. INIT_LIST_HEAD(&worker->scheduled);
  1436. /* on creation a worker is in !idle && prep state */
  1437. worker->flags = WORKER_PREP;
  1438. }
  1439. return worker;
  1440. }
  1441. /**
  1442. * create_worker - create a new workqueue worker
  1443. * @pool: pool the new worker will belong to
  1444. *
  1445. * Create a new worker which is bound to @pool. The returned worker
  1446. * can be started by calling start_worker() or destroyed using
  1447. * destroy_worker().
  1448. *
  1449. * CONTEXT:
  1450. * Might sleep. Does GFP_KERNEL allocations.
  1451. *
  1452. * RETURNS:
  1453. * Pointer to the newly created worker.
  1454. */
  1455. static struct worker *create_worker(struct worker_pool *pool)
  1456. {
  1457. struct worker *worker = NULL;
  1458. int id = -1;
  1459. char id_buf[16];
  1460. lockdep_assert_held(&pool->manager_mutex);
  1461. /*
  1462. * ID is needed to determine kthread name. Allocate ID first
  1463. * without installing the pointer.
  1464. */
  1465. idr_preload(GFP_KERNEL);
  1466. spin_lock_irq(&pool->lock);
  1467. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1468. spin_unlock_irq(&pool->lock);
  1469. idr_preload_end();
  1470. if (id < 0)
  1471. goto fail;
  1472. worker = alloc_worker();
  1473. if (!worker)
  1474. goto fail;
  1475. worker->pool = pool;
  1476. worker->id = id;
  1477. if (pool->cpu >= 0)
  1478. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1479. pool->attrs->nice < 0 ? "H" : "");
  1480. else
  1481. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1482. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1483. "kworker/%s", id_buf);
  1484. if (IS_ERR(worker->task))
  1485. goto fail;
  1486. /*
  1487. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1488. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1489. */
  1490. set_user_nice(worker->task, pool->attrs->nice);
  1491. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1492. /* prevent userland from meddling with cpumask of workqueue workers */
  1493. worker->task->flags |= PF_NO_SETAFFINITY;
  1494. /*
  1495. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1496. * remains stable across this function. See the comments above the
  1497. * flag definition for details.
  1498. */
  1499. if (pool->flags & POOL_DISASSOCIATED)
  1500. worker->flags |= WORKER_UNBOUND;
  1501. /* successful, commit the pointer to idr */
  1502. spin_lock_irq(&pool->lock);
  1503. idr_replace(&pool->worker_idr, worker, worker->id);
  1504. spin_unlock_irq(&pool->lock);
  1505. return worker;
  1506. fail:
  1507. if (id >= 0) {
  1508. spin_lock_irq(&pool->lock);
  1509. idr_remove(&pool->worker_idr, id);
  1510. spin_unlock_irq(&pool->lock);
  1511. }
  1512. kfree(worker);
  1513. return NULL;
  1514. }
  1515. /**
  1516. * start_worker - start a newly created worker
  1517. * @worker: worker to start
  1518. *
  1519. * Make the pool aware of @worker and start it.
  1520. *
  1521. * CONTEXT:
  1522. * spin_lock_irq(pool->lock).
  1523. */
  1524. static void start_worker(struct worker *worker)
  1525. {
  1526. worker->flags |= WORKER_STARTED;
  1527. worker->pool->nr_workers++;
  1528. worker_enter_idle(worker);
  1529. wake_up_process(worker->task);
  1530. }
  1531. /**
  1532. * create_and_start_worker - create and start a worker for a pool
  1533. * @pool: the target pool
  1534. *
  1535. * Grab the managership of @pool and create and start a new worker for it.
  1536. */
  1537. static int create_and_start_worker(struct worker_pool *pool)
  1538. {
  1539. struct worker *worker;
  1540. mutex_lock(&pool->manager_mutex);
  1541. worker = create_worker(pool);
  1542. if (worker) {
  1543. spin_lock_irq(&pool->lock);
  1544. start_worker(worker);
  1545. spin_unlock_irq(&pool->lock);
  1546. }
  1547. mutex_unlock(&pool->manager_mutex);
  1548. return worker ? 0 : -ENOMEM;
  1549. }
  1550. /**
  1551. * destroy_worker - destroy a workqueue worker
  1552. * @worker: worker to be destroyed
  1553. *
  1554. * Destroy @worker and adjust @pool stats accordingly.
  1555. *
  1556. * CONTEXT:
  1557. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1558. */
  1559. static void destroy_worker(struct worker *worker)
  1560. {
  1561. struct worker_pool *pool = worker->pool;
  1562. lockdep_assert_held(&pool->manager_mutex);
  1563. lockdep_assert_held(&pool->lock);
  1564. /* sanity check frenzy */
  1565. if (WARN_ON(worker->current_work) ||
  1566. WARN_ON(!list_empty(&worker->scheduled)))
  1567. return;
  1568. if (worker->flags & WORKER_STARTED)
  1569. pool->nr_workers--;
  1570. if (worker->flags & WORKER_IDLE)
  1571. pool->nr_idle--;
  1572. list_del_init(&worker->entry);
  1573. worker->flags |= WORKER_DIE;
  1574. idr_remove(&pool->worker_idr, worker->id);
  1575. spin_unlock_irq(&pool->lock);
  1576. kthread_stop(worker->task);
  1577. kfree(worker);
  1578. spin_lock_irq(&pool->lock);
  1579. }
  1580. static void idle_worker_timeout(unsigned long __pool)
  1581. {
  1582. struct worker_pool *pool = (void *)__pool;
  1583. spin_lock_irq(&pool->lock);
  1584. if (too_many_workers(pool)) {
  1585. struct worker *worker;
  1586. unsigned long expires;
  1587. /* idle_list is kept in LIFO order, check the last one */
  1588. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1589. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1590. if (time_before(jiffies, expires))
  1591. mod_timer(&pool->idle_timer, expires);
  1592. else {
  1593. /* it's been idle for too long, wake up manager */
  1594. pool->flags |= POOL_MANAGE_WORKERS;
  1595. wake_up_worker(pool);
  1596. }
  1597. }
  1598. spin_unlock_irq(&pool->lock);
  1599. }
  1600. static void send_mayday(struct work_struct *work)
  1601. {
  1602. struct pool_workqueue *pwq = get_work_pwq(work);
  1603. struct workqueue_struct *wq = pwq->wq;
  1604. lockdep_assert_held(&wq_mayday_lock);
  1605. if (!wq->rescuer)
  1606. return;
  1607. /* mayday mayday mayday */
  1608. if (list_empty(&pwq->mayday_node)) {
  1609. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1610. wake_up_process(wq->rescuer->task);
  1611. }
  1612. }
  1613. static void pool_mayday_timeout(unsigned long __pool)
  1614. {
  1615. struct worker_pool *pool = (void *)__pool;
  1616. struct work_struct *work;
  1617. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1618. spin_lock(&pool->lock);
  1619. if (need_to_create_worker(pool)) {
  1620. /*
  1621. * We've been trying to create a new worker but
  1622. * haven't been successful. We might be hitting an
  1623. * allocation deadlock. Send distress signals to
  1624. * rescuers.
  1625. */
  1626. list_for_each_entry(work, &pool->worklist, entry)
  1627. send_mayday(work);
  1628. }
  1629. spin_unlock(&pool->lock);
  1630. spin_unlock_irq(&wq_mayday_lock);
  1631. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1632. }
  1633. /**
  1634. * maybe_create_worker - create a new worker if necessary
  1635. * @pool: pool to create a new worker for
  1636. *
  1637. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1638. * have at least one idle worker on return from this function. If
  1639. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1640. * sent to all rescuers with works scheduled on @pool to resolve
  1641. * possible allocation deadlock.
  1642. *
  1643. * On return, need_to_create_worker() is guaranteed to be %false and
  1644. * may_start_working() %true.
  1645. *
  1646. * LOCKING:
  1647. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1648. * multiple times. Does GFP_KERNEL allocations. Called only from
  1649. * manager.
  1650. *
  1651. * RETURNS:
  1652. * %false if no action was taken and pool->lock stayed locked, %true
  1653. * otherwise.
  1654. */
  1655. static bool maybe_create_worker(struct worker_pool *pool)
  1656. __releases(&pool->lock)
  1657. __acquires(&pool->lock)
  1658. {
  1659. if (!need_to_create_worker(pool))
  1660. return false;
  1661. restart:
  1662. spin_unlock_irq(&pool->lock);
  1663. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1664. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1665. while (true) {
  1666. struct worker *worker;
  1667. worker = create_worker(pool);
  1668. if (worker) {
  1669. del_timer_sync(&pool->mayday_timer);
  1670. spin_lock_irq(&pool->lock);
  1671. start_worker(worker);
  1672. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1673. goto restart;
  1674. return true;
  1675. }
  1676. if (!need_to_create_worker(pool))
  1677. break;
  1678. __set_current_state(TASK_INTERRUPTIBLE);
  1679. schedule_timeout(CREATE_COOLDOWN);
  1680. if (!need_to_create_worker(pool))
  1681. break;
  1682. }
  1683. del_timer_sync(&pool->mayday_timer);
  1684. spin_lock_irq(&pool->lock);
  1685. if (need_to_create_worker(pool))
  1686. goto restart;
  1687. return true;
  1688. }
  1689. /**
  1690. * maybe_destroy_worker - destroy workers which have been idle for a while
  1691. * @pool: pool to destroy workers for
  1692. *
  1693. * Destroy @pool workers which have been idle for longer than
  1694. * IDLE_WORKER_TIMEOUT.
  1695. *
  1696. * LOCKING:
  1697. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1698. * multiple times. Called only from manager.
  1699. *
  1700. * RETURNS:
  1701. * %false if no action was taken and pool->lock stayed locked, %true
  1702. * otherwise.
  1703. */
  1704. static bool maybe_destroy_workers(struct worker_pool *pool)
  1705. {
  1706. bool ret = false;
  1707. while (too_many_workers(pool)) {
  1708. struct worker *worker;
  1709. unsigned long expires;
  1710. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1711. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1712. if (time_before(jiffies, expires)) {
  1713. mod_timer(&pool->idle_timer, expires);
  1714. break;
  1715. }
  1716. destroy_worker(worker);
  1717. ret = true;
  1718. }
  1719. return ret;
  1720. }
  1721. /**
  1722. * manage_workers - manage worker pool
  1723. * @worker: self
  1724. *
  1725. * Assume the manager role and manage the worker pool @worker belongs
  1726. * to. At any given time, there can be only zero or one manager per
  1727. * pool. The exclusion is handled automatically by this function.
  1728. *
  1729. * The caller can safely start processing works on false return. On
  1730. * true return, it's guaranteed that need_to_create_worker() is false
  1731. * and may_start_working() is true.
  1732. *
  1733. * CONTEXT:
  1734. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1735. * multiple times. Does GFP_KERNEL allocations.
  1736. *
  1737. * RETURNS:
  1738. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1739. * multiple times. Does GFP_KERNEL allocations.
  1740. */
  1741. static bool manage_workers(struct worker *worker)
  1742. {
  1743. struct worker_pool *pool = worker->pool;
  1744. bool ret = false;
  1745. /*
  1746. * Managership is governed by two mutexes - manager_arb and
  1747. * manager_mutex. manager_arb handles arbitration of manager role.
  1748. * Anyone who successfully grabs manager_arb wins the arbitration
  1749. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1750. * failure while holding pool->lock reliably indicates that someone
  1751. * else is managing the pool and the worker which failed trylock
  1752. * can proceed to executing work items. This means that anyone
  1753. * grabbing manager_arb is responsible for actually performing
  1754. * manager duties. If manager_arb is grabbed and released without
  1755. * actual management, the pool may stall indefinitely.
  1756. *
  1757. * manager_mutex is used for exclusion of actual management
  1758. * operations. The holder of manager_mutex can be sure that none
  1759. * of management operations, including creation and destruction of
  1760. * workers, won't take place until the mutex is released. Because
  1761. * manager_mutex doesn't interfere with manager role arbitration,
  1762. * it is guaranteed that the pool's management, while may be
  1763. * delayed, won't be disturbed by someone else grabbing
  1764. * manager_mutex.
  1765. */
  1766. if (!mutex_trylock(&pool->manager_arb))
  1767. return ret;
  1768. /*
  1769. * With manager arbitration won, manager_mutex would be free in
  1770. * most cases. trylock first without dropping @pool->lock.
  1771. */
  1772. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1773. spin_unlock_irq(&pool->lock);
  1774. mutex_lock(&pool->manager_mutex);
  1775. ret = true;
  1776. }
  1777. pool->flags &= ~POOL_MANAGE_WORKERS;
  1778. /*
  1779. * Destroy and then create so that may_start_working() is true
  1780. * on return.
  1781. */
  1782. ret |= maybe_destroy_workers(pool);
  1783. ret |= maybe_create_worker(pool);
  1784. mutex_unlock(&pool->manager_mutex);
  1785. mutex_unlock(&pool->manager_arb);
  1786. return ret;
  1787. }
  1788. /**
  1789. * process_one_work - process single work
  1790. * @worker: self
  1791. * @work: work to process
  1792. *
  1793. * Process @work. This function contains all the logics necessary to
  1794. * process a single work including synchronization against and
  1795. * interaction with other workers on the same cpu, queueing and
  1796. * flushing. As long as context requirement is met, any worker can
  1797. * call this function to process a work.
  1798. *
  1799. * CONTEXT:
  1800. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1801. */
  1802. static void process_one_work(struct worker *worker, struct work_struct *work)
  1803. __releases(&pool->lock)
  1804. __acquires(&pool->lock)
  1805. {
  1806. struct pool_workqueue *pwq = get_work_pwq(work);
  1807. struct worker_pool *pool = worker->pool;
  1808. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1809. int work_color;
  1810. struct worker *collision;
  1811. #ifdef CONFIG_LOCKDEP
  1812. /*
  1813. * It is permissible to free the struct work_struct from
  1814. * inside the function that is called from it, this we need to
  1815. * take into account for lockdep too. To avoid bogus "held
  1816. * lock freed" warnings as well as problems when looking into
  1817. * work->lockdep_map, make a copy and use that here.
  1818. */
  1819. struct lockdep_map lockdep_map;
  1820. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1821. #endif
  1822. /*
  1823. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1824. * necessary to avoid spurious warnings from rescuers servicing the
  1825. * unbound or a disassociated pool.
  1826. */
  1827. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1828. !(pool->flags & POOL_DISASSOCIATED) &&
  1829. raw_smp_processor_id() != pool->cpu);
  1830. /*
  1831. * A single work shouldn't be executed concurrently by
  1832. * multiple workers on a single cpu. Check whether anyone is
  1833. * already processing the work. If so, defer the work to the
  1834. * currently executing one.
  1835. */
  1836. collision = find_worker_executing_work(pool, work);
  1837. if (unlikely(collision)) {
  1838. move_linked_works(work, &collision->scheduled, NULL);
  1839. return;
  1840. }
  1841. /* claim and dequeue */
  1842. debug_work_deactivate(work);
  1843. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1844. worker->current_work = work;
  1845. worker->current_func = work->func;
  1846. worker->current_pwq = pwq;
  1847. work_color = get_work_color(work);
  1848. list_del_init(&work->entry);
  1849. /*
  1850. * CPU intensive works don't participate in concurrency
  1851. * management. They're the scheduler's responsibility.
  1852. */
  1853. if (unlikely(cpu_intensive))
  1854. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1855. /*
  1856. * Unbound pool isn't concurrency managed and work items should be
  1857. * executed ASAP. Wake up another worker if necessary.
  1858. */
  1859. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1860. wake_up_worker(pool);
  1861. /*
  1862. * Record the last pool and clear PENDING which should be the last
  1863. * update to @work. Also, do this inside @pool->lock so that
  1864. * PENDING and queued state changes happen together while IRQ is
  1865. * disabled.
  1866. */
  1867. set_work_pool_and_clear_pending(work, pool->id);
  1868. spin_unlock_irq(&pool->lock);
  1869. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1870. lock_map_acquire(&lockdep_map);
  1871. trace_workqueue_execute_start(work);
  1872. worker->current_func(work);
  1873. /*
  1874. * While we must be careful to not use "work" after this, the trace
  1875. * point will only record its address.
  1876. */
  1877. trace_workqueue_execute_end(work);
  1878. lock_map_release(&lockdep_map);
  1879. lock_map_release(&pwq->wq->lockdep_map);
  1880. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1881. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1882. " last function: %pf\n",
  1883. current->comm, preempt_count(), task_pid_nr(current),
  1884. worker->current_func);
  1885. debug_show_held_locks(current);
  1886. dump_stack();
  1887. }
  1888. spin_lock_irq(&pool->lock);
  1889. /* clear cpu intensive status */
  1890. if (unlikely(cpu_intensive))
  1891. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1892. /* we're done with it, release */
  1893. hash_del(&worker->hentry);
  1894. worker->current_work = NULL;
  1895. worker->current_func = NULL;
  1896. worker->current_pwq = NULL;
  1897. pwq_dec_nr_in_flight(pwq, work_color);
  1898. }
  1899. /**
  1900. * process_scheduled_works - process scheduled works
  1901. * @worker: self
  1902. *
  1903. * Process all scheduled works. Please note that the scheduled list
  1904. * may change while processing a work, so this function repeatedly
  1905. * fetches a work from the top and executes it.
  1906. *
  1907. * CONTEXT:
  1908. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1909. * multiple times.
  1910. */
  1911. static void process_scheduled_works(struct worker *worker)
  1912. {
  1913. while (!list_empty(&worker->scheduled)) {
  1914. struct work_struct *work = list_first_entry(&worker->scheduled,
  1915. struct work_struct, entry);
  1916. process_one_work(worker, work);
  1917. }
  1918. }
  1919. /**
  1920. * worker_thread - the worker thread function
  1921. * @__worker: self
  1922. *
  1923. * The worker thread function. All workers belong to a worker_pool -
  1924. * either a per-cpu one or dynamic unbound one. These workers process all
  1925. * work items regardless of their specific target workqueue. The only
  1926. * exception is work items which belong to workqueues with a rescuer which
  1927. * will be explained in rescuer_thread().
  1928. */
  1929. static int worker_thread(void *__worker)
  1930. {
  1931. struct worker *worker = __worker;
  1932. struct worker_pool *pool = worker->pool;
  1933. /* tell the scheduler that this is a workqueue worker */
  1934. worker->task->flags |= PF_WQ_WORKER;
  1935. woke_up:
  1936. spin_lock_irq(&pool->lock);
  1937. /* am I supposed to die? */
  1938. if (unlikely(worker->flags & WORKER_DIE)) {
  1939. spin_unlock_irq(&pool->lock);
  1940. WARN_ON_ONCE(!list_empty(&worker->entry));
  1941. worker->task->flags &= ~PF_WQ_WORKER;
  1942. return 0;
  1943. }
  1944. worker_leave_idle(worker);
  1945. recheck:
  1946. /* no more worker necessary? */
  1947. if (!need_more_worker(pool))
  1948. goto sleep;
  1949. /* do we need to manage? */
  1950. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1951. goto recheck;
  1952. /*
  1953. * ->scheduled list can only be filled while a worker is
  1954. * preparing to process a work or actually processing it.
  1955. * Make sure nobody diddled with it while I was sleeping.
  1956. */
  1957. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1958. /*
  1959. * Finish PREP stage. We're guaranteed to have at least one idle
  1960. * worker or that someone else has already assumed the manager
  1961. * role. This is where @worker starts participating in concurrency
  1962. * management if applicable and concurrency management is restored
  1963. * after being rebound. See rebind_workers() for details.
  1964. */
  1965. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1966. do {
  1967. struct work_struct *work =
  1968. list_first_entry(&pool->worklist,
  1969. struct work_struct, entry);
  1970. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1971. /* optimization path, not strictly necessary */
  1972. process_one_work(worker, work);
  1973. if (unlikely(!list_empty(&worker->scheduled)))
  1974. process_scheduled_works(worker);
  1975. } else {
  1976. move_linked_works(work, &worker->scheduled, NULL);
  1977. process_scheduled_works(worker);
  1978. }
  1979. } while (keep_working(pool));
  1980. worker_set_flags(worker, WORKER_PREP, false);
  1981. sleep:
  1982. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1983. goto recheck;
  1984. /*
  1985. * pool->lock is held and there's no work to process and no need to
  1986. * manage, sleep. Workers are woken up only while holding
  1987. * pool->lock or from local cpu, so setting the current state
  1988. * before releasing pool->lock is enough to prevent losing any
  1989. * event.
  1990. */
  1991. worker_enter_idle(worker);
  1992. __set_current_state(TASK_INTERRUPTIBLE);
  1993. spin_unlock_irq(&pool->lock);
  1994. schedule();
  1995. goto woke_up;
  1996. }
  1997. /**
  1998. * rescuer_thread - the rescuer thread function
  1999. * @__rescuer: self
  2000. *
  2001. * Workqueue rescuer thread function. There's one rescuer for each
  2002. * workqueue which has WQ_MEM_RECLAIM set.
  2003. *
  2004. * Regular work processing on a pool may block trying to create a new
  2005. * worker which uses GFP_KERNEL allocation which has slight chance of
  2006. * developing into deadlock if some works currently on the same queue
  2007. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2008. * the problem rescuer solves.
  2009. *
  2010. * When such condition is possible, the pool summons rescuers of all
  2011. * workqueues which have works queued on the pool and let them process
  2012. * those works so that forward progress can be guaranteed.
  2013. *
  2014. * This should happen rarely.
  2015. */
  2016. static int rescuer_thread(void *__rescuer)
  2017. {
  2018. struct worker *rescuer = __rescuer;
  2019. struct workqueue_struct *wq = rescuer->rescue_wq;
  2020. struct list_head *scheduled = &rescuer->scheduled;
  2021. set_user_nice(current, RESCUER_NICE_LEVEL);
  2022. /*
  2023. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2024. * doesn't participate in concurrency management.
  2025. */
  2026. rescuer->task->flags |= PF_WQ_WORKER;
  2027. repeat:
  2028. set_current_state(TASK_INTERRUPTIBLE);
  2029. if (kthread_should_stop()) {
  2030. __set_current_state(TASK_RUNNING);
  2031. rescuer->task->flags &= ~PF_WQ_WORKER;
  2032. return 0;
  2033. }
  2034. /* see whether any pwq is asking for help */
  2035. spin_lock_irq(&wq_mayday_lock);
  2036. while (!list_empty(&wq->maydays)) {
  2037. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2038. struct pool_workqueue, mayday_node);
  2039. struct worker_pool *pool = pwq->pool;
  2040. struct work_struct *work, *n;
  2041. __set_current_state(TASK_RUNNING);
  2042. list_del_init(&pwq->mayday_node);
  2043. spin_unlock_irq(&wq_mayday_lock);
  2044. /* migrate to the target cpu if possible */
  2045. worker_maybe_bind_and_lock(pool);
  2046. rescuer->pool = pool;
  2047. /*
  2048. * Slurp in all works issued via this workqueue and
  2049. * process'em.
  2050. */
  2051. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2052. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2053. if (get_work_pwq(work) == pwq)
  2054. move_linked_works(work, scheduled, &n);
  2055. process_scheduled_works(rescuer);
  2056. /*
  2057. * Leave this pool. If keep_working() is %true, notify a
  2058. * regular worker; otherwise, we end up with 0 concurrency
  2059. * and stalling the execution.
  2060. */
  2061. if (keep_working(pool))
  2062. wake_up_worker(pool);
  2063. rescuer->pool = NULL;
  2064. spin_unlock(&pool->lock);
  2065. spin_lock(&wq_mayday_lock);
  2066. }
  2067. spin_unlock_irq(&wq_mayday_lock);
  2068. /* rescuers should never participate in concurrency management */
  2069. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2070. schedule();
  2071. goto repeat;
  2072. }
  2073. struct wq_barrier {
  2074. struct work_struct work;
  2075. struct completion done;
  2076. };
  2077. static void wq_barrier_func(struct work_struct *work)
  2078. {
  2079. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2080. complete(&barr->done);
  2081. }
  2082. /**
  2083. * insert_wq_barrier - insert a barrier work
  2084. * @pwq: pwq to insert barrier into
  2085. * @barr: wq_barrier to insert
  2086. * @target: target work to attach @barr to
  2087. * @worker: worker currently executing @target, NULL if @target is not executing
  2088. *
  2089. * @barr is linked to @target such that @barr is completed only after
  2090. * @target finishes execution. Please note that the ordering
  2091. * guarantee is observed only with respect to @target and on the local
  2092. * cpu.
  2093. *
  2094. * Currently, a queued barrier can't be canceled. This is because
  2095. * try_to_grab_pending() can't determine whether the work to be
  2096. * grabbed is at the head of the queue and thus can't clear LINKED
  2097. * flag of the previous work while there must be a valid next work
  2098. * after a work with LINKED flag set.
  2099. *
  2100. * Note that when @worker is non-NULL, @target may be modified
  2101. * underneath us, so we can't reliably determine pwq from @target.
  2102. *
  2103. * CONTEXT:
  2104. * spin_lock_irq(pool->lock).
  2105. */
  2106. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2107. struct wq_barrier *barr,
  2108. struct work_struct *target, struct worker *worker)
  2109. {
  2110. struct list_head *head;
  2111. unsigned int linked = 0;
  2112. /*
  2113. * debugobject calls are safe here even with pool->lock locked
  2114. * as we know for sure that this will not trigger any of the
  2115. * checks and call back into the fixup functions where we
  2116. * might deadlock.
  2117. */
  2118. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2119. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2120. init_completion(&barr->done);
  2121. /*
  2122. * If @target is currently being executed, schedule the
  2123. * barrier to the worker; otherwise, put it after @target.
  2124. */
  2125. if (worker)
  2126. head = worker->scheduled.next;
  2127. else {
  2128. unsigned long *bits = work_data_bits(target);
  2129. head = target->entry.next;
  2130. /* there can already be other linked works, inherit and set */
  2131. linked = *bits & WORK_STRUCT_LINKED;
  2132. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2133. }
  2134. debug_work_activate(&barr->work);
  2135. insert_work(pwq, &barr->work, head,
  2136. work_color_to_flags(WORK_NO_COLOR) | linked);
  2137. }
  2138. /**
  2139. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2140. * @wq: workqueue being flushed
  2141. * @flush_color: new flush color, < 0 for no-op
  2142. * @work_color: new work color, < 0 for no-op
  2143. *
  2144. * Prepare pwqs for workqueue flushing.
  2145. *
  2146. * If @flush_color is non-negative, flush_color on all pwqs should be
  2147. * -1. If no pwq has in-flight commands at the specified color, all
  2148. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2149. * has in flight commands, its pwq->flush_color is set to
  2150. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2151. * wakeup logic is armed and %true is returned.
  2152. *
  2153. * The caller should have initialized @wq->first_flusher prior to
  2154. * calling this function with non-negative @flush_color. If
  2155. * @flush_color is negative, no flush color update is done and %false
  2156. * is returned.
  2157. *
  2158. * If @work_color is non-negative, all pwqs should have the same
  2159. * work_color which is previous to @work_color and all will be
  2160. * advanced to @work_color.
  2161. *
  2162. * CONTEXT:
  2163. * mutex_lock(wq->mutex).
  2164. *
  2165. * RETURNS:
  2166. * %true if @flush_color >= 0 and there's something to flush. %false
  2167. * otherwise.
  2168. */
  2169. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2170. int flush_color, int work_color)
  2171. {
  2172. bool wait = false;
  2173. struct pool_workqueue *pwq;
  2174. if (flush_color >= 0) {
  2175. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2176. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2177. }
  2178. for_each_pwq(pwq, wq) {
  2179. struct worker_pool *pool = pwq->pool;
  2180. spin_lock_irq(&pool->lock);
  2181. if (flush_color >= 0) {
  2182. WARN_ON_ONCE(pwq->flush_color != -1);
  2183. if (pwq->nr_in_flight[flush_color]) {
  2184. pwq->flush_color = flush_color;
  2185. atomic_inc(&wq->nr_pwqs_to_flush);
  2186. wait = true;
  2187. }
  2188. }
  2189. if (work_color >= 0) {
  2190. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2191. pwq->work_color = work_color;
  2192. }
  2193. spin_unlock_irq(&pool->lock);
  2194. }
  2195. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2196. complete(&wq->first_flusher->done);
  2197. return wait;
  2198. }
  2199. /**
  2200. * flush_workqueue - ensure that any scheduled work has run to completion.
  2201. * @wq: workqueue to flush
  2202. *
  2203. * This function sleeps until all work items which were queued on entry
  2204. * have finished execution, but it is not livelocked by new incoming ones.
  2205. */
  2206. void flush_workqueue(struct workqueue_struct *wq)
  2207. {
  2208. struct wq_flusher this_flusher = {
  2209. .list = LIST_HEAD_INIT(this_flusher.list),
  2210. .flush_color = -1,
  2211. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2212. };
  2213. int next_color;
  2214. lock_map_acquire(&wq->lockdep_map);
  2215. lock_map_release(&wq->lockdep_map);
  2216. mutex_lock(&wq->mutex);
  2217. /*
  2218. * Start-to-wait phase
  2219. */
  2220. next_color = work_next_color(wq->work_color);
  2221. if (next_color != wq->flush_color) {
  2222. /*
  2223. * Color space is not full. The current work_color
  2224. * becomes our flush_color and work_color is advanced
  2225. * by one.
  2226. */
  2227. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2228. this_flusher.flush_color = wq->work_color;
  2229. wq->work_color = next_color;
  2230. if (!wq->first_flusher) {
  2231. /* no flush in progress, become the first flusher */
  2232. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2233. wq->first_flusher = &this_flusher;
  2234. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2235. wq->work_color)) {
  2236. /* nothing to flush, done */
  2237. wq->flush_color = next_color;
  2238. wq->first_flusher = NULL;
  2239. goto out_unlock;
  2240. }
  2241. } else {
  2242. /* wait in queue */
  2243. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2244. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2245. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2246. }
  2247. } else {
  2248. /*
  2249. * Oops, color space is full, wait on overflow queue.
  2250. * The next flush completion will assign us
  2251. * flush_color and transfer to flusher_queue.
  2252. */
  2253. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2254. }
  2255. mutex_unlock(&wq->mutex);
  2256. wait_for_completion(&this_flusher.done);
  2257. /*
  2258. * Wake-up-and-cascade phase
  2259. *
  2260. * First flushers are responsible for cascading flushes and
  2261. * handling overflow. Non-first flushers can simply return.
  2262. */
  2263. if (wq->first_flusher != &this_flusher)
  2264. return;
  2265. mutex_lock(&wq->mutex);
  2266. /* we might have raced, check again with mutex held */
  2267. if (wq->first_flusher != &this_flusher)
  2268. goto out_unlock;
  2269. wq->first_flusher = NULL;
  2270. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2271. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2272. while (true) {
  2273. struct wq_flusher *next, *tmp;
  2274. /* complete all the flushers sharing the current flush color */
  2275. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2276. if (next->flush_color != wq->flush_color)
  2277. break;
  2278. list_del_init(&next->list);
  2279. complete(&next->done);
  2280. }
  2281. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2282. wq->flush_color != work_next_color(wq->work_color));
  2283. /* this flush_color is finished, advance by one */
  2284. wq->flush_color = work_next_color(wq->flush_color);
  2285. /* one color has been freed, handle overflow queue */
  2286. if (!list_empty(&wq->flusher_overflow)) {
  2287. /*
  2288. * Assign the same color to all overflowed
  2289. * flushers, advance work_color and append to
  2290. * flusher_queue. This is the start-to-wait
  2291. * phase for these overflowed flushers.
  2292. */
  2293. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2294. tmp->flush_color = wq->work_color;
  2295. wq->work_color = work_next_color(wq->work_color);
  2296. list_splice_tail_init(&wq->flusher_overflow,
  2297. &wq->flusher_queue);
  2298. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2299. }
  2300. if (list_empty(&wq->flusher_queue)) {
  2301. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2302. break;
  2303. }
  2304. /*
  2305. * Need to flush more colors. Make the next flusher
  2306. * the new first flusher and arm pwqs.
  2307. */
  2308. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2309. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2310. list_del_init(&next->list);
  2311. wq->first_flusher = next;
  2312. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2313. break;
  2314. /*
  2315. * Meh... this color is already done, clear first
  2316. * flusher and repeat cascading.
  2317. */
  2318. wq->first_flusher = NULL;
  2319. }
  2320. out_unlock:
  2321. mutex_unlock(&wq->mutex);
  2322. }
  2323. EXPORT_SYMBOL_GPL(flush_workqueue);
  2324. /**
  2325. * drain_workqueue - drain a workqueue
  2326. * @wq: workqueue to drain
  2327. *
  2328. * Wait until the workqueue becomes empty. While draining is in progress,
  2329. * only chain queueing is allowed. IOW, only currently pending or running
  2330. * work items on @wq can queue further work items on it. @wq is flushed
  2331. * repeatedly until it becomes empty. The number of flushing is detemined
  2332. * by the depth of chaining and should be relatively short. Whine if it
  2333. * takes too long.
  2334. */
  2335. void drain_workqueue(struct workqueue_struct *wq)
  2336. {
  2337. unsigned int flush_cnt = 0;
  2338. struct pool_workqueue *pwq;
  2339. /*
  2340. * __queue_work() needs to test whether there are drainers, is much
  2341. * hotter than drain_workqueue() and already looks at @wq->flags.
  2342. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2343. */
  2344. mutex_lock(&wq->mutex);
  2345. if (!wq->nr_drainers++)
  2346. wq->flags |= __WQ_DRAINING;
  2347. mutex_unlock(&wq->mutex);
  2348. reflush:
  2349. flush_workqueue(wq);
  2350. mutex_lock(&wq->mutex);
  2351. for_each_pwq(pwq, wq) {
  2352. bool drained;
  2353. spin_lock_irq(&pwq->pool->lock);
  2354. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2355. spin_unlock_irq(&pwq->pool->lock);
  2356. if (drained)
  2357. continue;
  2358. if (++flush_cnt == 10 ||
  2359. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2360. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2361. wq->name, flush_cnt);
  2362. mutex_unlock(&wq->mutex);
  2363. goto reflush;
  2364. }
  2365. if (!--wq->nr_drainers)
  2366. wq->flags &= ~__WQ_DRAINING;
  2367. mutex_unlock(&wq->mutex);
  2368. }
  2369. EXPORT_SYMBOL_GPL(drain_workqueue);
  2370. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2371. {
  2372. struct worker *worker = NULL;
  2373. struct worker_pool *pool;
  2374. struct pool_workqueue *pwq;
  2375. might_sleep();
  2376. local_irq_disable();
  2377. pool = get_work_pool(work);
  2378. if (!pool) {
  2379. local_irq_enable();
  2380. return false;
  2381. }
  2382. spin_lock(&pool->lock);
  2383. /* see the comment in try_to_grab_pending() with the same code */
  2384. pwq = get_work_pwq(work);
  2385. if (pwq) {
  2386. if (unlikely(pwq->pool != pool))
  2387. goto already_gone;
  2388. } else {
  2389. worker = find_worker_executing_work(pool, work);
  2390. if (!worker)
  2391. goto already_gone;
  2392. pwq = worker->current_pwq;
  2393. }
  2394. insert_wq_barrier(pwq, barr, work, worker);
  2395. spin_unlock_irq(&pool->lock);
  2396. /*
  2397. * If @max_active is 1 or rescuer is in use, flushing another work
  2398. * item on the same workqueue may lead to deadlock. Make sure the
  2399. * flusher is not running on the same workqueue by verifying write
  2400. * access.
  2401. */
  2402. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2403. lock_map_acquire(&pwq->wq->lockdep_map);
  2404. else
  2405. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2406. lock_map_release(&pwq->wq->lockdep_map);
  2407. return true;
  2408. already_gone:
  2409. spin_unlock_irq(&pool->lock);
  2410. return false;
  2411. }
  2412. /**
  2413. * flush_work - wait for a work to finish executing the last queueing instance
  2414. * @work: the work to flush
  2415. *
  2416. * Wait until @work has finished execution. @work is guaranteed to be idle
  2417. * on return if it hasn't been requeued since flush started.
  2418. *
  2419. * RETURNS:
  2420. * %true if flush_work() waited for the work to finish execution,
  2421. * %false if it was already idle.
  2422. */
  2423. bool flush_work(struct work_struct *work)
  2424. {
  2425. struct wq_barrier barr;
  2426. lock_map_acquire(&work->lockdep_map);
  2427. lock_map_release(&work->lockdep_map);
  2428. if (start_flush_work(work, &barr)) {
  2429. wait_for_completion(&barr.done);
  2430. destroy_work_on_stack(&barr.work);
  2431. return true;
  2432. } else {
  2433. return false;
  2434. }
  2435. }
  2436. EXPORT_SYMBOL_GPL(flush_work);
  2437. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2438. {
  2439. unsigned long flags;
  2440. int ret;
  2441. do {
  2442. ret = try_to_grab_pending(work, is_dwork, &flags);
  2443. /*
  2444. * If someone else is canceling, wait for the same event it
  2445. * would be waiting for before retrying.
  2446. */
  2447. if (unlikely(ret == -ENOENT))
  2448. flush_work(work);
  2449. } while (unlikely(ret < 0));
  2450. /* tell other tasks trying to grab @work to back off */
  2451. mark_work_canceling(work);
  2452. local_irq_restore(flags);
  2453. flush_work(work);
  2454. clear_work_data(work);
  2455. return ret;
  2456. }
  2457. /**
  2458. * cancel_work_sync - cancel a work and wait for it to finish
  2459. * @work: the work to cancel
  2460. *
  2461. * Cancel @work and wait for its execution to finish. This function
  2462. * can be used even if the work re-queues itself or migrates to
  2463. * another workqueue. On return from this function, @work is
  2464. * guaranteed to be not pending or executing on any CPU.
  2465. *
  2466. * cancel_work_sync(&delayed_work->work) must not be used for
  2467. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2468. *
  2469. * The caller must ensure that the workqueue on which @work was last
  2470. * queued can't be destroyed before this function returns.
  2471. *
  2472. * RETURNS:
  2473. * %true if @work was pending, %false otherwise.
  2474. */
  2475. bool cancel_work_sync(struct work_struct *work)
  2476. {
  2477. return __cancel_work_timer(work, false);
  2478. }
  2479. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2480. /**
  2481. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2482. * @dwork: the delayed work to flush
  2483. *
  2484. * Delayed timer is cancelled and the pending work is queued for
  2485. * immediate execution. Like flush_work(), this function only
  2486. * considers the last queueing instance of @dwork.
  2487. *
  2488. * RETURNS:
  2489. * %true if flush_work() waited for the work to finish execution,
  2490. * %false if it was already idle.
  2491. */
  2492. bool flush_delayed_work(struct delayed_work *dwork)
  2493. {
  2494. local_irq_disable();
  2495. if (del_timer_sync(&dwork->timer))
  2496. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2497. local_irq_enable();
  2498. return flush_work(&dwork->work);
  2499. }
  2500. EXPORT_SYMBOL(flush_delayed_work);
  2501. /**
  2502. * cancel_delayed_work - cancel a delayed work
  2503. * @dwork: delayed_work to cancel
  2504. *
  2505. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2506. * and canceled; %false if wasn't pending. Note that the work callback
  2507. * function may still be running on return, unless it returns %true and the
  2508. * work doesn't re-arm itself. Explicitly flush or use
  2509. * cancel_delayed_work_sync() to wait on it.
  2510. *
  2511. * This function is safe to call from any context including IRQ handler.
  2512. */
  2513. bool cancel_delayed_work(struct delayed_work *dwork)
  2514. {
  2515. unsigned long flags;
  2516. int ret;
  2517. do {
  2518. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2519. } while (unlikely(ret == -EAGAIN));
  2520. if (unlikely(ret < 0))
  2521. return false;
  2522. set_work_pool_and_clear_pending(&dwork->work,
  2523. get_work_pool_id(&dwork->work));
  2524. local_irq_restore(flags);
  2525. return ret;
  2526. }
  2527. EXPORT_SYMBOL(cancel_delayed_work);
  2528. /**
  2529. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2530. * @dwork: the delayed work cancel
  2531. *
  2532. * This is cancel_work_sync() for delayed works.
  2533. *
  2534. * RETURNS:
  2535. * %true if @dwork was pending, %false otherwise.
  2536. */
  2537. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2538. {
  2539. return __cancel_work_timer(&dwork->work, true);
  2540. }
  2541. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2542. /**
  2543. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2544. * @func: the function to call
  2545. *
  2546. * schedule_on_each_cpu() executes @func on each online CPU using the
  2547. * system workqueue and blocks until all CPUs have completed.
  2548. * schedule_on_each_cpu() is very slow.
  2549. *
  2550. * RETURNS:
  2551. * 0 on success, -errno on failure.
  2552. */
  2553. int schedule_on_each_cpu(work_func_t func)
  2554. {
  2555. int cpu;
  2556. struct work_struct __percpu *works;
  2557. works = alloc_percpu(struct work_struct);
  2558. if (!works)
  2559. return -ENOMEM;
  2560. get_online_cpus();
  2561. for_each_online_cpu(cpu) {
  2562. struct work_struct *work = per_cpu_ptr(works, cpu);
  2563. INIT_WORK(work, func);
  2564. schedule_work_on(cpu, work);
  2565. }
  2566. for_each_online_cpu(cpu)
  2567. flush_work(per_cpu_ptr(works, cpu));
  2568. put_online_cpus();
  2569. free_percpu(works);
  2570. return 0;
  2571. }
  2572. /**
  2573. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2574. *
  2575. * Forces execution of the kernel-global workqueue and blocks until its
  2576. * completion.
  2577. *
  2578. * Think twice before calling this function! It's very easy to get into
  2579. * trouble if you don't take great care. Either of the following situations
  2580. * will lead to deadlock:
  2581. *
  2582. * One of the work items currently on the workqueue needs to acquire
  2583. * a lock held by your code or its caller.
  2584. *
  2585. * Your code is running in the context of a work routine.
  2586. *
  2587. * They will be detected by lockdep when they occur, but the first might not
  2588. * occur very often. It depends on what work items are on the workqueue and
  2589. * what locks they need, which you have no control over.
  2590. *
  2591. * In most situations flushing the entire workqueue is overkill; you merely
  2592. * need to know that a particular work item isn't queued and isn't running.
  2593. * In such cases you should use cancel_delayed_work_sync() or
  2594. * cancel_work_sync() instead.
  2595. */
  2596. void flush_scheduled_work(void)
  2597. {
  2598. flush_workqueue(system_wq);
  2599. }
  2600. EXPORT_SYMBOL(flush_scheduled_work);
  2601. /**
  2602. * execute_in_process_context - reliably execute the routine with user context
  2603. * @fn: the function to execute
  2604. * @ew: guaranteed storage for the execute work structure (must
  2605. * be available when the work executes)
  2606. *
  2607. * Executes the function immediately if process context is available,
  2608. * otherwise schedules the function for delayed execution.
  2609. *
  2610. * Returns: 0 - function was executed
  2611. * 1 - function was scheduled for execution
  2612. */
  2613. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2614. {
  2615. if (!in_interrupt()) {
  2616. fn(&ew->work);
  2617. return 0;
  2618. }
  2619. INIT_WORK(&ew->work, fn);
  2620. schedule_work(&ew->work);
  2621. return 1;
  2622. }
  2623. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2624. #ifdef CONFIG_SYSFS
  2625. /*
  2626. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2627. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2628. * following attributes.
  2629. *
  2630. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2631. * max_active RW int : maximum number of in-flight work items
  2632. *
  2633. * Unbound workqueues have the following extra attributes.
  2634. *
  2635. * id RO int : the associated pool ID
  2636. * nice RW int : nice value of the workers
  2637. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2638. */
  2639. struct wq_device {
  2640. struct workqueue_struct *wq;
  2641. struct device dev;
  2642. };
  2643. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2644. {
  2645. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2646. return wq_dev->wq;
  2647. }
  2648. static ssize_t wq_per_cpu_show(struct device *dev,
  2649. struct device_attribute *attr, char *buf)
  2650. {
  2651. struct workqueue_struct *wq = dev_to_wq(dev);
  2652. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2653. }
  2654. static ssize_t wq_max_active_show(struct device *dev,
  2655. struct device_attribute *attr, char *buf)
  2656. {
  2657. struct workqueue_struct *wq = dev_to_wq(dev);
  2658. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2659. }
  2660. static ssize_t wq_max_active_store(struct device *dev,
  2661. struct device_attribute *attr,
  2662. const char *buf, size_t count)
  2663. {
  2664. struct workqueue_struct *wq = dev_to_wq(dev);
  2665. int val;
  2666. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2667. return -EINVAL;
  2668. workqueue_set_max_active(wq, val);
  2669. return count;
  2670. }
  2671. static struct device_attribute wq_sysfs_attrs[] = {
  2672. __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
  2673. __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
  2674. __ATTR_NULL,
  2675. };
  2676. static ssize_t wq_pool_id_show(struct device *dev,
  2677. struct device_attribute *attr, char *buf)
  2678. {
  2679. struct workqueue_struct *wq = dev_to_wq(dev);
  2680. struct worker_pool *pool;
  2681. int written;
  2682. rcu_read_lock_sched();
  2683. pool = first_pwq(wq)->pool;
  2684. written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
  2685. rcu_read_unlock_sched();
  2686. return written;
  2687. }
  2688. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2689. char *buf)
  2690. {
  2691. struct workqueue_struct *wq = dev_to_wq(dev);
  2692. int written;
  2693. mutex_lock(&wq->mutex);
  2694. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2695. mutex_unlock(&wq->mutex);
  2696. return written;
  2697. }
  2698. /* prepare workqueue_attrs for sysfs store operations */
  2699. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2700. {
  2701. struct workqueue_attrs *attrs;
  2702. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2703. if (!attrs)
  2704. return NULL;
  2705. mutex_lock(&wq->mutex);
  2706. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2707. mutex_unlock(&wq->mutex);
  2708. return attrs;
  2709. }
  2710. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2711. const char *buf, size_t count)
  2712. {
  2713. struct workqueue_struct *wq = dev_to_wq(dev);
  2714. struct workqueue_attrs *attrs;
  2715. int ret;
  2716. attrs = wq_sysfs_prep_attrs(wq);
  2717. if (!attrs)
  2718. return -ENOMEM;
  2719. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2720. attrs->nice >= -20 && attrs->nice <= 19)
  2721. ret = apply_workqueue_attrs(wq, attrs);
  2722. else
  2723. ret = -EINVAL;
  2724. free_workqueue_attrs(attrs);
  2725. return ret ?: count;
  2726. }
  2727. static ssize_t wq_cpumask_show(struct device *dev,
  2728. struct device_attribute *attr, char *buf)
  2729. {
  2730. struct workqueue_struct *wq = dev_to_wq(dev);
  2731. int written;
  2732. mutex_lock(&wq->mutex);
  2733. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2734. mutex_unlock(&wq->mutex);
  2735. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2736. return written;
  2737. }
  2738. static ssize_t wq_cpumask_store(struct device *dev,
  2739. struct device_attribute *attr,
  2740. const char *buf, size_t count)
  2741. {
  2742. struct workqueue_struct *wq = dev_to_wq(dev);
  2743. struct workqueue_attrs *attrs;
  2744. int ret;
  2745. attrs = wq_sysfs_prep_attrs(wq);
  2746. if (!attrs)
  2747. return -ENOMEM;
  2748. ret = cpumask_parse(buf, attrs->cpumask);
  2749. if (!ret)
  2750. ret = apply_workqueue_attrs(wq, attrs);
  2751. free_workqueue_attrs(attrs);
  2752. return ret ?: count;
  2753. }
  2754. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2755. __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
  2756. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2757. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2758. __ATTR_NULL,
  2759. };
  2760. static struct bus_type wq_subsys = {
  2761. .name = "workqueue",
  2762. .dev_attrs = wq_sysfs_attrs,
  2763. };
  2764. static int __init wq_sysfs_init(void)
  2765. {
  2766. return subsys_virtual_register(&wq_subsys, NULL);
  2767. }
  2768. core_initcall(wq_sysfs_init);
  2769. static void wq_device_release(struct device *dev)
  2770. {
  2771. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2772. kfree(wq_dev);
  2773. }
  2774. /**
  2775. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2776. * @wq: the workqueue to register
  2777. *
  2778. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2779. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2780. * which is the preferred method.
  2781. *
  2782. * Workqueue user should use this function directly iff it wants to apply
  2783. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2784. * apply_workqueue_attrs() may race against userland updating the
  2785. * attributes.
  2786. *
  2787. * Returns 0 on success, -errno on failure.
  2788. */
  2789. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2790. {
  2791. struct wq_device *wq_dev;
  2792. int ret;
  2793. /*
  2794. * Adjusting max_active or creating new pwqs by applyting
  2795. * attributes breaks ordering guarantee. Disallow exposing ordered
  2796. * workqueues.
  2797. */
  2798. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2799. return -EINVAL;
  2800. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2801. if (!wq_dev)
  2802. return -ENOMEM;
  2803. wq_dev->wq = wq;
  2804. wq_dev->dev.bus = &wq_subsys;
  2805. wq_dev->dev.init_name = wq->name;
  2806. wq_dev->dev.release = wq_device_release;
  2807. /*
  2808. * unbound_attrs are created separately. Suppress uevent until
  2809. * everything is ready.
  2810. */
  2811. dev_set_uevent_suppress(&wq_dev->dev, true);
  2812. ret = device_register(&wq_dev->dev);
  2813. if (ret) {
  2814. kfree(wq_dev);
  2815. wq->wq_dev = NULL;
  2816. return ret;
  2817. }
  2818. if (wq->flags & WQ_UNBOUND) {
  2819. struct device_attribute *attr;
  2820. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2821. ret = device_create_file(&wq_dev->dev, attr);
  2822. if (ret) {
  2823. device_unregister(&wq_dev->dev);
  2824. wq->wq_dev = NULL;
  2825. return ret;
  2826. }
  2827. }
  2828. }
  2829. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2830. return 0;
  2831. }
  2832. /**
  2833. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2834. * @wq: the workqueue to unregister
  2835. *
  2836. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2837. */
  2838. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2839. {
  2840. struct wq_device *wq_dev = wq->wq_dev;
  2841. if (!wq->wq_dev)
  2842. return;
  2843. wq->wq_dev = NULL;
  2844. device_unregister(&wq_dev->dev);
  2845. }
  2846. #else /* CONFIG_SYSFS */
  2847. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2848. #endif /* CONFIG_SYSFS */
  2849. /**
  2850. * free_workqueue_attrs - free a workqueue_attrs
  2851. * @attrs: workqueue_attrs to free
  2852. *
  2853. * Undo alloc_workqueue_attrs().
  2854. */
  2855. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2856. {
  2857. if (attrs) {
  2858. free_cpumask_var(attrs->cpumask);
  2859. kfree(attrs);
  2860. }
  2861. }
  2862. /**
  2863. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2864. * @gfp_mask: allocation mask to use
  2865. *
  2866. * Allocate a new workqueue_attrs, initialize with default settings and
  2867. * return it. Returns NULL on failure.
  2868. */
  2869. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2870. {
  2871. struct workqueue_attrs *attrs;
  2872. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2873. if (!attrs)
  2874. goto fail;
  2875. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2876. goto fail;
  2877. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2878. return attrs;
  2879. fail:
  2880. free_workqueue_attrs(attrs);
  2881. return NULL;
  2882. }
  2883. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2884. const struct workqueue_attrs *from)
  2885. {
  2886. to->nice = from->nice;
  2887. cpumask_copy(to->cpumask, from->cpumask);
  2888. }
  2889. /* hash value of the content of @attr */
  2890. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2891. {
  2892. u32 hash = 0;
  2893. hash = jhash_1word(attrs->nice, hash);
  2894. hash = jhash(cpumask_bits(attrs->cpumask),
  2895. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2896. return hash;
  2897. }
  2898. /* content equality test */
  2899. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2900. const struct workqueue_attrs *b)
  2901. {
  2902. if (a->nice != b->nice)
  2903. return false;
  2904. if (!cpumask_equal(a->cpumask, b->cpumask))
  2905. return false;
  2906. return true;
  2907. }
  2908. /**
  2909. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2910. * @pool: worker_pool to initialize
  2911. *
  2912. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2913. * Returns 0 on success, -errno on failure. Even on failure, all fields
  2914. * inside @pool proper are initialized and put_unbound_pool() can be called
  2915. * on @pool safely to release it.
  2916. */
  2917. static int init_worker_pool(struct worker_pool *pool)
  2918. {
  2919. spin_lock_init(&pool->lock);
  2920. pool->id = -1;
  2921. pool->cpu = -1;
  2922. pool->node = NUMA_NO_NODE;
  2923. pool->flags |= POOL_DISASSOCIATED;
  2924. INIT_LIST_HEAD(&pool->worklist);
  2925. INIT_LIST_HEAD(&pool->idle_list);
  2926. hash_init(pool->busy_hash);
  2927. init_timer_deferrable(&pool->idle_timer);
  2928. pool->idle_timer.function = idle_worker_timeout;
  2929. pool->idle_timer.data = (unsigned long)pool;
  2930. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2931. (unsigned long)pool);
  2932. mutex_init(&pool->manager_arb);
  2933. mutex_init(&pool->manager_mutex);
  2934. idr_init(&pool->worker_idr);
  2935. INIT_HLIST_NODE(&pool->hash_node);
  2936. pool->refcnt = 1;
  2937. /* shouldn't fail above this point */
  2938. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2939. if (!pool->attrs)
  2940. return -ENOMEM;
  2941. return 0;
  2942. }
  2943. static void rcu_free_pool(struct rcu_head *rcu)
  2944. {
  2945. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2946. idr_destroy(&pool->worker_idr);
  2947. free_workqueue_attrs(pool->attrs);
  2948. kfree(pool);
  2949. }
  2950. /**
  2951. * put_unbound_pool - put a worker_pool
  2952. * @pool: worker_pool to put
  2953. *
  2954. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2955. * safe manner. get_unbound_pool() calls this function on its failure path
  2956. * and this function should be able to release pools which went through,
  2957. * successfully or not, init_worker_pool().
  2958. *
  2959. * Should be called with wq_pool_mutex held.
  2960. */
  2961. static void put_unbound_pool(struct worker_pool *pool)
  2962. {
  2963. struct worker *worker;
  2964. lockdep_assert_held(&wq_pool_mutex);
  2965. if (--pool->refcnt)
  2966. return;
  2967. /* sanity checks */
  2968. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  2969. WARN_ON(!list_empty(&pool->worklist)))
  2970. return;
  2971. /* release id and unhash */
  2972. if (pool->id >= 0)
  2973. idr_remove(&worker_pool_idr, pool->id);
  2974. hash_del(&pool->hash_node);
  2975. /*
  2976. * Become the manager and destroy all workers. Grabbing
  2977. * manager_arb prevents @pool's workers from blocking on
  2978. * manager_mutex.
  2979. */
  2980. mutex_lock(&pool->manager_arb);
  2981. mutex_lock(&pool->manager_mutex);
  2982. spin_lock_irq(&pool->lock);
  2983. while ((worker = first_worker(pool)))
  2984. destroy_worker(worker);
  2985. WARN_ON(pool->nr_workers || pool->nr_idle);
  2986. spin_unlock_irq(&pool->lock);
  2987. mutex_unlock(&pool->manager_mutex);
  2988. mutex_unlock(&pool->manager_arb);
  2989. /* shut down the timers */
  2990. del_timer_sync(&pool->idle_timer);
  2991. del_timer_sync(&pool->mayday_timer);
  2992. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2993. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2994. }
  2995. /**
  2996. * get_unbound_pool - get a worker_pool with the specified attributes
  2997. * @attrs: the attributes of the worker_pool to get
  2998. *
  2999. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3000. * reference count and return it. If there already is a matching
  3001. * worker_pool, it will be used; otherwise, this function attempts to
  3002. * create a new one. On failure, returns NULL.
  3003. *
  3004. * Should be called with wq_pool_mutex held.
  3005. */
  3006. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3007. {
  3008. u32 hash = wqattrs_hash(attrs);
  3009. struct worker_pool *pool;
  3010. int node;
  3011. lockdep_assert_held(&wq_pool_mutex);
  3012. /* do we already have a matching pool? */
  3013. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3014. if (wqattrs_equal(pool->attrs, attrs)) {
  3015. pool->refcnt++;
  3016. goto out_unlock;
  3017. }
  3018. }
  3019. /* nope, create a new one */
  3020. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3021. if (!pool || init_worker_pool(pool) < 0)
  3022. goto fail;
  3023. if (workqueue_freezing)
  3024. pool->flags |= POOL_FREEZING;
  3025. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3026. copy_workqueue_attrs(pool->attrs, attrs);
  3027. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3028. if (wq_numa_enabled) {
  3029. for_each_node(node) {
  3030. if (cpumask_subset(pool->attrs->cpumask,
  3031. wq_numa_possible_cpumask[node])) {
  3032. pool->node = node;
  3033. break;
  3034. }
  3035. }
  3036. }
  3037. if (worker_pool_assign_id(pool) < 0)
  3038. goto fail;
  3039. /* create and start the initial worker */
  3040. if (create_and_start_worker(pool) < 0)
  3041. goto fail;
  3042. /* install */
  3043. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3044. out_unlock:
  3045. return pool;
  3046. fail:
  3047. if (pool)
  3048. put_unbound_pool(pool);
  3049. return NULL;
  3050. }
  3051. static void rcu_free_pwq(struct rcu_head *rcu)
  3052. {
  3053. kmem_cache_free(pwq_cache,
  3054. container_of(rcu, struct pool_workqueue, rcu));
  3055. }
  3056. /*
  3057. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3058. * and needs to be destroyed.
  3059. */
  3060. static void pwq_unbound_release_workfn(struct work_struct *work)
  3061. {
  3062. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3063. unbound_release_work);
  3064. struct workqueue_struct *wq = pwq->wq;
  3065. struct worker_pool *pool = pwq->pool;
  3066. bool is_last;
  3067. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3068. return;
  3069. /*
  3070. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3071. * necessary on release but do it anyway. It's easier to verify
  3072. * and consistent with the linking path.
  3073. */
  3074. mutex_lock(&wq->mutex);
  3075. list_del_rcu(&pwq->pwqs_node);
  3076. is_last = list_empty(&wq->pwqs);
  3077. mutex_unlock(&wq->mutex);
  3078. mutex_lock(&wq_pool_mutex);
  3079. put_unbound_pool(pool);
  3080. mutex_unlock(&wq_pool_mutex);
  3081. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3082. /*
  3083. * If we're the last pwq going away, @wq is already dead and no one
  3084. * is gonna access it anymore. Free it.
  3085. */
  3086. if (is_last) {
  3087. free_workqueue_attrs(wq->unbound_attrs);
  3088. kfree(wq);
  3089. }
  3090. }
  3091. /**
  3092. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3093. * @pwq: target pool_workqueue
  3094. *
  3095. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3096. * workqueue's saved_max_active and activate delayed work items
  3097. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3098. */
  3099. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3100. {
  3101. struct workqueue_struct *wq = pwq->wq;
  3102. bool freezable = wq->flags & WQ_FREEZABLE;
  3103. /* for @wq->saved_max_active */
  3104. lockdep_assert_held(&wq->mutex);
  3105. /* fast exit for non-freezable wqs */
  3106. if (!freezable && pwq->max_active == wq->saved_max_active)
  3107. return;
  3108. spin_lock_irq(&pwq->pool->lock);
  3109. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3110. pwq->max_active = wq->saved_max_active;
  3111. while (!list_empty(&pwq->delayed_works) &&
  3112. pwq->nr_active < pwq->max_active)
  3113. pwq_activate_first_delayed(pwq);
  3114. /*
  3115. * Need to kick a worker after thawed or an unbound wq's
  3116. * max_active is bumped. It's a slow path. Do it always.
  3117. */
  3118. wake_up_worker(pwq->pool);
  3119. } else {
  3120. pwq->max_active = 0;
  3121. }
  3122. spin_unlock_irq(&pwq->pool->lock);
  3123. }
  3124. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3125. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3126. struct worker_pool *pool)
  3127. {
  3128. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3129. memset(pwq, 0, sizeof(*pwq));
  3130. pwq->pool = pool;
  3131. pwq->wq = wq;
  3132. pwq->flush_color = -1;
  3133. pwq->refcnt = 1;
  3134. INIT_LIST_HEAD(&pwq->delayed_works);
  3135. INIT_LIST_HEAD(&pwq->pwqs_node);
  3136. INIT_LIST_HEAD(&pwq->mayday_node);
  3137. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3138. }
  3139. /* sync @pwq with the current state of its associated wq and link it */
  3140. static void link_pwq(struct pool_workqueue *pwq)
  3141. {
  3142. struct workqueue_struct *wq = pwq->wq;
  3143. lockdep_assert_held(&wq->mutex);
  3144. /* may be called multiple times, ignore if already linked */
  3145. if (!list_empty(&pwq->pwqs_node))
  3146. return;
  3147. /*
  3148. * Set the matching work_color. This is synchronized with
  3149. * wq->mutex to avoid confusing flush_workqueue().
  3150. */
  3151. pwq->work_color = wq->work_color;
  3152. /* sync max_active to the current setting */
  3153. pwq_adjust_max_active(pwq);
  3154. /* link in @pwq */
  3155. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3156. }
  3157. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3158. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3159. const struct workqueue_attrs *attrs)
  3160. {
  3161. struct worker_pool *pool;
  3162. struct pool_workqueue *pwq;
  3163. lockdep_assert_held(&wq_pool_mutex);
  3164. pool = get_unbound_pool(attrs);
  3165. if (!pool)
  3166. return NULL;
  3167. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3168. if (!pwq) {
  3169. put_unbound_pool(pool);
  3170. return NULL;
  3171. }
  3172. init_pwq(pwq, wq, pool);
  3173. return pwq;
  3174. }
  3175. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3176. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3177. int node,
  3178. struct pool_workqueue *pwq)
  3179. {
  3180. struct pool_workqueue *old_pwq;
  3181. lockdep_assert_held(&wq->mutex);
  3182. /* link_pwq() can handle duplicate calls */
  3183. link_pwq(pwq);
  3184. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3185. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3186. return old_pwq;
  3187. }
  3188. /**
  3189. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3190. * @wq: the target workqueue
  3191. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3192. *
  3193. * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
  3194. * current attributes, a new pwq is created and made the first pwq which
  3195. * will serve all new work items. Older pwqs are released as in-flight
  3196. * work items finish. Note that a work item which repeatedly requeues
  3197. * itself back-to-back will stay on its current pwq.
  3198. *
  3199. * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
  3200. * failure.
  3201. */
  3202. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3203. const struct workqueue_attrs *attrs)
  3204. {
  3205. struct workqueue_attrs *new_attrs;
  3206. struct pool_workqueue *pwq, *last_pwq = NULL;
  3207. int node, ret;
  3208. /* only unbound workqueues can change attributes */
  3209. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3210. return -EINVAL;
  3211. /* creating multiple pwqs breaks ordering guarantee */
  3212. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3213. return -EINVAL;
  3214. /* make a copy of @attrs and sanitize it */
  3215. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3216. if (!new_attrs)
  3217. goto enomem;
  3218. copy_workqueue_attrs(new_attrs, attrs);
  3219. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3220. mutex_lock(&wq_pool_mutex);
  3221. pwq = alloc_unbound_pwq(wq, new_attrs);
  3222. mutex_unlock(&wq_pool_mutex);
  3223. if (!pwq)
  3224. goto enomem;
  3225. mutex_lock(&wq->mutex);
  3226. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3227. for_each_node(node)
  3228. last_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3229. mutex_unlock(&wq->mutex);
  3230. if (last_pwq) {
  3231. spin_lock_irq(&last_pwq->pool->lock);
  3232. put_pwq(last_pwq);
  3233. spin_unlock_irq(&last_pwq->pool->lock);
  3234. }
  3235. ret = 0;
  3236. /* fall through */
  3237. out_free:
  3238. free_workqueue_attrs(new_attrs);
  3239. return ret;
  3240. enomem:
  3241. ret = -ENOMEM;
  3242. goto out_free;
  3243. }
  3244. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3245. {
  3246. bool highpri = wq->flags & WQ_HIGHPRI;
  3247. int cpu;
  3248. if (!(wq->flags & WQ_UNBOUND)) {
  3249. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3250. if (!wq->cpu_pwqs)
  3251. return -ENOMEM;
  3252. for_each_possible_cpu(cpu) {
  3253. struct pool_workqueue *pwq =
  3254. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3255. struct worker_pool *cpu_pools =
  3256. per_cpu(cpu_worker_pools, cpu);
  3257. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3258. mutex_lock(&wq->mutex);
  3259. link_pwq(pwq);
  3260. mutex_unlock(&wq->mutex);
  3261. }
  3262. return 0;
  3263. } else {
  3264. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3265. }
  3266. }
  3267. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3268. const char *name)
  3269. {
  3270. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3271. if (max_active < 1 || max_active > lim)
  3272. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3273. max_active, name, 1, lim);
  3274. return clamp_val(max_active, 1, lim);
  3275. }
  3276. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3277. unsigned int flags,
  3278. int max_active,
  3279. struct lock_class_key *key,
  3280. const char *lock_name, ...)
  3281. {
  3282. size_t tbl_size = 0;
  3283. va_list args;
  3284. struct workqueue_struct *wq;
  3285. struct pool_workqueue *pwq;
  3286. /* allocate wq and format name */
  3287. if (flags & WQ_UNBOUND)
  3288. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3289. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3290. if (!wq)
  3291. return NULL;
  3292. if (flags & WQ_UNBOUND) {
  3293. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3294. if (!wq->unbound_attrs)
  3295. goto err_free_wq;
  3296. }
  3297. va_start(args, lock_name);
  3298. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3299. va_end(args);
  3300. max_active = max_active ?: WQ_DFL_ACTIVE;
  3301. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3302. /* init wq */
  3303. wq->flags = flags;
  3304. wq->saved_max_active = max_active;
  3305. mutex_init(&wq->mutex);
  3306. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3307. INIT_LIST_HEAD(&wq->pwqs);
  3308. INIT_LIST_HEAD(&wq->flusher_queue);
  3309. INIT_LIST_HEAD(&wq->flusher_overflow);
  3310. INIT_LIST_HEAD(&wq->maydays);
  3311. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3312. INIT_LIST_HEAD(&wq->list);
  3313. if (alloc_and_link_pwqs(wq) < 0)
  3314. goto err_free_wq;
  3315. /*
  3316. * Workqueues which may be used during memory reclaim should
  3317. * have a rescuer to guarantee forward progress.
  3318. */
  3319. if (flags & WQ_MEM_RECLAIM) {
  3320. struct worker *rescuer;
  3321. rescuer = alloc_worker();
  3322. if (!rescuer)
  3323. goto err_destroy;
  3324. rescuer->rescue_wq = wq;
  3325. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3326. wq->name);
  3327. if (IS_ERR(rescuer->task)) {
  3328. kfree(rescuer);
  3329. goto err_destroy;
  3330. }
  3331. wq->rescuer = rescuer;
  3332. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3333. wake_up_process(rescuer->task);
  3334. }
  3335. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3336. goto err_destroy;
  3337. /*
  3338. * wq_pool_mutex protects global freeze state and workqueues list.
  3339. * Grab it, adjust max_active and add the new @wq to workqueues
  3340. * list.
  3341. */
  3342. mutex_lock(&wq_pool_mutex);
  3343. mutex_lock(&wq->mutex);
  3344. for_each_pwq(pwq, wq)
  3345. pwq_adjust_max_active(pwq);
  3346. mutex_unlock(&wq->mutex);
  3347. list_add(&wq->list, &workqueues);
  3348. mutex_unlock(&wq_pool_mutex);
  3349. return wq;
  3350. err_free_wq:
  3351. free_workqueue_attrs(wq->unbound_attrs);
  3352. kfree(wq);
  3353. return NULL;
  3354. err_destroy:
  3355. destroy_workqueue(wq);
  3356. return NULL;
  3357. }
  3358. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3359. /**
  3360. * destroy_workqueue - safely terminate a workqueue
  3361. * @wq: target workqueue
  3362. *
  3363. * Safely destroy a workqueue. All work currently pending will be done first.
  3364. */
  3365. void destroy_workqueue(struct workqueue_struct *wq)
  3366. {
  3367. struct pool_workqueue *pwq;
  3368. /* drain it before proceeding with destruction */
  3369. drain_workqueue(wq);
  3370. /* sanity checks */
  3371. mutex_lock(&wq->mutex);
  3372. for_each_pwq(pwq, wq) {
  3373. int i;
  3374. for (i = 0; i < WORK_NR_COLORS; i++) {
  3375. if (WARN_ON(pwq->nr_in_flight[i])) {
  3376. mutex_unlock(&wq->mutex);
  3377. return;
  3378. }
  3379. }
  3380. if (WARN_ON(pwq->refcnt > 1) ||
  3381. WARN_ON(pwq->nr_active) ||
  3382. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3383. mutex_unlock(&wq->mutex);
  3384. return;
  3385. }
  3386. }
  3387. mutex_unlock(&wq->mutex);
  3388. /*
  3389. * wq list is used to freeze wq, remove from list after
  3390. * flushing is complete in case freeze races us.
  3391. */
  3392. mutex_lock(&wq_pool_mutex);
  3393. list_del_init(&wq->list);
  3394. mutex_unlock(&wq_pool_mutex);
  3395. workqueue_sysfs_unregister(wq);
  3396. if (wq->rescuer) {
  3397. kthread_stop(wq->rescuer->task);
  3398. kfree(wq->rescuer);
  3399. wq->rescuer = NULL;
  3400. }
  3401. if (!(wq->flags & WQ_UNBOUND)) {
  3402. /*
  3403. * The base ref is never dropped on per-cpu pwqs. Directly
  3404. * free the pwqs and wq.
  3405. */
  3406. free_percpu(wq->cpu_pwqs);
  3407. kfree(wq);
  3408. } else {
  3409. /*
  3410. * We're the sole accessor of @wq at this point. Directly
  3411. * access the first pwq and put the base ref. As both pwqs
  3412. * and pools are sched-RCU protected, the lock operations
  3413. * are safe. @wq will be freed when the last pwq is
  3414. * released.
  3415. */
  3416. pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
  3417. pwqs_node);
  3418. spin_lock_irq(&pwq->pool->lock);
  3419. put_pwq(pwq);
  3420. spin_unlock_irq(&pwq->pool->lock);
  3421. }
  3422. }
  3423. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3424. /**
  3425. * workqueue_set_max_active - adjust max_active of a workqueue
  3426. * @wq: target workqueue
  3427. * @max_active: new max_active value.
  3428. *
  3429. * Set max_active of @wq to @max_active.
  3430. *
  3431. * CONTEXT:
  3432. * Don't call from IRQ context.
  3433. */
  3434. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3435. {
  3436. struct pool_workqueue *pwq;
  3437. /* disallow meddling with max_active for ordered workqueues */
  3438. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3439. return;
  3440. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3441. mutex_lock(&wq->mutex);
  3442. wq->saved_max_active = max_active;
  3443. for_each_pwq(pwq, wq)
  3444. pwq_adjust_max_active(pwq);
  3445. mutex_unlock(&wq->mutex);
  3446. }
  3447. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3448. /**
  3449. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3450. *
  3451. * Determine whether %current is a workqueue rescuer. Can be used from
  3452. * work functions to determine whether it's being run off the rescuer task.
  3453. */
  3454. bool current_is_workqueue_rescuer(void)
  3455. {
  3456. struct worker *worker = current_wq_worker();
  3457. return worker && worker->rescue_wq;
  3458. }
  3459. /**
  3460. * workqueue_congested - test whether a workqueue is congested
  3461. * @cpu: CPU in question
  3462. * @wq: target workqueue
  3463. *
  3464. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3465. * no synchronization around this function and the test result is
  3466. * unreliable and only useful as advisory hints or for debugging.
  3467. *
  3468. * RETURNS:
  3469. * %true if congested, %false otherwise.
  3470. */
  3471. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3472. {
  3473. struct pool_workqueue *pwq;
  3474. bool ret;
  3475. rcu_read_lock_sched();
  3476. if (!(wq->flags & WQ_UNBOUND))
  3477. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3478. else
  3479. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3480. ret = !list_empty(&pwq->delayed_works);
  3481. rcu_read_unlock_sched();
  3482. return ret;
  3483. }
  3484. EXPORT_SYMBOL_GPL(workqueue_congested);
  3485. /**
  3486. * work_busy - test whether a work is currently pending or running
  3487. * @work: the work to be tested
  3488. *
  3489. * Test whether @work is currently pending or running. There is no
  3490. * synchronization around this function and the test result is
  3491. * unreliable and only useful as advisory hints or for debugging.
  3492. *
  3493. * RETURNS:
  3494. * OR'd bitmask of WORK_BUSY_* bits.
  3495. */
  3496. unsigned int work_busy(struct work_struct *work)
  3497. {
  3498. struct worker_pool *pool;
  3499. unsigned long flags;
  3500. unsigned int ret = 0;
  3501. if (work_pending(work))
  3502. ret |= WORK_BUSY_PENDING;
  3503. local_irq_save(flags);
  3504. pool = get_work_pool(work);
  3505. if (pool) {
  3506. spin_lock(&pool->lock);
  3507. if (find_worker_executing_work(pool, work))
  3508. ret |= WORK_BUSY_RUNNING;
  3509. spin_unlock(&pool->lock);
  3510. }
  3511. local_irq_restore(flags);
  3512. return ret;
  3513. }
  3514. EXPORT_SYMBOL_GPL(work_busy);
  3515. /*
  3516. * CPU hotplug.
  3517. *
  3518. * There are two challenges in supporting CPU hotplug. Firstly, there
  3519. * are a lot of assumptions on strong associations among work, pwq and
  3520. * pool which make migrating pending and scheduled works very
  3521. * difficult to implement without impacting hot paths. Secondly,
  3522. * worker pools serve mix of short, long and very long running works making
  3523. * blocked draining impractical.
  3524. *
  3525. * This is solved by allowing the pools to be disassociated from the CPU
  3526. * running as an unbound one and allowing it to be reattached later if the
  3527. * cpu comes back online.
  3528. */
  3529. static void wq_unbind_fn(struct work_struct *work)
  3530. {
  3531. int cpu = smp_processor_id();
  3532. struct worker_pool *pool;
  3533. struct worker *worker;
  3534. int wi;
  3535. for_each_cpu_worker_pool(pool, cpu) {
  3536. WARN_ON_ONCE(cpu != smp_processor_id());
  3537. mutex_lock(&pool->manager_mutex);
  3538. spin_lock_irq(&pool->lock);
  3539. /*
  3540. * We've blocked all manager operations. Make all workers
  3541. * unbound and set DISASSOCIATED. Before this, all workers
  3542. * except for the ones which are still executing works from
  3543. * before the last CPU down must be on the cpu. After
  3544. * this, they may become diasporas.
  3545. */
  3546. for_each_pool_worker(worker, wi, pool)
  3547. worker->flags |= WORKER_UNBOUND;
  3548. pool->flags |= POOL_DISASSOCIATED;
  3549. spin_unlock_irq(&pool->lock);
  3550. mutex_unlock(&pool->manager_mutex);
  3551. }
  3552. /*
  3553. * Call schedule() so that we cross rq->lock and thus can guarantee
  3554. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  3555. * as scheduler callbacks may be invoked from other cpus.
  3556. */
  3557. schedule();
  3558. /*
  3559. * Sched callbacks are disabled now. Zap nr_running. After this,
  3560. * nr_running stays zero and need_more_worker() and keep_working()
  3561. * are always true as long as the worklist is not empty. Pools on
  3562. * @cpu now behave as unbound (in terms of concurrency management)
  3563. * pools which are served by workers tied to the CPU.
  3564. *
  3565. * On return from this function, the current worker would trigger
  3566. * unbound chain execution of pending work items if other workers
  3567. * didn't already.
  3568. */
  3569. for_each_cpu_worker_pool(pool, cpu)
  3570. atomic_set(&pool->nr_running, 0);
  3571. }
  3572. /**
  3573. * rebind_workers - rebind all workers of a pool to the associated CPU
  3574. * @pool: pool of interest
  3575. *
  3576. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3577. */
  3578. static void rebind_workers(struct worker_pool *pool)
  3579. {
  3580. struct worker *worker;
  3581. int wi;
  3582. lockdep_assert_held(&pool->manager_mutex);
  3583. /*
  3584. * Restore CPU affinity of all workers. As all idle workers should
  3585. * be on the run-queue of the associated CPU before any local
  3586. * wake-ups for concurrency management happen, restore CPU affinty
  3587. * of all workers first and then clear UNBOUND. As we're called
  3588. * from CPU_ONLINE, the following shouldn't fail.
  3589. */
  3590. for_each_pool_worker(worker, wi, pool)
  3591. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3592. pool->attrs->cpumask) < 0);
  3593. spin_lock_irq(&pool->lock);
  3594. for_each_pool_worker(worker, wi, pool) {
  3595. unsigned int worker_flags = worker->flags;
  3596. /*
  3597. * A bound idle worker should actually be on the runqueue
  3598. * of the associated CPU for local wake-ups targeting it to
  3599. * work. Kick all idle workers so that they migrate to the
  3600. * associated CPU. Doing this in the same loop as
  3601. * replacing UNBOUND with REBOUND is safe as no worker will
  3602. * be bound before @pool->lock is released.
  3603. */
  3604. if (worker_flags & WORKER_IDLE)
  3605. wake_up_process(worker->task);
  3606. /*
  3607. * We want to clear UNBOUND but can't directly call
  3608. * worker_clr_flags() or adjust nr_running. Atomically
  3609. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3610. * @worker will clear REBOUND using worker_clr_flags() when
  3611. * it initiates the next execution cycle thus restoring
  3612. * concurrency management. Note that when or whether
  3613. * @worker clears REBOUND doesn't affect correctness.
  3614. *
  3615. * ACCESS_ONCE() is necessary because @worker->flags may be
  3616. * tested without holding any lock in
  3617. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3618. * fail incorrectly leading to premature concurrency
  3619. * management operations.
  3620. */
  3621. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3622. worker_flags |= WORKER_REBOUND;
  3623. worker_flags &= ~WORKER_UNBOUND;
  3624. ACCESS_ONCE(worker->flags) = worker_flags;
  3625. }
  3626. spin_unlock_irq(&pool->lock);
  3627. }
  3628. /**
  3629. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3630. * @pool: unbound pool of interest
  3631. * @cpu: the CPU which is coming up
  3632. *
  3633. * An unbound pool may end up with a cpumask which doesn't have any online
  3634. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3635. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3636. * online CPU before, cpus_allowed of all its workers should be restored.
  3637. */
  3638. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3639. {
  3640. static cpumask_t cpumask;
  3641. struct worker *worker;
  3642. int wi;
  3643. lockdep_assert_held(&pool->manager_mutex);
  3644. /* is @cpu allowed for @pool? */
  3645. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3646. return;
  3647. /* is @cpu the only online CPU? */
  3648. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3649. if (cpumask_weight(&cpumask) != 1)
  3650. return;
  3651. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3652. for_each_pool_worker(worker, wi, pool)
  3653. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3654. pool->attrs->cpumask) < 0);
  3655. }
  3656. /*
  3657. * Workqueues should be brought up before normal priority CPU notifiers.
  3658. * This will be registered high priority CPU notifier.
  3659. */
  3660. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3661. unsigned long action,
  3662. void *hcpu)
  3663. {
  3664. int cpu = (unsigned long)hcpu;
  3665. struct worker_pool *pool;
  3666. int pi;
  3667. switch (action & ~CPU_TASKS_FROZEN) {
  3668. case CPU_UP_PREPARE:
  3669. for_each_cpu_worker_pool(pool, cpu) {
  3670. if (pool->nr_workers)
  3671. continue;
  3672. if (create_and_start_worker(pool) < 0)
  3673. return NOTIFY_BAD;
  3674. }
  3675. break;
  3676. case CPU_DOWN_FAILED:
  3677. case CPU_ONLINE:
  3678. mutex_lock(&wq_pool_mutex);
  3679. for_each_pool(pool, pi) {
  3680. mutex_lock(&pool->manager_mutex);
  3681. if (pool->cpu == cpu) {
  3682. spin_lock_irq(&pool->lock);
  3683. pool->flags &= ~POOL_DISASSOCIATED;
  3684. spin_unlock_irq(&pool->lock);
  3685. rebind_workers(pool);
  3686. } else if (pool->cpu < 0) {
  3687. restore_unbound_workers_cpumask(pool, cpu);
  3688. }
  3689. mutex_unlock(&pool->manager_mutex);
  3690. }
  3691. mutex_unlock(&wq_pool_mutex);
  3692. break;
  3693. }
  3694. return NOTIFY_OK;
  3695. }
  3696. /*
  3697. * Workqueues should be brought down after normal priority CPU notifiers.
  3698. * This will be registered as low priority CPU notifier.
  3699. */
  3700. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3701. unsigned long action,
  3702. void *hcpu)
  3703. {
  3704. int cpu = (unsigned long)hcpu;
  3705. struct work_struct unbind_work;
  3706. switch (action & ~CPU_TASKS_FROZEN) {
  3707. case CPU_DOWN_PREPARE:
  3708. /* unbinding should happen on the local CPU */
  3709. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3710. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3711. flush_work(&unbind_work);
  3712. break;
  3713. }
  3714. return NOTIFY_OK;
  3715. }
  3716. #ifdef CONFIG_SMP
  3717. struct work_for_cpu {
  3718. struct work_struct work;
  3719. long (*fn)(void *);
  3720. void *arg;
  3721. long ret;
  3722. };
  3723. static void work_for_cpu_fn(struct work_struct *work)
  3724. {
  3725. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  3726. wfc->ret = wfc->fn(wfc->arg);
  3727. }
  3728. /**
  3729. * work_on_cpu - run a function in user context on a particular cpu
  3730. * @cpu: the cpu to run on
  3731. * @fn: the function to run
  3732. * @arg: the function arg
  3733. *
  3734. * This will return the value @fn returns.
  3735. * It is up to the caller to ensure that the cpu doesn't go offline.
  3736. * The caller must not hold any locks which would prevent @fn from completing.
  3737. */
  3738. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  3739. {
  3740. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  3741. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  3742. schedule_work_on(cpu, &wfc.work);
  3743. flush_work(&wfc.work);
  3744. return wfc.ret;
  3745. }
  3746. EXPORT_SYMBOL_GPL(work_on_cpu);
  3747. #endif /* CONFIG_SMP */
  3748. #ifdef CONFIG_FREEZER
  3749. /**
  3750. * freeze_workqueues_begin - begin freezing workqueues
  3751. *
  3752. * Start freezing workqueues. After this function returns, all freezable
  3753. * workqueues will queue new works to their delayed_works list instead of
  3754. * pool->worklist.
  3755. *
  3756. * CONTEXT:
  3757. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3758. */
  3759. void freeze_workqueues_begin(void)
  3760. {
  3761. struct worker_pool *pool;
  3762. struct workqueue_struct *wq;
  3763. struct pool_workqueue *pwq;
  3764. int pi;
  3765. mutex_lock(&wq_pool_mutex);
  3766. WARN_ON_ONCE(workqueue_freezing);
  3767. workqueue_freezing = true;
  3768. /* set FREEZING */
  3769. for_each_pool(pool, pi) {
  3770. spin_lock_irq(&pool->lock);
  3771. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  3772. pool->flags |= POOL_FREEZING;
  3773. spin_unlock_irq(&pool->lock);
  3774. }
  3775. list_for_each_entry(wq, &workqueues, list) {
  3776. mutex_lock(&wq->mutex);
  3777. for_each_pwq(pwq, wq)
  3778. pwq_adjust_max_active(pwq);
  3779. mutex_unlock(&wq->mutex);
  3780. }
  3781. mutex_unlock(&wq_pool_mutex);
  3782. }
  3783. /**
  3784. * freeze_workqueues_busy - are freezable workqueues still busy?
  3785. *
  3786. * Check whether freezing is complete. This function must be called
  3787. * between freeze_workqueues_begin() and thaw_workqueues().
  3788. *
  3789. * CONTEXT:
  3790. * Grabs and releases wq_pool_mutex.
  3791. *
  3792. * RETURNS:
  3793. * %true if some freezable workqueues are still busy. %false if freezing
  3794. * is complete.
  3795. */
  3796. bool freeze_workqueues_busy(void)
  3797. {
  3798. bool busy = false;
  3799. struct workqueue_struct *wq;
  3800. struct pool_workqueue *pwq;
  3801. mutex_lock(&wq_pool_mutex);
  3802. WARN_ON_ONCE(!workqueue_freezing);
  3803. list_for_each_entry(wq, &workqueues, list) {
  3804. if (!(wq->flags & WQ_FREEZABLE))
  3805. continue;
  3806. /*
  3807. * nr_active is monotonically decreasing. It's safe
  3808. * to peek without lock.
  3809. */
  3810. rcu_read_lock_sched();
  3811. for_each_pwq(pwq, wq) {
  3812. WARN_ON_ONCE(pwq->nr_active < 0);
  3813. if (pwq->nr_active) {
  3814. busy = true;
  3815. rcu_read_unlock_sched();
  3816. goto out_unlock;
  3817. }
  3818. }
  3819. rcu_read_unlock_sched();
  3820. }
  3821. out_unlock:
  3822. mutex_unlock(&wq_pool_mutex);
  3823. return busy;
  3824. }
  3825. /**
  3826. * thaw_workqueues - thaw workqueues
  3827. *
  3828. * Thaw workqueues. Normal queueing is restored and all collected
  3829. * frozen works are transferred to their respective pool worklists.
  3830. *
  3831. * CONTEXT:
  3832. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  3833. */
  3834. void thaw_workqueues(void)
  3835. {
  3836. struct workqueue_struct *wq;
  3837. struct pool_workqueue *pwq;
  3838. struct worker_pool *pool;
  3839. int pi;
  3840. mutex_lock(&wq_pool_mutex);
  3841. if (!workqueue_freezing)
  3842. goto out_unlock;
  3843. /* clear FREEZING */
  3844. for_each_pool(pool, pi) {
  3845. spin_lock_irq(&pool->lock);
  3846. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  3847. pool->flags &= ~POOL_FREEZING;
  3848. spin_unlock_irq(&pool->lock);
  3849. }
  3850. /* restore max_active and repopulate worklist */
  3851. list_for_each_entry(wq, &workqueues, list) {
  3852. mutex_lock(&wq->mutex);
  3853. for_each_pwq(pwq, wq)
  3854. pwq_adjust_max_active(pwq);
  3855. mutex_unlock(&wq->mutex);
  3856. }
  3857. workqueue_freezing = false;
  3858. out_unlock:
  3859. mutex_unlock(&wq_pool_mutex);
  3860. }
  3861. #endif /* CONFIG_FREEZER */
  3862. static void __init wq_numa_init(void)
  3863. {
  3864. cpumask_var_t *tbl;
  3865. int node, cpu;
  3866. /* determine NUMA pwq table len - highest node id + 1 */
  3867. for_each_node(node)
  3868. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  3869. if (num_possible_nodes() <= 1)
  3870. return;
  3871. /*
  3872. * We want masks of possible CPUs of each node which isn't readily
  3873. * available. Build one from cpu_to_node() which should have been
  3874. * fully initialized by now.
  3875. */
  3876. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  3877. BUG_ON(!tbl);
  3878. for_each_node(node)
  3879. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
  3880. for_each_possible_cpu(cpu) {
  3881. node = cpu_to_node(cpu);
  3882. if (WARN_ON(node == NUMA_NO_NODE)) {
  3883. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  3884. /* happens iff arch is bonkers, let's just proceed */
  3885. return;
  3886. }
  3887. cpumask_set_cpu(cpu, tbl[node]);
  3888. }
  3889. wq_numa_possible_cpumask = tbl;
  3890. wq_numa_enabled = true;
  3891. }
  3892. static int __init init_workqueues(void)
  3893. {
  3894. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  3895. int i, cpu;
  3896. /* make sure we have enough bits for OFFQ pool ID */
  3897. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  3898. WORK_CPU_END * NR_STD_WORKER_POOLS);
  3899. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  3900. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  3901. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3902. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3903. wq_numa_init();
  3904. /* initialize CPU pools */
  3905. for_each_possible_cpu(cpu) {
  3906. struct worker_pool *pool;
  3907. i = 0;
  3908. for_each_cpu_worker_pool(pool, cpu) {
  3909. BUG_ON(init_worker_pool(pool));
  3910. pool->cpu = cpu;
  3911. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  3912. pool->attrs->nice = std_nice[i++];
  3913. pool->node = cpu_to_node(cpu);
  3914. /* alloc pool ID */
  3915. mutex_lock(&wq_pool_mutex);
  3916. BUG_ON(worker_pool_assign_id(pool));
  3917. mutex_unlock(&wq_pool_mutex);
  3918. }
  3919. }
  3920. /* create the initial worker */
  3921. for_each_online_cpu(cpu) {
  3922. struct worker_pool *pool;
  3923. for_each_cpu_worker_pool(pool, cpu) {
  3924. pool->flags &= ~POOL_DISASSOCIATED;
  3925. BUG_ON(create_and_start_worker(pool) < 0);
  3926. }
  3927. }
  3928. /* create default unbound wq attrs */
  3929. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  3930. struct workqueue_attrs *attrs;
  3931. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  3932. attrs->nice = std_nice[i];
  3933. unbound_std_wq_attrs[i] = attrs;
  3934. }
  3935. system_wq = alloc_workqueue("events", 0, 0);
  3936. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  3937. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3938. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3939. WQ_UNBOUND_MAX_ACTIVE);
  3940. system_freezable_wq = alloc_workqueue("events_freezable",
  3941. WQ_FREEZABLE, 0);
  3942. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  3943. !system_unbound_wq || !system_freezable_wq);
  3944. return 0;
  3945. }
  3946. early_initcall(init_workqueues);