hpet.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709
  1. #include <linux/clocksource.h>
  2. #include <linux/clockchips.h>
  3. #include <linux/delay.h>
  4. #include <linux/errno.h>
  5. #include <linux/hpet.h>
  6. #include <linux/init.h>
  7. #include <linux/sysdev.h>
  8. #include <linux/pm.h>
  9. #include <asm/fixmap.h>
  10. #include <asm/hpet.h>
  11. #include <asm/i8253.h>
  12. #include <asm/io.h>
  13. #define HPET_MASK CLOCKSOURCE_MASK(32)
  14. #define HPET_SHIFT 22
  15. /* FSEC = 10^-15
  16. NSEC = 10^-9 */
  17. #define FSEC_PER_NSEC 1000000L
  18. /*
  19. * HPET address is set in acpi/boot.c, when an ACPI entry exists
  20. */
  21. unsigned long hpet_address;
  22. static void __iomem *hpet_virt_address;
  23. unsigned long hpet_readl(unsigned long a)
  24. {
  25. return readl(hpet_virt_address + a);
  26. }
  27. static inline void hpet_writel(unsigned long d, unsigned long a)
  28. {
  29. writel(d, hpet_virt_address + a);
  30. }
  31. #ifdef CONFIG_X86_64
  32. #include <asm/pgtable.h>
  33. static inline void hpet_set_mapping(void)
  34. {
  35. set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
  36. __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
  37. hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
  38. }
  39. static inline void hpet_clear_mapping(void)
  40. {
  41. hpet_virt_address = NULL;
  42. }
  43. #else
  44. static inline void hpet_set_mapping(void)
  45. {
  46. hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  47. }
  48. static inline void hpet_clear_mapping(void)
  49. {
  50. iounmap(hpet_virt_address);
  51. hpet_virt_address = NULL;
  52. }
  53. #endif
  54. /*
  55. * HPET command line enable / disable
  56. */
  57. static int boot_hpet_disable;
  58. int hpet_force_user;
  59. static int __init hpet_setup(char* str)
  60. {
  61. if (str) {
  62. if (!strncmp("disable", str, 7))
  63. boot_hpet_disable = 1;
  64. if (!strncmp("force", str, 5))
  65. hpet_force_user = 1;
  66. }
  67. return 1;
  68. }
  69. __setup("hpet=", hpet_setup);
  70. static int __init disable_hpet(char *str)
  71. {
  72. boot_hpet_disable = 1;
  73. return 1;
  74. }
  75. __setup("nohpet", disable_hpet);
  76. static inline int is_hpet_capable(void)
  77. {
  78. return (!boot_hpet_disable && hpet_address);
  79. }
  80. /*
  81. * HPET timer interrupt enable / disable
  82. */
  83. static int hpet_legacy_int_enabled;
  84. /**
  85. * is_hpet_enabled - check whether the hpet timer interrupt is enabled
  86. */
  87. int is_hpet_enabled(void)
  88. {
  89. return is_hpet_capable() && hpet_legacy_int_enabled;
  90. }
  91. EXPORT_SYMBOL_GPL(is_hpet_enabled);
  92. /*
  93. * When the hpet driver (/dev/hpet) is enabled, we need to reserve
  94. * timer 0 and timer 1 in case of RTC emulation.
  95. */
  96. #ifdef CONFIG_HPET
  97. static void hpet_reserve_platform_timers(unsigned long id)
  98. {
  99. struct hpet __iomem *hpet = hpet_virt_address;
  100. struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
  101. unsigned int nrtimers, i;
  102. struct hpet_data hd;
  103. nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  104. memset(&hd, 0, sizeof (hd));
  105. hd.hd_phys_address = hpet_address;
  106. hd.hd_address = hpet;
  107. hd.hd_nirqs = nrtimers;
  108. hd.hd_flags = HPET_DATA_PLATFORM;
  109. hpet_reserve_timer(&hd, 0);
  110. #ifdef CONFIG_HPET_EMULATE_RTC
  111. hpet_reserve_timer(&hd, 1);
  112. #endif
  113. hd.hd_irq[0] = HPET_LEGACY_8254;
  114. hd.hd_irq[1] = HPET_LEGACY_RTC;
  115. for (i = 2; i < nrtimers; timer++, i++) {
  116. hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
  117. Tn_INT_ROUTE_CNF_SHIFT;
  118. }
  119. hpet_alloc(&hd);
  120. }
  121. #else
  122. static void hpet_reserve_platform_timers(unsigned long id) { }
  123. #endif
  124. /*
  125. * Common hpet info
  126. */
  127. static unsigned long hpet_period;
  128. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  129. struct clock_event_device *evt);
  130. static int hpet_legacy_next_event(unsigned long delta,
  131. struct clock_event_device *evt);
  132. /*
  133. * The hpet clock event device
  134. */
  135. static struct clock_event_device hpet_clockevent = {
  136. .name = "hpet",
  137. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  138. .set_mode = hpet_legacy_set_mode,
  139. .set_next_event = hpet_legacy_next_event,
  140. .shift = 32,
  141. .irq = 0,
  142. .rating = 50,
  143. };
  144. static void hpet_start_counter(void)
  145. {
  146. unsigned long cfg = hpet_readl(HPET_CFG);
  147. cfg &= ~HPET_CFG_ENABLE;
  148. hpet_writel(cfg, HPET_CFG);
  149. hpet_writel(0, HPET_COUNTER);
  150. hpet_writel(0, HPET_COUNTER + 4);
  151. cfg |= HPET_CFG_ENABLE;
  152. hpet_writel(cfg, HPET_CFG);
  153. }
  154. static void hpet_resume_device(void)
  155. {
  156. force_hpet_resume();
  157. }
  158. static void hpet_restart_counter(void)
  159. {
  160. hpet_resume_device();
  161. hpet_start_counter();
  162. }
  163. static void hpet_enable_legacy_int(void)
  164. {
  165. unsigned long cfg = hpet_readl(HPET_CFG);
  166. cfg |= HPET_CFG_LEGACY;
  167. hpet_writel(cfg, HPET_CFG);
  168. hpet_legacy_int_enabled = 1;
  169. }
  170. static void hpet_legacy_clockevent_register(void)
  171. {
  172. /* Start HPET legacy interrupts */
  173. hpet_enable_legacy_int();
  174. /*
  175. * The mult factor is defined as (include/linux/clockchips.h)
  176. * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
  177. * hpet_period is in units of femtoseconds (per cycle), so
  178. * mult/2^shift = cyc/ns = 10^6/hpet_period
  179. * mult = (10^6 * 2^shift)/hpet_period
  180. * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
  181. */
  182. hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
  183. hpet_period, hpet_clockevent.shift);
  184. /* Calculate the min / max delta */
  185. hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
  186. &hpet_clockevent);
  187. hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
  188. &hpet_clockevent);
  189. /*
  190. * Start hpet with the boot cpu mask and make it
  191. * global after the IO_APIC has been initialized.
  192. */
  193. hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  194. clockevents_register_device(&hpet_clockevent);
  195. global_clock_event = &hpet_clockevent;
  196. printk(KERN_DEBUG "hpet clockevent registered\n");
  197. }
  198. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  199. struct clock_event_device *evt)
  200. {
  201. unsigned long cfg, cmp, now;
  202. uint64_t delta;
  203. switch(mode) {
  204. case CLOCK_EVT_MODE_PERIODIC:
  205. delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
  206. delta >>= hpet_clockevent.shift;
  207. now = hpet_readl(HPET_COUNTER);
  208. cmp = now + (unsigned long) delta;
  209. cfg = hpet_readl(HPET_T0_CFG);
  210. cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
  211. HPET_TN_SETVAL | HPET_TN_32BIT;
  212. hpet_writel(cfg, HPET_T0_CFG);
  213. /*
  214. * The first write after writing TN_SETVAL to the
  215. * config register sets the counter value, the second
  216. * write sets the period.
  217. */
  218. hpet_writel(cmp, HPET_T0_CMP);
  219. udelay(1);
  220. hpet_writel((unsigned long) delta, HPET_T0_CMP);
  221. break;
  222. case CLOCK_EVT_MODE_ONESHOT:
  223. cfg = hpet_readl(HPET_T0_CFG);
  224. cfg &= ~HPET_TN_PERIODIC;
  225. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  226. hpet_writel(cfg, HPET_T0_CFG);
  227. break;
  228. case CLOCK_EVT_MODE_UNUSED:
  229. case CLOCK_EVT_MODE_SHUTDOWN:
  230. cfg = hpet_readl(HPET_T0_CFG);
  231. cfg &= ~HPET_TN_ENABLE;
  232. hpet_writel(cfg, HPET_T0_CFG);
  233. break;
  234. case CLOCK_EVT_MODE_RESUME:
  235. hpet_enable_legacy_int();
  236. break;
  237. }
  238. }
  239. static int hpet_legacy_next_event(unsigned long delta,
  240. struct clock_event_device *evt)
  241. {
  242. unsigned long cnt;
  243. cnt = hpet_readl(HPET_COUNTER);
  244. cnt += delta;
  245. hpet_writel(cnt, HPET_T0_CMP);
  246. return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
  247. }
  248. /*
  249. * Clock source related code
  250. */
  251. static cycle_t read_hpet(void)
  252. {
  253. return (cycle_t)hpet_readl(HPET_COUNTER);
  254. }
  255. #ifdef CONFIG_X86_64
  256. static cycle_t __vsyscall_fn vread_hpet(void)
  257. {
  258. return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
  259. }
  260. #endif
  261. static struct clocksource clocksource_hpet = {
  262. .name = "hpet",
  263. .rating = 250,
  264. .read = read_hpet,
  265. .mask = HPET_MASK,
  266. .shift = HPET_SHIFT,
  267. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  268. .resume = hpet_restart_counter,
  269. #ifdef CONFIG_X86_64
  270. .vread = vread_hpet,
  271. #endif
  272. };
  273. static int hpet_clocksource_register(void)
  274. {
  275. u64 start, now;
  276. cycle_t t1;
  277. /* Start the counter */
  278. hpet_start_counter();
  279. /* Verify whether hpet counter works */
  280. t1 = read_hpet();
  281. rdtscll(start);
  282. /*
  283. * We don't know the TSC frequency yet, but waiting for
  284. * 200000 TSC cycles is safe:
  285. * 4 GHz == 50us
  286. * 1 GHz == 200us
  287. */
  288. do {
  289. rep_nop();
  290. rdtscll(now);
  291. } while ((now - start) < 200000UL);
  292. if (t1 == read_hpet()) {
  293. printk(KERN_WARNING
  294. "HPET counter not counting. HPET disabled\n");
  295. return -ENODEV;
  296. }
  297. /*
  298. * The definition of mult is (include/linux/clocksource.h)
  299. * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
  300. * so we first need to convert hpet_period to ns/cyc units:
  301. * mult/2^shift = ns/cyc = hpet_period/10^6
  302. * mult = (hpet_period * 2^shift)/10^6
  303. * mult = (hpet_period << shift)/FSEC_PER_NSEC
  304. */
  305. clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
  306. clocksource_register(&clocksource_hpet);
  307. return 0;
  308. }
  309. /**
  310. * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
  311. */
  312. int __init hpet_enable(void)
  313. {
  314. unsigned long id;
  315. if (!is_hpet_capable())
  316. return 0;
  317. hpet_set_mapping();
  318. /*
  319. * Read the period and check for a sane value:
  320. */
  321. hpet_period = hpet_readl(HPET_PERIOD);
  322. if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
  323. goto out_nohpet;
  324. /*
  325. * Read the HPET ID register to retrieve the IRQ routing
  326. * information and the number of channels
  327. */
  328. id = hpet_readl(HPET_ID);
  329. #ifdef CONFIG_HPET_EMULATE_RTC
  330. /*
  331. * The legacy routing mode needs at least two channels, tick timer
  332. * and the rtc emulation channel.
  333. */
  334. if (!(id & HPET_ID_NUMBER))
  335. goto out_nohpet;
  336. #endif
  337. if (hpet_clocksource_register())
  338. goto out_nohpet;
  339. if (id & HPET_ID_LEGSUP) {
  340. hpet_legacy_clockevent_register();
  341. return 1;
  342. }
  343. return 0;
  344. out_nohpet:
  345. hpet_clear_mapping();
  346. boot_hpet_disable = 1;
  347. return 0;
  348. }
  349. /*
  350. * Needs to be late, as the reserve_timer code calls kalloc !
  351. *
  352. * Not a problem on i386 as hpet_enable is called from late_time_init,
  353. * but on x86_64 it is necessary !
  354. */
  355. static __init int hpet_late_init(void)
  356. {
  357. if (boot_hpet_disable)
  358. return -ENODEV;
  359. if (!hpet_address) {
  360. if (!force_hpet_address)
  361. return -ENODEV;
  362. hpet_address = force_hpet_address;
  363. hpet_enable();
  364. if (!hpet_virt_address)
  365. return -ENODEV;
  366. }
  367. hpet_reserve_platform_timers(hpet_readl(HPET_ID));
  368. return 0;
  369. }
  370. fs_initcall(hpet_late_init);
  371. void hpet_disable(void)
  372. {
  373. if (is_hpet_capable()) {
  374. unsigned long cfg = hpet_readl(HPET_CFG);
  375. if (hpet_legacy_int_enabled) {
  376. cfg &= ~HPET_CFG_LEGACY;
  377. hpet_legacy_int_enabled = 0;
  378. }
  379. cfg &= ~HPET_CFG_ENABLE;
  380. hpet_writel(cfg, HPET_CFG);
  381. }
  382. }
  383. #ifdef CONFIG_HPET_EMULATE_RTC
  384. /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
  385. * is enabled, we support RTC interrupt functionality in software.
  386. * RTC has 3 kinds of interrupts:
  387. * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
  388. * is updated
  389. * 2) Alarm Interrupt - generate an interrupt at a specific time of day
  390. * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
  391. * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
  392. * (1) and (2) above are implemented using polling at a frequency of
  393. * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
  394. * overhead. (DEFAULT_RTC_INT_FREQ)
  395. * For (3), we use interrupts at 64Hz or user specified periodic
  396. * frequency, whichever is higher.
  397. */
  398. #include <linux/mc146818rtc.h>
  399. #include <linux/rtc.h>
  400. #include <asm/rtc.h>
  401. #define DEFAULT_RTC_INT_FREQ 64
  402. #define DEFAULT_RTC_SHIFT 6
  403. #define RTC_NUM_INTS 1
  404. static unsigned long hpet_rtc_flags;
  405. static unsigned long hpet_prev_update_sec;
  406. static struct rtc_time hpet_alarm_time;
  407. static unsigned long hpet_pie_count;
  408. static unsigned long hpet_t1_cmp;
  409. static unsigned long hpet_default_delta;
  410. static unsigned long hpet_pie_delta;
  411. static unsigned long hpet_pie_limit;
  412. static rtc_irq_handler irq_handler;
  413. /*
  414. * Registers a IRQ handler.
  415. */
  416. int hpet_register_irq_handler(rtc_irq_handler handler)
  417. {
  418. if (!is_hpet_enabled())
  419. return -ENODEV;
  420. if (irq_handler)
  421. return -EBUSY;
  422. irq_handler = handler;
  423. return 0;
  424. }
  425. EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
  426. /*
  427. * Deregisters the IRQ handler registered with hpet_register_irq_handler()
  428. * and does cleanup.
  429. */
  430. void hpet_unregister_irq_handler(rtc_irq_handler handler)
  431. {
  432. if (!is_hpet_enabled())
  433. return;
  434. irq_handler = NULL;
  435. hpet_rtc_flags = 0;
  436. }
  437. EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
  438. /*
  439. * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
  440. * is not supported by all HPET implementations for timer 1.
  441. *
  442. * hpet_rtc_timer_init() is called when the rtc is initialized.
  443. */
  444. int hpet_rtc_timer_init(void)
  445. {
  446. unsigned long cfg, cnt, delta, flags;
  447. if (!is_hpet_enabled())
  448. return 0;
  449. if (!hpet_default_delta) {
  450. uint64_t clc;
  451. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  452. clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
  453. hpet_default_delta = (unsigned long) clc;
  454. }
  455. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  456. delta = hpet_default_delta;
  457. else
  458. delta = hpet_pie_delta;
  459. local_irq_save(flags);
  460. cnt = delta + hpet_readl(HPET_COUNTER);
  461. hpet_writel(cnt, HPET_T1_CMP);
  462. hpet_t1_cmp = cnt;
  463. cfg = hpet_readl(HPET_T1_CFG);
  464. cfg &= ~HPET_TN_PERIODIC;
  465. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  466. hpet_writel(cfg, HPET_T1_CFG);
  467. local_irq_restore(flags);
  468. return 1;
  469. }
  470. EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
  471. /*
  472. * The functions below are called from rtc driver.
  473. * Return 0 if HPET is not being used.
  474. * Otherwise do the necessary changes and return 1.
  475. */
  476. int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
  477. {
  478. if (!is_hpet_enabled())
  479. return 0;
  480. hpet_rtc_flags &= ~bit_mask;
  481. return 1;
  482. }
  483. EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
  484. int hpet_set_rtc_irq_bit(unsigned long bit_mask)
  485. {
  486. unsigned long oldbits = hpet_rtc_flags;
  487. if (!is_hpet_enabled())
  488. return 0;
  489. hpet_rtc_flags |= bit_mask;
  490. if (!oldbits)
  491. hpet_rtc_timer_init();
  492. return 1;
  493. }
  494. EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
  495. int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
  496. unsigned char sec)
  497. {
  498. if (!is_hpet_enabled())
  499. return 0;
  500. hpet_alarm_time.tm_hour = hrs;
  501. hpet_alarm_time.tm_min = min;
  502. hpet_alarm_time.tm_sec = sec;
  503. return 1;
  504. }
  505. EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
  506. int hpet_set_periodic_freq(unsigned long freq)
  507. {
  508. uint64_t clc;
  509. if (!is_hpet_enabled())
  510. return 0;
  511. if (freq <= DEFAULT_RTC_INT_FREQ)
  512. hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
  513. else {
  514. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  515. do_div(clc, freq);
  516. clc >>= hpet_clockevent.shift;
  517. hpet_pie_delta = (unsigned long) clc;
  518. }
  519. return 1;
  520. }
  521. EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
  522. int hpet_rtc_dropped_irq(void)
  523. {
  524. return is_hpet_enabled();
  525. }
  526. EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
  527. static void hpet_rtc_timer_reinit(void)
  528. {
  529. unsigned long cfg, delta;
  530. int lost_ints = -1;
  531. if (unlikely(!hpet_rtc_flags)) {
  532. cfg = hpet_readl(HPET_T1_CFG);
  533. cfg &= ~HPET_TN_ENABLE;
  534. hpet_writel(cfg, HPET_T1_CFG);
  535. return;
  536. }
  537. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  538. delta = hpet_default_delta;
  539. else
  540. delta = hpet_pie_delta;
  541. /*
  542. * Increment the comparator value until we are ahead of the
  543. * current count.
  544. */
  545. do {
  546. hpet_t1_cmp += delta;
  547. hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
  548. lost_ints++;
  549. } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
  550. if (lost_ints) {
  551. if (hpet_rtc_flags & RTC_PIE)
  552. hpet_pie_count += lost_ints;
  553. if (printk_ratelimit())
  554. printk(KERN_WARNING "rtc: lost %d interrupts\n",
  555. lost_ints);
  556. }
  557. }
  558. irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  559. {
  560. struct rtc_time curr_time;
  561. unsigned long rtc_int_flag = 0;
  562. hpet_rtc_timer_reinit();
  563. memset(&curr_time, 0, sizeof(struct rtc_time));
  564. if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
  565. get_rtc_time(&curr_time);
  566. if (hpet_rtc_flags & RTC_UIE &&
  567. curr_time.tm_sec != hpet_prev_update_sec) {
  568. rtc_int_flag = RTC_UF;
  569. hpet_prev_update_sec = curr_time.tm_sec;
  570. }
  571. if (hpet_rtc_flags & RTC_PIE &&
  572. ++hpet_pie_count >= hpet_pie_limit) {
  573. rtc_int_flag |= RTC_PF;
  574. hpet_pie_count = 0;
  575. }
  576. if (hpet_rtc_flags & RTC_AIE &&
  577. (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
  578. (curr_time.tm_min == hpet_alarm_time.tm_min) &&
  579. (curr_time.tm_hour == hpet_alarm_time.tm_hour))
  580. rtc_int_flag |= RTC_AF;
  581. if (rtc_int_flag) {
  582. rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
  583. if (irq_handler)
  584. irq_handler(rtc_int_flag, dev_id);
  585. }
  586. return IRQ_HANDLED;
  587. }
  588. EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
  589. #endif